1
|
Yang X, Liang H, Tang Y, Dong R, Liu Q, Pang W, Su L, Gu X, Liu M, Wu Q, Xue X, Zhan J. Soybean Extract Ameliorates Lung Injury induced by Uranium Inhalation: An integrated strategy of network pharmacology, metabolomics, and transcriptomics. Biomed Pharmacother 2024; 180:117451. [PMID: 39326101 DOI: 10.1016/j.biopha.2024.117451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
AIM This study aimed to evaluate the protective effect of soybean extract (SE) against uranium-induced lung injury in rats. MATERIALS AND METHODS A rat lung injury model was established through nebulized inhalation of uranyl nitrate. Pretreatment with SE or sterile water (control group) by gavage for seven days before uranium exposure and until the experiment endpoints. The levels of uranium in lung tissues were detected by ICP-MS. Paraffin embedding-based hematoxylin & eosin staining and Masson's staining for the lung tissue were performed to observe the histopathological imaging features. A public database was utilized to analyze the network pharmacological association between SE and lung injury. The expression levels of proteins indicating fibrosis were measured by enzyme-linked immunosorbent assay. RNA-seq transcriptomic and LC-MS/MS targeted metabolomics were conducted in lung tissues. RESULTS Uranium levels in the lung tissues were lower in SE-pretreated rats than in the uranium-treated group. Inflammatory cell infiltration and the deposition of extracellular matrix were attenuated, and the levels of alpha-smooth muscle actin, transforming growth factor beta1, and hydroxyproline decreased in SE-pretreated rats compared to the uranium-treated group. Active ingredients of SE were related to inflammation, oxidative stress, and drug metabolism. A total of 67 differentially expressed genes and 39 differential metabolites were identified in the SE-pretreated group compared to the uranium-treated group, focusing on the drug metabolism-cytochrome P450, glutathione metabolism, IL-17 signaling pathway, complement, and coagulation cascades. CONCLUSIONS These findings suggest that SE may ameliorate uranium-induced pulmonary inflammation and fibrosis by regulating glutathione metabolism, chronic inflammation, and immune regulation.
Collapse
Affiliation(s)
- Xin Yang
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Hongying Liang
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Yufu Tang
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Ruifeng Dong
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Qimiao Liu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Wanqing Pang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Lixia Su
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Xiaona Gu
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Mengya Liu
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Qingdong Wu
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Xiangming Xue
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China.
| | - Jingming Zhan
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China.
| |
Collapse
|
2
|
Zhang M, Zhou H, Liu L, Song W. Biological effect of U(VI) exposure on lung epithelial BEAS-2B cells. CHEMOSPHERE 2024; 366:143451. [PMID: 39362378 DOI: 10.1016/j.chemosphere.2024.143451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
In this study, the biological effects of U(VI) exposure on lung epithelial cells were investigated by MTT assay, immunofluorescence, flow cytometry, and Western blotting. U(VI)-induced stress triggers oxidative stress in cells, activates MAPK signaling pathways, and promotes inflammation. Additionally, U(VI) causes damage to the cell membrane structure and severe DNA injury, impacting the accuracy of transcription and translation. The results demonstrate that U(VI) exposure significantly inhibits cell proliferation and migration. This is attributed to the disruption of the PI3K/AKT/GSK-3β/β-catenin signaling pathway and the reduction in CyclinD1 expression, leading to a delayed cell cycle, decreased growth rate, mitochondrial damage, and reduced energy metabolism. This study provides a comprehensive understanding of the molecular mechanisms underlying uranium-induced cellular toxicity in lung epithelial cells.
Collapse
Affiliation(s)
- Mingxia Zhang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Han Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lei Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Wencheng Song
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China; Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
3
|
Erdei E, Qeadan F, Miller CP, Kanda DA, Luo L, Gonzales M, Lewis JL, MacKenzie D. Environmental uranium exposures and cytokine profiles among mother-newborn baby pairs from the Navajo Βirth Cohort Study. Toxicol Appl Pharmacol 2022; 456:116292. [PMID: 36270330 PMCID: PMC10228290 DOI: 10.1016/j.taap.2022.116292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
The Navajo Nation was heavily mined for uranium (U) during the cold-war leading to a legacy of >1100 abandoned U mining, milling and associated waste sites. The Navajo Birth Cohort Study was initiated to assess the effect of non-occupational legacy exposure to U during pregnancy on birth outcomes and child development. We report that 92% of babies with detectable urine U at birth were born from mothers who had urine U concentrations greater than national norms during pregnancy, indicative of prenatal exposure to U. To assess immune alterations associated with U exposure on both mothers and babies, we investigated associations between cytokine profiles and maternal U and associations of these measures with cytokine profiles in babies. Effect sizes for the differences in cytokine profiles were more evident among babies than mothers. Overall, there were seven cytokines (IFN-γ, IL-1β, IL-2, IL-4, IL-10, GM-CSF, and TNF-α), for which the effect size for babies with higher than the national U concentrations was medium to large (ORs of 2.21 (1.08-4.52) through 1.71(0.76-3.83). In contrast, only three cytokines (IL-8, IL-12p70, and TNF-α) had effect sizes which almost reached medium strength (ORs of 1.64 (0.74-4.05) through 1.36 (0.65-2.87) in mothers with U above national norms. The effects of prenatal exposures to uranium and associated alterations in systemic immune responses resulting from U exposure could impact both maternal health as well as healthy child development through induction of inflammation, autoimmunity or other chronic diseases related to immune dysfunction that may affect long-term health.
Collapse
Affiliation(s)
- Esther Erdei
- University of New Mexico Health Sciences Center, Community Environmental Health Program, College of Pharmacy, Albuquerque, NM, United States of America.
| | - Fares Qeadan
- Loyola University Chicago, Parkinson School of Public Health, Maywood, IL, United States of America
| | - Curtis P Miller
- University of New Mexico Health Sciences Center, Community Environmental Health Program, College of Pharmacy, Albuquerque, NM, United States of America
| | - Deborah A Kanda
- University of New Mexico Health Sciences Center, School of Medicine & University of New Mexico Cancer Center, Albuquerque, NM, United States of America
| | - Li Luo
- University of New Mexico Health Sciences Center, School of Medicine & University of New Mexico Cancer Center, Albuquerque, NM, United States of America
| | - Melissa Gonzales
- University of New Mexico Health Sciences Center, School of Medicine, Division of Epidemiology, Biostatistics & Preventive Medicine, Albuquerque, NM, United States of America
| | - Johnnye L Lewis
- University of New Mexico Health Sciences Center, Community Environmental Health Program, College of Pharmacy, Albuquerque, NM, United States of America
| | - Debra MacKenzie
- University of New Mexico Health Sciences Center, Community Environmental Health Program, College of Pharmacy, Albuquerque, NM, United States of America
| |
Collapse
|
4
|
Schilz JR, Dashner-Titus EJ, Simmons KA, Erdei E, Bolt AM, MacKenzie DA, Hudson LG. The immunotoxicity of natural and depleted uranium: From cells to people. Toxicol Appl Pharmacol 2022; 454:116252. [PMID: 36152676 PMCID: PMC10044422 DOI: 10.1016/j.taap.2022.116252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/30/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022]
Abstract
Uranium is a naturally occurring element found in the environment as a mixture of isotopes with differing radioactive properties. Enrichment of mined material results in depleted uranium waste with substantially reduced radioactivity but retains the capacity for chemical toxicity. Uranium mine and milling waste are dispersed by wind and rain leading to environmental exposures through soil, air, and water contamination. Uranium exposure is associated with numerous adverse health outcomes in humans, yet there is limited understanding of the effects of depleted uranium on the immune system. The purpose of this review is to summarize findings on uranium immunotoxicity obtained from cell, rodent and human population studies. We also highlight how each model contributes to an understanding of mechanisms that lead to immunotoxicity and limitations inherent within each system. Information from population, animal, and laboratory studies will be needed to significantly expand our knowledge of the contributions of depleted uranium to immune dysregulation, which may then inform prevention or intervention measures for exposed communities.
Collapse
Affiliation(s)
- Jodi R Schilz
- Division of Physical Therapy, School of Medicine, University of New Mexico, Albuquerque, NM, United States of America.
| | - Erica J Dashner-Titus
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Karen A Simmons
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Esther Erdei
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Alicia M Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Debra A MacKenzie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| |
Collapse
|
5
|
Guéguen Y, Frerejacques M. Review of Knowledge of Uranium-Induced Kidney Toxicity for the Development of an Adverse Outcome Pathway to Renal Impairment. Int J Mol Sci 2022; 23:ijms23084397. [PMID: 35457214 PMCID: PMC9030063 DOI: 10.3390/ijms23084397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
An adverse outcome pathway (AOP) is a conceptual construct of causally and sequentially linked events, which occur during exposure to stressors, with an adverse outcome relevant to risk assessment. The development of an AOP is a means of identifying knowledge gaps in order to prioritize research assessing the health risks associated with exposure to physical or chemical stressors. In this paper, a review of knowledge was proposed, examining experimental and epidemiological data, in order to identify relevant key events and potential key event relationships in an AOP for renal impairment, relevant to stressors such as uranium (U). Other stressors may promote similar pathways, and this review is a necessary step to compare and combine knowledge reported for nephrotoxicants. U metal ions are filtered through the glomerular membrane of the kidneys, then concentrate in the cortical and juxtaglomerular areas, and bind to the brush border membrane of the proximal convoluted tubules. U uptake by epithelial cells occurs through endocytosis and the sodium-dependent phosphate co-transporter (NaPi-IIa). The identified key events start with the inhibition of the mitochondria electron transfer chain and the collapse of mitochondrial membrane potential, due to cytochrome b5/cytochrome c disruption. In the nucleus, U directly interacts with negatively charged DNA phosphate, thereby inducing an adduct formation, and possibly DNA strand breaks or cross-links. U also compromises DNA repair by inhibiting zing finger proteins. Thereafter, U triggers the Nrf2, NF-κB, or endoplasmic reticulum stress pathways. The resulting cellular key events include oxidative stress, DNA strand breaks and chromosomal aberrations, apoptosis, and pro-inflammatory effects. Finally, the main adverse outcome is tubular damage of the S2 and S3 segments of the kidneys, leading to tubular cell death, and then kidney failure. The attribution of renal carcinogenesis due to U is controversial, and specific experimental or epidemiological studies must be conducted. A tentative construction of an AOP for uranium-induced kidney toxicity and failure was proposed.
Collapse
|
6
|
Cruz N, Buscaglia R, Salanga M, Kellar R. Environmentally Relevant Levels of Depleted Uranium Impacts Dermal Fibroblast Proliferation, Viability, Metabolic Activity, and Scratch Closure. TOXICS 2021; 9:211. [PMID: 34564362 PMCID: PMC8472857 DOI: 10.3390/toxics9090211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022]
Abstract
Uranium (U) is a heavy metal used in military and industrial settings, with a large portion being mined from the Southwest region of the United States. Uranium has uses in energy and military weaponry, but the mining process has released U into soil and surface waters that may pose threats to human and environmental health. The majority of literature regarding U's human health concern focuses on outcomes based on unintentional ingestion or inhalation, and limited data are available about its influence via cutaneous contact. Utilizing skin dermis cells, we evaluated U's topical chemotoxicity. Employing soluble depleted uranium (DU) in the form of uranyl nitrate (UN), we hypothesized that in vitro exposure of UN will have cytotoxic effects on primary dermal fibroblasts by affecting cell viability and metabolic activity and, further, may delay wound healing aspects via altering cell proliferation and migration. Using environmentally relevant levels of U found in water (0.1 μM to 100 μM [UN]; 23.8-23,800 ppb [U]), we quantified cellular mitosis and migration through growth curves and in vitro scratch assays. Cells were exposed from 24 h to 144 h for a time-course evaluation of UN chemical toxicity. The effects of UN were observed at concentrations above and below the Environmental Protection Agency threshold for safe exposure limits. UN exposure resulted in a dose-dependent decrease in the viable cell count; however, it produced an increase in metabolism when corrected for the viable cells present. Furthermore, cellular proliferation, population doubling, and percent closure was hindered at levels ≥10 μM UN. Therefore, inadvertent exposure may exacerbate pre-existing skin diseases in at-risk demographics, and additionally, it may substantially interfere in cutaneous tissue repair processes.
Collapse
Affiliation(s)
- Nathan Cruz
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (N.C.); (M.S.)
- Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, AZ 86011, USA;
| | - Robert Buscaglia
- Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, AZ 86011, USA;
| | - Matthew Salanga
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (N.C.); (M.S.)
| | - Robert Kellar
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (N.C.); (M.S.)
- Center for Materials Interfaces in Research and Applications (¡MIRA!), Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
7
|
El Hayek E, Medina S, Guo J, Noureddine A, Zychowski KE, Hunter R, Velasco CA, Wiesse M, Maestas-Olguin A, Brinker CJ, Brearley A, Spilde M, Howard T, Lauer FT, Herbert G, Ali AM, Burchiel S, Campen MJ, Cerrato JM. Uptake and Toxicity of Respirable Carbon-Rich Uranium-Bearing Particles: Insights into the Role of Particulates in Uranium Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9949-9957. [PMID: 34235927 PMCID: PMC8413144 DOI: 10.1021/acs.est.1c01205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Particulate matter (PM) presents an environmental health risk for communities residing close to uranium (U) mine sites. However, the role of the particulate form of U on its cellular toxicity is still poorly understood. Here, we investigated the cellular uptake and toxicity of C-rich U-bearing particles as a model organic particulate containing uranyl citrate over a range of environmentally relevant concentrations of U (0-445 μM). The cytotoxicity of C-rich U-bearing particles in human epithelial cells (A549) was U-dose-dependent. No cytotoxic effects were detected with soluble U doses. Carbon-rich U-bearing particles with a wide size distribution (<10 μm) presented 2.7 times higher U uptake into cells than the particles with a narrow size distribution (<1 μm) at 100 μM U concentration. TEM-EDS analysis identified the intracellular translocation of clusters of C-rich U-bearing particles. The accumulation of C-rich U-bearing particles induced DNA damage and cytotoxicity as indicated by the increased phosphorylation of the histone H2AX and cell death, respectively. These findings reveal the toxicity of the particulate form of U under environmentally relevant heterogeneous size distributions. Our study opens new avenues for future investigations on the health impacts resulting from environmental exposures to the particulate form of U near mine sites.
Collapse
Affiliation(s)
- Eliane El Hayek
- Department of Chemistry and Chemical Biology, MSC03 2060, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, New Mexico 87131, United States
| | - Sebastian Medina
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, New Mexico 87131, United States
- Department of Biology, New Mexico Highlands University, Las Vegas, New Mexico 87701, United States
| | - Jimin Guo
- Department of Chemical and Biological Engineering, MSC01 1120, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Internal Medicine, Molecular Medicine, MSC08 4720, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Achraf Noureddine
- Department of Chemical and Biological Engineering, MSC01 1120, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Katherine E Zychowski
- Department of Biobehavioral Health and Data Sciences, MSC09 5350, University of New Mexico College of Nursing, Albuquerque, New Mexico 87106, United States
| | - Russell Hunter
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, New Mexico 87131, United States
| | - Carmen A Velasco
- Department of Civil Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Chemical Engineering Faculty, Central University of Ecuador, Ciudad Universitaria, Ritter s/n & Bolivia, P.O. Box 17-01-3972, Quito 170129, Ecuador
| | - Marco Wiesse
- Department of Civil Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Angelea Maestas-Olguin
- Department of Chemical and Biological Engineering, MSC01 1120, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - C Jeffrey Brinker
- Department of Chemical and Biological Engineering, MSC01 1120, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Michael Spilde
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Tamara Howard
- Department of Cell Biology and Physiology, MSC08 4750, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Fredine T Lauer
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, New Mexico 87131, United States
| | - Guy Herbert
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, New Mexico 87131, United States
| | - Abdul Mehdi Ali
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Scott Burchiel
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, New Mexico 87131, United States
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, New Mexico 87131, United States
| | - José M Cerrato
- Department of Civil Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
8
|
El-Garawani I, Allam HK, Shehata YA, Fadel K, El Kattan A. Genotoxicity linked to occupational exposure in uranium mine workers: Granzyme B and apoptotic changes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36793-36802. [PMID: 33710487 DOI: 10.1007/s11356-021-13323-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Uranium mining and processing are an ancient occupation, recognized as being grueling and accountable for injury and disease. Uranium (U) is a radioactive heavy metal used in many industrial applications. It increases the micronuclei frequencies as well as chromosomal aberration and sister chromatid exchange in peripheral blood lymphocytes. Granzyme B and perforin are stored inside the leukocytes in secretory granules. These proteins are released outside the cells by a cell-to-cell contact under specific conditions for inducing apoptosis. So, this study investigated the potential health hazards with prominence on the biological effects of radiation exposure. METHODS A cross-sectional analytic research was conducted on Egyptian male mining field workers. Leucocytes' genotoxicity was evaluated using DNA fragmentation assay and comet assay. Furthermore, flow cytometric analysis of Granzyme B protein was done. RESULTS A significant increase in dead cells after dual acridine orange/ethidium bromide (AO/EB) fluorescent staining in radiation-exposed groups was noticed compared to control groups. Moreover, a significant increase in the fragmented DNA was evident in exposed groups relative to the control one. Granzyme B protein levels showed a significant increase concerning control. CONCLUSION A wide variety of adverse human health risks are considered a potential risk to Egyptian uranium miners. For employers working in both mining and processing fields, the most common molecular shift highlighted was the leucocyte damage in blood samples. To preserve the health of all employees, health education and administration of effective hazard management procedures are necessary.
Collapse
Affiliation(s)
- Islam El-Garawani
- Department of Zoology, Faculty of Science, Menoufia University, Menoufia, 32511, Egypt
| | - Heba Khodary Allam
- Public Health and Community Medicine Department, Faculty of Medicine, Menoufia University, Shebin Al-Kom, Menoufia, Egypt.
| | - Yasser A Shehata
- Public Health and Community Medicine Department, Faculty of Medicine, Menoufia University, Shebin Al-Kom, Menoufia, Egypt
| | | | - Ahmed El Kattan
- Medical and Radiological Research Department, NMA, Cairo, Egypt
| |
Collapse
|
9
|
Ma M, Wang R, Xu L, Xu M, Liu S. Emerging health risks and underlying toxicological mechanisms of uranium contamination: Lessons from the past two decades. ENVIRONMENT INTERNATIONAL 2020; 145:106107. [PMID: 32932066 DOI: 10.1016/j.envint.2020.106107] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Uranium contamination is a global health concern. Regarding natural or anthropogenic uranium contamination, the major sources of concern are groundwater, mining, phosphate fertilizers, nuclear facilities, and military activities. Many epidemiological and laboratory studies have demonstrated that environmental and occupational uranium exposure can induce multifarious health problems. Uranium exposure may cause health risks because of its chemotoxicity and radiotoxicity in natural or anthropogenic scenarios: the former is generally thought to play a more significant role with regard to the natural uranium exposure, and the latter is more relevant to enriched uranium exposure. The understanding of the health risks and underlying toxicological mechanisms of uranium remains at a preliminary stage, and many controversial findings require further research. In order to present state-of-the-art status in this field, this review will primarily focus on the chemotoxicity of uranium, rather than its radiotoxicity, as well as the involved toxicological mechanisms. First, the natural or anthropogenic uranium contamination scenarios will be briefly summarized. Second, the health risks upon natural uranium exposure, for example, nephrotoxicity, bone toxicity, reproductive toxicity, hepatotoxicity, neurotoxicity, and pulmonary toxicity, will be discussed based on the reported epidemiological cases and laboratory studies. Third, the recent advances regarding the toxicological mechanisms of uranium-induced chemotoxicity will be highlighted, including oxidative stress, genetic damage, protein impairment, inflammation, and metabolic disorder. Finally, the gaps and challenges in the knowledge of uranium-induced chemotoxicity and underlying mechanisms will be discussed.
Collapse
Affiliation(s)
- Minghao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lining Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Dashner-Titus EJ, Schilz JR, Simmons KA, Duncan TR, Alvarez SC, Hudson LG. Differential response of human T-lymphocytes to arsenic and uranium. Toxicol Lett 2020; 333:269-278. [PMID: 32866568 PMCID: PMC7590629 DOI: 10.1016/j.toxlet.2020.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/01/2020] [Accepted: 08/23/2020] [Indexed: 01/10/2023]
Abstract
Elevated levels of arsenic and uranium have been detected in water sources near abandoned uranium mines in the Southwest. Evidence suggests uranium exposure increases the likelihood of immune dysfunction and this study investigates the impact of arsenic and uranium on human immune cell lines. Concentration-dependent cytotoxicity occurred following exposure to arsenite, whereas cells remained viable after 48 -h treatment with up to 100 μM uranyl acetate despite uptake of uranium into cells. Arsenite stimulated an oxidative stress response as detected by Nrf-2 nuclear accumulation and induction of HMOX-1 and NQO1, which was not detected with up to 30 μM uranyl acetate. Cellular oxidative stress can promote DNA damage and arsenite, but not uranium, stimulated DNA damage as measured by pH2AX. Arsenic enhanced the cytotoxic response to etoposide suggesting an inhibition of DNA repair, unlike uranium. Similarly, uranium did not inhibit PARP-1 activity. Because uranium reportedly stimulates oxidative stress, DNA damage and cytotoxicity in adherent epithelial cells, the current study suggests distinct cell type differences in response to uranium that may relate to generation of oxidative stress and associated downstream consequences. Delineating the actions of uranium across different cell targets will be important for understanding the potential health effects of uranium exposures.
Collapse
Affiliation(s)
- Erica J Dashner-Titus
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States.
| | - Jodi R Schilz
- Division of Physical Therapy, School of Medicine, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States.
| | - Karen A Simmons
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States.
| | - Tammi R Duncan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States.
| | - Sandra C Alvarez
- Early Childhood Services Center, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States.
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
11
|
Ran Y, Wang S, Zhao Y, Li J, Ran X, Hao Y. A review of biological effects and treatments of inhaled depleted uranium aerosol. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 222:106357. [PMID: 32755761 DOI: 10.1016/j.jenvrad.2020.106357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Depleted uranium (DU) is primarily used for DU bombs and DU tanks in the military. Aerosol inhalation is considered the primary route of DU exposure. Although laboratory tests have confirmed that inhalation of DU aerosol can cause lung, kidney, and other organ damage, epidemiological studies have found no conclusive evidence that persons in areas with prolonged exposure to DU-containing bombs are affected. After the body inhaled DU aerosols, we first clear the insoluble DU through whole-lung lavage (WLL). Then we eliminate the soluble uranium by the chelating agent. Besides, reducing DU damage to tissues and cells through drugs is also an important treatment method. In future research, emphasis should be placed on the damage mechanism of DU aerosol, the laboratory and clinical research of DU chelating agents, the research on the combination of DU chelating agent and WLL, and the research and development of new drugs to prevent DU damage.
Collapse
Affiliation(s)
- Yonghong Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Shuang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yazhen Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Juan Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xinze Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The incidence of pulmonary fibrosis is increasing worldwide and may, in part, be due to occupational and environmental exposures. Secondary fibrotic interstitial lung diseases may be mistaken for idiopathic pulmonary fibrosis with important implications for both disease management and prognosis. The purposes of this review are to shed light on possible underlying causes of interstitial pulmonary fibrosis and to encourage dialogue on the importance of acquiring a thorough patient history of occupational and environmental exposures. RECENT FINDINGS A recent appreciation for various occupational and environmental metals inducing both antigen-specific immune reactions in the lung and nonspecific "innate" immune system responses has emerged and with it a growing awareness of the potential hazards to the lung caused by low-level metal exposures. Advancements in the contrast and quality of high-resolution CT scans and identification of histopathological patterns of interstitial pulmonary fibrosis have improved clinical diagnostics. Moreover, recent findings indicate specific hotspots of pulmonary fibrosis within the USA. Increased prevalence of lung disease in these areas appears to be linked to occupational/environmental metal exposure and ethnic susceptibility/vulnerability. A systematic overview of possible occupational and environmental metals causing interstitial pulmonary fibrosis and a detailed evaluation of vulnerable/susceptible populations may facilitate a broader understanding of potential underlying causes and highlight risks of disease predisposition.
Collapse
Affiliation(s)
- Nour Assad
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Akshay Sood
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.,Miners' Colfax Medical Center, Raton, NM, 87740, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, MSC09 5360, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Katherine E Zychowski
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, MSC09 5360, 1 University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
13
|
Greene AD, Kendziorski JA, Buckholz JM, Niu L, Xie C, Pinney SM, Burns KA. Elevated serum chemokines are independently associated with both endometriosis and uranium exposure. Reprod Toxicol 2018; 84:26-31. [PMID: 30579999 DOI: 10.1016/j.reprotox.2018.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 01/12/2023]
Abstract
Endometriosis is a complex disease impacted by the hormonal and immune systems. Cytokines and chemokines are serum biomarkers that maybe useful to develop a noninvasive disease diagnosis. Individuals in the Fernald Community Cohort were exposed to uranium, a heavy metal with radioactive properties and estrogenic potential; therefore, serum samples from women in this cohort with or without uranium and with or without endometriosis were compared for alterations in chemokine, cytokine, and matrix metalloproteinase (MMP) levels. Control women were matched to endometriosis cases by uranium exposure, age, and body mass index. MMP levels were not altered. Five chemokines and one cytokine significantly increased in endometriosis cases versus controls irrespective of uranium exposure. Uranium exposure alone was associated with an increase in inflammatory chemokines. The majority of the elevated chemokines in endometriosis cases play important roles in attracting T helper-2 cells, which may be vital to understanding the immune response in endometriosis.
Collapse
Affiliation(s)
- Alexis D Greene
- Department of Environmental Health, Division of Environmental Genetics and Molecular Toxicology, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jessica A Kendziorski
- Department of Environmental Health, Division of Environmental Genetics and Molecular Toxicology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jeanette M Buckholz
- Department of Environmental Health, Division of Epidemiology, University of Cincinnati College of Medicine, United States
| | - Liang Niu
- Department of Environmental Health, Division of Biostatistics and Bioinformatics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Changchun Xie
- Department of Environmental Health, Division of Biostatistics and Bioinformatics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Susan M Pinney
- Department of Environmental Health, Division of Epidemiology, University of Cincinnati College of Medicine, United States
| | - Katherine A Burns
- Department of Environmental Health, Division of Environmental Genetics and Molecular Toxicology, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
14
|
Yi J, Yuan Y, Zheng J, Zhao T. Hydrogen sulfide alleviates uranium-induced rat hepatocyte cytotoxicity via inhibiting Nox4/ROS/p38 MAPK pathway. J Biochem Mol Toxicol 2018; 33:e22255. [PMID: 30368988 DOI: 10.1002/jbt.22255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/18/2018] [Accepted: 10/01/2018] [Indexed: 11/06/2022]
Abstract
As a gasotransmitter, hydrogen sulfide (H2 S) plays a crucial role in regulating the signaling pathway mediated by oxidative stress. The purpose of this study was to investigate the protective effects of H 2 S on uranium-induced rat hepatocyte cytotoxicity. Primary hepatocytes were isolated and cultured from Sprague Dawley rat liver tissues. After pretreating with sodium hydrosulfide (an H 2 S donor) for 1 hour (or GKT-136901 for 30 minutes), hepatocytes were treated by uranyl acetate for 24 hours. Cell viability, reactive oxygen species (ROS), malondialdehyde (MDA), NADPH oxidase 4 (Nox4), and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation were respectively determined. The effects of direct inhibition of Nox4 expression by GKT-136901 (a Nox4 inhibitor) on ROS and phospho-p38 MAPK levels were examined in uranium-treated hepatocytes. The results implicate that H 2 S can afford protection of rat hepatocytes against uranium-induced adverse effects through attenuating oxidative stress via prohibiting Nox4/ROS/p38 MAPK signaling.
Collapse
Affiliation(s)
- Juan Yi
- Department and Institute of Biology, School of Pharmaceutical and Biological Science, University of South China, Hengyang, China
| | - Yan Yuan
- Department and Institute of Biology, School of Pharmaceutical and Biological Science, University of South China, Hengyang, China
| | - Jifang Zheng
- Department and Institute of Biology, School of Pharmaceutical and Biological Science, University of South China, Hengyang, China
| | - Tingting Zhao
- Department and Institute of Biology, School of Pharmaceutical and Biological Science, University of South China, Hengyang, China
| |
Collapse
|
15
|
Ren J, Hao Y, Gao R, Zhang Y, Ran Y, Liu J, Dai X, Xiong W, Su Y, Li R. Effect of a novel polyethylene glycol compound on lung lavage in dogs after the inhalation of depleted uranium dust. Int J Radiat Biol 2018; 94:462-471. [DOI: 10.1080/09553002.2018.1446228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jiong Ren
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Rui Gao
- Department of Orthopaedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Ying Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yonghong Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jing Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xiaotian Dai
- Department of Respiratory Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wei Xiong
- Department of Respiratory Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yongping Su
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Rong Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
16
|
Wu W, Zhang K, Jiang S, Liu D, Zhou H, Zhong R, Zeng Q, Cheng L, Miao X, Tong Y, Lu Q. Association of co-exposure to heavy metals with renal function in a hypertensive population. ENVIRONMENT INTERNATIONAL 2018; 112:198-206. [PMID: 29275245 DOI: 10.1016/j.envint.2017.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is an increasing health problem worldwide. Recent studies have suggested the potential associations between exposure to metals and CKD events, particularly in participants with hypertension. However, relevant studies are limited. OBJECTIVES We aimed to explore the associations of metal exposure with renal function in participants with essential hypertension. METHODS Nine hundred and thirty-four participants with essential hypertension were recruited at the Department of Cardiology, Union Hospital, Wuhan, China. We measured the levels of chromium, cadmium, thallium and uranium in urine and calculated the estimated glomerular filtration rate (eGFR) for renal function. Multivariable linear regression models adjusted for potential confounders were applied. RESULTS After adjusting for potential confounders and other metals, doubling of urinary chromium or uranium levels decreased eGFR by 2.90 (95% confidence interval, 2.04 to 3.76) and 1.87 (0.58 to 3.15) mL/min per 1.73m2, respectively. Co-exposure to chromium and uranium was found to greatly decrease eGFR, particularly in women. Compared with those in the low exposure group, women with high exposure to chromium and uranium had a 11.36 (3.66 to 19.07) mL/min per 1.73m2 adjusted decline in eGFR. Higher urinary thallium levels were positively related to elevated eGFR in men. The adjusted increase in eGFR with doubling of thallium levels was 3.12 (1.14 to 5.10) mL/min per 1.73m2. Sex-difference in the associations of exposure to heavy metals with eGFR was also suggested. CONCLUSIONS Our findings suggest that environmental exposure to chromium and uranium might contribute to a decline in eGFR in individuals with hypertension. The associations of exposure to heavy metals with eGFR might be sex-different. Further studies are warranted to confirm our findings and clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Weixiang Wu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Ke Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, #1277 Jiefang Road, Wuhan, Hubei 430022, China
| | - Shunli Jiang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Dayang Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Hao Zhou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Rong Zhong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Qiang Zeng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Miao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yeqing Tong
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Qing Lu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| |
Collapse
|
17
|
Williams LJ, Chen L, Zosky GR. The respiratory health effects of geogenic (earth derived) PM10. Inhal Toxicol 2017; 29:342-355. [DOI: 10.1080/08958378.2017.1367054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lewis J. Williams
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| | - Ling Chen
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| | - Graeme R. Zosky
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| |
Collapse
|
18
|
Hao Y, Liu C, Huang J, Gu Y, Li H, Yang Z, Liu J, Wang W, Li R. Ghrelin protects against depleted uranium-induced apoptosis of MC3T3-E1 cells through oxidative stress-mediated p38-mitogen-activated protein kinase pathway. Toxicol Appl Pharmacol 2015; 290:116-25. [PMID: 26529667 DOI: 10.1016/j.taap.2015.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/10/2015] [Accepted: 10/28/2015] [Indexed: 11/19/2022]
Abstract
Depleted uranium (DU) mainly accumulates in the bone over the long term. Osteoblast cells are responsible for the formation of bone, and they are sensitive to DU damage. However, studies investigating methods of reducing DU damage in osteoblasts are rarely reported. Ghrelin is a stomach hormone that stimulates growth hormones released from the hypothalamic-pituitary axis, and it is believed to play an important physiological role in bone metabolism. This study evaluates the impact of ghrelin on DU-induced apoptosis of the osteoblast MC3T3-E1 and investigates its underlying mechanisms. The results show that ghrelin relieved the intracellular oxidative stress induced by DU, eliminated reactive oxygen species (ROS) and reduced lipid peroxidation by increasing intracellular GSH levels; in addition, ghrelin effectively suppressed apoptosis, enhanced mitochondrial membrane potential, and inhibited cytochrome c release and caspase-3 activation after DU exposure. Moreover, ghrelin significantly reduced the expression of DU-induced phosphorylated p38-mitogen-activated protein kinase (MAPK). A specific inhibitor (SB203580) or specific siRNA of p38-MAPK could significantly suppress DU-induced apoptosis and related signals, whereas ROS production was not affected. In addition, ghrelin receptor inhibition could reduce the anti-apoptosis effect of ghrelin on DU and reverse the effect of ghrelin on intracellular ROS and p38-MAPK after DU exposure. These results suggest that ghrelin can suppress DU-induced apoptosis of MC3T3-E1 cells, reduce DU-induced oxidative stress by interacting with its receptor, and inhibit downstream p38-MAPK activation, thereby suppressing the mitochondrial-dependent apoptosis pathway.
Collapse
Affiliation(s)
- Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Cong Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jiawei Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Ying Gu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Hong Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Zhangyou Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jing Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Weidong Wang
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People Hospital, Shanghai 200233, PR China.
| | - Rong Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China.
| |
Collapse
|
19
|
Fattal E, Tsapis N, Phan G. Novel drug delivery systems for actinides (uranium and plutonium) decontamination agents. Adv Drug Deliv Rev 2015; 90:40-54. [PMID: 26144994 DOI: 10.1016/j.addr.2015.06.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 12/17/2022]
Abstract
The possibility of accidents in the nuclear industry or of nuclear terrorist attacks makes the development of new decontamination strategies crucial. Among radionuclides, actinides such as uranium and plutonium and their different isotopes are considered as the most dangerous contaminants, plutonium displaying mostly a radiological toxicity whereas uranium exhibits mainly a chemical toxicity. Contamination occurs through ingestion, skin or lung exposure with subsequent absorption and distribution of the radionuclides to different tissues where they induce damaging effects. Different chelating agents have been synthesized but their efficacy is limited by their low tissue specificity and high toxicity. For these reasons, several groups have developed smart delivery systems to increase the local concentration of the chelating agent or to improve its biodistribution. The aim of this review is to highlight these strategies.
Collapse
|
20
|
Yu ZM, Liu ZH, Chen J, Zeng Q. Anti-inflammatory effect of Qingwen Baidu Decoction (清瘟败毒饮) in sepsis rats. Chin J Integr Med 2014; 20:934-43. [PMID: 25428340 DOI: 10.1007/s11655-014-1863-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To explore the pharmacological anti-inflammatory mechanism of Chinese formula Qingwen Baidu Decoction (清瘟败毒饮, QBD) from the view of holistic biology. METHODS The rats were randomly divided into a normal conrol group, a lipopolysaccharide (LPS) group, the low- and high-dose QBD groups, and a dexamethasone (DXM) group. NR8383 cells were treated with culture fluid containing 6% serum from rats of each group respectively. Inflammatory mediators were detected by reverse transcription polymerase chain reaction (RT-PCR), Western blotting hybridization, enzyme linked immunosorbent assay (ELISA), polymerase chain reaction (PCR) gene array and antibody array. RESULTS It is showed that the levels of interleukin (IL)-1α, IL-4 and IL-12 were enhanced in the low-dose QBD group; levels of IL-1α, IL-12 and IL-18 were augmented in the high-dose QBD group, compared with the LPS group after ELISA detection. Western blot showed that IL-1β and tumor necrosis factor (TNF)-α expression of the control group were lower than other groups. IL-1β level of the low-dose and high-dose QBD groups detected by RT-PCR was higher in early stage but lower after 24 h than that of the control group (P<0.01). Expression of 84 main inflammatory cytokines and receptors was detected by rat inflammatory cytokines and receptors PCR array. Up-regulation genes were 22 in both the LPS group and the low-dose QBD group, among which 16 up-regulating genes were the same. In these 16 genes, the up-regulating amplitude of 9 genes in the low-dose QBD group was less than that in the LPS group, 4 were similar to and 3 were more. Twenty-nine main cytokines were inspected by rat cytokine antibody array. Intergroup gray value differences were found in 7 expressed cytokines. The levels of these 7 cytokines in the low-dose QBD group were all lower than those in the the LPS group. CONCLUSIONS QBD has anti-inflammatory effect on sepsis by changing the level of inflammatory mediators.
Collapse
Affiliation(s)
- Zheng-miao Yu
- Department of Cerebropathia, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China,
| | | | | | | |
Collapse
|
21
|
|
22
|
Alteration of cytokine profiles in uranium miners exposed to long-term low dose ionizing radiation. ScientificWorldJournal 2014; 2014:216408. [PMID: 24892042 PMCID: PMC4032692 DOI: 10.1155/2014/216408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/13/2014] [Accepted: 04/13/2014] [Indexed: 01/01/2023] Open
Abstract
Objective. The aim of the study is to estimate the immune function through cytokine profiles in sera of uranium mines. Methods. Antibody arrays were used to detect 50 cytokines in sera of uranium miners. Miners who had continuously worked underground for <5 years were treated as control group and those who worked for ⩾5 years as experimental group. Results. Of 28 measurable cytokines, the release of IL-1α, IL-1RI, IL-15, IL-3, and IP-10 were significantly upregulated in the experimental group, and no cytokine was found significantly downregulated. Other proinflammatory cytokines such as IFN-γ, IL-10, IL-6, and TNFα levels were slightly upregulated in the experimental group. With adjustment to age, BMI, and cigarette smoking, IL-1α and IL-3 levels increased significantly with underground time. Conclusion. Alteration of cytokine profiles in this study may indicate persistent inflammatory responses in uranium miners exposed to long-term low doses radiation.
Collapse
|
23
|
Hao Y, Ren J, Li R, Liu J, Yang Z, Su Y. Immunological Changes Associated with Chronic Ingestion of Depleted Uranium in Rats. HEALTH PHYSICS 2013; 105:3-10. [PMID: 35606992 DOI: 10.1097/hp.0b013e31828730a9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The objective of this study was to evaluate the effect of depleted uranium (DU) on the rat immune system. Three-wk-old, specific pathogen-free Sprague-Dawley rats that received dietary DU for 4 mo were divided into four groups (30 rats per group) according to exposure dose: 0 (control group), 1.3 (DU1.3 group), 13 (DU13 group), and 130 mg U kg-1 (DU130 group). After 4 mo of exposure, the splenic tissues of the rats presented elevated uranium content in accordance with increasing dosage. The rats in the DU130 group exhibited immunological damage characterized by pathomorphological changes of immune organs and significantly lower thymic and splenic relative weight, whereas the influences of DU on the immune system were slight in the other groups. In addition, higher uranium exposure also resulted in reduced numbers of peripheral lymphocytes, lower lymphocyte proliferation, and reduced paw swelling. The authors concluded that the influences of DU on the immune system were slight after ingestion of DU at lower doses but severe after exposure to DU at higher doses.
Collapse
Affiliation(s)
- Yuhui Hao
- *State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | | | | | | | | | | |
Collapse
|
24
|
Immunological changes of chronic oral exposure to depleted uranium in mice. Toxicology 2013; 309:81-90. [DOI: 10.1016/j.tox.2013.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/11/2013] [Accepted: 04/20/2013] [Indexed: 11/22/2022]
|
25
|
Hao Y, Ren J, Liu J, Luo S, Ma T, Li R, Su Y. The Protective Role of Zinc against Acute Toxicity of Depleted Uranium in Rats. Basic Clin Pharmacol Toxicol 2012; 111:402-10. [DOI: 10.1111/j.1742-7843.2012.00910.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 05/30/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury; Institute of Combined Injury; Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine; Third Military Medical University; Chongqing China
| | - Jiong Ren
- State Key Laboratory of Trauma, Burns and Combined Injury; Institute of Combined Injury; Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine; Third Military Medical University; Chongqing China
| | - Jing Liu
- State Key Laboratory of Trauma, Burns and Combined Injury; Institute of Combined Injury; Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine; Third Military Medical University; Chongqing China
| | - Shenglin Luo
- State Key Laboratory of Trauma, Burns and Combined Injury; Institute of Combined Injury; Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine; Third Military Medical University; Chongqing China
| | - Ting Ma
- State Key Laboratory of Trauma, Burns and Combined Injury; Institute of Combined Injury; Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine; Third Military Medical University; Chongqing China
| | - Rong Li
- State Key Laboratory of Trauma, Burns and Combined Injury; Institute of Combined Injury; Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine; Third Military Medical University; Chongqing China
| | - Yongping Su
- State Key Laboratory of Trauma, Burns and Combined Injury; Institute of Combined Injury; Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine; Third Military Medical University; Chongqing China
| |
Collapse
|
26
|
Orona NS, Tasat DR. Uranyl nitrate-exposed rat alveolar macrophages cell death: influence of superoxide anion and TNF α mediators. Toxicol Appl Pharmacol 2012; 261:309-16. [PMID: 22561334 DOI: 10.1016/j.taap.2012.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/11/2012] [Accepted: 04/17/2012] [Indexed: 11/25/2022]
Abstract
Uranium compounds are widely used in the nuclear fuel cycle, military and many other diverse industrial processes. Health risks associated with uranium exposure include nephrotoxicity, cancer, respiratory, and immune disorders. Macrophages present in body tissues are the main cell type involved in the internalization of uranium particles. To better understand the pathological effects associated with depleted uranium (DU) inhalation, we examined the metabolic activity, phagocytosis, genotoxicity and inflammation on DU-exposed rat alveolar macrophages (12.5-200 μM). Stability and dissolution of DU could differ depending on the dissolvent and in turn alter its biological action. We dissolved DU in sodium bicarbonate (NaHCO₃ 100 mM) and in what we consider a more physiological vehicle resembling human internal media: sodium chloride (NaCl 0.9%). We demonstrate that uranyl nitrate in NaCl solubilizes, enters the cell, and elicits its cytotoxic effect similarly to when it is diluted in NaHCO₃. We show that irrespective of the dissolvent employed, uranyl nitrate impairs cell metabolism, and at low doses induces both phagocytosis and generation of superoxide anion (O₂⁻). At high doses it provokes the secretion of TNFα and through all the range of doses tested, apoptosis. We herein suggest that at DU low doses O₂⁻ may act as the principal mediator of DNA damage while at higher doses the signaling pathway mediated by O₂⁻ may be blocked, prevailing damage to DNA by the TNFα route. The study of macrophage functions after uranyl nitrate treatment could provide insights into the pathophysiology of uranium-related diseases.
Collapse
Affiliation(s)
- N S Orona
- School of Science and Technology, National University of General Martín, Avda Gral Paz 5445, 1650 San Martín, Buenos Aires, Argentina
| | | |
Collapse
|
27
|
Ren W, Hu L, Hua F, Jin J, Wang Y, Zhu L. Myeloid differentiation protein 2 silencing decreases LPS-induced cytokine production and TLR4/MyD88 pathway activity in alveolar macrophages. Immunol Lett 2011; 141:94-101. [DOI: 10.1016/j.imlet.2011.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 07/07/2011] [Accepted: 07/29/2011] [Indexed: 02/06/2023]
|
28
|
Brugge D, Buchner V. Health effects of uranium: new research findings. REVIEWS ON ENVIRONMENTAL HEALTH 2011; 26:231-49. [PMID: 22435323 DOI: 10.1515/reveh.2011.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recent plans for a nuclear renaissance in both established and emerging economies have prompted increased interest in uranium mining. With the potential for more uranium mining worldwide and a growth in the literature on the toxicology and epidemiology of uranium and uranium mining, we found it timely to review the current state of knowledge. Here, we present a review of the health effects of uranium mining, with an emphasis on newer findings (2005-2011). Uranium mining can contaminate air, water, and soil. The chemical toxicity of the metal constitutes the primary environmental health hazard, with the radioactivity of uranium a secondary concern. The update of the toxicologic evidence on uranium adds to the established findings regarding nephrotoxicity, genotoxicity, and developmental defects. Additional novel toxicologic findings, including some at the molecular level, are now emerging that raise the biological plausibility of adverse effects on the brain, on reproduction, including estrogenic effects, on gene expression, and on uranium metabolism. Historically, most epidemiology on uranium mining has focused on mine workers and radon exposure. Although that situation is still overwhelmingly true, a smaller emerging literature has begun to form around environmental exposure in residential areas near uranium mining and processing facilities. We present and critique such studies. Clearly, more epidemiologic research is needed to contribute to causal inference. As much damage is irreversible, and possibly cumulative, present efforts must be vigorous to limit environmental uranium contamination and exposure.
Collapse
Affiliation(s)
- Doug Brugge
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | |
Collapse
|
29
|
Pible O, Vidaud C, Plantevin S, Pellequer JL, Quéméneur E. Predicting the disruption by UO2(2+) of a protein-ligand interaction. Protein Sci 2010; 19:2219-30. [PMID: 20842713 PMCID: PMC3005792 DOI: 10.1002/pro.501] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/30/2010] [Accepted: 09/04/2010] [Indexed: 01/27/2023]
Abstract
The uranyl cation (UO(2) (2+)) can be suspected to interfere with the binding of essential metal cations to proteins, underlying some mechanisms of toxicity. A dedicated computational screen was used to identify UO(2) (2+) binding sites within a set of nonredundant protein structures. The list of potential targets was compared to data from a small molecules interaction database to pinpoint specific examples where UO(2) (2+) should be able to bind in the vicinity of an essential cation, and would be likely to affect the function of the corresponding protein. The C-reactive protein appeared as an interesting hit since its structure involves critical calcium ions in the binding of phosphorylcholine. Biochemical experiments confirmed the predicted binding site for UO(2) (2+) and it was demonstrated by surface plasmon resonance assays that UO(2) (2+) binding to CRP prevents the calcium-mediated binding of phosphorylcholine. Strikingly, the apparent affinity of UO(2) (2+) for native CRP was almost 100-fold higher than that of Ca(2+). This result exemplifies in the case of CRP the capability of our computational tool to predict effective binding sites for UO(2) (2+) in proteins and is a first evidence of calcium substitution by the uranyl cation in a native protein.
Collapse
Affiliation(s)
- Olivier Pible
- CEA Life Sciences Division, DSV, IBEB, SBTN, Bagnols-sur-Cèze, F-30207, France.
| | | | | | | | | |
Collapse
|
30
|
Shafer MM, Perkins DA, Antkiewicz DS, Stone EA, Quraishi TA, Schauer JJ. Reactive oxygen species activity and chemical speciation of size-fractionated atmospheric particulate matter from Lahore, Pakistan: an important role for transition metals. ACTA ACUST UNITED AC 2009; 12:704-15. [PMID: 20445860 DOI: 10.1039/b915008k] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study a sensitive macrophage-based in vitro reactive oxygen species (ROS) assay was coupled with chemical fractionation tools and a year-long sampling program to further our understanding of the role of water-soluble metals in aerosol toxicity. The location is the polluted urban environment of Lahore, Pakistan, where we collected 24 h PM10 and PM2.5 samples every 6(th) day from January 2007 through January 2008. The intrinsic (i.e. particulate matter (PM) mass-normalized) toxicity of the Lahore aerosol, representative of highly polluted developing nations, is compared with toxicity of aerosols from several urban environments in the USA. The monthly patterns of PM2.5 and PM10 water-soluble aerosol ROS-activity were similar with maxima in fall and mid-late winter, and minima over the period April through August and in early winter. Coarse PM ROS-activity was a consistent and significant component (42 +/- 13%) of total activity. The intrinsic activity of the PM2.5 and coarse PM was remarkably similar in a given month. Chelex treatment of the Lahore PM extracts removed a very large and consistent fraction of the water-soluble ROS-activity (96.5 +/- 2.8% for the PM10). Desferrioxamine (DFO) treatment of these extracts also removed a large and relatively consistent fraction of the water-soluble ROS-activity (87.8 +/- 5.3%). Taken together, the DFO and Chelex data imply that transition metals, particularly iron, are major factors mediating ROS-activity of water extracts of the Lahore PM. Statistical modeling (step-wise linear regression and cluster analysis) identified a small subset of metals (Mn, Co, Fe, Ni) as the potential ROS-active species. Several water-soluble "trace" metals present at very high concentrations in the PM extracts (Zn, Pb, Cd), that were effectively removed on Chelex, but are not redox-active, exhibited relatively poor correlations with ROS. The median intrinsic water-soluble ROS-activity measured in the Lahore PM was more than an order-of-magnitude greater than that measured in aerosols from the Long Beach/Los Angeles region and approximately 4-fold greater than the activity of Denver area PM.
Collapse
Affiliation(s)
- Martin M Shafer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 North Park Street, WI 53706, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Periyakaruppan A, Sarkar S, Ravichandran P, Sadanandan B, Sharma CS, Ramesh V, Hall JC, Thomas R, Wilson BL, Ramesh GT. Uranium induces apoptosis in lung epithelial cells. Arch Toxicol 2008; 83:595-600. [PMID: 19096828 DOI: 10.1007/s00204-008-0396-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 11/25/2008] [Indexed: 10/21/2022]
Abstract
Uranium is a naturally occurring radioactive material present everywhere in the environment. It is toxic because of its chemical or radioactive properties. Uranium enters environment mainly from mines and industry and cause threat to human health by accumulating in lungs as a result of inhalation. In our previous study, we have shown the effectiveness of antioxidant system response to the oxidative stress induced by uranyl acetate (UA) in rat lung epithelial (LE) cells. As part of our continuing studies; here, we investigated the mechanism underlying when LE cells are exposed to different concentration of UA. Oxidative stress may lead to apoptotic signaling pathways. LE cells treated with 0.25, 0.5 and 1 mM of UA results in dose and time-dependent increase in activity of both caspases-3 and -8. Increase in the concentration of cytochrome-c oxidase in cytosol was seen in LE cells treated with 1 mM UA as a result of mitochondria membrane permeability. The cytochrome-c leakage may trigger the apoptotic pathway. TUNEL assay performed in LE cells treated with 1 mM of UA showed significant incorporation of dNTPs in the nucleus after 24 h. In the presence of the caspase inhibitors, we observed the significant decrease in the activity of caspases-8 and -3 in 0.5 and 1 mM UA-treated LE cells.
Collapse
Affiliation(s)
- Adaikkappan Periyakaruppan
- Environmental Toxicology Program, Department of Chemistry, Texas Southern University, Houston, TX 77004, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Van der Meeren A, Tourdes F, Grémy O, Grillon G, Abram MC, Poncy JL, Griffiths N. Activation of alveolar macrophages after plutonium oxide inhalation in rats: involvement in the early inflammatory response. Radiat Res 2008; 170:591-603. [PMID: 18959459 DOI: 10.1667/rr1150.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 06/27/2008] [Indexed: 11/03/2022]
Abstract
Alveolar macrophages play an important role in the distribution, clearance and inflammatory reactions after particle inhalation, which may influence long-term events such as fibrosis and tumorigenesis. The objectives of the present study were to investigate the early inflammatory events after plutonium oxide inhalation in rats and involvement of alveolar macrophages. Lung changes were studied from 3 days to 3 months after inhalation of PuO2 of different isotopic compositions (70% or 97% 239Pu) and initial lung deposits (range 2.1 to 43.4 kBq/rat). Analyses of bronchoalveolar lavages showed early increases in the numbers of granulocytes, lymphocytes and multinucleated macrophages. The activation of macrophages was evaluated ex vivo by measurement of inflammatory mediator levels in culture supernatants. TNF-alpha and chemokine MCP-1, MIP-2 and CINC-1 production was elevated from 7 days after inhalation and remained so up to 3 months. In contrast, IL-1beta, IL-6 and IL-10 production was unchanged. At 6 weeks, pulmonary macrophage numbers and activation state were increased as observed from an immunohistochemistry study of lung sections with anti-ED1. Similarly, histological analyses of lung sections also showed evidence of inflammatory responses. In conclusion, our results indicate early inflammatory changes in the lungs of PuO2-contaminated animals and the involvement of macrophages in this process. A dose-effect relationship was observed between the amount of radionuclide inhaled or retained at the time of analysis and inflammatory mediator production by alveolar macrophages 14 days after exposure. For similar initial lung deposits, the inflammatory manifestation appears higher for 97% 239Pu than for 70% 239Pu.
Collapse
Affiliation(s)
- Anne Van der Meeren
- CEA/DSV/IRCM/SREIT, Laboratory of Radiotoxicology, CEA/DAM-Ile de France Bruyères le Chatel, Arpajon cedex, France.
| | | | | | | | | | | | | |
Collapse
|
33
|
Doherty SP, Prophete C, Maciejczyk P, Salnikow K, Gould T, Larson T, Koenig J, Jaques P, Sioutas C, Zelikoff JT, Lippmann M, Cohen MD. Detection of Changes in Alveolar Macrophage Iron Status Induced by Select PM2.5-Associated Components Using Iron-Response Protein Binding Activity. Inhal Toxicol 2008; 19:553-62. [PMID: 17497533 DOI: 10.1080/08958370701280481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The extent of adverse health effects, including induction/exacerbation of infectious lung disease, arising from entrainment of equivalent amounts (or exposure to a fixed increment) of fine particulate matter (PM2.5) can vary from region to region or city to city in a region. To begin to explain how differing effects on host resistance might arise after exposure to PM2.5 from various sites, we hypothesized that select metals (e.g., V, Al, and Mn) in each PM2.5 caused changes in alveolar macrophage (AM) Fe status that, ultimately, would lead to altered antibacterial function. To test this, iron-response protein (IRP) binding activity in a rat AM cell line was assessed after exposure to Fe alone and in conjunction with V, Mn, and/or Al at ratios of V:Fe, Al:Fe, or Mn:Fe encountered in PM2.5 samples from New York City, Los Angeles, and Seattle. Results indicated that V and Al each significantly altered IRP activity, though effects were not consistently ratio-(i.e., dose-) dependent; Mn had little impact on activity. We conclude that the reductions in Fe status detected here via the IRP assay arose, in part, from effects on transferrin-mediated Fe3+ delivery to the AM. Ongoing studies using this assay are allowing us to better determine: (1) whether mass (and/or molar) relationships between Fe and V, Al, and/or Mn in any PM2.5 sample consistently govern the extent of change in AM Fe status; (2) how much any specified PM2.5 constituent (metal or nonmetal) contributes to the overall disruption of Fe status found induced by an intact parent sample; and (3) whether induced changes in binding activity are relatable to other changes expected to occur in the AM, that is, in IRP-dependent mRNA/levels of ferritin/transferrin receptor and Fe-dependent functions. These studies demonstrate that pollutant-induced effects on lung cell Fe status can be assessed in a reproducible manner using an assay that can be readily performed by investigators who might otherwise have no access to other very costly analytical equipment, such as graphite atomic absorption or x-ray fluorescence spectro(photo)meters.
Collapse
Affiliation(s)
- S P Doherty
- NYU-EPA Particulate Matter Health Research Center, Nelson Institute, New York University School of Medicine Tuxedo, New York 10987, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mawatari E, Hongo M, Sakai A, Terasawa F, Takahashi M, Yazaki Y, Kinoshita O, Ikeda U. Amlodipine prevents monocrotaline-induced pulmonary arterial hypertension and prolongs survival in rats independent of blood pressure lowering. Clin Exp Pharmacol Physiol 2007; 34:594-600. [PMID: 17581214 DOI: 10.1111/j.1440-1681.2007.04618.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. The present study was designed to examine the role of amlodipine in preventing and reversing monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) in rats. 2. Rats were injected with MCT (40 mg/kg, s.c.) and randomly given either 6 mg/kg per day of amlodipine in drinking water or placebo for 3 weeks. Any animals treated with MCT that survived for 3 weeks were given either amlodipine or placebo for the next 3 weeks. 3. Blood pressure was not different between the groups. Amlodipine immediately following MCT markedly inhibited PAH with severe pulmonary vascular remodelling. The survival rate at 3 weeks after treatment was increased significantly in the amlodipine group compared with the placebo group (77%vs 43%; P < 0.01). The placebo group showed markedly diminished expression of endothelial nitric oxide synthase (eNOS) protein and mRNA levels, increased numbers of proliferating cell nuclear antigen-positive cells, enhanced mRNA expression of matrix metalloproteinase-2 and pro-inflammatory cytokines in the lung tissue and upregulation of P-selectin on the endothelium of the pulmonary arteries, whereas these effects were suppressed in the amlodipine-treated group. Furthermore, late treatment with amlodipine did not palliate PAH or improve survival. 4. Amlodipine inhibited the development of PAH and improved survival in rats independent of its effect on lowering blood pressure. These effects were associated with marked inhibition of the downregulation of eNOS and improvement of pulmonary vascular endothelial activation, as well as anti-inflammatory, antiproliferative and antifibrotic effects in the lung tissue. However, amlodipine failed to reverse established PAH. This study may provide an insight into therapeutic strategy of amlodipine in PAH.
Collapse
MESH Headings
- Amlodipine/pharmacology
- Amlodipine/therapeutic use
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Antihypertensive Agents/pharmacology
- Antihypertensive Agents/therapeutic use
- Blood Pressure/drug effects
- Blotting, Western
- Cell Proliferation/drug effects
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/prevention & control
- Immunohistochemistry
- Lung/drug effects
- Lung/enzymology
- Lung/metabolism
- Lung/pathology
- Male
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Monocrotaline
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- P-Selectin/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
Collapse
Affiliation(s)
- Eiichiro Mawatari
- Department of Cardiovascular Medicine, Shinsu University School of Medicine, Matsumoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Briner WE. The evolution of depleted uranium as an environmental risk factor: lessons from other metals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2007; 3:129-35. [PMID: 16823086 PMCID: PMC3807504 DOI: 10.3390/ijerph2006030016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Depleted uranium (DU) is used in both civilian and military applications. Civilian uses are primarily limited to ballast and counterweights in ships and aircraft with limited risk of environmental release. The very nature of the military use of DU releases DU into the environment. DU released into the environment from military use takes the form of large fragments that are chemically unchanged and dust in the form of oxides. DU dust is nearly insoluble, respirable and shows little mobility in the soil. Exposure to DU occurs primarily from inhalation of dust and possible hand to mouth activity. Toxicity of DU is believed to be primarily chemical in nature with radiological activity being a lesser problem. DU has been shown to have a variety of behavioral and neurological effects in experimental animals. DU has been used the Balkans, Afghanistan, and both Iraq wars and there is a high probability of its use in future conflicts. Further, other nations are developing DU weaponry; some of these nations may use DU with a greater radiological risk than those currently in use. The toxicity of DU has been studied mostly as an issue of the health of military personnel. However, many tons of DU have been left in the former theater of war and indigenous populations continue to be exposed to DU, primarily in the form of dust. Little epidemiological data exists concerning the impact of DU on these groups. It may be possible to extrapolate what the effects of DU may be on indigenous groups by examining the data on similar metals. DU has many similarities to lead in its route of exposure, chemistry, metabolic fate, target organs, and effect of experimental animals. Studies should be conducted on indigenous groups using lead as a model when ascertaining if DU has an adverse effect.
Collapse
Affiliation(s)
- Wayne E Briner
- Department of Psychology, University of Nebraska at Kearney, Kearney, NE 68849, USA.
| |
Collapse
|
36
|
Periyakaruppan A, Kumar F, Sarkar S, Sharma CS, Ramesh GT. Uranium induces oxidative stress in lung epithelial cells. Arch Toxicol 2006; 81:389-95. [PMID: 17124605 PMCID: PMC2740373 DOI: 10.1007/s00204-006-0167-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022]
Abstract
Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system's response to the oxidative stress induced by uranium in the cells.
Collapse
Affiliation(s)
- Adaikkappan Periyakaruppan
- Molecular Neurotoxicology Laboratory/Proteomics Core, Department of Biology, Texas Southern University, 3100 Cleburne St, Houston, TX 77004, USA
| | | | | | | | | |
Collapse
|
37
|
Tasat DR, Orona NS, Mandalunis PM, Cabrini RL, Ubios AM. Ultrastructural and metabolic changes in osteoblasts exposed to uranyl nitrate. Arch Toxicol 2006; 81:319-26. [PMID: 17106697 DOI: 10.1007/s00204-006-0165-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 10/26/2006] [Indexed: 10/23/2022]
Abstract
Exposure to uranium is an occupational hazard to workers who continually handle uranium and an environmental risk to the population at large. Since the cellular and molecular pathways of uranium toxicity in osteoblast cells are still unknown, the aim of the present work was to evaluate the adverse effects of uranyl nitrate (UN) on osteoblasts both in vivo and in vitro. Herein we studied the osteoblastic ultrastructural changes induced by UN in vivo and analyzed cell proliferation, generation of reactive oxygen species (ROS), apoptosis, and alkaline phosphatase (APh) activity in osteoblasts exposed to various UN concentrations (0.1, 1, 10, and 100 microM) in vitro. Cell proliferation was quantified by means of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, ROS was determined using the nitro blue tetrazolium test, apoptosis was morphologically determined using Hoechst 3332 and APh activity was assayed spectrophotometrically. Electron microscopy revealed that the ultrastructure of active and inactive osteoblasts exposed to uranium presented cytoplasmic and nuclear alterations. In vitro, 1-100 microM UN failed to modify cell proliferation ratio and to induce apoptosis. ROS generation increased in a dose-dependent manner in all tested doses. APh activity was found to decrease in 1-100 microM UN-treated cells vs. controls. Our results show that UN modifies osteoblast cell metabolism by increasing ROS generation and reducing APh activity, suggesting that ROS may play a more complex role in cell physiology than simply causing oxidative damage.
Collapse
Affiliation(s)
- D R Tasat
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, M de Irygoyen 3100, San Martín (1650), Pcia de Bs As, Argentina.
| | | | | | | | | |
Collapse
|
38
|
Dublineau I, Grison S, Grandcolas L, Baudelin C, Tessier C, Suhard D, Frelon S, Cossonnet C, Claraz M, Ritt J, Paquet P, Voisin P, Gourmelon P. Absorption, accumulation and biological effects of depleted uranium in Peyer's patches of rats. Toxicology 2006; 227:227-39. [PMID: 16978755 DOI: 10.1016/j.tox.2006.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 08/03/2006] [Accepted: 08/08/2006] [Indexed: 11/17/2022]
Abstract
The digestive tract is the entry route for radionuclides following the ingestion of contaminated food and/or water wells. It was recently characterized that the small intestine was the main area of uranium absorption throughout the gastrointestinal tract. This study was designed to determine the role played by the Peyer's patches in the intestinal absorption of uranium, as well as the possible accumulation of this radionuclide in lymphoid follicles and the toxicological or pathological consequences on the Peyer's patch function subsequent to the passage and/or accumulation of uranium. Results of experiments performed in Ussing chambers indicate that the apparent permeability to uranium in the intestine was higher (10-fold) in the mucosa than in Peyer's patches ((6.21+/-1.21 to 0.55+/-0.35)x10(-6)cm/s, respectively), demonstrating that the small intestinal epithelium was the preferential pathway for the transmucosal passage of uranium. A quantitative analysis of uranium by ICP-MS following chronic contamination with depleted uranium during 3 or 9 months showed a preferential accumulation of uranium in Peyer's patches (1355% and 1266%, respectively, at 3 and 9 months) as compared with epithelium (890% and 747%, respectively, at 3 and 9 months). Uranium was also detected in the mesenteric lymph nodes ( approximately 5-fold after contamination with DU). The biological effects of this accumulation of depleted uranium after chronic contamination were investigated in Peyer's patches. There was no induction of the apoptosis pathway after chronic DU contamination in Peyer's patches. The results indicate no change in the cytokine expression (Il-10, TGF-beta, IFN-gamma, TNF-alpha, MCP-1) in Peyer's patches and in mesenteric lymph nodes, and no modification in the uptake of yeast cells by Peyer's patches. In conclusion, this study shows that the Peyer's patches were a site of retention for uranium following the chronic ingestion of this radionuclide, without any biological consequences of such accumulation on Peyer's patch functions.
Collapse
Affiliation(s)
- I Dublineau
- IRSN, Direction de la RadioProtection de l'Homme, Service de Radiobiologie et d'Epidémiologie, Laboratoire de Radiotoxicologie expérimentale, IRSN, BP 17, F-92262 Fontenay-aux-Roses Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Prophete C, Maciejczyk P, Salnikow K, Gould T, Larson T, Koenig J, Jaques P, Sioutas C, Lippmann M, Cohen M. Effects of select PM-associated metals on alveolar macrophage phosphorylated ERK1 and -2 and iNOS expression during ongoing alteration in iron homeostasis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2006; 69:935-51. [PMID: 16728372 DOI: 10.1080/15287390500362030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
It was hypothesized that relative mass relationships among select constituent metals and iron (Fe3+) govern the pulmonary immunotoxic potential of any PM(2.5) sample, as these determine the extent to which Fe3+ binding by transferrin is affected (resulting in altered alveolar macrophage [AM] Fe status and subsequent antibacterial function). Iron response protein (IRP) binding activity is a useful indirect measurement of changes in Fe status, as reductions in cell Fe levels lead to increases in IRP binding. However, AM IRP activity can be affected by an increased presence of nitric oxide generated by inducible nitric oxide synthase (iNOS). This study sought to determine if any changes in AM IRP activity induced by PM(2.5) constituents V, Mn, or Al were independent from effects of the metals on cell NO formation. NR8383 rat AM were exposed to Fe3+ alone or combined with V, Mn, or Al at metal:Fe ratios representative of those in PM(2.5) collected in New York City, Los Angeles, and Seattle during fall 2001. Cells were then assessed for changes in IRP activity and iNOS expression. Phosphorylated extracellular signal-regulated kinase (ERK) 1 and 2 levels were also measured since activated ERKs are involved in signaling pathways that lead to increased iNOS expression. The results indicate that V and Al, and to a lesser extent Mn, altered IRP activity, though the effects were not consistently concentration dependent. Furthermore, while V and Mn treatments did not induce iNOS expression, Al did. These results confirmed our hypothesis that certain metals associated with PM(2.5) might alter the pulmonary immunocompetence of exposed hosts by affecting the Fe status of AM, a major class of deep lung defense cells.
Collapse
Affiliation(s)
- Colette Prophete
- NYU-EPA Particulate Matter Health Research Center, Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Malard V, Prat O, Darrouzet E, Bérenguer F, Sage N, Quéméneur E. Proteomic analysis of the response of human lung cells to uranium. Proteomics 2006; 5:4568-80. [PMID: 16240288 DOI: 10.1002/pmic.200402038] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The industrial use of uranium and particularly of depleted uranium, has pinpointed the need to review its chemical impact on human health. A proteomic approach was used to evaluate the response of a human lung cell line (A549) to uranium. We established the first 2-D reference map of the A549 cell line, identifying 87 spots corresponding to 81 major proteins. Uranium treatment triggered differential expression of 18 spots, of which 14 corresponded to fragments of cytokeratin 8 (CK8) and cytokeratin (CK18) and 1 to peroxiredoxin 1. We probed several hypotheses regarding CK cleavage, and observed that it did not result from caspase or calpain activity. Furthermore, we showed that the fragments are recognised by an anti-ubiquitin antibody (KM691). These results suggest a regulatory pathway involving CK ubiquitinylation or dysfunction in the proteasome-ubiquitin system in response to uranium exposure in human lung cells.
Collapse
Affiliation(s)
- Véronique Malard
- Service de Biochimie post-génomique et Toxicologie Nucléaire, DSV/DIEP, CEA VALRHO, Bagnols-sur-Cèze, France.
| | | | | | | | | | | |
Collapse
|
41
|
Wan B, Fleming JT, Schultz TW, Sayler GS. In vitro immune toxicity of depleted uranium: effects on murine macrophages, CD4+ T cells, and gene expression profiles. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:85-91. [PMID: 16393663 PMCID: PMC1332661 DOI: 10.1289/ehp.8085] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 08/17/2005] [Indexed: 05/06/2023]
Abstract
Depleted uranium (DU) is a by-product of the uranium enrichment process and shares chemical properties with natural and enriched uranium. To investigate the toxic effects of environmental DU exposure on the immune system, we examined the influences of DU (in the form of uranyl nitrate) on viability and immune function as well as cytokine gene expression in murine peritoneal macrophages and splenic CD4+ T cells. Macrophages and CD4+ T cells were exposed to various concentrations of DU, and cell death via apoptosis and necrosis was analyzed using annexin-V/propidium iodide assay. DU cytotoxicity in both cell types was concentration dependent, with macrophage apoptosis and necrosis occurring within 24 hr at 100 microM DU exposure, whereas CD4+ T cells underwent cell death at 500 microM DU exposure. Noncytotoxic concentrations for macrophages and CD4+ T cells were determined as 50 and 100 microM, respectively. Lymphoproliferation analysis indicated that macrophage accessory cell function was altered with 200 microM DU after exposure times as short as 2 hr. Microarray and real-time reverse-transcriptase polymerase chain reaction analyses revealed that DU alters gene expression patterns in both cell types. The most differentially expressed genes were related to signal transduction, such as c-jun, NF- kappa Bp65, neurotrophic factors (e.g., Mdk), chemokine and chemokine receptors (e.g., TECK/CCL25), and interleukins such as IL-10 and IL-5, indicating a possible involvement of DU in cancer development, autoimmune diseases, and T helper 2 polarization of T cells. The results are a first step in identifying molecular targets for the toxicity of DU and the elucidation of the molecular mechanisms for the immune modulation ability of DU.
Collapse
Affiliation(s)
- Bin Wan
- Center for Environmental Biotechnology and Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996-1605, USA
| | | | | | | |
Collapse
|
42
|
Monleau M, De Méo M, Paquet F, Chazel V, Duménil G, Donnadieu-Claraz M. Genotoxic and Inflammatory Effects of Depleted Uranium Particles Inhaled by Rats. Toxicol Sci 2005; 89:287-95. [PMID: 16221956 DOI: 10.1093/toxsci/kfj010] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Depleted uranium (DU) is a radioactive heavy metal coming from the nuclear industry and used in numerous military applications. Uranium inhalation can lead to the development of fibrosis and neoplasia in the lungs. As little is known concerning the molecular processes leading to these pathological effects, some of the events in terms of genotoxicity and inflammation were investigated in rats exposed to DU by inhalation. Our results show that exposure to DU by inhalation resulted in DNA strand breaks in broncho-alveolar lavage (BAL) cells and in increase of inflammatory cytokine expression and production of hydroperoxides in lung tissue suggesting that the DNA damage was in part a consequence of the inflammatory processes and oxidative stress. The effects seemed to be linked to the doses, were independent of the solubility of uranium compounds and correlating with the type of inhalation. Repeated inhalations seemed to induce an effect of potentiation in BAL cells and also in kidney cells. Comet assay in neutral conditions revealed that DNA damage in BAL cells was composed partly by double strands breaks suggesting that radiation could contribute to DU genotoxic effects in vivo. All these in vivo results contribute to a better understanding of the pathological effect of DU inhalation.
Collapse
Affiliation(s)
- Marjorie Monleau
- IRSN/DRPH/SRBE, Laboratoire de Radiotoxicologie Expérimentale, BP 166, 26702 Pierrelatte Cedex, France
| | | | | | | | | | | |
Collapse
|
43
|
Sutton M, Burastero SR. Uranium(VI) solubility and speciation in simulated elemental human biological fluids. Chem Res Toxicol 2005; 17:1468-80. [PMID: 15540945 DOI: 10.1021/tx049878k] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The complete understanding of the human body response to uranium contamination exposure is vital to the development of exposure analysis and subsequent treatments for overexposure. Thermodynamic modeling has traditionally been used to study environmental metal contaminant migration (especially uranium and other radionuclides), allowing examination of chemical processes difficult to study experimentally. However, such techniques are rarely used in the study of metal toxicology. Chemical thermodynamics has a unique and valuable role in developing models to explain metal metabolism and toxicology. Previous computational models of beryllium in simulated biological fluids have been shown to be useful in predicting metal behavior in the human body. However, previous studies utilizing chemical thermodynamics in understanding uranium chemistry in body fluids are limited. Here, a chemical thermodynamic speciation code has been used to model and understand the chemistry of uranium in simulated human biological fluids such as intracellular, interstitial, and plasma fluids, saliva, sweat, urine, bile, gastric juice, pancreatic fluid, and a number of airway surface fluids from patients with acute lung conditions. The results show predicted uranium solubility, and speciation varies markedly between each biological fluid due to differences in fluid composition, ionic strength, and pH. The formation of uranium hydroxide, phosphate (sodium/potassium autunite), and calcium uranate was observed in most of the fluids. The results of this work, supported by experimental validation, can aid in understanding the metabolism and toxic effects of uranium with potential applications to biological monitoring as well as chelation treatment of uranium body burden.
Collapse
Affiliation(s)
- Mark Sutton
- Chemical Biology and Nuclear Science Division and Health Services Department, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551, USA.
| | | |
Collapse
|
44
|
Fong RN, Gonzalez BPE, Fuentealba IC, Cherian MG. Role of tumor necrosis factor-alpha in the development of spontaneous hepatic toxicity in Long-Evans Cinnamon rats. Toxicol Appl Pharmacol 2004; 200:121-30. [PMID: 15476865 DOI: 10.1016/j.taap.2004.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 03/31/2004] [Indexed: 11/28/2022]
Abstract
The objective of this study was to evaluate the potential role of TNF-alpha in the onset of acute hepatitis in the Long-Evans Cinnamon (LEC) rat, an animal model for inherited copper (Cu) toxicosis. In LEC rats, Cu is accumulated in the liver with age, and clinical signs of acute hepatitis were observed as, icterus, reduced body weight, nasal bleeding, dehydration, and reduced food intake at 12 weeks of age. Cellular changes such as apoptosis in the liver were evident in these rats with increasing age. Positive TNF-alpha and TNFR1 immunostainings were observed in hepatocytes and Kupffer cells in LEC rats. Hepatic levels of caspase-3 activity, TNF-alpha mRNA, and protein were also increased in LEC rats from 6 to 12 weeks of age as compared with control Long-Evans (LE) rats. The neutralization of TNF-alpha by passive immunization or the inhibition of caspase activity can block the apoptotic process initiated by TNF-alpha. In this study, we evaluated the effects of passive immunization of LEC rats with weekly administration of anti-rat TNF-alpha on Cu-induced acute hepatitis. This treatment resulted in a reduction of the percentage of apoptotic cells in the liver, decreased activity of caspase-3, and also in down-regulation of the TNF-alpha gene expression. Thus, these results suggest a major role for TNF-alpha on the pathogenesis of Cu-induced acute hepatitis in LEC rats.
Collapse
Affiliation(s)
- Rodolfo Niño Fong
- Department of Pathology, Faculty of Medicine and Dentistry, University of Western Ontario, London, Canada N6A 5C1
| | | | | | | |
Collapse
|