1
|
Ye X, Fung NSK, Lam WC, Lo ACY. Nutraceuticals for Diabetic Retinopathy: Recent Advances and Novel Delivery Systems. Nutrients 2024; 16:1715. [PMID: 38892648 PMCID: PMC11174689 DOI: 10.3390/nu16111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Diabetic retinopathy (DR) is a major vision-threatening disease among the working-age population worldwide. Present therapeutic strategies such as intravitreal injection of anti-VEGF and laser photocoagulation mainly target proliferative DR. However, there is a need for early effective management in patients with early stage of DR before its progression into the more severe sight-threatening proliferative stage. Nutraceuticals, natural functional foods with few side effects, have been proposed to be beneficial in patients with DR. Over the decades, many studies, either in vitro or in vivo, have demonstrated the advantages of a number of nutraceuticals in DR with their antioxidative, anti-inflammatory, neuroprotective, or vasoprotective effects. However, only a few clinical trials have been conducted, and their outcomes varied. The low bioavailability and instability of many nutraceuticals have indeed hindered their utilization in clinical use. In this context, nanoparticle carriers have been developed to deliver nutraceuticals and to improve their bioavailability. Despite its preclinical nature, research of interventive nutraceuticals for DR may yield promising information in their clinical applications.
Collapse
Affiliation(s)
- Xiaoyuan Ye
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
| | - Nicholas Siu Kay Fung
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
| | - Wai Ching Lam
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
- Department of Ophthalmology, University of British Columbia, 2550 Willow Street, Room 301, Vancouver, BC V5Z 3N9, Canada
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
| |
Collapse
|
2
|
Aykutlu MŞ, Güçlü H, Doğanlar ZB, Kurtdere AK, Doğanlar O. MicroRNA-184 attenuates hypoxia and oxidative stress-related injury via suppressing apoptosis, DNA damage and angiogenesis in an in vitro age-related macular degeneration model. Toxicol In Vitro 2022; 83:105413. [PMID: 35690295 DOI: 10.1016/j.tiv.2022.105413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/13/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of blindness worldwide, particularly in developed countries. Recently, microRNAs (miRs) have become popular research area to develop new treatment options of AMD. However, interaction between hsa-miR-184 and AMD remain largely unexplored. In this study, sub-lethal levels of Deforoxamine Mesylate salt (DFX) and H2O2 were applied to ARPE-19 cells to establish a severe in vitro AMD model, via durable hypoxia and oxidative stress. We found that up-regulation of miR-184 level in AMD can suppress hypoxia-related angiogenic signals through HIF-1α/VEGF/MMPs axis. Also, miR-184 suppressed the hypoxia sensor miR-155 and genes in the EGFR/PI3K/AKT pathway, which is an alternative pathway in angiogenesis. To investigate the mechanism behind this protective effect, we evaluated the impact of miR-184 on retinal apoptosis in a model of AMD. miR-184 inhibited retinal apoptosis by upregulating BCL-2 and downregulating pro-apoptototic BAX, TRAIL, Caspase 3 and 8 signals as well as p53. Taken together, miR-184 attenuates retinal cell damage induced by severe AMD pathologies through suppressing hypoxia, angiogenesis and apoptosis. The safety profile of miR-184 was observed to be similar to Bevacizumab, which is in wide use clinically, but miR-184 was found to provide a more effective therapeutic potential by regulating simultaneously multiple pathologies.
Collapse
Affiliation(s)
- Merve Şambel Aykutlu
- Trakya University Faculty of Medicine, Department of Ophthalmology, 22030 Edirne, Turkey.
| | - Hande Güçlü
- Trakya University Faculty of Medicine, Department of Ophthalmology, 22030 Edirne, Turkey
| | - Zeynep Banu Doğanlar
- Trakya University Faculty of Medicine, Department of Medical Biology, 22030 Edirne, Turkey.
| | - Ayşe Kardelen Kurtdere
- Trakya University Faculty of Medicine, Department of Medical Biology, 22030 Edirne, Turkey
| | - Oğuzhan Doğanlar
- Trakya University Faculty of Medicine, Department of Medical Biology, 22030 Edirne, Turkey.
| |
Collapse
|
3
|
Le TH. GSTM1 Gene, Diet, and Kidney Disease: Implication for Precision Medicine?: Recent Advances in Hypertension. Hypertension 2021; 78:936-945. [PMID: 34455814 DOI: 10.1161/hypertensionaha.121.16510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the United States, the prevalence of chronic kidney disease in adults is ≈14%. The mainstay of therapy for chronic kidney disease is angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, but many patients with chronic kidney disease still progress to end-stage kidney disease. Increased oxidative stress is a major molecular underpinning of chronic kidney disease progression. In humans, a common deletion variant of the glutathione-S-transferase μ-1 (GSTM1) gene, the GSTM1 null allele (GSTM1(0)), results in decreased GSTM1 enzymatic activity and is associated with higher levels of oxidative stress. GSTM1 belongs to the superfamily of GSTs that are phase II antioxidant enzymes and are regulated by Nrf2 (nuclear factor erythroid 2-related factor 2). Cruciferous vegetables in general, and broccoli in particular, are rich in glucoraphanin, a precursor of sulforaphane that has been shown to have protective effects against oxidative damage through the activation of Nrf2. This review will highlight recent human and animal studies implicating the role of GSTM1 deficiency in hypertension and kidney disease, and its impact on the effects of cruciferous vegetables on kidney injury and disease progression, illustrating the significance of gene and environment interaction and a potential for targeted precision medicine in the treatment of kidney disease.
Collapse
Affiliation(s)
- Thu H Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, NY
| |
Collapse
|
4
|
The Effects of Systemic Use of Epigallocatechin Gallate in Thermal Injury Progression. Indian J Surg 2021. [DOI: 10.1007/s12262-021-02771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
5
|
The PKA-p38MAPK-NFAT5-Organic Osmolytes Pathway in Duchenne Muscular Dystrophy: From Essential Player in Osmotic Homeostasis, Inflammation and Skeletal Muscle Regeneration to Therapeutic Target. Biomedicines 2021; 9:biomedicines9040350. [PMID: 33808305 PMCID: PMC8066813 DOI: 10.3390/biomedicines9040350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), the absence of dystrophin from the dystrophin-associated protein complex (DAPC) causes muscle membrane instability, which leads to myofiber necrosis, hampered regeneration, and chronic inflammation. The resulting disabled DAPC-associated cellular pathways have been described both at the molecular and the therapeutical level, with the Toll-like receptor nuclear factor kappa-light-chain-enhancer of activated B cells pathway (NF-ƘB), Janus kinase/signal transducer and activator of transcription proteins, and the transforming growth factor-β pathways receiving the most attention. In this review, we specifically focus on the protein kinase A/ mitogen-activated protein kinase/nuclear factor of activated T-cells 5/organic osmolytes (PKA-p38MAPK-NFAT5-organic osmolytes) pathway. This pathway plays an important role in osmotic homeostasis essential to normal cell physiology via its regulation of the influx/efflux of organic osmolytes. Besides, NFAT5 plays an essential role in cell survival under hyperosmolar conditions, in skeletal muscle regeneration, and in tissue inflammation, closely interacting with the master regulator of inflammation NF-ƘB. We describe the involvement of the PKA-p38MAPK-NFAT5-organic osmolytes pathway in DMD pathophysiology and provide a clear overview of which therapeutic molecules could be of potential benefit to DMD patients. We conclude that modulation of the PKA-p38MAPK-NFAT5-organic osmolytes pathway could be developed as supportive treatment for DMD in conjunction with genetic therapy.
Collapse
|
6
|
Rac M, Shumbe L, Oger C, Guy A, Vigor C, Ksas B, Durand T, Havaux M. Luminescence imaging of leaf damage induced by lipid peroxidation products and its modulation by β-cyclocitral. PHYSIOLOGIA PLANTARUM 2021; 171:246-259. [PMID: 33215689 DOI: 10.1111/ppl.13279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 05/26/2023]
Abstract
Lipid peroxidation is a primary event associated with oxidative stress in plants. This phenomenon secondarily generates bioactive and/or toxic compounds such as reactive carbonyl species (RCS), phytoprostanes, and phytofurans, as confirmed here in Arabidopsis plants exposed to photo-oxidative stress conditions. We analyzed the effects of exogenous applications of secondary lipid oxidation products on Arabidopsis plants by luminescence techniques. Oxidative damage to attached leaves was measured by autoluminescence imaging, using a highly sensitive CCD camera, and the activity of the detoxification pathway, dependent on the transcription regulator SCARECROW-LIKE 14 (SCL14), was monitored with a bioluminescent line expressing the firefly LUCIFERASE (LUC) gene under the control of the ALKENAL REDUCTASE (AER) gene promoter. We identified 4-hydroxynonenal (HNE), and to a lesser extent 4-hydroxyhexenal (HHE), as highly reactive compounds that are harmful to leaves and can trigger AER gene expression, contrary to other RCS (pentenal, hexenal) and to isoprostanoids. Although the levels of HNE and other RCS were enhanced in the SCL14-deficient mutant (scl14), exogenously applied HNE was similarly damaging to this mutant, its wild-type parent and a SCL14-overexpressing transgenic line (OE:SCL14). However, strongly boosting the SCL14 detoxification pathway and AER expression by a pre-treatment of OE:SCL14 with the signaling apocarotenoid β-cyclocitral canceled the damaging effects of HNE. Conversely, in the scl14 mutant, the effects of β-cyclocitral and HNE were additive, leading to enhanced leaf damage. These results indicate that the cellular detoxification pathway induced by the low-toxicity β-cyclocitral targets highly toxic compounds produced during lipid peroxidation, reminiscent of a safener-type mode of action.
Collapse
Affiliation(s)
- Marek Rac
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Leonard Shumbe
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Brigitte Ksas
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Michel Havaux
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| |
Collapse
|
7
|
Álvarez-Barrios A, Álvarez L, García M, Artime E, Pereiro R, González-Iglesias H. Antioxidant Defenses in the Human Eye: A Focus on Metallothioneins. Antioxidants (Basel) 2021; 10:89. [PMID: 33440661 PMCID: PMC7826537 DOI: 10.3390/antiox10010089] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
The human eye, the highly specialized organ of vision, is greatly influenced by oxidants of endogenous and exogenous origin. Oxidative stress affects all structures of the human eye with special emphasis on the ocular surface, the lens, the retina and its retinal pigment epithelium, which are considered natural barriers of antioxidant protection, contributing to the onset and/or progression of eye diseases. These ocular structures contain a complex antioxidant defense system slightly different along the eye depending on cell tissue. In addition to widely studied enzymatic antioxidants, including superoxide dismutase, glutathione peroxidase, catalase, peroxiredoxins and selenoproteins, inter alia, metallothioneins (MTs) are considered antioxidant proteins of growing interest with further cell-mediated functions. This family of cysteine rich and low molecular mass proteins captures and neutralizes free radicals in a redox-dependent mechanism involving zinc binding and release. The state of the art of MTs, including the isoforms classification, the main functions described to date, the Zn-MT redox cycle as antioxidant defense system, and the antioxidant activity of Zn-MTs in the ocular surface, lens, retina and its retinal pigment epithelium, dependent on the number of occupied zinc-binding sites, will be comprehensively reviewed.
Collapse
Affiliation(s)
- Ana Álvarez-Barrios
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Lydia Álvarez
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
| | - Montserrat García
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain
| | - Enol Artime
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
| | - Rosario Pereiro
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain
| |
Collapse
|
8
|
El Ayadi A, Wang CZ, Zhang M, Wetzel M, Prasai A, Finnerty CC, Enkhbaatar P, Herndon DN, Ansari NH. Metal chelation reduces skin epithelial inflammation and rescues epithelial cells from toxicity due to thermal injury in a rat model. BURNS & TRAUMA 2020; 8:tkaa024. [PMID: 33033727 PMCID: PMC7530369 DOI: 10.1093/burnst/tkaa024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/19/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND One of the most pervasive complications of burn injury is wound progression, characterized by continuous tissue destruction in untreated wounds, which leads to wound infection, inflammation, oxidative stress and excessive scar formation. We determined whether additional tissue destruction could be attenuated with Livionex formulation (LF) lotion, which contains a metal-chelating agent and reduces inflammation in burn wounds. METHODS We subjected male Sprague Dawley rats to a 2% total body surface area (TBSA) burn using a brass comb model and topically applied LF lotion (containing ethylenediaminetetraacetic acid and methyl sulfonyl methane) to the affected area every 8 hours over 3 days. Inflammatory cytokine levels, cell apoptosis and wound healing were compared in LF lotion-treated and untreated rats. Statistical analysis was performed using a one-way analysis of variance in conjunction with Tukey's post-hoc test. RESULTS Serum inflammatory cytokines were not detectable after 3 days, suggesting that small burn wounds induce only an immediate, localized inflammatory response. Microscopy revealed that LF lotion improved burn site pathology. Deoxynucleotidyl transferase biotin-d-UTP nick-end labeling staining showed reduced cell death in the LF-treated samples. LF lotion prevented the spread of tissue damage, as seen by increased amounts of Ki-67-positive nuclei in the adjacent epidermis and hair follicles. Tumor necrosis factor-alpha, interleukin-6 and inducible nitric oxide synthase levels in LF-treated skin sections from burned rats were comparable to the levels observed in unburned control sections, indicating that LF lotion reduces inflammation in and around the burn site. CONCLUSIONS These results establish LF lotion as a therapeutic agent for reducing inflammatory stress, cell death and tissue destruction when applied immediately after a burn injury. Further studies of LF lotion on large TBSA burns will determine its efficacy as an emergency treatment for reducing long-term morbidity and scarring.
Collapse
Affiliation(s)
- Amina El Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Cheng Z Wang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Min Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Michael Wetzel
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Anesh Prasai
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Celeste C Finnerty
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, 301 University Blvd., University of Texas Medical Branch, Galveston, TX 77555, USA
| | - David N Herndon
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Naseem H Ansari
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
9
|
Sarikaya M, Yazihan N, Daş Evcimen N. Relationship between aldose reductase enzyme and the signaling pathway of protein kinase C in an in vitro diabetic retinopathy model. Can J Physiol Pharmacol 2019; 98:243-251. [PMID: 31743046 DOI: 10.1139/cjpp-2019-0211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein kinase C (PKC) and aldose reductase (AR) enzyme activities are increased in diabetes and complications are include retinopathy, nephropathy, and neuropathy. However, the relationship between PKC and AR and the underlying molecular mechanisms is still unclear. We aimed to evaluate the relationship between these two enzymes and clarify the underlying molecular mechanisms by the related signaling molecules. The effects of hyperglycemia and oxidative stress on AR and PKC enzymes and the signaling molecules such as nuclear factor-kappa B (NF-κB), inhibitor kappa B-alpha (IkB-α), total c-Jun, phospho c-Jun, and stress-activated protein kinases (SAPK)/Jun amino-terminal kinases (JNK) were evaluated in human retinal pigment epithelial cells (ARPE-19). AR, PKC protein levels, and related signaling molecules increased with hyperglycemia and oxidative stress. The AR inhibitor sorbinil decreased PKC expression and activity and all signaling molecule protein levels. Increased AR expression during hyperglycemia and oxidative stress was found to be correlated with the increase in PKC expression and activity in both conditions. Decreased expression and activity of PKC and the protein levels of related signaling molecules with the AR inhibitor sorbinil showed that AR enzyme may play a key role in the expression of PKC enzyme and oxidative stress during diabetes.
Collapse
Affiliation(s)
- Mutlu Sarikaya
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Nuray Yazihan
- Department of Pathophysiology, Faculty of Medicine, Internal Medicine, Ankara University, Ankara, Turkey
| | - Net Daş Evcimen
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
10
|
Hyttinen JMT, Kannan R, Felszeghy S, Niittykoski M, Salminen A, Kaarniranta K. The Regulation of NFE2L2 (NRF2) Signalling and Epithelial-to-Mesenchymal Transition in Age-Related Macular Degeneration Pathology. Int J Mol Sci 2019; 20:ijms20225800. [PMID: 31752195 PMCID: PMC6888570 DOI: 10.3390/ijms20225800] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is a mounting cause of loss of sight in the elderly in the developed countries, a trend enhanced by the continual ageing of the population. AMD is a multifactorial and only partly understood, malady. Unfortunately, there is no effective treatment for most AMD patients. It is known that oxidative stress (OS) damages the retinal pigment epithelium (RPE) and contributes to the progression of AMD. We review here the potential importance of two OS-related cellular systems in relation to AMD. First, the nuclear factor erythroid 2-related factor 2 (NFE2L2; NRF2)-mediated OS response signalling pathway is important in the prevention of oxidative damage and a failure of this system could be critical in the development of AMD. Second, epithelial-to-mesenchymal transition (EMT) represents a change in the cellular phenotype, which ultimately leads to the fibrosis encountered in RPE, a characteristic of AMD. Many of the pathways triggering EMT are promoted by OS. The possible interconnections between these two signalling routes are discussed here. From a broader perspective, the control of NFE2L2 and EMT as ways of preventing OS-derived cellular damage could be potentially valuable in the therapy of AMD.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Correspondence:
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, DVRC 203, 1355 San Pablo Street, Los Angeles, CA 90033, USA
| | - Szabolcs Felszeghy
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Institute of Dentistry, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Minna Niittykoski
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 KYS Kuopio, Finland
| |
Collapse
|
11
|
Cho SB, Eum WS, Shin MJ, Kwon HJ, Park JH, Choi YJ, Park J, Han KH, Kang JH, Kim DS, Cho SW, Kim DW, Choi SY. Transduced Tat-aldose Reductase Protects Hippocampal Neuronal Cells against Oxidative Stress-induced Damage. Exp Neurobiol 2019; 28:612-627. [PMID: 31698553 PMCID: PMC6844837 DOI: 10.5607/en.2019.28.5.612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/06/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
Aldose reductase (AR) protein, a member of the NADPH-dependent aldo-keto reductase family, reduces a wide range of aldehydes and enhances cell survival by inhibition of oxidative stress. Oxidative stress is known as one of the major pathological factor in ischemia. Since the precise function of AR protein in ischemic injury is fully unclear, we examined the function of AR protein in hippocampal neuronal (HT-22) cells and in an animal model of ischemia in this study. Cell permeable Tat-AR protein was produced by fusion of protein transduction domain in Tat for delivery into the cells. Tat-AR protein transduced into HT-22 cells and significantly inhibited cell death and regulated the mitogen-activate protein kinases (MAPKs), Bcl-2, Bax, and Caspase-3 under oxidative stress condition. In an ischemic animal model, Tat-AR protein transduced into the brain tissues through the blood-brain barrier (BBB) and drastically decreased neuronal cell death in hippocampal CA1 region. These results indicate that transduced Tat-AR protein has protective effects against oxidative stress-induced neuronal cell death in vitro and in vivo, suggesting that Tat-AR protein could be used as potential therapeutic agent in ischemic injury.
Collapse
Affiliation(s)
- Su Bin Cho
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Ju Hyeon Kang
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31538, Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31538, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
12
|
CFH exerts anti-oxidant effects on retinal pigment epithelial cells independently from protecting against membrane attack complex. Sci Rep 2019; 9:13873. [PMID: 31554875 PMCID: PMC6761137 DOI: 10.1038/s41598-019-50420-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/20/2019] [Indexed: 12/03/2022] Open
Abstract
Age Related Macular Degeneration (AMD) is the first cause of social blindness in people aged over 65 leading to atrophy of retinal pigment epithelial cells (RPE), photoreceptors and choroids, eventually associated with choroidal neovascularization. Accumulation of undigested cellular debris within RPE cells or under the RPE (Drusen), oxidative stress and inflammatory mediators contribute to the RPE cell death. The major risk to develop AMD is the Y402H polymorphism of complement factor H (CFH). CFH interacting with oxidized phospholipids on the RPE membrane modulates the functions of these cells, but the exact role of CFH in RPE cell death and survival remain poorly understood. The aim of this study was to analyze the potential protective mechanism of CFH on RPE cells submitted to oxidative stress. Upon exposure to oxidized lipids 4-HNE (4-hydroxy-2-nonenal) derived from photoreceptors, both the human RPE cell line ARPE-19 and RPE cells derived from human induced pluripotent stem cells were protected from death only in the presence of the full length human recombinant CFH in the culture medium. This protective effect was independent from the membrane attack complex (MAC) formation. CFH maintained RPE cells tight junctions’ structure and regulated the caspase dependent apoptosis process. These results demonstrated the CFH anti-oxidative stress functions independently of its capacity to inhibit MAC formation.
Collapse
|
13
|
Akbarinejad V, Fathi R, Shahverdi A, Esmaeili V, Rezagholizadeh A, Ghaleno LR. Activator of Mitochondrial Aldehyde Dehydrogenase (Alda-1) Could Enhance Quality of Equine Cooled Semen by Ameliorating Loss of Mitochondrial Function Over Time. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2018.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Shoeb M, Zhang M, Xiao T, Syed MF, Ansari NH. Amelioration of Endotoxin-Induced Inflammatory Toxic Response by a Metal Chelator in Rat Eyes. Invest Ophthalmol Vis Sci 2018; 59:31-38. [PMID: 29302691 PMCID: PMC5754197 DOI: 10.1167/iovs.17-22172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose Metal ions play a key role in exacerbating toxicity associated with oxidative stress and inflammation. This study examines the effects of a formulation containing the metal chelator ethylenediaminetetraacetic acid (EDTA) and permeability enhancer methyl sulfonyl methane (MSM) on the early course of inflammation in endotoxin-induced uveitis (EIU). The proprietary MSM/EDTA formulation of Livionex, Inc., which was used for this study, is covered by several patents and pending patent applications. Methods EIU was induced by using subcutaneous injection of lipopolysaccharide (LPS) into the thighs of Lewis rats. Treatment consisted of topical application to the eyes of either PBS or eye drops designated as ME that contain EDTA and MSM. Clinical signs of uveitis were monitored at 6 and 24 hours postinjection. Oxidative and inflammatory markers were evaluated by ELISA or immunohistochemistry. Results Rats treated with ME showed fewer clinical signs of uveitis including reduced miosis, fibrinous exudates, and dilated blood vessels. The aqueous humor of treated rats contained fewer leukocytes, lower protein levels, and less PGE2. Formation of protein adducts with the lipid peroxidation end-product, 4-hydroxynonenal, expression of NF-κB, TNF-α, and MMP-9 were all reduced in rats treated with ME. Conclusions Our results indicate that ME eye drops downregulate the ocular inflammatory response in LPS treated rats, suggesting that induction of EIU involves metal ions and chelation therapy with ME is a potential treatment for uveitis.
Collapse
Affiliation(s)
- Mohammad Shoeb
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Min Zhang
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Tianlin Xiao
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Misha F Syed
- Ophthalmology and Visual Science, University of Texas Medical Branch, Galveston, Texas, United States
| | - Naseem H Ansari
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States.,Ophthalmology and Visual Science, University of Texas Medical Branch, Galveston, Texas, United States
| |
Collapse
|
15
|
Cyanidin-3-glucoside Alleviates 4-Hydroxyhexenal-Induced NLRP3 Inflammasome Activation via JNK-c-Jun/AP-1 Pathway in Human Retinal Pigment Epithelial Cells. J Immunol Res 2018; 2018:5604610. [PMID: 29854843 PMCID: PMC5952446 DOI: 10.1155/2018/5604610] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/08/2018] [Indexed: 12/19/2022] Open
Abstract
Recently, the NLRP3 inflammasome activation in the eyes has been known to be associated with the pathogenesis of age-related macular degeneration. The aim of this study was to investigate the protective effects of cyanidin-3-glucoside (C3G), an important anthocyanin with great potential for preventing eye diseases, against 4-hydroxyhexenal- (HHE-) induced inflammatory damages in human retinal pigment epithelial cells, ARPE-19. We noticed that C3G pretreatment to the ARPE-19 cells rescued HHE-induced antiproliferative effects. Cell apoptosis ratio induced by HHE was also decreased by C3G, measured by flow cytometry. The activation of NLRP3 inflammasome induced by HHE was found with increases of caspase-1 activity, proinflammatory cytokine releases (IL-1β and IL-18), and NLRP3 inflammasome-related gene expressions (NLRP3, IL-1β, IL-18, and caspase-1). The C3G showed potent inhibitive effects on these NLRP3 inflammasome activation hallmarks induced by HHE. Moreover, we noticed that the C3G's pretreatment leads to a delayed and a decreased JNK activation in HHE-challenged ARPE-19 cells. Finally, using a luciferase reporter gene assay system, we demonstrated that HHE-induced activation protein- (AP-) 1 transcription activity was abolished by C3G pretreatment in a dose-dependent manner. Taken together, these data showed that HHE leads to inflammatory damages to ARPE-19 cells while C3G has great protective effects, highlighting future potential applications of C3G against AMD-associated inflammation.
Collapse
|
16
|
Sottero B, Leonarduzzi G, Testa G, Gargiulo S, Poli G, Biasi F. Lipid Oxidation Derived Aldehydes and Oxysterols Between Health and Disease. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700047] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Barbara Sottero
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Simona Gargiulo
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Fiorella Biasi
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| |
Collapse
|
17
|
Doll S, Conrad M. Iron and ferroptosis: A still ill-defined liaison. IUBMB Life 2017; 69:423-434. [PMID: 28276141 DOI: 10.1002/iub.1616] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/13/2017] [Indexed: 12/16/2022]
Abstract
Ferroptosis is a recently described form of regulated necrotic cell death, which appears to contribute to a number of diseases, such as tissue ischemia/reperfusion injury, acute renal failure, and neurodegeneration. A hallmark of ferroptosis is iron-dependent lipid peroxidation, which can be inhibited by the key ferroptosis regulator glutathione peroxidase 4(Gpx4), radical trapping antioxidants and ferroptosis-specific inhibitors, such as ferrostatins and liproxstatins, as well as iron chelation. Although great strides have been made towards a better understanding of the proximate signals of distinctive lipid peroxides in ferroptosis, still little is known about the mechanistic implication of iron in the ferroptotic process. Hence, this review aims at summarizing recent advances in our understanding to what is known about enzymatic and nonenzymatic routes of lipid peroxidation, the involvement of iron in this process and the identification of novel players in ferroptotic cell death. Additionally, we review early works carried out long time before the term "ferroptosis" was actually introduced but which were instrumental in a better understanding of the role of ferroptosis in physiological and pathophysiological contexts. © 2017 IUBMB Life, 69(6):423-434, 2017.
Collapse
Affiliation(s)
- Sebastian Doll
- Helmholtz Zentrum München, Institute of Developmental Genetics, Neuherberg, Germany
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Developmental Genetics, Neuherberg, Germany
| |
Collapse
|
18
|
Guo J, Linetsky M, Yu AO, Zhang L, Howell SJ, Folkwein HJ, Wang H, Salomon RG. 4-Hydroxy-7-oxo-5-heptenoic Acid Lactone Induces Angiogenesis through Several Different Molecular Pathways. Chem Res Toxicol 2016; 29:2125-2135. [PMID: 27806561 DOI: 10.1021/acs.chemrestox.6b00233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress and angiogenesis have been implicated not only in normal phenomena such as tissue healing and remodeling but also in many pathological processes. However, the relationships between oxidative stress and angiogenesis still remain unclear, although oxidative stress has been convincingly demonstrated to influence the progression of angiogenesis under physiological and pathological conditions. The retina is particularly susceptible to oxidative stress because of its intensive oxygenation and high abundance of polyunsaturated fatty acyls. In particular, it has high levels of docosahexanoates, whose oxidative fragmentation produces 4-hydroxy-7-oxo-5-heptenoic acid lactone (HOHA-lactone). Previously, we found that HOHA-lactone is a major precursor of 2-(ω-carboxyethyl)pyrrole (CEP) derivatives, which are tightly linked to age-related macular degeneration (AMD). CEPs promote the pathological angiogenesis of late-stage AMD. We now report additional mechanisms by which HOHA-lactone promotes angiogenesis. Using cultured ARPE-19 cells, we observed that HOHA-lactone induces secretion of vascular endothelial growth factor (VEGF), which is correlated to increases in reactive oxygen species and decreases in intracellular glutathione (GSH). Wound healing and tube formation assays provided, for the first time, in vitro evidence that HOHA-lactone induces the release of VEGF from ARPE-19 cells, which promotes angiogenesis by human umbilical vein endothelial cells (HUVEC) in culture. Thus, HOHA-lactone can stimulate vascular growth through a VEGF-dependent pathway. In addition, results from MTT and wound healing assays as well as tube formation experiments showed that GSH-conjugated metabolites of HOHA-lactone stimulate HUVEC proliferation and promote angiogenesis in vitro. Previous studies demonstrated that HOHA-lactone, through its CEP derivatives, promotes angiogenesis in a novel Toll-like receptor 2-dependent manner that is independent of the VEGF receptor or VEGF expression. The new studies show that HOHA-lactone also participates in other angiogenic signaling pathways that include promoting the secretion of VEGF from retinal pigmented epithelial cells.
Collapse
Affiliation(s)
- Junhong Guo
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Mikhail Linetsky
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Annabelle O Yu
- Department of Biology, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Liang Zhang
- Department of Biochemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Scott J Howell
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Heather J Folkwein
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Hua Wang
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
19
|
Muzio G, Ricci M, Traverso N, Monacelli F, Oraldi M, Maggiora M, Canuto RA. 4-Hydroxyhexenal and 4-hydroxynonenal are mediators of the anti-cachectic effect of n-3 and n-6 polyunsaturated fatty acids on human lung cancer cells. Free Radic Biol Med 2016; 99:63-70. [PMID: 27480845 DOI: 10.1016/j.freeradbiomed.2016.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 01/09/2023]
Abstract
Cachexia, the most severe paraneoplastic syndrome, occurs in about 80% of patients with advanced cancer; it cannot be reverted by conventional, enteral, or parenteral nutrition. For this reason, nutritional interventions must be based on the use of substances possessing, alongside nutritional and energetic properties, the ability to modulate production of the pro-inflammatory factors responsible for the metabolic changes characterising cancer cachexia. In light of their nutritional and anti-inflammatory properties, polyunsaturated fatty acids (PUFAs), and in particular n-3, have been investigated for treating cachexia; however, the results have been contradictory. Since both n-3 and n-6 PUFAs can affect cell functions in several ways, this research investigated the possibility that the effects of both n-3 and n-6 PUFAs could be mediated by their major aldehydic products of lipid peroxidation, 4-hydroxyhexenal (HHE) and 4-hydroxynonenal (HNE), and by their anti-inflammatory properties. An "in vitro" cancer cachexia model, consisting of human lung cancer cells (A427) and murine myoblasts (C2C12), was used. The results showed that: 1) both n-3 and n-6 PUFAs reduced the growth of lung cancer cells without causing cell death, increased lipid peroxidation and Peroxisome Proliferator-Activated Receptor (PPAR)α, and decreased TNFα; 2) culture medium conditioned by A427 cells grown in the absence of PUFAs blocked myosin production and the differentiation of C2C12 muscle cells; conversely, muscle cells grown in culture medium conditioned by the same cells in the presence of PUFAs showed myosin expression and formed myotubes; 3) adding HHE or HNE directly to C2C12 cells maintained in culture medium conditioned by A427 cells in the absence of PUFAs stimulated myosin production and myotube formation; 4) putative consensus sequences for (PPARs) have been found in genes encoding fast isoforms of myosin heavy chain, by a bioinformatics approach. The overall results show, first, the ability of both n-3 and n-6 PUFAs and their lipid peroxidation products to prevent the blocking of myosin expression and myotube formation caused in C2C12 cells by medium conditioned by human lung tumour cells. The C2C12 cell differentiation can be due to direct effect of lipid peroxidation products, as evidenced by treating C2C12 cells with HHE and HNE, and to the decrease of pro-inflammatory TNFα in A427 cell culture medium. The presence of consensus sequences for PPARs in genes encoding the fast isoforms of myosin heavy chain suggests that the effects of PUFAs, HHE, and HNE are PPAR-mediated.
Collapse
Affiliation(s)
- G Muzio
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - M Ricci
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - N Traverso
- Department of Experimental Medicine, University of Genoa, Via Leon Battista Alberti 2, 16132 Genoa, Italy
| | - F Monacelli
- Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy
| | - M Oraldi
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - M Maggiora
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - R A Canuto
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy.
| |
Collapse
|
20
|
Papaconstantinou J, Wang CZ, Zhang M, Yang S, Deford J, Bulavin DV, Ansari NH. Attenuation of p38α MAPK stress response signaling delays the in vivo aging of skeletal muscle myofibers and progenitor cells. Aging (Albany NY) 2016; 7:718-33. [PMID: 26423835 PMCID: PMC4600628 DOI: 10.18632/aging.100802] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Functional competence and self-renewal of mammalian skeletal muscle myofibers and progenitor cells declines with age. Progression of the muscle aging phenotype involves the decline of juvenile protective factors i.e., proteins whose beneficial functions translate directly to the quality of life, and self-renewal of progenitor cells. These characteristics occur simultaneously with the age-associated increase of p38α stress response signaling. This suggests that the maintenance of low levels of p38α activity of juvenile tissues may delay or attenuate aging. We used the dominant negative haploinsufficient p38α mouse (DN-p38αAF/+) to demonstrate that in vivo attenuation of p38α activity in the gastrocnemius of the aged mutant delays age-associated processes that include: a) the decline of the juvenile protective factors, BubR1, aldehyde dehydrogenase 1A (ALDH1A1), and aldehyde dehydrogenase 2 (ALDH2); b) attenuated expression of p16Ink4a and p19Arf tumor suppressor genes of the Cdkn2a locus; c) decreased levels of hydroxynonenal protein adducts, expression of COX2 and iNOS; d) decline of the senescent progenitor cell pool level and d) the loss of gastrocnemius muscle mass. We propose that elevated P-p38α activity promotes skeletal muscle aging and that the homeostasis of p38α impacts the maintenance of a beneficial healthspan.
Collapse
Affiliation(s)
- John Papaconstantinou
- The Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77551-06743, USA
| | - Chen Z Wang
- The Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77551-06743, USA
| | - Min Zhang
- The Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77551-06743, USA
| | - San Yang
- The Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77551-06743, USA
| | - James Deford
- The Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77551-06743, USA
| | - Dmitry V Bulavin
- Institute for Research on Cancer and Ageing of Nice, INSERM, U1081-UMR CNRS 7284, University of Nice - Sophia Antipolis, Centre Antoine Lacassagne, Nice, France
| | - Naseem H Ansari
- The Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77551-06743, USA
| |
Collapse
|
21
|
Gibb Z, Lambourne SR, Curry BJ, Hall SE, Aitken RJ. Aldehyde Dehydrogenase Plays a Pivotal Role in the Maintenance of Stallion Sperm Motility. Biol Reprod 2016; 94:133. [PMID: 27103446 DOI: 10.1095/biolreprod.116.140509] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/12/2016] [Indexed: 01/30/2023] Open
Abstract
Although stallion spermatozoa produce significant quantities of reactive oxygen species, a lag between 4-hydroxynonenal (4HNE) adduction and the loss of motility in stallion spermatozoa suggests the presence of a robust aldehyde detoxification mechanism. Because there is a paucity of studies characterizing the role of aldehyde dehydrogenase (ALDH) in sperm functionality, the aim of this study was to ascertain the relationship between 4HNE production and motility and ALDH expression by stallion spermatozoa. PCR analysis revealed the presence of the ALDH1A3, ALDH1B1, and ALDH2 isoforms in these cells. Strong correlations (P < 0.001) were found between ALDH expression and various motility parameters of stallion spermatozoa including the percentage of progressive (r = 0.79) and rapidly motile (r = 0.79) spermatozoa, whereas repeated measurements over 24 h revealed highly significant correlations among progressive motility loss, 4HNE accumulation, and ALDH expression (P ≤ 0.001). ALDH inhibition resulted in a spontaneous increase in 4HNE levels in viable cells (21.1 ± 5.8% vs. 42.6 ± 5.2%; P ≤ 0.05) and a corresponding decrease in total motility (41.7 ± 6.2% vs. 6.4 ± 2.6%; P ≤ 0.001) and progressive motility (17.0 ± 4.1% vs. 0.7 ± 0.4%; P ≤ 0.001) of stallion spermatozoa over 24 h. Similarly, inhibition of ALDH in 4HNE-challenged spermatozoa significantly reduced total motility over 4 h (35.4 ± 9.7% vs. 15.3 ± 5.1%, respectively; P ≤ 0.05). This study contributes valuable information about the role of the ALDH enzymes in the maintenance of stallion sperm functionality, with potential diagnostic and in vitro applications for assisted reproductive technologies.
Collapse
Affiliation(s)
- Zamira Gibb
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sarah R Lambourne
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Benjamin J Curry
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sally E Hall
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Robert J Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
22
|
Zu X, Yan R, Pan J, Zhong L, Cao Y, Ma J, Cai C, Huang D, Liu J, Chung FL, Liao DF, Cao D. Aldo-keto reductase 1B10 protects human colon cells from DNA damage induced by electrophilic carbonyl compounds. Mol Carcinog 2016; 56:118-129. [PMID: 26969882 DOI: 10.1002/mc.22477] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/26/2016] [Accepted: 02/17/2016] [Indexed: 11/09/2022]
Abstract
Electrophilic carbonyl compounds are highly cytotoxic and genotoxic. Aldo-keto reductase 1B10 (AKR1B10) is an enzyme catalyzing reduction of carbonyl compounds to less toxic alcoholic forms. This study presents novel evidence that AKR1B10 protects colon cells from DNA damage induced by electrophilic carbonyl compounds. AKR1B10 is specifically expressed in epithelial cells of the human colon, but this study found that AKR1B10 expression was lost or markedly diminished in colorectal cancer, precancerous tissues, and a notable portion of normal adjacent tissues (NAT). SiRNA-mediated silencing of AKR1B10 in colon cancer cells HCT-8 enhanced cytotoxicity of acrolein and HNE, whereas ectopic expression of AKR1B10 in colon cancer cells RKO prevented the host cells against carbonyl cytotoxicity. Furthermore, siRNA-mediated AKR1B10 silencing led to DNA breaks and activation of γ-H2AX protein, a marker of DNA double strand breaks, particularly in the exposure of HNE (10 μM). In the AKR1B10 silenced HCT-8 cells, hypoxanthine-guanine phosphoribosyl transferase (HPRT) mutant frequency increased by 26.8 times at basal level and by 33.5 times in the presence of 10 μM HNE when compared to vector control cells. In these cells, the cyclic acrolein-deoxyguanosine adducts levels were increased by over 10 times. These findings were confirmed by pharmacological inhibition of AKR1B10 activity by Epalrestat. Taken together, these data suggest that AKR1B10 is a critical protein that protects host cells from DNA damage induced by electrophilic carbonyl compounds. AKR1B10 deficiency in the colon may be an important pathogenic factor in disease progression and carcinogenesis. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xuyu Zu
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China.,Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Ruilan Yan
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Jishen Pan
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Linlin Zhong
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Yu Cao
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Jun Ma
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Chuan Cai
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dan Huang
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jianghua Liu
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Fung-Lung Chung
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Deliang Cao
- Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois.,Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
23
|
Oxidative Stress and Carbonyl Lesions in Ulcerative Colitis and Associated Colorectal Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:9875298. [PMID: 26823956 PMCID: PMC4707327 DOI: 10.1155/2016/9875298] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/14/2015] [Accepted: 10/25/2015] [Indexed: 12/15/2022]
Abstract
Oxidative stress has long been known as a pathogenic factor of ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC), but the effects of secondary carbonyl lesions receive less emphasis. In inflammatory conditions, reactive oxygen species (ROS), such as superoxide anion free radical (O2 (∙-)), hydrogen peroxide (H2O2), and hydroxyl radical (HO(∙)), are produced at high levels and accumulated to cause oxidative stress (OS). In oxidative status, accumulated ROS can cause protein dysfunction and DNA damage, leading to gene mutations and cell death. Accumulated ROS could also act as chemical messengers to activate signaling pathways, such as NF-κB and p38 MAPK, to affect cell proliferation, differentiation, and apoptosis. More importantly, electrophilic carbonyl compounds produced by lipid peroxidation may function as secondary pathogenic factors, causing further protein and membrane lesions. This may in turn exaggerate oxidative stress, forming a vicious cycle. Electrophilic carbonyls could also cause DNA mutations and breaks, driving malignant progression of UC. The secondary lesions caused by carbonyl compounds may be exceptionally important in the case of host carbonyl defensive system deficit, such as aldo-keto reductase 1B10 deficiency. This review article updates the current understanding of oxidative stress and carbonyl lesions in the development and progression of UC and CAC.
Collapse
|
24
|
Wang CZ, Ayadi AE, Goswamy J, Finnerty CC, Mifflin R, Sousse L, Enkhbaatar P, Papaconstantinou J, Herndon DN, Ansari NH. Topically applied metal chelator reduces thermal injury progression in a rat model of brass comb burn. Burns 2015; 41:1775-1787. [PMID: 26392023 DOI: 10.1016/j.burns.2015.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/26/2015] [Accepted: 08/07/2015] [Indexed: 01/03/2023]
Abstract
UNLABELLED Oxidative stress may be involved in the cellular damage and tissue destruction as burn wounds continues to progress after abatement of the initial insult. Since iron and calcium ions play key roles in oxidative stress, this study tested whether topical application of Livionex formulation (LF) lotion, that contains disodium EDTA as a metal chelator and methyl sulfonyl methane (MSM) as a permeability enhancer, would prevent or reduce burns. METHODS We used an established brass comb burn model with some modifications. Topical application of LF lotion was started 5 min post-burn, and repeated every 8 h for 3 consecutive days. Rats were euthanized and skin harvested for histochemistry and immunohistochemistry. Formation of protein adducts of 4-hydroxynonenal (HNE), malonadialdehyde (MDA) and acrolein (ACR) and expression of aldehyde dehydrogenase (ALDH) isozymes, ALDH1 and ALDH2 were assessed. RESULTS LF lotion-treated burn sites and interspaces showed mild morphological improvement compared to untreated burn sites. Furthermore, the lotion significantly decreased the immunostaining of lipid aldehyde-protein adducts including protein -HNE, -MDA and -ACR adducts, and restored the expression of aldehyde dehydrogenase isozymes in the unburned interspaces. CONCLUSION This data, for the first time, demonstrates that a topically applied EDTA-containing lotion protects burns progression with a concomitant decrease in the accumulation of reactive lipid aldehydes and protection of aldehyde dehydrogenase isozymes. Present studies are suggestive of therapeutic intervention of burns by this novel lotion.
Collapse
Affiliation(s)
- Cheng Z Wang
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0647, United States
| | - Amina El Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555-0647, United States; Shriners Hospital for Children, Galveston, TX, United States
| | - Juhi Goswamy
- University of Miami Miller School of Medicine, Miami, FL 33124, United States
| | - Celeste C Finnerty
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555-0647, United States; Institute for Translational Sciences, Galveston, TX, United States; Shriners Hospital for Children, Galveston, TX, United States
| | - Randy Mifflin
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555-0647, United States; Shriners Hospital for Children, Galveston, TX, United States
| | - Linda Sousse
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555-0647, United States; Shriners Hospital for Children, Galveston, TX, United States
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555-0647, United States
| | - John Papaconstantinou
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0647, United States
| | - David N Herndon
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555-0647, United States; Shriners Hospital for Children, Galveston, TX, United States
| | - Naseem H Ansari
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0647, United States.
| |
Collapse
|
25
|
|
26
|
Cumaoglu A, Arıcıoglu A, Karasu C. Redox status related activation of endoplasmic reticulum stress and apoptosis caused by 4-hydroxynonenal exposure in INS-1 cells. Toxicol Mech Methods 2014; 24:362-7. [DOI: 10.3109/15376516.2014.914617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Liu P, Zhang M, Shoeb M, Hogan D, Tang L, Syed MF, Wang CZ, Campbell GA, Ansari NH. Metal chelator combined with permeability enhancer ameliorates oxidative stress-associated neurodegeneration in rat eyes with elevated intraocular pressure. Free Radic Biol Med 2014; 69:289-99. [PMID: 24509160 PMCID: PMC4005814 DOI: 10.1016/j.freeradbiomed.2014.01.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/21/2014] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Abstract
Because as many as half of glaucoma patients on intraocular pressure (IOP)-lowering therapy continue to experience optic nerve toxicity, it is imperative to find other effective therapies. Iron and calcium ions play key roles in oxidative stress, a hallmark of glaucoma. Therefore, we tested metal chelation by means of ethylenediaminetetraacetic acid (EDTA) combined with the permeability enhancer methylsulfonylmethane (MSM) applied topically on the eye to determine if this noninvasive treatment is neuroprotective in rat optic nerve and retinal ganglion cells exposed to oxidative stress induced by elevated IOP. Hyaluronic acid (HA) was injected into the anterior chamber of the rat eye to elevate the IOP. EDTA-MSM was applied topically to the eye for 3 months. Eyeballs and optic nerves were processed for histological assessment of cytoarchitecture. Protein-lipid aldehyde adducts and cyclooxygenase-2 (COX-2) were detected immunohistochemically. HA administration increased IOP and associated oxidative stress and inflammation. Elevated IOP was not affected by EDTA-MSM treatment. However, oxidative damage and inflammation were ameliorated as reflected by a decrease in formation of protein-lipid aldehyde adducts and COX-2 expression, respectively. Furthermore, EDTA-MSM treatment increased retinal ganglion cell survival and decreased demyelination of optic nerve compared with untreated eyes. Chelation treatment with EDTA-MSM ameliorates sequelae of IOP-induced toxicity without affecting IOP. Because most current therapies aim at reducing IOP and damage occurs even in the absence of elevated IOP, EDTA-MSM has the potential to work in conjunction with pressure-reducing therapies to alleviate damage to the optic nerve and retinal ganglion cells.
Collapse
Affiliation(s)
- P Liu
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0647, USA
| | - M Zhang
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0647, USA
| | - M Shoeb
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0647, USA
| | - D Hogan
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0647, USA
| | - Luosheng Tang
- Ophthalmology Department, Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - M F Syed
- Department of Ophthalmology & Visual Science, University of Texas Medical Branch, Galveston, TX 77555-0647, USA
| | - C Z Wang
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0647, USA
| | - G A Campbell
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0647, USA
| | - N H Ansari
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0647, USA.
| |
Collapse
|
28
|
Cao Y, Li X, Shi P, Wang LX, Sui ZG. Effects of L-Carnitine on High Glucose-Induced Oxidative Stress in Retinal Ganglion Cells. Pharmacology 2014; 94:123-30. [DOI: 10.1159/000363062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/22/2014] [Indexed: 11/19/2022]
|
29
|
Tian C, Alomar F, Moore CJ, Shao CH, Kutty S, Singh J, Bidasee KR. Reactive carbonyl species and their roles in sarcoplasmic reticulum Ca2+ cycling defect in the diabetic heart. Heart Fail Rev 2014; 19:101-12. [PMID: 23430128 PMCID: PMC4732283 DOI: 10.1007/s10741-013-9384-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Efficient and rhythmic cardiac contractions depend critically on the adequate and synchronized release of Ca(2+) from the sarcoplasmic reticulum (SR) via ryanodine receptor Ca(2+) release channels (RyR2) and its reuptake via sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a). It is well established that this orchestrated process becomes compromised in diabetes. What remain incompletely defined are the molecular mechanisms responsible for the dysregulation of RyR2 and SERCA2a in diabetes. Earlier, we found elevated levels of carbonyl adducts on RyR2 and SERCA2a isolated from hearts of type 1 diabetic rats and showed the presence of these posttranslational modifications compromised their functions. We also showed that these mono- and di-carbonyl reactive carbonyl species (RCS) do not indiscriminately react with all basic amino acid residues on RyR2 and SERCA2a; some residues are more susceptible to carbonylation (modification by RCS) than others. A key unresolved question in the field is which of the many RCS that are upregulated in the heart in diabetes chemically react with RyR2 and SERCA2a? This brief review introduces readers to the field of RCS and their roles in perturbing SR Ca(2+) cycling in diabetes. It also provides new experimental evidence that not all RCS that are upregulated in the heart in diabetes chemically react with RyR2 and SERCA2a, methylglyoxal and glyoxal preferentially do.
Collapse
Affiliation(s)
- Chengju Tian
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
| | - Fadhel Alomar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pharmacology, University of Dammam, Kingdom of Saudi Arabia
| | - Caronda J Moore
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
| | - Chun Hong Shao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
| | - Shelby Kutty
- Joint Division of Pediatric Cardiology, University of Nebraska/Creighton University and Children's Hospital and Medical Center, Omaha, Nebraska
| | - Jaipaul Singh
- School of Forensic and Investigative Sciences and School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Keshore R. Bidasee
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198
- Nebraska Center for Redox Biology, N146 Beadle Center, Lincoln NE 68588-0662
| |
Collapse
|
30
|
4-Hydroxy hexenal derived from dietary n-3 polyunsaturated fatty acids induces anti-oxidative enzyme heme oxygenase-1 in multiple organs. Biochem Biophys Res Commun 2013; 443:991-6. [PMID: 24361890 DOI: 10.1016/j.bbrc.2013.12.085] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 12/16/2013] [Indexed: 11/20/2022]
Abstract
It has recently been reported that expression of heme oxygenase-1 (HO-1) plays a protective role against many diseases. Furthermore, n-3 polyunsaturated fatty acids (PUFAs) were shown to induce HO-1 expression in several cells in vitro, and in a few cases also in vivo. However, very few reports have demonstrated that n-3 PUFAs induce HO-1 in vivo. In this study, we examined the effect of fish-oil dietary supplementation on the distribution of fatty acids and their peroxidative metabolites and on the expression of HO-1 in multiple tissues (liver, kidney, heart, lung, spleen, intestine, skeletal muscle, white adipose, brown adipose, brain, aorta, and plasma) of C57BL/6 mice. Mice were divided into 4 groups, and fed a control, safflower-oil, and fish-oil diet for 3 weeks. One group was fed a fish-oil diet for just 1 week. The concentration of fatty acids, 4-hydroxy hexenal (4-HHE), and 4-hydroxy nonenal (4-HNE), and the expression of HO-1 mRNA were measured in the same tissues. We found that the concentration of 4-HHE (a product of n-3 PUFAs peroxidation) and expression of HO-1 mRNA were significantly increased after fish-oil treatment in most tissues. In addition, these increases were paralleled by an increase in the level of docosahexaenoic acid (DHA) but not eicosapentaenoic acid (EPA) in each tissue. These results are consistent with our previous results showing that DHA induces HO-1 expression through 4-HHE in vascular endothelial cells. In conclusion, we hypothesize that the HO-1-mediated protective effect of the fish oil diet may be through production of 4-HHE from DHA but not EPA in various tissues.
Collapse
|
31
|
Essential role of thioredoxin 2 in mitigating oxidative stress in retinal epithelial cells. J Ophthalmol 2013; 2013:185825. [PMID: 24319591 PMCID: PMC3844160 DOI: 10.1155/2013/185825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/06/2013] [Accepted: 09/19/2013] [Indexed: 11/17/2022] Open
Abstract
The retina is constantly subjected to oxidative stress, which is countered by potent antioxidative systems present in retinal pigment epithelial (RPE) cells. Disruption of these systems leads to the development of age-related macular degeneration. Thioredoxin 2 (Trx2) is a potent antioxidant, which acts directly on mitochondria. In the present study, oxidative stress was induced in the human RPE cell line (ARPE-19) using 4-hydroxynonenal (4-HNE) or C2-ceramide. The protective effect of Trx2 against oxidative stress was investigated by assessing cell viability, the kinetics of cell death, mitochondrial metabolic activity, and expression of heat shock proteins (Hsps) in Trx2-overexpressing cell lines generated by transfecting ARPE cells with an adeno-associated virus vector encoding Trx2. We show that overexpression of Trx2 reduced cell death induced by both agents when they were present in low concentrations. Moreover, early after the induction of oxidative stress Trx2 played a key role in the maintenance of the cell viability through upregulation of mitochondrial metabolic activity and inhibition of Hsp70 expression.
Collapse
|
32
|
Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell Death Differ 2013; 20:1615-30. [PMID: 24096871 DOI: 10.1038/cdd.2013.138] [Citation(s) in RCA: 606] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/22/2013] [Accepted: 07/29/2013] [Indexed: 11/08/2022] Open
Abstract
During the last three decades, 4-hydroxy-2-nonenal (HNE), a major α,β-unsaturated aldehyde product of n-6 fatty acid oxidation, has been shown to be involved in a great number of pathologies such as metabolic diseases, neurodegenerative diseases and cancers. These multiple pathologies can be explained by the fact that HNE is a potent modulator of numerous cell processes such as oxidative stress signaling, cell proliferation, transformation or cell death. The main objective of this review is to focus on the different aspects of HNE-induced cell death, with a particular emphasis on apoptosis. HNE is a special apoptotic inducer because of its abilities to form protein adducts and to propagate oxidative stress. It can stimulate intrinsic and extrinsic apoptotic pathways and interact with typical actors such as tumor protein 53, JNK, Fas or mitochondrial regulators. At the same time, due to its oxidant status, it can also induce some cellular defense mechanisms against oxidative stress, thus being involved in its own detoxification. These processes in turn limit the apoptotic potential of HNE. These dualities can imbalance cell fate, either toward cell death or toward survival, depending on the cell type, the metabolic state and the ability to detoxify.
Collapse
|
33
|
Malondialdehyde and 4-hydroxynonenal adducts are not formed on cardiac ryanodine receptor (RyR2) and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) in diabetes. Mol Cell Biochem 2013; 376:121-35. [PMID: 23354458 DOI: 10.1007/s11010-013-1558-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/09/2013] [Indexed: 12/31/2022]
Abstract
Recently, we reported an elevated level of glucose-generated carbonyl adducts on cardiac ryanodine receptor (RyR2) and sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2) in hearts of streptozotocin(STZ)-induced diabetic rats. We also showed these adduct impaired RyR2 and SERCA2 activities, and altered evoked Ca(2+) transients. What is less clear is if lipid-derived malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE) also chemically react with and impair RyR2 and SERCA2 activities in diabetes? This study used western blot assays with adduct-specific antibodies and confocal microscopy to assess levels of MDA, 4-HNE, N (ε)-carboxy(methyl)lysine (CML), pentosidine, and pyrraline adducts on RyR2 and SERCA2 and evoked intracellular transient Ca(2+) kinetics in myocytes from control, diabetic, and treated-diabetic rats. MDA and 4-HNE adducts were not detected on RyR2 and SERCA2 from either control or 8 weeks diabetic rats with altered evoked Ca(2+) transients. However, CML, pentosidine, and pyrraline adducts were elevated three- to five-fold (p < 0.05). Treating diabetic rats with pyridoxamine (a scavenger of reactive carbonyl species, RCS) or aminoguanidine (a mixed reactive oxygen species-RCS scavenger) reduced CML, pentosidine, and pyrraline adducts on RyR2 and SERCA2 and blunted SR Ca(2+) cycling changes. Treating diabetic rats with the superoxide dismutase mimetic tempol had no impact on MDA and 4-HNE adducts on RyR2 and SERCA2, and on SR Ca(2+) cycling. From these data we conclude that lipid-derived MDA and 4-HNE adducts are not formed on RyR2 and SERCA2 in this model of diabetes, and are therefore unlikely to be directly contributing to the SR Ca(2+) dysregulation.
Collapse
|
34
|
Grigsby J, Betts B, Vidro-Kotchan E, Culbert R, Tsin A. A possible role of acrolein in diabetic retinopathy: involvement of a VEGF/TGFβ signaling pathway of the retinal pigment epithelium in hyperglycemia. Curr Eye Res 2012; 37:1045-53. [PMID: 22906079 DOI: 10.3109/02713683.2012.713152] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Acrolein has been implicated in retinal pigment epithelium (RPE) cell death, and has been associated with diabetic retinopathy. Our purpose was to investigate the potential effect of high glucose in influencing acrolein-mediated RPE cytokine production and cell death. We investigated the influence of the acrolein effect on ARPE-19 cells in high glucose conditions and quantified the release of transforming growth factor β (TGFβ1 and 2) and vascular endothelial growth factor (VEGF). We assessed the ability of N-benzylhydroxylamine(NBHA) as well as TGFβ pathway inhibitors SIS3 and SB431542 to prevent this effect of acrolein on ARPE-19 cells. MATERIALS AND METHODS Confluent ARPE-19 cells were treated with acrolein and/or NBHA in both 5.5 and 18.8 mM glucose conditions. Cells were also pretreated with SIS3, a specific inhibitor of the SMAD3 pathway, and SB431542, a specific inhibitor of TGFβ signaling pathway, before treating them with acrolein. Viable cells were counted and ELISAs were performed to measure the cytokines TGFβ1 and 2, and VEGF released into the conditioned media. RESULTS In ARPE-19 cells exposed to acrolein and hyperglycemia there was reduced cell viability and an increase in the cell media of VEGF, TGFβ1, and TGFβ2, which was reversed by NBHA. Acrolein/hyperglycemia-induced cell viability reduction and cytokine overproduction was also reduced by TGFβ pathway blockade. CONCLUSIONS We conclude that the effect of acrolein on the reduction of viability and VEGF increase by ARPE-19 cells in hyperglycemic media is conducted through the TGFβ signaling pathway. Our results suggest that benefits of sequestering acrolein by NBHA and the blockage of the TGFβ pathway by SB431542 and SIS3 offer suggestions as to potential useful pharmacological drug candidates for the prevention of diabetes-induced complications in the eye.
Collapse
Affiliation(s)
- Jeffery Grigsby
- University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | | | | | | | | |
Collapse
|
35
|
Ullery JC, Marnett LJ. Protein modification by oxidized phospholipids and hydrolytically released lipid electrophiles: Investigating cellular responses. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2424-35. [PMID: 22562025 DOI: 10.1016/j.bbamem.2012.04.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/05/2012] [Accepted: 04/17/2012] [Indexed: 12/17/2022]
Abstract
Oxygen is essential for the growth and function of mammalian cells. However, imbalances in oxygen or abnormalities in the ability of a cell to respond to oxygen levels can result in oxidative stress. Oxidative stress plays an important role in a number of diseases including atherosclerosis, rheumatoid arthritis, cancer, neurodegenerative diseases and asthma. When membrane lipids are exposed to high levels of oxygen or derived oxidants, they undergo lipid peroxidation to generate oxidized phospholipids (oxPL). Continual exposure to oxidants and decomposition of oxPL results in the formation of reactive electrophiles, such as 4-hydroxy-2-nonenal (HNE). Reactive lipid electrophiles have been shown to covalently modify DNA and proteins. Furthermore, exposure of cells to lipid electrophiles results in the activation of cytoprotective signaling pathways in order to promote cell survival and recovery from oxidant stress. However, if not properly managed by cellular detoxification mechanisms, the continual exposure of cells to electrophiles results in cytotoxicity. The following perspective will discuss the biological importance of lipid electrophile protein adducts including current strategies employed to identify and isolate protein adducts of lipid electrophiles as well as approaches to define cellular signaling mechanisms altered upon exposure to electrophiles. This article is part of a Special Issue entitled: Oxidized phospholipids-their properties and interactions with proteins.
Collapse
Affiliation(s)
- Jody C Ullery
- Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Nashville, TN, USA
| | | |
Collapse
|
36
|
Kotraiah V, Pallares D, Toema D, Kong D, Beausoleil E. Identification of aldehyde dehydrogenase 1A1 modulators using virtual screening. J Enzyme Inhib Med Chem 2012; 28:489-94. [PMID: 22380773 DOI: 10.3109/14756366.2011.653353] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The highly similar aldehyde dehydrogenase isozymes (ALDH1A1 and ALDH2) have been implicated in the metabolism of toxic biogenic aldehydes such as 3,4-dihydroxyphenylacetaldehyde (DOPAL) and 4-hydroxy-2E-nonenal. We report the down-regulation of ALDH1A1 mRNA found in substantia nigra tissue of human Parkinson's disease (PD) samples using the Genome-Wide SpliceArray(™) (GWSA(™)) technology. Since DOPAL can rapidly inactivate ALDH1A1 in vitro, we set up a DOPAL-induced ALDH1A1 inactivation assay and used this assay to demonstrate that Alda-1, a compound originally identified as an activator of ALDH2, can also activate ALDH1A1. We carried out a virtual screening of 19,943 compounds and the top 21 hits from this screen were tested in the DOPAL inactivation assay with ALDH1A1 which led to identification of an activator as well as two inhibitors among these hits. These findings represent an attractive starting point for developing higher potency activator compounds that may have utility in restoring the metabolism of DOPAL in PD.
Collapse
|
37
|
Kunchithapautham K, Bandyopadhyay M, Dahrouj M, Thurman JM, Rohrer B. Sublytic membrane-attack-complex activation and VEGF secretion in retinal pigment epithelial cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:23-30. [PMID: 22183311 DOI: 10.1007/978-1-4614-0631-0_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kannan Kunchithapautham
- Department of Neurosciences, Division of Research, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
38
|
ER stress and apoptosis: a new mechanism for retinal cell death. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:589589. [PMID: 22216020 PMCID: PMC3246718 DOI: 10.1155/2012/589589] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/09/2011] [Indexed: 12/29/2022]
Abstract
The endoplasmic reticulum (ER) is the primary subcellular organelle where proteins are synthesized and folded. When the homeostasis of the ER is disturbed, unfolded or misfolded proteins accumulate in the ER lumen, resulting in ER stress. In response to ER stress, cells activate a set of tightly controlled regulatory programs, known as the unfolded protein response (UPR), to restore the normal function of the ER. However, if ER stress is sustained and the adaptive UPR fails to eliminate unfolded/misfolded proteins, apoptosis will occur to remove the stressed cells. In recent years, a large body of studies has shown that ER stress-induced apoptosis is implicated in numerous human diseases, such as diabetes and neurogenerative diseases. Moreover, emerging evidence supports a role of ER stress in retinal apoptosis and cell death in blinding disorders such as age-related macular degeneration and diabetic retinopathy. In the present review, we summarize recent progress on ER stress and apoptosis in retinal diseases, focusing on various proapoptotic and antiapoptotic pathways that are activated by the UPR, and discuss how these pathways contribute to ER stress-induced apoptosis in retinal cells.
Collapse
|
39
|
Abarikwu S, Farombi E, Kashyap M, Pant A. Atrazine induces transcriptional changes in marker genes associated with steroidogenesis in primary cultures of rat Leydig cells. Toxicol In Vitro 2011; 25:1588-95. [DOI: 10.1016/j.tiv.2011.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 05/28/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
40
|
Aldo-keto reductase family 1, member B10 is secreted through a lysosome-mediated non-classical pathway. Biochem J 2011; 438:71-80. [PMID: 21585341 DOI: 10.1042/bj20110111] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AKR1B10 (aldo-keto reductase family 1, member B10) protein is primarily expressed in normal human small intestine and colon, but overexpressed in several types of human cancers and considered as a tumour marker. In the present study, we found that AKR1B10 protein is secreted from normal intestinal epithelium and cultured cancer cells, as detected by a newly developed sandwich ELISA and Western blotting. The secretion of AKR1B10 was not affected by the protein-synthesis inhibitor cycloheximide and the classical protein-secretion pathway inhibitor brefeldin A, but was stimulated by temperature, ATP, Ca(2+) and the Ca(2+) carrier ionomycin, lysosomotropic NH(4)Cl, the G-protein activator GTPγS and the G-protein coupling receptor N-formylmethionyl-leucyl-phenylalanine. The ADP-ribosylation factor inhibitor 2-(4-fluorobenzoylamino)-benzoic acid methyl ester and the phospholipase C inhibitor U73122 inhibited the secretion of AKR1B10. In cultured cells, AKR1B10 was present in lysosomes and was secreted with cathepsin D, a lysosomal marker. In the intestine, AKR1B10 was specifically expressed in mature epithelial cells and secreted into the lumen at 188.6-535.7 ng/ml of ileal fluids (mean=298.1 ng/ml, n=11). Taken together, our results demonstrate that AKR1B10 is a new secretory protein belonging to a lysosome-mediated non-classical protein-secretion pathway and is a potential serum marker.
Collapse
|
41
|
Liu A, Lin Y, Terry R, Nelson K, Bernstein PS. Role of long-chain and very-long-chain polyunsaturated fatty acids in macular degenerations and dystrophies. ACTA ACUST UNITED AC 2011; 6:593-613. [PMID: 25324899 DOI: 10.2217/clp.11.41] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Macular degeneration is a progressive, bilateral eye disorder that damages the macula of the human eye. The most common form of macular degeneration is age-related macular degeneration (AMD), which is the leading cause of irreversible blindness in people older than 50 years in developed countries. Autosomal dominant Stargardt disease-3 (STGD3) is an inherited macular dystrophy that has clinical features similar to dry AMD, but occurs at a much earlier age. It is caused by a mutation in the elongation of very-long-chain fatty acids-like 4 (ELOVL4) gene, which is responsible for encoding the elongase enzyme that converts shorter chain fatty acids into C28-C38 very long-chain polyunsaturated fatty acids (VLCPUFAs, total number of carbons ≥24). Diets rich in long-chain polyunsaturated fatty acids (LCPUFAs) have inverse associations with the progression of AMD and STGD3, and a deficiency in retinal LCPUFAs and VLCPUFAs has been detected in AMD retinas and STGD3 animal models. This article systematically summarizes the roles of LCPUFAs and VLCPUFAs in AMD and STGD3, and discusses future research directions.
Collapse
Affiliation(s)
- Aihua Liu
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Yanhua Lin
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Ryan Terry
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Kelly Nelson
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
42
|
Susceptibility to exudative age-related macular degeneration and three genetic polymorphisms of glutathione S-transferase Z1 (GSTZ1). Eur J Ophthalmol 2011; 22:431-5. [DOI: 10.5301/ejo.5000053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2011] [Indexed: 01/01/2023]
Abstract
Purpose To investigate whether genetic polymorphisms of GSTZ1 contribute to the development of exudative age-related macular degeneration (AMD). Methods The present case-control study consisted of 112 patients (44 female, 68 male) with exudative AMD and 112 sex frequency-matched healthy controls were randomly selected from unrelated volunteers in the same clinic. Genotypes were determined by polymerase chain reaction–restriction fragment length polymorphism–based method. Results There was no significant association between study polymorphisms and susceptibility to exudative AMD. Considering the significant difference in age distribution between cases and controls, age was used as a covariate in further analysis. After odds ratio adjustment for age, the same results were observed. The study polymorphisms showed linkage disequilibrium. Analysis revealed that there was no difference between cases and controls for the prevalence of the haplotypes of GSTZ1. Conclusions Our study did not support any association between susceptibility to exudative AMD and polymorphisms of GSTZ1.
Collapse
|
43
|
Kunchithapautham K, Rohrer B. Sublytic membrane-attack-complex (MAC) activation alters regulated rather than constitutive vascular endothelial growth factor (VEGF) secretion in retinal pigment epithelium monolayers. J Biol Chem 2011; 286:23717-24. [PMID: 21566137 PMCID: PMC3129152 DOI: 10.1074/jbc.m110.214593] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 04/27/2011] [Indexed: 12/21/2022] Open
Abstract
Uncontrolled activation of the alternative complement pathway and secretion of vascular endothelial growth factor (VEGF) are thought to be associated with age-related macular degeneration (AMD). Previously, we have shown that in RPE monolayers, oxidative-stress reduced complement inhibition on the cell surface. The resulting increased level of sublytic complement activation resulted in VEGF release, which disrupted the barrier facility of these cells as determined by transepithelial resistance (TER) measurements. Induced rather than basal VEGF release in RPE is thought to be controlled by different mechanisms, including voltage-dependent calcium channel (VDCC) activation and mitogen-activated protein kinases. Here we examined the potential intracellular links between sublytic complement activation and VEGF release in RPE cells challenged with H(2)O(2) and complement-sufficient normal human serum (NHS). Disruption of barrier function by H(2)O(2) + NHS rapidly increased Ras expression and Erk and Src phosphorylation, but had no effect on P38 phosphorylation. Either treatment alone had little effect. TER reduction could be attenuated by inhibiting Ras, Erk and Src activation, or blocking VDCC or VEGF-R2 activation, but not by inhibiting P38. Combinatorial analysis of inhibitor effects demonstrated that sublytic complement activation triggers VEGF secretion via two pathways, Src and Ras-Erk, with the latter being amplified by VEGF-R2 activation, but has no effect on constitutive VEGF secretion mediated via P38. Finally, effects on TER were directly correlated with release of VEGF; and sublytic MAC activation decreased levels of zfp36, a negative modulator of VEGF transcription, resulting in increased VEGF expression. Taken together, identifying how sublytic MAC induces VEGF expression and secretion might offer opportunities to selectively inhibit pathological VEGF release only.
Collapse
Affiliation(s)
- Kannan Kunchithapautham
- From the Departments of Ophthalmology and Neurosciences Division of Research, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Bärbel Rohrer
- From the Departments of Ophthalmology and Neurosciences Division of Research, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
44
|
Zhou T, Zhou KK, Lee K, Gao G, Lyons TJ, Kowluru R, Ma JX. The role of lipid peroxidation products and oxidative stress in activation of the canonical wingless-type MMTV integration site (WNT) pathway in a rat model of diabetic retinopathy. Diabetologia 2011; 54:459-68. [PMID: 20978740 PMCID: PMC3017315 DOI: 10.1007/s00125-010-1943-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 09/13/2010] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Our recent studies suggest that activation of the wingless-type MMTV integration site (WNT) pathway plays pathogenic roles in diabetic retinopathy and age-related macular degeneration. Here we investigated the causative role of oxidative stress in retinal WNT pathway activation in an experimental model of diabetes. METHODS Cultured retinal pigment epithelial cells and retinal capillary endothelial cells were treated with a lipid peroxidation product, 4-hydroxynonenal (HNE), and an antioxidant, N-acetyl-cysteine (NAC). In vivo, rats with streptozotocin-induced diabetes were treated by NAC for 8 weeks. Activation of the canonical WNT pathway was measured by TOPFLASH assay and by western blot analysis of WNT pathway components and a WNT target gene, Ctgf. Oxidative stress in the retina was evaluated by immunostaining of HNE and 3-nitrotyrosine. RESULTS Levels of phosphorylated and total LDL receptor-related protein (LRP)6, and cytosolic β-catenin, as well as transcriptional activity of T cell factor (TCF)/β-catenin were significantly increased by HNE. The production of connective tissue growth factor (CTGF) was also upregulated by HNE. NAC blocked the WNT pathway activation induced by HNE. Furthermore, LRP6 stability was increased by HNE and decreased by NAC. Retinal levels of HNE and 3-nitrotyrosine were significantly increased in diabetic rats, compared with those in non-diabetic rats. In the same diabetic rat retinas, levels of LRP6, cytosolic β-catenin and CTGF were significantly increased. NAC treatment reduced HNE and 3-nitrotyrosine levels and attenuated the upregulation of LRP6, β-catenin and CTGF in diabetic rat retina. CONCLUSIONS/INTERPRETATION Lipid peroxidation products activate the canonical WNT pathway through oxidative stress, which plays an important role in the development of retinal diseases.
Collapse
Affiliation(s)
- T. Zhou
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, China
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK 73104 USA
| | - K. K. Zhou
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK 73104 USA
| | - K. Lee
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK 73104 USA
| | - G. Gao
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, China
| | - T. J. Lyons
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK 73104 USA
- Harold Hamm Oklahoma Diabetes Center and Section of Endocrinology and Diabetes, Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - R. Kowluru
- Department of Ophthalmology, Wayne State University, Detroit, MI USA
| | - J-x. Ma
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK 73104 USA
- Harold Hamm Oklahoma Diabetes Center and Section of Endocrinology and Diabetes, Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| |
Collapse
|
45
|
Abstract
The peroxidation of n-3 and n-6 polyunsaturated fatty acids (PUFAs) and of their hydroperoxy metabolites is a complex process. It is initiated by free oxygen radical-induced abstraction of a hydrogen atom from the lipid molecule followed by a series of nonenzymatic reactions that ultimately generate the reactive aldehyde species 4-hydroxyalkenals. The molecule 4-hydroxy-2E-hexenal (4-HHE) is generated by peroxidation of n-3 PUFAs, such as linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid. The aldehyde product 4-hydroxy-2E-nonenal (4-HNE) is the peroxidation product of n-6 PUFAs, such as arachidonic and linoleic acids and their 15-lipoxygenase metabolites, namely 15-hydroperoxyeicosatetraenoic acid (15-HpETE) and 13-hydroperoxyoctadecadienoic acid (13-HpODE). Another reactive peroxidation product is 4-hydroxy-2E,6Z-dodecadienal (4-HDDE), which is derived from 12-hydroperoxyeicosatetraenoic acid (12-HpETE), the 12-lipoxygenase metabolite of arachidonic acid. Hydroxyalkenals, notably 4-HNE, have been implicated in various pathophysiological interactions due to their chemical reactivity and the formation of covalent adducts with macromolecules. The progressive accumulation of these adducts alters normal cell functions that can lead to cell death. The lipophilicity of these aldehydes positively correlates to their chemical reactivity. Nonetheless, at low and noncytotoxic concentrations, these molecules may function as signaling molecules in cells. This has been shown mostly for 4-HNE and to some extent for 4-HHE. The capacity of 4-HDDE to generate such "mixed signals" in cells has received less attention. This review addresses the origin and cellular functions of 4-hydroxyalkernals.
Collapse
Affiliation(s)
- Yael Riahi
- Dept. of Pharmacology, The Hebrew Univ. Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
46
|
Ishikado A, Nishio Y, Morino K, Ugi S, Kondo H, Makino T, Kashiwagi A, Maegawa H. Low concentration of 4-hydroxy hexenal increases heme oxygenase-1 expression through activation of Nrf2 and antioxidative activity in vascular endothelial cells. Biochem Biophys Res Commun 2010; 402:99-104. [DOI: 10.1016/j.bbrc.2010.09.124] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 09/29/2010] [Indexed: 10/19/2022]
|
47
|
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world. It is a multifactorial disease, and current therapy predominantly limits damage only when it has already occurred. The macula is a source of high metabolic activity, and is therefore exposed to correspondingly high levels of reactive oxygen species (ROS). With age, the balance between production of ROS and local antioxidant levels is shifted, and damage ensues. Systemic ROS and antioxidant levels in AMD reflect these local processes. Genetic studies investigating mutations in antioxidant genes in AMD are inconclusive and further studies are indicated, especially to determine the role of mitochondria. Oral antioxidant supplements could be beneficial, and diet modification may help. Future treatments might either increase antioxidant capacity or reduce the production of ROS, using methods such as genetic manipulation. This article reviews the role of oxidative stress in AMD and the potential therapies that might have a role in preventing the blindness resulting from this disease.
Collapse
|
48
|
Siddiqui MA, Kashyap MP, Al-Khedhairy AA, Musarrat J, Khanna VK, Yadav S, Pant AB. Protective potential of 17β-estradiol against co-exposure of 4-hydroxynonenal and 6-hydroxydopamine in PC12 cells. Hum Exp Toxicol 2010; 30:860-9. [DOI: 10.1177/0960327110382130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
4-hydroxynonenal (4-HNE) and 6-hydroxydopamine (6-OHDA)-mediated damage in dopaminergic neurons is well documented. Protective potential of steroidal hormone (17β-estradiol) has also been suggested. However, therapeutic potential of such promising hormone is hampered due to complex brain anatomy and physiology. Thus, the present investigations were studied to suggest the applicability of dopamine expressing PC12 cells as in vitro tool to screen the pharmacological potential of 17β-estradiol against 4-HNE and 6-OHDA. MTT assay was conducted for cytotoxicity assessment of both 4-HNE (1 μM to 50 μM) and 6-OHDA (10-4 to 10-7 M). Non-cytotoxic concentrations, that is, 4-HNE (1 μM) and 6-OHDA (10-6 M) were selected to study the synergetic/additive responses. PC12 cells were found to be more vulnerable towards co-exposure of individual exposure of 4-HNE and 6-OHDA, even at non-cytotoxic concentrations. Then, cells were subjected to pre-treatment (24 hours) of 17β-estradiol (1 μM), followed by a permutation of combinations of both 4-HNE and 6-OHDA. Pretreatment of 17β-estradiol was found to be significantly effective against the cytotoxic responses of 4-HNE and 6-OHDA, when the damage was at lower level. However, 17β-estradiol was found to be ineffective against higher concentrations. Physiological-specific responses of PC12 cells against 4-HNE/6-OHDA and 17β-estradiol suggest its applicability as first tier of screening tool.
Collapse
Affiliation(s)
- MA Siddiqui
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - MP Kashyap
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| | - AA Al-Khedhairy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - J. Musarrat
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - VK Khanna
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| | - S. Yadav
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India
| | - AB Pant
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow, India,
| |
Collapse
|
49
|
Long EK, Picklo MJ. Trans-4-hydroxy-2-hexenal, a product of n-3 fatty acid peroxidation: make some room HNE.. Free Radic Biol Med 2010; 49:1-8. [PMID: 20353821 DOI: 10.1016/j.freeradbiomed.2010.03.015] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/11/2010] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
Abstract
Lipid peroxidation yields multiple aldehyde species. Of these, trans-4-hydroxy-2-nonenal (HNE), derived from n-6 poly-unsaturated fatty acids (PUFA) is one of the most studied products of lipid peroxidation. On the other hand, oxidative damage to n-3 PUFA, e.g. docosahexaenoic acid (DHA; 22:6, n-3) and eicosapentaenoic acid, is now recognized as an important effector of oxidative stress and is of particular interest in n-3 rich tissues such as brain and retina. Trans-4-hydroxy-2-hexenal (HHE) is a major alpha,beta-unsaturated aldehyde product of n-3 PUFA oxidation and, like HNE, is an active biochemical mediator resulting from lipid peroxidation. HHE adducts are elevated in disease states, in some cases, at higher levels than the corresponding HNE adduct. HHE has properties in common with HNE, but there are important differences particularly with respect to adduction targets and detoxification pathways. In this review, the biochemistry and cell biology of HHE will be discussed. From this review, it is clear that further study is needed to determine the biochemical and physiological roles of HHE and its related aldehyde, trans-4-oxo-2-hexenal.
Collapse
Affiliation(s)
- Eric K Long
- Department of Pharmacology, Physiology, and Therapeutics, Grand Forks, ND 58203-9037, USA
| | | |
Collapse
|
50
|
Wang C, Yan R, Luo D, Watabe K, Liao DF, Cao D. Aldo-keto reductase family 1 member B10 promotes cell survival by regulating lipid synthesis and eliminating carbonyls. J Biol Chem 2009; 284:26742-8. [PMID: 19643728 DOI: 10.1074/jbc.m109.022897] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aldo-keto reductase family 1 member B10 (AKR1B10) is primarily expressed in the normal human colon and small intestine but overexpressed in liver and lung cancer. Our previous studies have shown that AKR1B10 mediates the ubiquitin-dependent degradation of acetyl-CoA carboxylase-alpha. In this study, we demonstrate that AKR1B10 is critical to cell survival. In human colon carcinoma cells (HCT-8) and lung carcinoma cells (NCI-H460), small-interfering RNA-induced AKR1B10 silencing resulted in caspase-3-mediated apoptosis. In these cells, the total and subspecies of cellular lipids, particularly of phospholipids, were decreased by more than 50%, concomitant with 2-3-fold increase in reactive oxygen species, mitochondrial cytochrome c efflux, and caspase-3 cleavage. AKR1B10 silencing also increased the levels of alpha,beta-unsaturated carbonyls, leading to the 2-3-fold increase of cellular lipid peroxides. Supplementing the HCT-8 cells with palmitic acid (80 mum), the end product of fatty acid synthesis, partially rescued the apoptosis induced by AKR1B10 silencing, whereas exposing the HCT-8 cells to epalrestat, an AKR1B10 inhibitor, led to more than 2-fold elevation of the intracellular lipid peroxides, resulting in apoptosis. These data suggest that AKR1B10 affects cell survival through modulating lipid synthesis, mitochondrial function, and oxidative status, as well as carbonyl levels, being an important cell survival protein.
Collapse
Affiliation(s)
- Chun Wang
- Department of Medical Microbiology, SimmonsCooper Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois 62702, USA
| | | | | | | | | | | |
Collapse
|