1
|
Sandoval C, Vera A, Birditt K, Godoy K, Carmine F, Caamaño J, Farías J. β-Carotene Supplementation Improves Pancreas Function during Moderate Ethanol Consumption: Initial Characterization from a Morphological Overview. Int J Mol Sci 2024; 25:1219. [PMID: 38279214 PMCID: PMC10815982 DOI: 10.3390/ijms25021219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Alcohol is believed to harm acinar cells, pancreatic ductal epithelium, and pancreatic stellate cells. After giving ethanol and/or β-carotene to C57BL/6 mice, our goal was to evaluate their biochemistry, histology, and morpho-quantitative features. There were six groups of C57BL/6 mice: 1. Group C (control), 2. Group LA (low-dose alcohol), 3. Group MA (moderate-dose alcohol), 4. Group B (β-carotene), 5. Group LA + B (low-dose alcohol combined with β-carotene), and 6. Group MA + B (moderate-dose alcohol combined with β-carotene). After the animals were euthanized on day 28, each specimen's pancreatic tissue was taken. Lipase, uric acid, and amylase were assessed using biochemical assessment. Furthermore, the examination of the pancreatic structure was conducted using Ammann's fibrosis scoring system. Finally, the morpho-quantitative characteristics of the pancreatic islets and acinar cells were determined. In the serum of the MA + B group, there were higher amounts of total amylase (825.953 ± 193.412 U/L) and lower amounts of lipase (47.139 ± 6.099 U/L) (p < 0.05). Furthermore, Ammann's fibrosis punctuation in the pancreas revealed significant variations between the groups (p < 0.001). Finally, the stereological analysis of pancreatic islets showed that the groups were different (p < 0.001). These findings suggest that antioxidant treatments might help decrease the negative effects of ethanol exposure in animal models.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile;
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Angeles Vera
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Katherine Birditt
- Physiology Development and Neuroscience Department, University of Cambridge, Cambridge CB2 1TN, UK;
| | - Karina Godoy
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Florencia Carmine
- Carrera de Medicina, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
| | - José Caamaño
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
- Laboratorio de Inmunohematología y Medicina Transfusional, Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
2
|
Zheng R, Weng S, Xu J, Li Z, Wang Y, Aizimuaji Z, Ma S, Zheng L, Li H, Ying W, Rong W, Xiao T. Autophagy and biotransformation affect sorafenib resistance in hepatocellular carcinoma. Comput Struct Biotechnol J 2023; 21:3564-3574. [PMID: 37520282 PMCID: PMC10372478 DOI: 10.1016/j.csbj.2023.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
As sorafenib is a first-line drug for treating advanced hepatocellular carcinoma, sorafenib resistance has historically attracted attention. However, most of this attention has been focused on a series of mechanisms related to drug resistance arising after sorafenib treatment. In this study, we used proteomic techniques to explore the potential mechanisms by which pretreatment factors affect sorafenib resistance. The degree of redundant pathway PI3K/AKT activation, biotransformation capacity, and autophagy level in hepatocellular carcinoma patients prior to sorafenib treatment might affect their sensitivity to sorafenib, in which ADH1A and STING1 are key molecules. These three factors could interact mechanistically to promote tumor cell survival, might be malignant features of tumor cells, and are associated with hepatocellular carcinoma prognosis. Our study suggests possible avenues of therapeutic intervention for patients with sorafenib-resistance and the potential application of immunotherapy with the aim of improving the survival of such patients.
Collapse
Affiliation(s)
- Ruiqi Zheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuang Weng
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jianping Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing 100021, China
| | - Zhuo Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing 100021, China
| | - Yaru Wang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zulihumaer Aizimuaji
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Sheng Ma
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Linlin Zheng
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Haiyang Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wantao Ying
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
- College of Life Science and Bioengineering, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Weiqi Rong
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
3
|
Srinivasan MP, Bhopale KK, Caracheo AA, Kaphalia L, Popov VL, Boor PJ, Kaphalia BS. Dysregulated pancreatic lipid phenotype, inflammation and cellular injury in a chronic ethanol feeding model of hepatic alcohol dehydrogenase-deficient deer mice. Life Sci 2023; 322:121670. [PMID: 37030615 DOI: 10.1016/j.lfs.2023.121670] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
AIMS Dysregulation of pancreatic fat and lipotoxic inflammation are common clinical findings in alcoholic chronic pancreatitis (ACP). In this study, we investigated a relationship between dysregulated pancreatic lipid metabolism and the development of injury in a chronic ethanol (EtOH) feeding model of hepatic alcohol dehydrogenase 1- deficient (ADH-) deer mice. METHODS ADH- and hepatic ADH normal (ADH+) deer mice were fed a liquid diet containing 3 % EtOH for three months and received a single gavage of binge EtOH with/without fatty acid ethyl esters (FAEEs) one week before the euthanasia. Plasma and pancreatic tissue were analyzed for lipids including FAEEs, inflammatory markers and adipokines using GC-MS, bioassays/kits, and immunostaining, respectively. Pancreatic morphology and proteins involved in lipogenesis were determined by the H & E staining, electron microscopy and Western blot analysis. KEY FINDINGS Chronic EtOH feeding in ADH- vs. ADH+ deer mice resulted in a significant increase in the levels of pancreatic lipids including FAEEs, adipokines (leptin and resistin), fat infiltration with inflammatory cells and lipid droplet deposition along with the proteins involved in lipogenesis. These changes were exacerbated by an administration of binge EtOH with/without FAEEs in the pancreas of ADH- vs. ADH+ deer mice fed chronic EtOH suggest a metabolic basis for ACP. SIGNIFICANCE These findings suggest that the liver-pancreatic axis plays a crucial role in etiopathogenesis of ACP, as the increased body burden of EtOH due to hepatic ADH deficiency exacerbates pancreatic injury.
Collapse
|
4
|
Sandoval C, Mella L, Godoy K, Adeli K, Farías J. β-Carotene Increases Activity of Cytochrome P450 2E1 during Ethanol Consumption. Antioxidants (Basel) 2022; 11:antiox11051033. [PMID: 35624897 PMCID: PMC9137679 DOI: 10.3390/antiox11051033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
One of the key routes through which ethanol induces oxidative stress appears to be the activation of cytochrome P450 2E1 at different levels of ethanol intake. Our aim was to determine if oral β-carotene intake had an antioxidant effect on CYP2E1 gene expression in mice that had previously consumed ethanol. C57BL/6 mice were used and distributed into: control (C), low-dose alcohol (LA), moderate-dose alcohol (MA), β-carotene (B), low-dose alcohol+β-carotene (LA + B), and moderate-dose alcohol+β-carotene (MA + B). Animals were euthanized at the end of the experiment, and liver tissue was taken from each one. CYP2E1 was measured using qPCR to detect liver damage. The relative expression level of each RNA was estimated using the comparative threshold cycle (Ct) technique (2−ΔΔCT method) by averaging the Ct values from three replicates. The LA+B (2267 ± 0.707) and MA+B (2.307 ± 0.384) groups had the highest CYP2E1 fold change values. On the other hand, the C (1.053 ± 0.292) and LA (1.240 ± 0.163) groups had the lowest levels. These results suggest that ethanol feeding produced a fold increase in CYP2E1 protein in mice as compared to the control group. Increased CYP2E1 activity was found to support the hypothesis that β-carotene might be dangerous during ethanol exposure in animal models. Our findings imply that β-carotene can increase the hepatic damage caused by low and high doses of alcohol. Therefore, the quantity of alcohol ingested, the exposure period, the regulatory mechanisms of alcoholic liver damage, and the signaling pathways involved in the consumption of both alcohol and antioxidant must all be considered.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence: (C.S.); (J.F.); Tel.: +56-45-2325720 (C.S.); +56-45-2325956 (J.F.)
| | - Luciana Mella
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Karina Godoy
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Khosrow Adeli
- Molecular Medicine, Research Institute The Hospital for Sick Children University of Toronto, Toronto, ON M5G 1X8, Canada;
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
- Correspondence: (C.S.); (J.F.); Tel.: +56-45-2325720 (C.S.); +56-45-2325956 (J.F.)
| |
Collapse
|
5
|
Stamis SA, Heath EI, Lucas S, Boerner J, Slusher LB. Alcohol dehydrogenase expression patterns in normal prostate, benign prostatic hyperplasia, and prostatic adenocarcinoma in African American and Caucasian men. Prostate 2022; 82:666-675. [PMID: 35133686 DOI: 10.1002/pros.24310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND In situ metabolism of ethanol by alcohol dehydrogenases (ADHs) contributes to oxidative damage of cells and DNA and has been linked to carcinogenesis in numerous epithelial tissues. The goal of this study was to determine expression patterns of ADH1 and ADH7 isozymes in normal, hyperplastic (benign prostatic hyperplasia [BPH]) and neoplastic (prostate cancer [PCa]) prostate. Furthermore, racial differences in ADH expression between African Americans and Caucasians were investigated. METHODS ADH expression patterns were characterized by density analysis of ADH immunohistochemistry (n = 21) and real-time RT-PCR of total RNAs by laser-capture microdissection (n = 10) and whole tissue formalin-fixed paraffin embedded prostate biopsies (n = 63). RESULTS ADH protein is found in normal prostate and is primarily associated with glandular epithelium. Transcripts of ADH1B are suppressed in PCa compared to BPH (p = 0.0095). Racial differences in ADH7 transcripts exist between African American and Caucasian men. A total of 57.6% of biopsies from African American prostates have detectable ADH7 messenger RNA (mRNA) transcripts compared to the 13.3% of Caucasian prostate biopsies with detectable transcripts (p = 0.0005). This increased frequency of detection contributes to higher mean ADH7 mRNA transcript levels in African Americans (p = 0.001). CONCLUSIONS To our knowledge this study is the first to report downregulation of ADH1B in neoplastic prostate at the transcriptional level, suggesting protective regulatory functions. ADH7 transcripts were not detectable in all samples and was found in higher frequency and amount in our African American samples. Racial differences in ADH7 within the prostate is a novel finding and should be investigated further.
Collapse
Affiliation(s)
- Sarah A Stamis
- Department of Biology, West Chester University of Pennsylvania, West Chester, Pennsylvania, USA
| | - Elisabeth I Heath
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Steven Lucas
- Department of Urology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Julie Boerner
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Leslie B Slusher
- Department of Biology, West Chester University of Pennsylvania, West Chester, Pennsylvania, USA
| |
Collapse
|
6
|
Sandoval C, Farías J, Zamorano M, Herrera C. Vitamin Supplements as a Nutritional Strategy against Chronic Alcohol Consumption? An Updated Review. Antioxidants (Basel) 2022; 11:antiox11030564. [PMID: 35326214 PMCID: PMC8945215 DOI: 10.3390/antiox11030564] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/12/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023] Open
Abstract
Several studies have shown that blood vitamin levels are low in alcoholic patients. In effect, alcohol use abuse is considered a chronic disease that promotes the pathogenesis of many fatal diseases, such as cancer and liver cirrhosis. The alcohol effects in the liver can be prevented by antioxidant mechanisms, which induces enzymatic as well as other nonenzymatic pathways. The effectiveness of several antioxidants has been evaluated. However, these studies have been accompanied by uncertainty as mixed results were reported. Thus, the aim of the present review article was to examine the current knowledge on vitamin deficiency and its role in chronic liver disease. Our review found that deficiencies in nutritional vitamins could develop rapidly during chronic liver disease due to diminished hepatic storage and that inadequate vitamins intake and alcohol consumption may interact to deplete vitamin levels. Numerous studies have described that vitamin supplementation could reduce hepatotoxicity. However, further studies with reference to the changes in vitamin status and the nutritional management of chronic liver disease are in demand.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (J.F.); (M.Z.)
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
- Correspondence: ; Tel.: +56-45-2325720
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (J.F.); (M.Z.)
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Mauricio Zamorano
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (J.F.); (M.Z.)
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Christian Herrera
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
| |
Collapse
|
7
|
Srinivasan MP, Bhopale KK, Caracheo AA, Kaphalia L, Gong B, Popov VL, Boor PJ, Shakeel Ansari GA, Kaphalia BS. Exposure to binge ethanol and fatty acid ethyl esters exacerbates chronic ethanol-induced pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice. Am J Physiol Gastrointest Liver Physiol 2022; 322:G327-G345. [PMID: 34984929 PMCID: PMC8816639 DOI: 10.1152/ajpgi.00263.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alcoholic chronic pancreatitis (ACP) is a fibroinflammatory disease of the pancreas. However, metabolic basis of ACP is not clearly understood. In this study, we evaluated differential pancreatic injury in hepatic alcohol dehydrogenase-deficient (ADH-) deer mice fed chronic ethanol (EtOH), chronic plus binge EtOH, and chronic plus binge EtOH and fatty acid ethyl esters (FAEEs, nonoxidative metabolites of EtOH) to understand the metabolic basis of ACP. Hepatic ADH- and ADH normal (ADH+) deer mice were fed Lieber-DeCarli liquid diet containing 3% (wt/vol) EtOH for 3 mo. One week before the euthanization, chronic EtOH-fed mice were further administered with an oral gavage of binge EtOH with/without FAEEs. Blood alcohol concentration (BAC), pancreatic injury, and inflammatory markers were measured. Pancreatic morphology, ultrastructural changes, and endoplasmic reticulum (ER)/oxidative stress were examined using H&E staining, electron microscopy, immunostaining, and/or Western blot, respectively. Overall, BAC was substantially increased in chronic EtOH-fed groups of ADH- versus ADH+ deer mice. A significant change in pancreatic acinar cell morphology, with mild to moderate fibrosis and ultrastructural changes evident by dilatations and disruption of ER cisternae, ER/oxidative stress along with increased levels of inflammatory markers were observed in the pancreas of chronic EtOH-fed groups of ADH- versus ADH+ deer mice. Furthermore, chronic plus binge EtOH and FAEEs exposure elevated BAC, enhanced ER/oxidative stress, and exacerbated chronic EtOH-induced pancreatic injury in ADH- deer mice suggesting a role of increased body burden of EtOH and its metabolism under reduced hepatic ADH in initiation and progression of ACP.NEW & NOTEWORTHY We established a chronic EtOH feeding model of hepatic alcohol dehydrogenase-deficient (ADH-) deer mice, which mimics several fibroinflammatory features of human alcoholic chronic pancreatitis (ACP). The fibroinflammatory and morphological features exacerbated by chronic plus binge EtOH and FAEEs exposure provide a strong case for metabolic basis of ACP. Most importantly, several pathological and molecular targets identified in this study provide a much broader understanding of the mechanism and avenues to develop therapeutics for ACP.
Collapse
Affiliation(s)
- Mukund P. Srinivasan
- 1Department of Pathology, The University of Texas Medical Branch, Galveston, Texas
| | - Kamlesh K. Bhopale
- 1Department of Pathology, The University of Texas Medical Branch, Galveston, Texas
| | - Anna A. Caracheo
- 1Department of Pathology, The University of Texas Medical Branch, Galveston, Texas
| | - Lata Kaphalia
- 2Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas
| | - Bin Gong
- 1Department of Pathology, The University of Texas Medical Branch, Galveston, Texas
| | - Vsevolod L. Popov
- 1Department of Pathology, The University of Texas Medical Branch, Galveston, Texas
| | - Paul J. Boor
- 1Department of Pathology, The University of Texas Medical Branch, Galveston, Texas
| | - G. A. Shakeel Ansari
- 1Department of Pathology, The University of Texas Medical Branch, Galveston, Texas
| | | |
Collapse
|
8
|
Carrasco D, Carrasco C, Souza-Mello V, Sandoval C. Effectiveness of antioxidant treatments on cytochrome P450 2E1 (CYP2E1) activity after alcohol exposure in humans and in vitro models: A systematic review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1961801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Danitza Carrasco
- Carrera De Tecnología Médica, Facultad De Medicina, Universidad De La Frontera, Temuco, Chile
| | - Camila Carrasco
- Carrera De Tecnología Médica, Facultad De Medicina, Universidad De La Frontera, Temuco, Chile
| | - Vanessa Souza-Mello
- Laboratorio De Morfometría, Metabolismo Y Enfermedades Cardiovasculares, Centro Biomédico, Instituto De Biología, Universidade Do Estado Do Rio De Janeiro, Rio De Janeiro, Brazil
| | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras, Osorno, Chile
- Departamento De Ciencias Preclínicas, Facultad De Medicina, Universidad De La Frontera, Temuco, Chile
| |
Collapse
|
9
|
Takahashi T, Miao Y, Kang F, Dolai S, Gaisano HY. Susceptibility Factors and Cellular Mechanisms Underlying Alcoholic Pancreatitis. Alcohol Clin Exp Res 2020; 44:777-789. [PMID: 32056245 DOI: 10.1111/acer.14304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
Alcohol is a major cause of acute and chronic pancreatitis. There have been some recent advances in the understanding of the mechanisms underlying alcoholic pancreatitis, which include perturbation in mitochondrial function and autophagy and ectopic exocytosis, with some of these cellular events involving membrane fusion soluble N-ethylmaleimide-sensitive factor receptor protein receptor proteins. Although new insights have been unraveled recently, the precise mechanisms remain complex, and their finer details have yet to be established. The overall pathophysiology of pancreatitis involves not only the pancreatic acinar cells but also the stellate cells and duct cells. Why only some are more susceptible to pancreatitis and with increased severity, while others are not, would suggest that there may be undefined protective factors or mechanisms that enhance recovery and regeneration after injury. Furthermore, there are confounding influences of lifestyle factors such as smoking and diet, and genetic background. Whereas alcohol and smoking cessation and a generally healthy lifestyle are intuitively the advice given to these patients afflicted with alcoholic pancreatitis in order to reduce disease recurrence and progression, there is as yet no specific treatment. A more complete understanding of the pathogenesis of pancreatitis from which novel therapeutic targets could be identified will have a great impact, particularly with the stubbornly high fatality (>30%) of severe pancreatitis. This review focuses on the susceptibility factors and underlying cellular mechanisms of alcohol injury on the exocrine pancreas.
Collapse
Affiliation(s)
- Toshimasa Takahashi
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Yifan Miao
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Fei Kang
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Subhankar Dolai
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Herbert Y Gaisano
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Srinivasan MP, Bhopale KK, Amer SM, Wan J, Kaphalia L, Ansari GS, Kaphalia BS. Linking Dysregulated AMPK Signaling and ER Stress in Ethanol-Induced Liver Injury in Hepatic Alcohol Dehydrogenase Deficient Deer Mice. Biomolecules 2019; 9:biom9100560. [PMID: 31581705 PMCID: PMC6843321 DOI: 10.3390/biom9100560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/23/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
Ethanol (EtOH) metabolism itself can be a predisposing factor for initiation of alcoholic liver disease (ALD). Therefore, a dose dependent study to evaluate liver injury was conducted in hepatic alcohol dehydrogenase (ADH) deficient (ADH−) and ADH normal (ADH+) deer mice fed 1%, 2% or 3.5% EtOH in the liquid diet daily for 2 months. Blood alcohol concentration (BAC), liver injury marker (alanine amino transferase (ALT)), hepatic lipids and cytochrome P450 2E1 (CYP2E1) activity were measured. Liver histology, endoplasmic reticulum (ER) stress, AMP-activated protein kinase (AMPK) signaling and cell death proteins were evaluated. Significantly increased BAC, plasma ALT, hepatic lipids and steatosis were found only in ADH− deer mice fed 3.5% EtOH. Further, a significant ER stress and increased un-spliced X-box binding protein 1 were evident only in ADH− deer mice fed 3.5% EtOH. Both strains fed 3.5% EtOH showed deactivation of AMPK, but increased acetyl Co-A carboxylase 1 and decreased carnitine palmitoyltransferase 1A favoring lipogenesis were found only in ADH− deer mice fed 3.5% EtOH. Therefore, irrespective of CYP2E1 overexpression; EtOH dose and hepatic ADH deficiency contribute to EtOH-induced steatosis and liver injury, suggesting a linkage between ER stress, dysregulated hepatic lipid metabolism and AMPK signaling.
Collapse
Affiliation(s)
- Mukund P Srinivasan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kamlesh K Bhopale
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Samir M Amer
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Forensic Medicine and Clinical Toxicology, Tanta University, Tanta 31512, Egypt
| | - Jie Wan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Lata Kaphalia
- Division of Pulmonary, Critical Care Medicine, Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ghulam S Ansari
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bhupendra S Kaphalia
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
11
|
Kaphalia L, Srinivasan MP, Kakumanu RD, Kaphalia BS, Calhoun WJ. Ethanol Exposure Impairs AMPK Signaling and Phagocytosis in Human Alveolar Macrophages: Role of Ethanol Metabolism. Alcohol Clin Exp Res 2019; 43:1682-1694. [PMID: 31211863 DOI: 10.1111/acer.14131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chronic alcohol consumption impairs alveolar macrophage's (AM) function and increases risk for developing lung infection and pneumonia. However, the mechanism and metabolic basis of alcohol-induced AM dysfunction leading to lung infection are not well defined, but may include altered ethanol (EtOH) and reactive oxygen species metabolism and cellular energetics. Therefore, oxidative stress, endoplasmic reticulum (ER) stress, the formation of fatty acid ethyl esters [FAEEs, nonoxidative metabolites of EtOH], AMP-activated protein kinase (AMPK) signaling, and phagocytic function were examined in freshly isolated AM incubated with EtOH. METHODS AMs separated from bronchoalveolar lavage fluid samples obtained from normal volunteers were incubated with EtOH for 24 hours. AMPK signaling and ER stress were assessed using Western blotting, FAEEs by GC-MS, oxidative stress by immunofluorescence using antibodies to 4-hydroxynonenal, and phagocytosis by latex beads. Oxidative stress was also measured in EtOH-treated AMs with/without AMPK activator [5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)] or inhibitor (Compound C), and in AMs incubated with FAEEs. mRNA expression for interleukins (IL-6 and IL-8), monocyte chemoattractant protein (MCP)-1, and transforming growth factor (TGF)-β was measured in AM treated with EtOH or FAEEs using RT-PCR. RESULTS EtOH exposure to AM increased oxidative stress, ER stress, and synthesis of FAEEs, decreased phosphorylated AMPK, and impaired phagocytosis. Attenuation or exacerbation of EtOH-induced oxidative stress by AICAR or Compound C, respectively, suggests a link between AMPK signaling, EtOH metabolism, and related oxidative stress. The formation of FAEEs may contribute to EtOH-induced oxidative stress as FAEEs also produced concentration-dependent oxidative stress. An increased mRNA expression of IL-6, IL-8, and MCP-1 by FAEEs is key finding to suggest a metabolic basis of EtOH-induced inflammatory response. CONCLUSIONS EtOH-induced impaired phagocytosis, oxidative stress, ER stress, and dysregulated AMPK signaling are plausibly associated with the formation of FAEEs and may participate in the pathogenesis of nonspecific pulmonary inflammation.
Collapse
Affiliation(s)
- Lata Kaphalia
- Division of Pulmonary, Critical Care Medicine, and Sleep, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas.,Division of Allergy & Clinical Immunology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Mukund P Srinivasan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Ramu D Kakumanu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | | | - William J Calhoun
- Division of Pulmonary, Critical Care Medicine, and Sleep, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas.,Division of Allergy & Clinical Immunology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
12
|
Clugston RD, Gao MA, Blaner WS. The Hepatic Lipidome: A Gateway to Understanding the Pathogenes is of Alcohol-Induced Fatty Liver. Curr Mol Pharmacol 2019; 10:195-206. [PMID: 26278391 DOI: 10.2174/1874467208666150817111419] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 12/30/2022]
Abstract
Chronic alcohol consumption can lead to the development of alcoholic fatty liver disease. The underlying pathogenic mechanisms however, have not been fully elucidated. Here, we review the current state of the art regarding the application of lipidomics to study alcohol's effect on hepatic lipids. It is clear that alcohol has a profound effect on the hepatic lipidome, with documented changes in the major lipid categories (i.e. fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids and prenol lipids). Alcohol's most striking effect is the marked change in the hepatic fatty acyl pool. This effect includes increased levels of 18-carbon fatty acyl chains incorporated into multiple lipid species, as well as a general shift toward increased unsaturation of fatty acyl moieties. In addition to our literature review, we also make several recommendations to consider when designing lipidomic studies into alcohol's effects. These recommendations include integration of lipidomic data with other measures of lipid metabolism, inclusion of multiple experimental time points, and presentation of quantitative data. We believe rigorous analysis of the hepatic lipidome can yield new insight into the pathogenesis of alcohol-induced fatty liver. While the existing literature has been largely descriptive, the field is poised to apply lipidomics to yield a new level of understanding on alcohol's effects on hepatic lipid metabolism.
Collapse
Affiliation(s)
- Robin D Clugston
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7. Canada
| | - Madeleine A Gao
- Department of Medicine, Columbia University, New York, NY, 10032. United States
| | - William S Blaner
- Department of Medicine, Columbia University, New York, NY, 10032. United States
| |
Collapse
|
13
|
Chao X, Ding WX. Role and mechanisms of autophagy in alcohol-induced liver injury. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 85:109-131. [PMID: 31307584 PMCID: PMC7141786 DOI: 10.1016/bs.apha.2019.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) is one of the major causes of chronic liver disease worldwide. Currently, no successful treatments are available for ALD. The pathogenesis of ALD is characterized as simple steatosis, fibrosis, cirrhosis, alcoholic hepatitis (AH), and eventually hepatocellular carcinoma (HCC). Autophagy is a highly conserved intracellular catabolic process, which aims at recycling cellular components and removing damaged organelles in response to starvation and stresses. Therefore, autophagy is considered as an important cellular adaptive and survival mechanism under various pathophysiological conditions. Recent studies from our lab and others suggest that chronic alcohol consumption may impair autophagy and contribute to the pathogenesis of ALD. In this chapter, we summarize recent progress on the role and mechanisms of autophagy in the development of ALD. Understanding the roles of autophagy in ALD may offer novel therapeutic avenues against ALD by targeting these pathways.
Collapse
Affiliation(s)
- Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
14
|
Li L, Wang L, Song R, Chen G, Liu Y. Cytochrome P450 2E1 increases the sensitivity of hepatoma cells to vitamin K2. Int J Oncol 2017; 50:1832-1838. [PMID: 28339022 DOI: 10.3892/ijo.2017.3932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/15/2017] [Indexed: 11/06/2022] Open
Abstract
Although vitamin K2 (VK2) exhibits inhibitory effects on the viability of hepatoma cells, hepatoma cells are insensitive to VK2. Therefore, this investigation is an attempt to enhance the sensitivity of hepatoma cells to VK2. Our results showed that VK2 acted synergistically with ethanol (EtOH) to inhibit the viability of Smmc-7721 cells, mainly because cytochrome P450 2E1 (CYP2E1) was activated by EtOH. The synergistic effect of VK2 and EtOH was also observed in QGY-7703 cells, which also express CYP2E1. However, in HepG2 cells, which do not express CYP2E1, the synergistic effect of VK2 and EtOH was not observed. In addition, we demonstrated that CYP2E1 could be induced by VK2 via both post-transcriptional and transcriptional mechanisms. These results suggest that induction of CYP2E1 can enhance the inhibitory effect of VK2 on the viability of hepatoma cells. CYP2E1 may be an attractive target for enhanced antitumor effects of VK2 in hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Lu Li
- Department of Biochemistry and Molecular Biology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Lu Wang
- Department of Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Rui Song
- Department of Biochemistry and Molecular Biology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Guangliang Chen
- Institute of Combined Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Yanyan Liu
- Department of Biochemistry and Molecular Biology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| |
Collapse
|
15
|
Chao X, Wang S, Ding WX. Cell Death in Alcohol-Induced Liver Injury. CELLULAR INJURY IN LIVER DISEASES 2017:119-142. [DOI: 10.1007/978-3-319-53774-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
16
|
Wang S, Pacher P, De Lisle RC, Huang H, Ding WX. A Mechanistic Review of Cell Death in Alcohol-Induced Liver Injury. Alcohol Clin Exp Res 2016; 40:1215-23. [PMID: 27130888 DOI: 10.1111/acer.13078] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 03/29/2016] [Indexed: 12/18/2022]
Abstract
Alcoholic liver disease (ALD) is a major health problem in the United States and worldwide without successful treatments. Chronic alcohol consumption can lead to ALD, which is characterized by steatosis, inflammation, fibrosis, cirrhosis, and even liver cancer. Recent studies suggest that alcohol induces both cell death and adaptive cell survival pathways in the liver, and the balance of cell death and cell survival ultimately decides the pathogenesis of ALD. This review summarizes the recent progress on the role and mechanisms of apoptosis, necroptosis, and autophagy in the pathogenesis of ALD. Understanding the complex regulation of apoptosis, necrosis, and autophagy may help to develop novel therapeutic strategies by targeting all 3 pathways simultaneously.
Collapse
Affiliation(s)
- Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas.,Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Robert C De Lisle
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Heqing Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
17
|
Attignon EA, Leblanc AF, Le-Grand B, Duval C, Aggerbeck M, Rouach H, Blanc EB. Novel roles for AhR and ARNT in the regulation of alcohol dehydrogenases in human hepatic cells. Arch Toxicol 2016; 91:313-324. [PMID: 27055685 DOI: 10.1007/s00204-016-1700-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/21/2016] [Indexed: 12/13/2022]
Abstract
The mechanisms by which pollutants participate in the development of diverse pathologies are not completely understood. The pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activates the AhR (aryl hydrocarbon receptor) signaling pathway. We previously showed that TCDD (25 nM, 30 h) decreased the expression of several alcohol metabolism enzymes (cytochrome P450 2E1, alcohol dehydrogenases ADH1, 4 and 6) in differentiated human hepatic cells (HepaRG). Here, we show that, as rapidly as 8 h after treatment (25 nM TCDD) ADH expression decreased 40 % (p < 0.05). ADH1 and 4 protein levels decreased 40 and 27 %, respectively (p < 0.05), after 72 h (25 nM TCDD). The protein half-lives were not modified by TCDD which suggests transcriptional regulation of expression. The AhR antagonist CH-223191 or AhR siRNA reduced the inhibitory effect of 25 nM TCDD on ADH1A, 4 and 6 expression 50-100 % (p < 0.05). The genomic pathway (via the AhR/ARNT complex) and not the non-genomic pathway involving c-SRC mediated these effects. Other AhR ligands (3-methylcholanthrene and PCB 126) decreased ADH1B, 4 and 6 mRNAs by more than 78 and 55 %, respectively (p < 0.01). TCDD also regulated the expression of ADH4 in the HepG2 human hepatic cell line, in primary human hepatocytes and in C57BL/6J mouse liver. In conclusion, activation of the AhR/ARNT signaling pathway by AhR ligands represents a novel mechanism for regulating the expression of ADHs. These effects may be implicated in the toxicity of AhR ligands as well as in the alteration of ethanol or retinol metabolism and may be associated further with higher risk of liver diseases or/and alcohol abuse disorders.
Collapse
Affiliation(s)
- Eléonore A Attignon
- INSERM, UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints Pères, F-75006, Paris, France.,ComUE Sorbonne Paris Cité, Université Paris Descartes, CICB-Paris, 45 rue des Saints Pères, F-75006, Paris, France
| | - Alix F Leblanc
- INSERM, UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints Pères, F-75006, Paris, France.,ComUE Sorbonne Paris Cité, Université Paris Descartes, CICB-Paris, 45 rue des Saints Pères, F-75006, Paris, France
| | - Béatrice Le-Grand
- INSERM, UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints Pères, F-75006, Paris, France.,ComUE Sorbonne Paris Cité, Université Paris Descartes, CICB-Paris, 45 rue des Saints Pères, F-75006, Paris, France
| | - Caroline Duval
- INSERM, UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints Pères, F-75006, Paris, France.,ComUE Sorbonne Paris Cité, Université Paris Descartes, CICB-Paris, 45 rue des Saints Pères, F-75006, Paris, France
| | - Martine Aggerbeck
- INSERM, UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints Pères, F-75006, Paris, France.,ComUE Sorbonne Paris Cité, Université Paris Descartes, CICB-Paris, 45 rue des Saints Pères, F-75006, Paris, France
| | - Hélène Rouach
- INSERM, UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints Pères, F-75006, Paris, France.,ComUE Sorbonne Paris Cité, Université Paris Descartes, CICB-Paris, 45 rue des Saints Pères, F-75006, Paris, France
| | - Etienne B Blanc
- INSERM, UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints Pères, F-75006, Paris, France. .,ComUE Sorbonne Paris Cité, Université Paris Descartes, CICB-Paris, 45 rue des Saints Pères, F-75006, Paris, France.
| |
Collapse
|
18
|
Clemens DL, Schneider KJ, Arkfeld CK, Grode JR, Wells MA, Singh S. Alcoholic pancreatitis: New insights into the pathogenesis and treatment. World J Gastrointest Pathophysiol 2016; 7:48-58. [PMID: 26909228 PMCID: PMC4753189 DOI: 10.4291/wjgp.v7.i1.48] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/23/2015] [Accepted: 11/11/2015] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis is a necro-inflammatory disease of the exocrine pancreas that is characterized by inappropriate activation of zymogens, infiltration of the pancreas by inflammatory cells, and destruction of the pancreatic exocrine cells. Acute pancreatitis can progress to a severe life-threatening disease. Currently there is no pharmacotherapy to prevent or treat acute pancreatitis. One of the more common factors associated with acute pancreatitis is alcohol abuse. Although commonly associated with pancreatitis alcohol alone is unable to cause pancreatitis. Instead, it appears that alcohol and its metabolic by-products predispose the pancreas to damage from agents that normally do not cause pancreatitis, or to more severe disease from agents that normally cause mild pancreatic damage. Over the last 10 to 20 years, a tremendous amount of work has defined a number of alcohol-mediated biochemical changes in pancreatic cells. Among these changes are: Sustained levels of intracellular calcium, activation of the mitochondrial permeability transition pore, endoplasmic reticulum stress, impairment in autophagy, alteration in the activity of transcriptional activators, and colocalization of lysosomal and pancreatic digestive enzymes. Elucidation of these changes has led to a deeper understanding of the mechanisms by which ethanol predisposes acinar cells to damage. This greater understanding has revealed a number of promising targets for therapeutic intervention. It is hoped that further investigation of these targets will lead to the development of pharmacotherapy that is effective in treating and preventing the progression of acute pancreatitis.
Collapse
|
19
|
Kaphalia L, Kalita M, Kaphalia BS, Calhoun WJ. Effects of acute ethanol exposure on cytokine production by primary airway smooth muscle cells. Toxicol Appl Pharmacol 2015; 292:85-93. [PMID: 26721307 DOI: 10.1016/j.taap.2015.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 12/08/2015] [Accepted: 12/17/2015] [Indexed: 01/17/2023]
Abstract
Both chronic and binge alcohol abuse can be significant risk factors for inflammatory lung diseases such as acute respiratory distress syndrome and chronic obstructive pulmonary disease. However, metabolic basis of alcohol-related lung disease is not well defined, and may include key metabolites of ethanol [EtOH] in addition to EtOH itself. Therefore, we investigated the effects of EtOH, acetaldehyde [ACE], and fatty acid ethyl esters [FAEEs] on oxidative stress, endoplasmic reticulum (ER) stress, AMP-activated protein kinase (AMPK) signaling and nuclear translocation of phosphorylated (p)-NF-κB p65 in primary human airway smooth muscle (HASM) cells stimulated to produce cytokines using LPS exposure. Both FAEEs and ACE induced evidence of cellular oxidative stress and ER stress, and increased p-NF-κB in nuclear extracts. EtOH and its metabolites decreased p-AMPKα activation, and induced expression of fatty acid synthase, and decreased expression of sirtuin 1. In general, EtOH decreased secretion of IP-10, IL-6, eotaxin, GCSF, and MCP-1. However, FAEEs and ACE increased these cytokines, suggesting that both FAEEs and ACE as compared to EtOH itself are proinflammatory. A direct effect of EtOH could be consistent with blunted immune response. Collectively, these two features of EtOH exposure, coupled with the known inhibition of innate immune response in our model might explain some clinical manifestations of EtOH exposure in the lung.
Collapse
Affiliation(s)
- Lata Kaphalia
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Mridul Kalita
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Bhupendra S Kaphalia
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - William J Calhoun
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
20
|
Williams JA, Ding WX. A Mechanistic Review of Mitophagy and Its Role in Protection against Alcoholic Liver Disease. Biomolecules 2015; 5:2619-42. [PMID: 26501336 PMCID: PMC4693250 DOI: 10.3390/biom5042619] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 12/15/2022] Open
Abstract
Alcoholic liver disease (ALD) is a major health problem worldwide, and alcohol is well-known to cause mitochondrial damage, which exacerbates alcohol-induced liver injury and steatosis. No successful treatments are currently available for treating ALD. Therefore, a better understanding of mechanisms involved in regulation of mitochondrial homeostasis in the liver and how these mechanisms may protect against alcohol-induced liver disease is needed for future development of better therapeutic options for ALD. Mitophagy is a key mechanism for maintaining mitochondrial homeostasis by removing damaged mitochondria, and mitophagy protects against alcohol-induced liver injury. Parkin, an E3 ubiquitin ligase, is well-known to induce mitophagy in in vitro models although Parkin-independent mechanisms for mitophagy induction also exist. In this review, we discuss the roles of Parkin and mitophagy in protection against alcohol-induced liver injury and steatosis. We also discuss Parkin-independent mechanisms for mitophagy induction, which have not yet been evaluated in the liver but may also potentially have a protective role against ALD. In addition to mitophagy, mitochondrial spheroid formation may also provide a novel mechanism of protection against ALD, but the role of mitochondrial spheroids in protection against ALD progression needs to be further explored. Targeting removal of damaged mitochondria by mitophagy or inducing formation of mitochondrial spheroids may be promising therapeutic options for treatment of ALD.
Collapse
Affiliation(s)
- Jessica A Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| |
Collapse
|
21
|
de Medeiros IC, de Lima JG. Is nonalcoholic fatty liver disease an endogenous alcoholic fatty liver disease? – A mechanistic hypothesis. Med Hypotheses 2015; 85:148-52. [DOI: 10.1016/j.mehy.2015.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/11/2015] [Accepted: 04/21/2015] [Indexed: 02/07/2023]
|
22
|
Joshi AD, Carter DE, Harper TA, Elferink CJ. Aryl hydrocarbon receptor-dependent stanniocalcin 2 induction by cinnabarinic acid provides cytoprotection against endoplasmic reticulum and oxidative stress. J Pharmacol Exp Ther 2015; 353:201-12. [PMID: 25672339 PMCID: PMC11047083 DOI: 10.1124/jpet.114.222265] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/10/2015] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic ligand-activated transcription factor historically known for its role in xenobiotic metabolism. Although AhR activity has previously been shown to play a cytoprotective role against intrinsic apoptotic stimuli, the underlying mechanism by which AhR confers cytoprotection against apoptosis is largely unknown. Here, we demonstrate that activation of AhR by the tryptophan catabolite cinnabarinic acid (CA) directly upregulates expression of stanniocalcin 2 (Stc2) to elicit cytoprotection against apoptosis induced by endoplasmic reticulum stress and oxidative stress. Chromatin immunoprecipitation studies demonstrated that CA treatment induces direct AhR binding to a region of the Stc2 promoter containing multiple xenobiotic response elements. Using isolated primary hepatocytes from AhR wild-type (AhR floxed) and liver-specific AhR conditional knockout mice, we showed that pretreatment with CA conferred cytoprotection against hydrogen peroxide (H(2)O(2))-, thapsigargin-, and ethanol-induced apoptosis in an AhR-dependent manner. Furthermore, suppressing Stc2 expression using RNA interference confirmed that the cytoprotective properties of CA against H(2)O(2), thapsigargin, and ethanol injury were absolutely dependent on Stc2. Immunochemistry revealed the presence of Stc2 in the endoplasmic reticulum and on the cell surface, consistent with Stc2 secretion and autocrine and/or paracrine signaling. Finally, in vivo data using a mouse model of acute alcohol hepatotoxicity demonstrated that CA provided cytoprotection against ethanol-induced apoptosis, hepatic microvesicular steatosis, and liver injury. Collectively, our data uncovered a novel mechanism for AhR-mediated cytoprotection in the liver that is dependent on CA-induced Stc2 activity.
Collapse
Affiliation(s)
- Aditya D Joshi
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (A.D.J., D.E.C., C.J.E.); and Linus Pauling Institute, Oregon State University, Corvallis, Oregon (T.A.H.)
| | - Dwayne E Carter
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (A.D.J., D.E.C., C.J.E.); and Linus Pauling Institute, Oregon State University, Corvallis, Oregon (T.A.H.)
| | - Tod A Harper
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (A.D.J., D.E.C., C.J.E.); and Linus Pauling Institute, Oregon State University, Corvallis, Oregon (T.A.H.)
| | - Cornelis J Elferink
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (A.D.J., D.E.C., C.J.E.); and Linus Pauling Institute, Oregon State University, Corvallis, Oregon (T.A.H.)
| |
Collapse
|
23
|
Elamin E, Masclee A, Troost F, Pieters HJ, Keszthelyi D, Aleksa K, Dekker J, Jonkers D. Ethanol impairs intestinal barrier function in humans through mitogen activated protein kinase signaling: a combined in vivo and in vitro approach. PLoS One 2014; 9:e107421. [PMID: 25226407 PMCID: PMC4165763 DOI: 10.1371/journal.pone.0107421] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/08/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Ethanol-induced gut barrier disruption is associated with several gastrointestinal and liver disorders. AIM Since human data on effects of moderate ethanol consumption on intestinal barrier integrity and involved mechanisms are limited, the objectives of this study were to investigate effects of a single moderate ethanol dose on small and large intestinal permeability and to explore the role of mitogen activated protein kinase (MAPK) pathway as a primary signaling mechanism. METHODS Intestinal permeability was assessed in 12 healthy volunteers after intraduodenal administration of either placebo or 20 g ethanol in a randomised cross-over trial. Localization of the tight junction (TJ) and gene expression, phosphorylation of the MAPK isoforms p38, ERK and JNK as indicative of activation were analyzed in duodenal biopsies. The role of MAPK was further examined in vitro using Caco-2 monolayers. RESULTS Ethanol increased small and large intestinal permeability, paralleled by redistribution of ZO-1 and occludin, down-regulation of ZO-1 and up-regulation of myosin light chain kinase (MLCK) mRNA expression, and increased MAPK isoforms phosphorylation. In Caco-2 monolayers, ethanol increased permeability, induced redistribution of the junctional proteins and F-actin, and MAPK and MLCK activation, as indicated by phosphorylation of MAPK isoforms and myosin light chain (MLC), respectively, which could be reversed by pretreatment with either MAPK inhibitors or the anti-oxidant L-cysteine. CONCLUSIONS Administration of moderate ethanol dosage can increase both small and colon permeability. Furthermore, the data indicate a pivotal role for MAPK and its crosstalk with MLCK in ethanol-induced intestinal barrier disruption. TRIAL REGISTRATION ClinicalTrials.gov NCT00928733.
Collapse
Affiliation(s)
- Elhaseen Elamin
- Top Institute Food and Nutrition (TIFN), Wageningen, the Netherlands
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ad Masclee
- Top Institute Food and Nutrition (TIFN), Wageningen, the Netherlands
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Freddy Troost
- Top Institute Food and Nutrition (TIFN), Wageningen, the Netherlands
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Harm-Jan Pieters
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Daniel Keszthelyi
- Top Institute Food and Nutrition (TIFN), Wageningen, the Netherlands
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Katarina Aleksa
- Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, Canada
| | - Jan Dekker
- Top Institute Food and Nutrition (TIFN), Wageningen, the Netherlands
- Host microbe interactomics, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Daisy Jonkers
- Top Institute Food and Nutrition (TIFN), Wageningen, the Netherlands
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
24
|
Autophagy in alcohol-induced multiorgan injury: mechanisms and potential therapeutic targets. BIOMED RESEARCH INTERNATIONAL 2014; 2014:498491. [PMID: 25140315 PMCID: PMC4124834 DOI: 10.1155/2014/498491] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/29/2014] [Indexed: 12/21/2022]
Abstract
Autophagy is a genetically programmed, evolutionarily conserved intracellular degradation pathway involved in the trafficking of long-lived proteins and cellular organelles to the lysosome for degradation to maintain cellular homeostasis. Alcohol consumption leads to injury in various tissues and organs including liver, pancreas, heart, brain, and muscle. Emerging evidence suggests that autophagy is involved in alcohol-induced tissue injury. Autophagy serves as a cellular protective mechanism against alcohol-induced tissue injury in most tissues but could be detrimental in heart and muscle. This review summarizes current knowledge about the role of autophagy in alcohol-induced injury in different tissues/organs and its potential molecular mechanisms as well as possible therapeutic targets based on modulation of autophagy.
Collapse
|
25
|
Kaphalia L, Boroumand N, Hyunsu J, Kaphalia BS, Calhoun WJ. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding. Toxicol Appl Pharmacol 2014; 277:109-17. [PMID: 24625836 PMCID: PMC4021019 DOI: 10.1016/j.taap.2014.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 01/09/2023]
Abstract
Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to <1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease.
Collapse
Affiliation(s)
- Lata Kaphalia
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555, USA
| | - Nahal Boroumand
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555, USA
| | - Ju Hyunsu
- Department of Preventive Medicine & Community Health, The University of Texas Medical Branch, Galveston, TX 775555, USA
| | - Bhupendra S Kaphalia
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555, USA.
| | - William J Calhoun
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555, USA
| |
Collapse
|
26
|
Ge N, Liang H, Liu Y, Ma AG, Han L. Protective effect of Aplysin on hepatic injury in ethanol-treated rats. Food Chem Toxicol 2013; 62:361-72. [DOI: 10.1016/j.fct.2013.08.071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 08/16/2013] [Accepted: 08/25/2013] [Indexed: 01/01/2023]
|
27
|
Histone acetylation and arachidonic acid cytotoxicity in HepG2 cells overexpressing CYP2E1. Naunyn Schmiedebergs Arch Pharmacol 2013; 387:271-80. [PMID: 24287576 PMCID: PMC3927057 DOI: 10.1007/s00210-013-0942-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/14/2013] [Indexed: 12/31/2022]
Abstract
The aim of this work was to assess the role of ethanol-derived acetate and acetate-mediated histone acetylation in arachidonic acid-induced stress in HepG2 cells and cells overexpressing CYP2E1. Cells were grown for 7 days with 1 mM sodium acetate or 100 mM ethanol; their acetylated histone proteins and histone deacetylase 2 expression was quantified using Western blot. Ethanol- or acetate-pretreated cells were also treated for 24 h with 60 μM arachidonic acid to induce oxidative stress. Cytotoxicity was estimated by lactate dehydrogenase release, 3-[4,5-dimethylthiazolyl-2] 2,5-diphenyltetrazolium bromide test, and by DNA damage, while oxidative stress was quantified using dichlorofluorescein diacetate. Cells grown with ethanol or acetate had increased acetylated histone H3 levels in both cell types and elevated acetylated histone H4 levels in cells overexpressing CYP2E1 but not in naïve cells. In cells overexpressing CYP2E1 grown with ethanol, expression of histone deacetylase 2 was reduced by about 40 %. Arachidonic acid altered cell proliferation and was cytotoxic mostly to cells engineered to overexpress CYP2E1 but both effects were significantly lower in cells pretreated with ethanol or acetate. Cytotoxicity was also significantly decreased by 4-methylpyrazole—a CYP2E1 inhibitor and by trichostatin—an inhibitor of histone deacetylases. In cells pretreated with acetate or ethanol, the oxidative stress induced by arachidonic acid was also significantly lower. Our data indicate that histone hyperacetylation may in some extent protect the cells against oxidative stress. It is possible that acetate may act as an antioxidant at histone level. This mechanism may be relevant to alcohol-induced liver injury.
Collapse
|
28
|
Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells. In Vitro Cell Dev Biol Anim 2013; 50:373-80. [PMID: 24281792 DOI: 10.1007/s11626-013-9700-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/26/2013] [Indexed: 01/13/2023]
Abstract
Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37°C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with 1,10-PT + ethanol and ∼1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I-III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol.
Collapse
|
29
|
Lee KM, Kang HS, Yun CH, Kwak HS. Potential in vitro Protective Effect of Quercetin, Catechin, Caffeic Acid and Phytic Acid against Ethanol-Induced Oxidative Stress in SK-Hep-1 Cells. Biomol Ther (Seoul) 2013; 20:492-8. [PMID: 24009840 PMCID: PMC3762280 DOI: 10.4062/biomolther.2012.20.5.492] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/17/2012] [Accepted: 06/23/2012] [Indexed: 01/21/2023] Open
Abstract
Phytochemicals have been known to exhibit potent antioxidant activity. This study examined cytoprotective effects of phytochemicals including quercetin, catechin, caffeic acid, and phytic acid against oxidative damage in SK-Hep-1 cells induced by the oxidative and non-oxidative metabolism of ethanol. Exposure of the cells to excess ethanol resulted in a significant increase in cytotoxicity, reactive oxygen species (ROS) production, lipid hydroperoxide (LPO), and antioxidant enzyme activity. Excess ethanol also caused a reduction in mitochondrial membrane potential (MMP) and the quantity of reduced glutathione (GSH). Co-treatment of cells with ethanol and quercetin, catechin, caffeic acid and phytic acid significantly inhibited oxidative ethanol metabolism-induced cytotoxicity by blocking ROS production. When the cells were treated with ethanol after pretreatment of 4-methylpyrazole (4-MP), increased cytotoxicity, ROS production, antioxidant enzyme activity, and loss of MMP were observed. The addition of quercetin, catechin, caffeic acid and phytic acid to these cells showed suppression of non-oxidative ethanol metabolism-induced cytotoxicity, similar to oxidative ethanol metabolism. These results suggest that quercetin, catechin, caffeic acid and phytic acid have protective effects against ethanol metabolism-induced oxidative insult in SK-Hep-1 cells by blocking ROS production and elevating antioxidant potentials.
Collapse
Affiliation(s)
- Ki-Mo Lee
- Department of Biomedicinal Science & Biotechnology, Pai-Chai University, Daejon 302-735, Republic of Korea ; School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | |
Collapse
|
30
|
Kaphalia L, Calhoun WJ. Alcoholic lung injury: metabolic, biochemical and immunological aspects. Toxicol Lett 2013; 222:171-9. [PMID: 23892124 DOI: 10.1016/j.toxlet.2013.07.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 02/07/2023]
Abstract
Chronic alcohol abuse is a systemic disorder and a risk factor for acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD). A significant amount of ingested alcohol reaches airway passages in the lungs and can be metabolized via oxidative and non-oxidative pathways. About 90% of the ingested alcohol is metabolized via hepatic alcohol dehydrogenase (ADH)-catalyzed oxidative pathway. Alcohol can also be metabolized by cytochrome P450 2E1 (CYP2E1), particularly during chronic alcohol abuse. Both the oxidative pathways, however, are associated with oxidative stress due to the formation of acetaldehyde and/or reactive oxygen species (ROS). Alcohol ingestion is also known to cause endoplasmic reticulum (ER) stress, which can be mediated by oxidative and/or non-oxidative metabolites of ethanol. An acute as well as chronic alcohol ingestions impair protective antioxidants, oxidize reduced glutathione (GSH, cellular antioxidant against ROS and oxidative stress), and suppress innate and adaptive immunity in the lungs. Oxidative stress and suppressed immunity in the lungs of chronic alcohol abusers collectively are considered to be major risk factors for infection and development of pneumonia, and such diseases as ARDS and COPD. Prior human and experimental studies attempted to identify common mechanisms by which alcohol abuse directly causes toxicity to alveolar epithelium and respiratory tract, particularly lungs. In this review, the metabolic basis of lung injury, oxidative and ER stress and immunosuppression in experimental models and alcoholic patients, as well as potential immunomodulatory therapeutic strategies for improving host defenses against alcohol-induced pulmonary infections are discussed.
Collapse
Affiliation(s)
- Lata Kaphalia
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | | |
Collapse
|
31
|
Balusikova K, Kovar J. Alcohol dehydrogenase and cytochrome P450 2E1 can be induced by long-term exposure to ethanol in cultured liver HEP-G2 cells. In Vitro Cell Dev Biol Anim 2013; 49:619-25. [DOI: 10.1007/s11626-013-9636-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 05/06/2013] [Indexed: 01/21/2023]
|
32
|
Zelner I, Matlow JN, Natekar A, Koren G. Synthesis of fatty acid ethyl esters in mammalian tissues after ethanol exposure: a systematic review of the literature. Drug Metab Rev 2013; 45:277-99. [PMID: 23713893 DOI: 10.3109/03602532.2013.795584] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ability to undergo non-oxidative metabolism from ethanol to fatty acid ethyl esters (FAEEs) varies greatly among tissues and organs. To gain a greater understanding of non-oxidative ethanol metabolism to FAEE, we aimed to collect all published data on FAEE synthesis in mammalian organs and tissues to identify all tissues, organs, and enzymes that are known to, or likely possess FAEE-synthetic activity. A systematic search for relevant papers was performed and two independent reviewers examined potentially relevant abstracts (articles on FAEEs that pertain to ethanol exposure) to determine whether they met the inclusion criteria. Information on FAEE synthesis was retrieved from papers meeting the inclusion/exclusion criteria and summarized by organ/tissue/matrix examined. The systematic search through four databases yielded 78 articles that investigated FAEE synthesis by tissues, tissue fractions and cell lines, and 29 articles that attempted to purify and/or characterize the enzymes involved in FAEE synthesis. Two enzyme activities have been studied: FAEE synthase (FAEES, which conjugates ethanol and free fatty acid) and acyl-CoA: ethanol O-acyltransferase (AEAT, which conjugates ethanol and fatty acyl-CoA). Both activities are expressed by a variety of different enzymes. FAEES activity is the most widely studied and has been purified from several tissues and shown to be associated with several well-known enzymes, while the identity of enzymes possessing AEAT activity remains unknown. The organs and tissues that have been shown to synthesize FAEEs are discussed, with special emphasis on the studies that attempted to elucidate the enzymology of FAEE synthesis in those tissues.
Collapse
Affiliation(s)
- Irene Zelner
- Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
33
|
Elamin EE, Masclee AA, Dekker J, Jonkers DM. Ethanol metabolism and its effects on the intestinal epithelial barrier. Nutr Rev 2013; 71:483-99. [PMID: 23815146 DOI: 10.1111/nure.12027] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ethanol is widely consumed and is associated with an increasing global health burden. Several reviews have addressed the effects of ethanol and its oxidative metabolite, acetaldehyde, on the gastrointestinal (GI) tract, focusing on carcinogenic effects or alcoholic liver disease. However, both the oxidative and the nonoxidative metabolites of ethanol can affect the epithelial barrier of the small and large intestines, thereby contributing to GI and liver diseases. This review outlines the possible mechanisms of ethanol metabolism as well as the effects of ethanol and its metabolites on the intestinal barrier. Limited studies in humans and supporting in vitro data have indicated that ethanol as well as mainly acetaldehyde can increase small intestinal permeability. Limited evidence also points to increased colon permeability following exposure to ethanol or acetaldehyde. In vitro studies have provided several mechanisms for disruption of the epithelial barrier, including activation of different cell-signaling pathways, oxidative stress, and remodeling of the cytoskeleton. Modulation via intestinal microbiota, however, should also be considered. In conclusion, ethanol and its metabolites may act additively or even synergistically in vivo. Therefore, in vivo studies investigating the effects of ethanol and its byproducts on permeability of the small and large intestines are warranted.
Collapse
Affiliation(s)
- Elhaseen E Elamin
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
| | | | | | | |
Collapse
|
34
|
Zgheib NK, Shamseddine AA, Geryess E, Tfayli A, Bazarbachi A, Salem Z, Shamseddine A, Taher A, El-Saghir NS. Genetic polymorphisms of CYP2E1, GST, and NAT2 enzymes are not associated with risk of breast cancer in a sample of Lebanese women. Mutat Res 2013; 747-748:40-7. [PMID: 23628324 DOI: 10.1016/j.mrfmmm.2013.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/25/2013] [Accepted: 04/19/2013] [Indexed: 11/28/2022]
Abstract
Changes in the activity of drug metabolizing enzymes (DMEs) are potentially associated with cancer risk. This relationship is attributed to their involvement in the bioactivation of multiple procarcinogens or the metabolism of multiple substrates including an array of xenobiotics and environmental carcinogens. 326 Lebanese women of whom 99 were cancer free (controls) and 227 were diagnosed with breast cancer (cases) were included. Blood for DNA was collected and medical charts were reviewed. Three genotyping methods were employed including: (1) restriction fragment length polymorphism (RFLP) for CYP2E1*5B, CYP2E1*6, NAT2*5 and NAT2*6; (2) gel electrophoresis for GSTM1 and GSTT1; and (3) real-time PCR for GSTP1 Ile/Val polymorphism. We analyzed the relationship between genetic susceptibilities in selected xenobiotic metabolizing genes and breast cancer risk. Allele frequencies were fairly similar to previously reported values from neighboring populations with relevant migration routes. There were no statistically significant differences in the distribution of variant carcinogen metabolizing genes between cases and controls even after adjusting for age at diagnosis, menopausal status, smoking, and alcohol intake. Despite its limitations, this is the first study that assesses the role of genetic polymorphisms in DMEs with breast cancer in a sample of Lebanese women. Further studies are needed to determine the genetic predisposition and gene-environment interactions of breast cancer in this population.
Collapse
Affiliation(s)
- Nathalie K Zgheib
- Department of Pharmacology & Toxicology, Faculty of Medicine, American University of Beirut, Lebanon.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fatty acid ethyl esters in hair as alcohol markers: estimating a reliable cut-off point by evaluation of 1,057 autopsy cases. Forensic Sci Med Pathol 2013; 9:184-93. [DOI: 10.1007/s12024-013-9425-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2013] [Indexed: 01/01/2023]
|
36
|
Elamin E, Masclee A, Juuti-Uusitalo K, van IJzendoorn S, Troost F, Pieters HJ, Dekker J, Jonkers D. Fatty acid ethyl esters induce intestinal epithelial barrier dysfunction via a reactive oxygen species-dependent mechanism in a three-dimensional cell culture model. PLoS One 2013; 8:e58561. [PMID: 23526996 PMCID: PMC3602318 DOI: 10.1371/journal.pone.0058561] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/05/2013] [Indexed: 12/15/2022] Open
Abstract
Background & Aims Evidence is accumulating that ethanol and its oxidative metabolite, acetaldehyde, can disrupt intestinal epithelial integrity, an important factor contributing to ethanol-induced liver injury. However, ethanol can also be metabolized non-oxidatively generating phosphatidylethanol and fatty acid ethyl esters (FAEEs). This study aims to investigate the effects of FAEEs on barrier function, and to explore the role of oxidative stress as possible mechanism. Methods Epithelial permeability was assessed by paracellular flux of fluorescein isothiocyanate-conjugated dextran using live cell imaging. Cell integrity was evaluated by lactate dehydrogenase release. Localization and protein levels of ZO-1 and occludin were analyzed by immunofluorescence and cell-based ELISA, respectively. Intracellular oxidative stress and cellular ATP levels were measured by dichlorofluorescein and luciferase driven bioluminescence, respectively. Results In vitro, ethyl oleate and ethyl palmitate dose dependently increased permeability associated with disruption and decreased ZO-1 and occludin protein levels, respectively, and increased intracellular oxidative stress without compromising cell viability. These effects could partially be attenuated by pretreatment with the antioxidant, resveratrol, pointing to the role of oxidative stress in the FAEEs-induced intestinal barrier dysfunction. Conclusions These findings show that FAEEs can induce intestinal barrier dysfunction by disrupting the tight junctions, most likely via reactive oxygen species-dependent mechanism.
Collapse
Affiliation(s)
- Elhaseen Elamin
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ad Masclee
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kati Juuti-Uusitalo
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - Sven van IJzendoorn
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Department of Cell Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Freddy Troost
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Harm-Jan Pieters
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan Dekker
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Daisy Jonkers
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
37
|
Hepatic lipid profiling of deer mice fed ethanol using ¹H and ³¹P NMR spectroscopy: a dose-dependent subchronic study. Toxicol Appl Pharmacol 2012; 264:361-9. [PMID: 22884994 DOI: 10.1016/j.taap.2012.07.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 02/07/2023]
Abstract
Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH⁻) vs. hepatic ADH-normal (ADH⁺) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179-188]. However, ADH⁻ deer mice fed 4% ethanol also showed a significant mortality. Therefore, a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH⁻ and ADH⁺ deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton (¹H) and ³¹phosphorus (³¹P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH⁻ deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH⁻ deer mouse model. Analysis of NMR data of ADH⁻ deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH₂-) and FAMEs) were also mildly increased in ADH⁻ deer mice fed 1 or 2% ethanol. Only small increases were observed for allylic and diallylic protons, FAMEs and unsaturations in ADH⁺ deer mice fed 3.5% ethanol vs. pair-fed controls. PCA of NMR data showed increased clustering by gradual separation of ethanol-fed ADH⁻ deer mice groups from their respective pair-fed control groups and corresponding ethanol-fed ADH⁺ deer mice groups. Our data indicate that dose of ethanol and hepatic ADH deficiency are two key factors involved in initiation and progression of alcoholic fatty liver disease. Further studies on characterization of individual lipid entities and associated metabolic pathways altered in our deer mouse model after different durations of ethanol feeding could be important to delineate mechanism(s) and identify potential biomarker candidate(s) of early stage ALD.
Collapse
|
38
|
Guan X, Rubin E, Anni H. An optimized method for the measurement of acetaldehyde by high-performance liquid chromatography. Alcohol Clin Exp Res 2011; 36:398-405. [PMID: 21895715 DOI: 10.1111/j.1530-0277.2011.01612.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Acetaldehyde is produced during ethanol metabolism predominantly in the liver by alcohol dehydrogenase and rapidly eliminated by oxidation to acetate via aldehyde dehydrogenase. Assessment of circulating acetaldehyde levels in biological matrices is performed by headspace gas chromatography and reverse phase high-performance liquid chromatography (RP-HPLC). METHODS We have developed an optimized method for the measurement of acetaldehyde by RP-HPLC in hepatoma cell culture medium, blood, and plasma. After sample deproteinization, acetaldehyde was derivatized with 2,4-dinitrophenylhydrazine (DNPH). The reaction was optimized for pH, amount of derivatization reagent, time, and temperature. Extraction methods of the acetaldehyde-hydrazone (AcH-DNP) stable derivative and product stability studies were carried out. Acetaldehyde was identified by its retention time in comparison with AcH-DNP standard, using a new chromatography gradient program, and quantitated based on external reference standards and standard addition calibration curves in the presence and absence of ethanol. RESULTS Derivatization of acetaldehyde was performed at pH 4.0 with an 80-fold molar excess of DNPH. The reaction was completed in 40 minutes at ambient temperature, and the product was stable for 2 days. A clear separation of AcH-DNP from DNPH was obtained with a new 11-minute chromatography program. Acetaldehyde detection was linear up to 80 μM. The recovery of acetaldehyde was >88% in culture media and >78% in plasma. We quantitatively determined the ethanol-derived acetaldehyde in hepatoma cells, rat blood and plasma with a detection limit around 3 μM. The accuracy of the method was <9% for intraday and <15% for interday measurements, in small volume (70 μl) plasma sampling. CONCLUSIONS An optimized method for the quantitative determination of acetaldehyde in biological systems was developed using derivatization with DNPH, followed by a short RP-HPLC separation of AcH-DNP. The method has an extended linear range, is reproducible and applicable to small-volume sampling of culture media and biological fluids.
Collapse
Affiliation(s)
- Xiangying Guan
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
39
|
Clugston RD, Jiang H, Lee MX, Piantedosi R, Yuen JJ, Ramakrishnan R, Lewis MJ, Gottesman ME, Huang LS, Goldberg IJ, Berk PD, Blaner WS. Altered hepatic lipid metabolism in C57BL/6 mice fed alcohol: a targeted lipidomic and gene expression study. J Lipid Res 2011; 52:2021-31. [PMID: 21856784 DOI: 10.1194/jlr.m017368] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic alcohol consumption is associated with fatty liver disease in mammals. The object of this study was to gain an understanding of dysregulated lipid metabolism in alcohol-fed C57BL/6 mice using a targeted lipidomic approach. Liquid chromatography tandem mass spectrometry was used to analyze several lipid classes, including free fatty acids, fatty acyl-CoAs, fatty acid ethyl esters, sphingolipids, ceramides, and endocannabinoids, in plasma and liver samples from control and alcohol-fed mice. The interpretation of lipidomic data was augmented by gene expression analyses for important metabolic enzymes in the lipid pathways studied. Alcohol feeding was associated with i) increased hepatic free fatty acid levels and decreased fatty acyl-CoA levels associated with decreased mitochondrial fatty acid oxidation and decreased fatty acyl-CoA synthesis, respectively; ii) increased hepatic ceramide levels associated with higher levels of the precursor molecules sphingosine and sphinganine; and iii) increased hepatic levels of the endocannabinoid anandamide associated with decreased expression of its catabolic enzyme fatty acid amide hydrolase. The unique combination of lipidomic and gene expression analyses allows for a better mechanistic understanding of dysregulated lipid metabolism in the development of alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Robin D Clugston
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
K Bhopale K, Nauduri D, V Soman K, K Sood G, Okorodudu A, Ansari GAS, S Kaphalia B. Differentially Altered Plasma Proteins in
Patients diagnosed with Alcoholic and
Nonalcoholic Fatty Liver Disease. Euroasian J Hepatogastroenterol 2011. [DOI: 10.5005/jp-journals-10018-1019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
41
|
Kaphalia BS, Bhopale KK, Kondraganti S, Wu H, Boor PJ, Ansari GAS. Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol. Toxicol Appl Pharmacol 2010; 246:154-62. [PMID: 20478324 DOI: 10.1016/j.taap.2010.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 04/28/2010] [Accepted: 05/05/2010] [Indexed: 12/31/2022]
Abstract
Pancreatitis caused by activation of digestive zymogens in the exocrine pancreas is a serious chronic health problem in alcoholic patients. However, mechanism of alcoholic pancreatitis remains obscure due to lack of a suitable animal model. Earlier, we reported pancreatic injury and substantial increases in endogenous formation of fatty acid ethyl esters (FAEEs) in the pancreas of hepatic alcohol dehydrogenase (ADH)-deficient (ADH(-)) deer mice fed 4% ethanol. To understand the mechanism of alcoholic pancreatitis, we evaluated dose-dependent metabolism of ethanol and related pancreatic injury in ADH(-) and hepatic ADH-normal (ADH(+)) deer mice fed 1%, 2% or 3.5% ethanol via Lieber-DeCarli liquid diet daily for 2months. Blood alcohol concentration (BAC) was remarkably increased and the concentration was ∼1.5-fold greater in ADH(-) vs. ADH(+) deer mice fed 3.5% ethanol. At the end of the experiment, remarkable increases in pancreatic FAEEs and significant pancreatic injury indicated by the presence of prominent perinuclear space, pyknotic nuclei, apoptotic bodies and dilation of glandular ER were found only in ADH(-) deer mice fed 3.5% ethanol. This pancreatic injury was further supported by increased plasma lipase and pancreatic cathepsin B (a lysosomal hydrolase capable of activating trypsinogen), trypsinogen activation peptide (by-product of trypsinogen activation process) and glucose-regulated protein 78 (endoplasmic reticulum stress marker). These findings suggest that ADH-deficiency and high alcohol levels in the body are the key factors in ethanol-induced pancreatic injury. Therefore, determining how this early stage of pancreatic injury advances to inflammation stage could be important for understanding the mechanism(s) of alcoholic pancreatitis.
Collapse
Affiliation(s)
- Bhupendra S Kaphalia
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | |
Collapse
|
42
|
Ciuclan L, Ehnert S, Ilkavets I, Weng HL, Gaitantzi H, Tsukamoto H, Ueberham E, Meindl-Beinker NM, Singer MV, Breitkopf K, Dooley S. TGF-beta enhances alcohol dependent hepatocyte damage via down-regulation of alcohol dehydrogenase I. J Hepatol 2010; 52:407-16. [PMID: 20129692 DOI: 10.1016/j.jhep.2009.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/29/2009] [Accepted: 09/30/2009] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Adverse alcohol effects in the liver involve oxidative metabolism, fat deposition and release of fibrogenic mediators, including TGF-beta. The work presents an assessment of liver damaging cross-talk between ethanol and TGF-beta in hepatocytes. METHODS To investigate TGF-beta effects on hepatocytes, microarray analyses were performed and validated by qRT-PCR, Western blot analysis and immunohistochemistry. The cellular state was determined by assessing lactate dehydrogenase, cellular glutathione, reactive oxygen species, lipid peroxidation and neutral lipid deposition. RNA interference was used for gene silencing in vitro. RESULTS TGF-beta is induced in mouse livers after chronic ethanol insult, enhances ethanol induced oxidative stress and toxicity towards cultured hepatocytes plus induces lipid-, oxidative stress metabolism- and fibrogenesis-gene expression signatures. Interestingly, TGF-beta down-regulates alcohol metabolizing enzyme Adh1 mRNA in cultured hepatocytes and liver tissue from TGF-beta transgenic mice via the ALK5/Smad2/3 signalling branch, with Smad7 as a potent negative regulator. ADH1 deficiency is a determining factor for the increased lipid accumulation and Cyp2E1 dependent toxicity in liver cells upon alcohol challenge. Further, ADH1 expression was decreased during liver damage in an intragastric ethanol infusion mouse model. CONCLUSION In the presence of ethanol, TGF-beta displays pro-steatotic action in hepatocytes via decreasing ADH1 expression. Low ADH1 levels are correlated with enhanced hepatocyte damage upon chronic alcohol consumption by favoring secondary metabolic pathways.
Collapse
Affiliation(s)
- Loredana Ciuclan
- Molecular Hepatology-Alcohol Dependent Diseases, II. Medical Clinic, Faculty of Medicine at Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kim BY, Cui ZG, Lee SR, Kim SJ, Kang HK, Lee YK, Park DB. Effects of Asparagus officinalis Extracts on Liver Cell Toxicity and Ethanol Metabolism. J Food Sci 2009; 74:H204-8. [DOI: 10.1111/j.1750-3841.2009.01263.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Lu Y, Cederbaum AI. CYP2E1 and oxidative liver injury by alcohol. Free Radic Biol Med 2008; 44:723-38. [PMID: 18078827 PMCID: PMC2268632 DOI: 10.1016/j.freeradbiomed.2007.11.004] [Citation(s) in RCA: 551] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/02/2007] [Accepted: 11/05/2007] [Indexed: 12/11/2022]
Abstract
Ethanol-induced oxidative stress seems to play a major role in mechanisms by which ethanol causes liver injury. Many pathways have been suggested to contribute to the ability of ethanol to induce a state of oxidative stress. One central pathway seems to be the induction of cytochrome P450 2E1 (CYP2E1) by ethanol. CYP2E1 metabolizes and activates many toxicological substrates, including ethanol, to more reactive, toxic products. Levels of CYP2E1 are elevated under a variety of physiological and pathophysiological conditions and after acute and chronic alcohol treatment. CYP2E1 is also an effective generator of reactive oxygen species such as the superoxide anion radical and hydrogen peroxide and, in the presence of iron catalysts, produces powerful oxidants such as the hydroxyl radical. This review article summarizes some of the biochemical and toxicological properties of CYP2E1 and briefly describes the use of cell lines developed to constitutively express CYP2E1 and CYP2E1 knockout mice in assessing the actions of CYP2E1. Possible therapeutic implications for treatment of alcoholic liver injury by inhibition of CYP2E1 or CYP2E1-dependent oxidative stress will be discussed, followed by some future directions which may help us to understand the actions of CYP2E1 and its role in alcoholic liver injury.
Collapse
Affiliation(s)
- Yongke Lu
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
45
|
Abstract
The proteasome is a major protein-degrading enzyme, which catalyzes degradation of oxidized and aged proteins, signal transduction factors and cleaves peptides for antigen presentation. Proteasome exists in the equilibrium of 26S and 20S particles. Proteasome function is altered by ethanol metabolism, depending on oxidative stress levels: low oxidative stress induces proteasome activity, while high oxidative stress reduces it. The proposed mechanisms for modulation of proteasome activity are related to oxidative modification of proteasomal proteins with primary and secondary products derived from ethanol oxidation. Decreased proteolysis by the proteasome results in the accumulation of insoluble protein aggregates, which cannot be degraded by proteasome and which further inhibit proteasome function. Mallory bodies, a common signature of alcoholic liver diseases, are formed by liver cells, when proteasome is unable to remove cytokeratins. Proteasome inhibition by ethanol also promotes the accumulation of pro-apoptotic factors in mitochondria of ethanol-metabolizing liver cells that are normally degraded by proteasome. In addition, decreased proteasome function also induces accumulation of the negative regulators of cytokine signaling (I-κB and SOCS), thereby blocking cytokine signal transduction. Finally, ethanol-elicited blockade of interferon type 1 and 2 signaling and decreased proteasome function impairs generation of peptides for MHC class I-restricted antigen presentation.
Collapse
Affiliation(s)
- Natalia A Osna
- Liver Study Unit, Research Service (151), VA Medical Center, 4101 Woolworth Ave, Omaha, NE 68105, USA.
| | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW This review aims to acquaint the reader with advances in 2006 in the epidemiology, genetics, detection, pathogenesis and treatment of alcoholic liver disease. RECENT FINDINGS Important discoveries have been made in pathogenesis and mechanism of disease, with great emphasis on the many pathways leading to oxidative stress, and the novel mechanism of endoplasmic reticulum stress that is proving to be important in the pathogenesis of many liver diseases. The reliability of ethyl glucuronide and other biomarkers for the detection of alcohol abuse is being better established. There have been no treatment advances for alcoholic liver disease but, on balance, steroids are still favored for carefully selected patients with alcoholic hepatitis. Many compounds tested in rodents may now be available for consideration for clinical trials. Criteria for patient selection and refusal for liver transplantation are being established but the 6 months abstinence rule still holds. SUMMARY Insights are being made into the pathogenesis of alcoholic liver disease but safe and effective therapies for both alcoholic hepatitis and alcoholic cirrhosis have yet to be discovered.
Collapse
Affiliation(s)
- Adrian Reuben
- Liver Service, Division of Gastroenterology and Hepatology, And Liver Transplant Program, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
47
|
Castaneda F, Zimmermann D, Nolte J, Baumbach JI. Role of undecan-2-one on ethanol-induced apoptosis in HepG2 cells. Cell Biol Toxicol 2007; 23:477-85. [PMID: 17453350 DOI: 10.1007/s10565-007-9009-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Accepted: 03/16/2007] [Indexed: 12/20/2022]
Abstract
Based on the reduced expression of ethanol-oxidizing enzymes in human hepatocellular carcinoma (HepG2) cells, we analyzed the role of nonoxidative metabolites in ethanol-induced apoptosis in HepG2 cells. For this purpose, an analysis of volatile metabolites of ethanol using ion-mobility spectrometry and gas chromatography-mass spectrometry was performed. HepG2 cells exposed to 1 mmol/L ethanol exhibited significant synthesis of undecan-2-one compared to untreated cells. Undecan-2-one is a fatty acid ethyl ester metabolite synthesized through a nonoxidative pathway. Undecan-2-one had a dose-dependent cytotoxic effect on HepG2 cells as shown by release of lactate dehydrogenase (LDH). The most notable finding of this study was the potentiation of ethanol-induced apoptosis demonstrated by an increased apoptotic rate induced by undecan-2-one in ethanol-treated HepG2 cells. The data presented in this study contribute to the better understanding of the molecular mechanisms of ethanol exposure at low concentration in HepG2 cells, a human hepatocellular carcinoma-derived cell line.
Collapse
Affiliation(s)
- F Castaneda
- Laboratory for Molecular Pathobiochemistry and Clinical Research, Max Planck Institute for Molecular Physiology, Dortmund, Germany.
| | | | | | | |
Collapse
|
48
|
Bhopale KK, Wu H, Boor PJ, Popov VL, Ansari GAS, Kaphalia BS. Metabolic basis of ethanol-induced hepatic and pancreatic injury in hepatic alcohol dehydrogenase deficient deer mice. Alcohol 2006; 39:179-88. [PMID: 17127137 DOI: 10.1016/j.alcohol.2006.09.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 08/10/2006] [Accepted: 09/01/2006] [Indexed: 02/06/2023]
Abstract
Alcoholic liver disease (ALD) and alcoholic pancreatitis (AP) are major diseases causing high mortality and morbidity among chronic alcohol abusers. Neutral lipid accumulation (steatosis) is an early stage of ALD or AP and progresses to inflammation and other advanced stages of diseases in a subset of chronic alcohol abusers. However, the mechanisms of alcoholic steatosis leading to ALD and AP are not well understood. Chronic alcohol abuse impairs hepatic alcohol dehydrogenase (ADH, a major enzyme involved in ethanol oxidative metabolism) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol). These esters are implicated in the pathogenesis of various alcoholic diseases and shown to cause hepatocellular and pancreatitis-like injury. Ethanol exposure is known to increase synthesis of FAEEs by several-fold in the livers and pancreata of rats pretreated with hepatic ADH inhibitor. Therefore, studies were undertaken to evaluate hepatocellular and pancreatic injury in hepatic ADH-deficient (ADH(-)) deer mice versus ADH-normal (ADH(+)) deer mice fed ethanol (4% wt/vol) via Lieber-DeCarli liquid diet for 60 days. A significant mortality was found in ethanol-fed ADH(-) deer mice (11 out of 18) versus ADH(+) deer mice (1 out of 16); most of the deaths occurred during the first 2 weeks of ethanol exposure. The surviving animals, sacrificed at the end of 60th day, showed distinct changes in hepatic and pancreatic histology and several-fold increases in nonoxidative metabolism of ethanol in ethanol-fed ADH(-) versus ADH(+) deer mice. Extensive vacuolization with displacement or absence of nucleus in some hepatocytes, and significant increase in hepatic neutral lipids were found in ethanol-fed ADH(-) versus ADH(+) deer mice. Ultrastructural changes showed perinuclear space, edema, presence of apoptotic bodies and disintegration, and/or dilatation of endoplasmic reticulum (ER) in the pancreata of ethanol-fed ADH(-) deer mice. FAEE levels were significantly higher in ADH(-) versus ADH(+) deer mice, approximately four-fold increases in the livers and seven-fold increases in the pancreata. Ethyl esters of oleic, linoleic, and arachidonic acids were the major FAEEs detected in ethanol-fed groups. The role of FAEEs in pancreatic lysosomal fragility is reflected by higher activity of cathepsin B (five-fold) in ethanol-fed ADH(-) versus ADH(+) deer mice. Although the present studies clearly indicate a metabolic basis of ethanol-induced hepatic and pancreatic injury, detailed dose- and time-dependent toxicity studies in this ADH(-) deer mouse model could reveal further a better understanding of mechanism(s) of ethanol-induced hepatic and pancreatic injuries.
Collapse
Affiliation(s)
- Kamlesh K Bhopale
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | |
Collapse
|