1
|
Lafzi A, Demirci T, Yüce N, Annaç E, Çiçek M, Şişman T. A study on the possible neurotoxic effects of CUMYL-4CN-BINACA in Sprague Dawley rats. Leg Med (Tokyo) 2024; 67:102389. [PMID: 38185093 DOI: 10.1016/j.legalmed.2023.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Substances such as Δ9-tetrahydrocannabinol (THC) and cannabidiol cross the blood-brain barrier. Detecting the damage of these substances in the brain provides important data in drug abuse studies. The aim of the study is to define the neurotoxicity of a novel synthetic cannabinoid (CUMYL-4CN-BINACA) in the Sprague-Dawley rats. Histopathological, immunohistochemical, behavioral, and biochemical examinations were performed to determine the acute and subacute toxicity of the cannabinoid. Three cannabinoid doses were administered for 2 days in the acute exposure groups and 14 days in the subacute exposure groups. Observations were made for 14 days and various changes such as mortality, injury, and illness were recorded daily. No mortality was determined. Serious pathological changes such as neurodegeneration, focal plague formation, vacuolation, edema, congestion, and fibrosis were observed in the cerebral cortex and hippocampus of the brain in a dose-dependent manner. Brain tissue caspase-3 activity showed that the cannabinoid triggered apoptosis in the rat brain. The detected cellular oxidative stress (higher lipid peroxidation and lower antioxidant enzyme activity) also supported neurotoxicity. Significant behavioral abnormalities were also observed in the acute groups, while no behavioral changes were detected in the subacute groups. This study showed for the first time that CUMYL-4CN-BINACA adversely affects the rat brain. It can be estimated that the abuse of the cannabinoid may harm human health in the same way.
Collapse
Affiliation(s)
- Ayşe Lafzi
- Department of Criminalistics, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Turkey.
| | - Tuba Demirci
- Department of Histology and Embryology, Medicine Faculty, Atatürk University, 25240 Erzurum, Turkey.
| | - Neslihan Yüce
- Department of Medical Biochemistry, Medicine Faculty, Atatürk University, 25240 Erzurum, Turkey.
| | - Ebru Annaç
- Department of Histology and Embryology, Medicine Faculty, Adıyaman University, 02040 Adıyaman, Turkey.
| | - Mustafa Çiçek
- Department of Medical Biology and Genetics, Medicine Faculty, Kahramanmaraş Sütçü İmam University, 46050 Kahramanmaraş, Turkey.
| | - Turgay Şişman
- Department of Criminalistics, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Turkey; Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, 25240 Erzurum, Turkey.
| |
Collapse
|
2
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2-Metabolome, immunome, synaptome. Front Psychiatry 2023; 14:1182536. [PMID: 37854446 PMCID: PMC10579598 DOI: 10.3389/fpsyt.2023.1182536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
The second part of this paper builds upon and expands the epigenomic-aging perspective presented in Part 1 to describe the metabolomic and immunomic bases of the epigenomic-aging changes and then considers in some detail the application of these insights to neurotoxicity, neuronal epigenotoxicity, and synaptopathy. Cannabinoids are well-known to have bidirectional immunomodulatory activities on numerous parts of the immune system. Immune perturbations are well-known to impact the aging process, the epigenome, and intermediate metabolism. Cannabinoids also impact metabolism via many pathways. Metabolism directly impacts immune, genetic, and epigenetic processes. Synaptic activity, synaptic pruning, and, thus, the sculpting of neural circuits are based upon metabolic, immune, and epigenomic networks at the synapse, around the synapse, and in the cell body. Many neuropsychiatric disorders including depression, anxiety, schizophrenia, bipolar affective disorder, and autistic spectrum disorder have been linked with cannabis. Therefore, it is important to consider these features and their complex interrelationships in reaching a comprehensive understanding of cannabinoid dependence. Together these findings indicate that cannabinoid perturbations of the immunome and metabolome are important to consider alongside the well-recognized genomic and epigenomic perturbations and it is important to understand their interdependence and interconnectedness in reaching a comprehensive appreciation of the true nature of cannabinoid pathophysiology. For these reasons, a comprehensive appreciation of cannabinoid pathophysiology necessitates a coordinated multiomics investigation of cannabinoid genome-epigenome-transcriptome-metabolome-immunome, chromatin conformation, and 3D nuclear architecture which therefore form the proper mechanistic underpinning for major new and concerning epidemiological findings relating to cannabis exposure.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
3
|
Acute toxic effects of new synthetic cannabinoid on brain: Neurobehavioral and Histological: Preclinical studies. Chem Biol Interact 2023; 370:110306. [PMID: 36528081 DOI: 10.1016/j.cbi.2022.110306] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The psychoactive effects of new synthetic cannabinoids (SCs), MDMB-4en-PINACA, are being marketed as a blend of herbs and spices. This study aims to determine the behavioral, neurochemical, histopathological, and immunohistochemical alterations associated with the acute toxicity of MDMB-4en-PINACA compounds. METHODS Adult male albino rats were administered various toxic doses of the drug (1.5, 3, and 6 mg/kg), and behavioral studies were conducted 2 and 24 h later; animals were then sacrificed. Histopathological and neurochemical examinations were performed. Two hours after intraperitoneal. RESULTS Intraperitoneal injection of MDMB-4en-PINACA, horizontal movement, the number of stops, and mobility ratio were significantly impaired, along with coordination and balance. In addition, it led to a decline in spatial learning and memory, and neurotransmitter concentrations decreased significantly in a dose-dependent manner. Further examination of the cerebral cortex and hippocampus histopathology revealed pathological degeneration of small pyramidal cells. CONCLUSION Thus, these findings revealed that MDMB-4en-PINACA interferes with hippocampal function and impairs cognitive performance, highlighting the cognitive risk associated with SC abuse.
Collapse
|
4
|
Prenatal exposure to Cannabis smoke induces early and lasting damage to the brain. Neurochem Int 2022; 160:105406. [PMID: 35970295 DOI: 10.1016/j.neuint.2022.105406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 11/20/2022]
Abstract
Cannabis is the most widely used illegal drug during pregnancy, however, the effects of gestational exposure to Cannabis smoke (CS) on the central nervous system development remain uncharacterised. This study investigates the effects of maternal CS inhalation on brain function in the offspring. Pregnant mice were exposed daily to 5 min of CS during gestational days (GD) 5.5-17.5. On GD 18.5 half of the dams were euthanized for foetus removal. The offspring from the remaining dams were euthanized on postnatal days (PND) 20 and 60 for evaluation. Brain volume, cortex cell number, SOX2, histone-H3, parvalbumin, NeuN, and BDNF immunoreactivity were assessed in all groups. In addition, levels of NeuN, CB1 receptor, and BDNF expression were assessed and cortical primary neurons from rats were treated with Cannabis smoke extract (CSE) for assessment of cell viability. We found that male foetuses from the CS exposed group had decreased brain volume, whereas mice at PND 60 from the exposed group presented with increased brain volume. Olfactory bulb and diencephalon volume were found lower in foetuses exposed to CS. Mice at PND 60 from the exposed group had a smaller volume in the thalamus and hypothalamus while the cerebellum presented with a greater volume. Also, there was an increase in cortical BDNF immunoreactivity in CS exposed mice at PND 60. Protein expression analysis showed an increase in pro-BDNF in foetus brains exposed to CS. Mice at PND 60 presented an increase in mature BDNF in the prefrontal cortex (PFC) in the exposed group and a higher CB1 receptor expression in the PFC. Moreover, hippocampal NeuN expression was higher in adult animals from the exposed group. Lastly, treatment of cortical primary neurons with doses of CSE resulted in decreased cell viability. These findings highlight the potential negative neurodevelopmental outcomes induced by gestational CS exposure.
Collapse
|
5
|
Xu H, Li D, Yin B. Aberrant hippocampal shape development in young adults with heavy cannabis use: Evidence from a longitudinal study. J Psychiatr Res 2022; 152:343-351. [PMID: 35785577 DOI: 10.1016/j.jpsychires.2022.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Cannabis is one of the most commonly used illicit drugs globally. Mounting evidence indicates that cannabis use, particularly consumption during young adulthood, is related to adverse mental and behavioral outcomes and an increased risk of the onset and relapse of psychosis. However, the neuromechanism underpinnings of heavy cannabis use (HCU) in young adults remain largely unknown, and no study has yet investigated the development of hippocampal shape in young adults with HCU. Twenty young adults with HCU and 22 matched non-cannabis-use healthy controls (HCs) were enrolled. Neuroimaging scanning and clinical assessments for all participants were performed at baseline (BL) and 3-year follow-up (FU). The vertex-wise shape analysis was conducted to investigate aberrant hippocampal shape development in young adults with HCU. Aberrant shape development pattern of the hippocampus was observed in young adults with HCU. There was no significant difference in hippocampal shape between the groups at BL, but young adults with HCU at FU exhibited significant shape atrophy of the right dorsal anterior hippocampus related to HCs. In addition, there was a significantly lower growth rate of the right hippocampal shape. Furthermore, there were significant associations of heavy cannabis use, as indicated by the age at onset first and frequent cannabis use, with the growth rate of hippocampal shape in young adults with HCU. The aberrant hippocampal shape development may reflect the effect of heavy cannabis use on young adults and it may be a potential target for heavy cannabis use treatment for young adults.
Collapse
Affiliation(s)
- Hui Xu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Peter Boris Centre for Addictions Research, McMaster University/St. Joseph's Healthcare Hamilton, 100 West 5th Street, Hamilton, ON L8N 3K7, Canada.
| | - Dandong Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
6
|
Remy I, Schwitzer T, Albuisson É, Schwan R, Krieg J, Bernardin F, Ligier F, Lalanne L, Maillard L, Laprevote V. Impaired P100 among regular cannabis users in response to magnocellular biased visual stimuli. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110437. [PMID: 34520807 DOI: 10.1016/j.pnpbp.2021.110437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 01/10/2023]
Abstract
Regular cannabis using causes vision impairment by affecting human retinal neurotransmission. However, studies less considered its impact on the subsequent visual cortical processing, key feature for the integration of the visual signal in brain. We aimed at investigating this purpose in regular cannabis users using spatial frequencies and temporal frequencies filtered visual stimuli. We recruited 45 regular cannabis users and 25 age-matched controls. We recorded visual evoked potentials during the projection of low spatial frequency (0.5 cycles/degree) or high spatial frequency gratings (15 cycles/degree), which were presented statically (0 Hz) or dynamically (8 Hz). We analyzed the amplitude, latency, and area under the curve of both P100 and N170, best EEG markers for early visual processing. Data were compared between groups by repeated measures ANCOVA. Results showed a significant decrease in P100 amplitude among regular cannabis users in low spatial frequency (F(1,67) = 4.43; p = 0.04) and in dynamic condition (F(1,67) = 4.35; p = 0.04). Analysis also reported a decrease in P100 area under the curve in regular cannabis users to low spatial frequency (F(1,67) = 4.31; p = 0.04) and in dynamic condition (F(1,67) = 7.65; p < 0.01). No effect was found on P100 latency, N170 amplitude, latency, or area under the curve. We found alteration of P100 responses to low spatial frequency and dynamic stimuli in regular cannabis users. This result could be interpreted as a preferential magnocellular impairment where such deficit could be linked to glutamatergic dysfunction. As mentioned in the literature, visual and electrophysiological anomalies in schizophrenia are related to a magnocellular dysfunction. Further studies are needed to clarify electrophysiological deficits in both populations. CLINICAL TRIALS REGISTRATION: Electrophysiological Study of the Functioning of Magnocellular Visual Pathway in Regular Cannabis Users (CAUSA MAP). [NCT02864680; ID 2013-A00097-38]. https://clinicaltrials.gov/ct2/show/NCT02864680?cond=Cannabis&cntry=FR&draw=2&rank=1.
Collapse
Affiliation(s)
- Irving Remy
- Centre Psychothérapique de Nancy, Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Laxou F-54520, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, F-67200, France; BioSerenity - 47, Boulevard de l'Hôpital, ICM-IPEPS, 75013, Paris, France
| | - Thomas Schwitzer
- Centre Psychothérapique de Nancy, Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Laxou F-54520, France; Université de Lorraine, Faculté de Médecine, Vandœuvre-lès-Nancy F-54505, France; Université de Lorraine, IADI, INSERM U1254, Vandœuvre-lès-Nancy, F-54511, France
| | - Éliane Albuisson
- Unité de méthodologie, Gestion des données statistiques, Centre Hospitalier Régional Universitaire de Nancy, DRCI, Département MPI, UMDS, F-54000 Nancy, France; Université de Lorraine, Faculté de Médecine, Département du Grand Est de Recherche en Soins Primaires (DEGERESP), F-54000 Nancy, France; Université de Lorraine, CNRS, Institut Élie-Cartan de Lorraine, F-54000 Nancy, France
| | - Raymund Schwan
- Centre Psychothérapique de Nancy, Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Laxou F-54520, France; Université de Lorraine, Faculté de Médecine, Vandœuvre-lès-Nancy F-54505, France; Université de Lorraine, IADI, INSERM U1254, Vandœuvre-lès-Nancy, F-54511, France
| | - Julien Krieg
- Centre Psychothérapique de Nancy, Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Laxou F-54520, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, F-67200, France
| | - Florent Bernardin
- Centre Psychothérapique de Nancy, Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Laxou F-54520, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, F-67200, France
| | - Fabienne Ligier
- Centre Psychothérapique de Nancy, Pôle Universitaire de Psychiatrie de l'Enfant et de l'Adolescent, Laxou F-54520, France; Université de Lorraine, EA 4360 APEMAC, Equipe MICS, F-54000, France; Université de Lorraine, EA 4432 InterPsy, Equipe PRISME, F-54000, France
| | - Laurence Lalanne
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, F-67200, France; Unité de Psychiatrie et d'Addictologie, Fédération de Médecine Translationnelle de Strasbourg, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, F-67200, France
| | - Louis Maillard
- Université de Lorraine, CNRS, CRAN, UMR 7039, F-54500, Nancy, France; Service de Neurologie, Centre Hospitalier Régional Universitaire de Nancy, Nancy F-54000, France
| | - Vincent Laprevote
- Centre Psychothérapique de Nancy, Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Laxou F-54520, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, F-67200, France; Université de Lorraine, Faculté de Médecine, Vandœuvre-lès-Nancy F-54505, France.
| |
Collapse
|
7
|
Sawyer TW, Wang Y, Villanueva M, Song Y, Hennes G. Acute and long-term effects of VX in rat brain cell aggregate culture. Toxicol In Vitro 2022; 78:105256. [PMID: 34653647 DOI: 10.1016/j.tiv.2021.105256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022]
Abstract
The contact poison VX (O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothioate) is a chemical warfare agent that is one of the most toxic organophosphorus compounds known. Its primary mechanism of toxic action is through the inhibition of acetylcholinesterase and resultant respiratory paralysis. The majority of work on VX has thus concentrated on its potent anticholinesterase activity and acute toxicity, with few studies investigating potential long-term effects. In this report we describe the effects of VX in aggregating rat brain cell cultures out to 28 days post-exposure. Cholinesterase activity was rapidly inhibited (60 min IC50 = 0.73 +/- 0.27 nM), but recovered towards baseline values over the next four weeks. Apoptotic cell death, as measured using caspase-3 activity was evident only at 100 μM concentrations. Cell type specific enzymatic markers (glutamine synthase, choline acetyltransferase and 2',3'-cyclic nucleotide 3'-phosphodiesterase) showed no significant changes. Total Akt levels were unchanged, while an increased phosphorylation of this protein was noted only at the highest VX concentration on the first day post-exposure. In contrast, significant and delayed (28 days post-exposure) decreases were noted in vascular endothelial growth factor (VEGF) levels, a protein whose reduced levels are known to contribute to neurodegenerative disorders. These observations may indicate that the long-term effects noted in some survivors of nerve agent intoxication may be due to VX-induced declines in brain VEGF levels.
Collapse
Affiliation(s)
- Thomas W Sawyer
- Defence Research & Development Canada, Suffield Research Centre, Box 4000, Medicine Hat, Alberta T1A 8K6, Canada.
| | - Yushan Wang
- Defence Research & Development Canada, Suffield Research Centre, Box 4000, Medicine Hat, Alberta T1A 8K6, Canada
| | - Mercy Villanueva
- Defence Research & Development Canada, Suffield Research Centre, Box 4000, Medicine Hat, Alberta T1A 8K6, Canada
| | - Yanfeng Song
- Defence Research & Development Canada, Suffield Research Centre, Box 4000, Medicine Hat, Alberta T1A 8K6, Canada
| | - Grant Hennes
- Defence Research & Development Canada, Suffield Research Centre, Box 4000, Medicine Hat, Alberta T1A 8K6, Canada
| |
Collapse
|
8
|
Rossetti MG, Mackey S, Patalay P, Allen NB, Batalla A, Bellani M, Chye Y, Conrod P, Cousijn J, Garavan H, Goudriaan AE, Hester R, Martin-Santos R, Solowij N, Suo C, Thompson PM, Yücel M, Brambilla P, Lorenzetti V. Sex and dependence related neuroanatomical differences in regular cannabis users: findings from the ENIGMA Addiction Working Group. Transl Psychiatry 2021; 11:272. [PMID: 33958576 PMCID: PMC8102553 DOI: 10.1038/s41398-021-01382-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/25/2021] [Accepted: 04/09/2021] [Indexed: 12/25/2022] Open
Abstract
Males and females show different patterns of cannabis use and related psychosocial outcomes. However, the neuroanatomical substrates underlying such differences are poorly understood. The aim of this study was to map sex differences in the neurobiology (as indexed by brain volumes) of dependent and recreational cannabis use. We compared the volume of a priori regions of interest (i.e., amygdala, hippocampus, nucleus accumbens, insula, orbitofrontal cortex (OFC), anterior cingulate cortex and cerebellum) between 129 regular cannabis users (of whom 70 were recreational users and 59 cannabis dependent) and 114 controls recruited from the ENIGMA Addiction Working Group, accounting for intracranial volume, age, IQ, and alcohol and tobacco use. Dependent cannabis users, particularly females, had (marginally significant) smaller volumes of the lateral OFC and cerebellar white matter than recreational users and controls. In dependent (but not recreational) cannabis users, there was a significant association between female sex and smaller volumes of the cerebellar white matter and OFC. Volume of the OFC was also predicted by monthly standard drinks. No significant effects emerged the other brain regions of interest. Our findings warrant future multimodal studies that examine if sex and cannabis dependence are specific key drivers of neurobiological alterations in cannabis users. This, in turn, could help to identify neural pathways specifically involved in vulnerable cannabis users (e.g., females with cannabis dependence) and inform individually tailored neurobiological targets for treatment.
Collapse
Affiliation(s)
- Maria Gloria Rossetti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Scott Mackey
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Praveetha Patalay
- Centre for Longitudinal Studies and MRC Unit for Lifelong Health and Ageing, IOE and Population Health Sciences, UCL, London, UK
| | | | - Albert Batalla
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Yann Chye
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences & Monash Biomedical Imaging Facility, Monash University, Melbourne, VIC, Australia
| | - Patricia Conrod
- Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, Montreal, QC, Canada
| | - Janna Cousijn
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Anna E Goudriaan
- Department of Psychiatry, Amsterdam Institute for Addiction Research, University of Amsterdam, Amsterdam, Netherlands
| | - Robert Hester
- School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Rocio Martin-Santos
- Department of Psychiatry and Psychology, Hospital Clinic, IDIBAPS, CIBERSAM and Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Chao Suo
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences & Monash Biomedical Imaging Facility, Monash University, Melbourne, VIC, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences & Monash Biomedical Imaging Facility, Monash University, Melbourne, VIC, Australia
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Valentina Lorenzetti
- Neuroscience of Addiction & Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural & Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Nguyen QTR, Gravier A, Lesoil C, Bedet A, Petit-Hoang C, Mahevas M, Mekontso-Dessap A, Hodel J, Bachoud-Lévi AC, Cleret de Langavant L. Acute Hippocampal Encephalopathy in Heavy Cannabis Users: About 2 Cases. Am J Med 2020; 133:e360-e364. [PMID: 31877268 DOI: 10.1016/j.amjmed.2019.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cannabis use is increasing worldwide despite the various health effects of this substance. METHODS We report 2 cases of acute hippocampal encephalopathy in heavy cannabis users (>10 joints/d). RESULTS In both male patients, acute encephalitis was suspected. Brain magnetic resonance imaging (MRI) diffusion-weighted sequences showed bilateral high signal abnormalities in hippocampal regions. Patients had renal dysfunction, rhabdomyolysis, and inflammatory syndrome. Investigations showed no evidence of infectious or autoimmune encephalitides. Repeated electroencephalograms revealed no epileptic activity. Clinical, biological, and magnetic resonance imaging acute abnormalities improved within weeks. New exposure to cannabis yielded a new episode of encephalopathy. In both patients, severe long-lasting episodic memory impairment associated with hippocampal atrophy were observed several months later. CONCLUSIONS Health professionals should be aware of this cannabis-related syndrome given its severe and long-lasting effects.
Collapse
Affiliation(s)
- Quang Tuan Rémy Nguyen
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor, service de Neurologie, Créteil, France; INSERM U955 Equipe E01, Institut Mondor de recherche biomédicale, Neuropsychologie Interventionnelle, Créteil, France; Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL University, Paris, France; Université Paris Est, Faculté de Médecine, Créteil, France
| | - Alban Gravier
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor, service de Neurologie, Créteil, France
| | - Constance Lesoil
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor, service de Neurologie, Créteil, France
| | - Alexandre Bedet
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor, service de Médecine Intensive Réanimation, Créteil, France
| | - Camille Petit-Hoang
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor, service de Neurologie, Créteil, France
| | - Matthieu Mahevas
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor, service de Médecine interne, Créteil, France
| | - Armand Mekontso-Dessap
- Université Paris Est, Faculté de Médecine, Créteil, France; Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor, service de Médecine Intensive Réanimation, Créteil, France
| | - Jérôme Hodel
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor, service de Neurologie, Créteil, France; Université Paris Est, Faculté de Médecine, Créteil, France
| | - Anne-Catherine Bachoud-Lévi
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor, service de Neurologie, Créteil, France; INSERM U955 Equipe E01, Institut Mondor de recherche biomédicale, Neuropsychologie Interventionnelle, Créteil, France; Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL University, Paris, France; Université Paris Est, Faculté de Médecine, Créteil, France
| | - Laurent Cleret de Langavant
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor, service de Neurologie, Créteil, France; INSERM U955 Equipe E01, Institut Mondor de recherche biomédicale, Neuropsychologie Interventionnelle, Créteil, France; Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL University, Paris, France; Université Paris Est, Faculté de Médecine, Créteil, France; Global Brain Health Institute, UCSF, San Francisco, California, USA.
| |
Collapse
|
10
|
Kopjar N, Fuchs N, Žunec S, Mikolić A, Micek V, Kozina G, Lucić Vrdoljak A, Brčić Karačonji I. DNA Damaging Effects, Oxidative Stress Responses and Cholinesterase Activity in Blood and Brain of Wistar Rats Exposed to Δ 9-Tetrahydrocannabinol. Molecules 2019; 24:E1560. [PMID: 31010235 PMCID: PMC6515386 DOI: 10.3390/molecules24081560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/24/2023] Open
Abstract
Currently we are faced with an ever-growing use of Δ9-tetrahydrocannabinol (THC) preparations, often used as supportive therapies for various malignancies and neurological disorders. As some of illegally distributed forms of such preparations, like cannabis oils and butane hash oil, might contain over 80% of THC, their consumers can become intoxicated or experience various detrimental effects. This fact motivated us for the assessments of THC toxicity in vivo on a Wistar rat model, at a daily oral dose of 7 mg/kg which is comparable to those found in illicit preparations. The main objective of the present study was to establish the magnitude and dynamics of DNA breakage associated with THC exposure in white blood and brain cells of treated rats using the alkaline comet assay. The extent of oxidative stress after acute 24 h exposure to THC was also determined as well as changes in activities of plasma and brain cholinesterases (ChE) in THC-treated and control rats. The DNA of brain cells was more prone to breakage after THC treatment compared to DNA in white blood cells. Even though DNA damage quantified by the alkaline comet assay is subject to repair, its elevated level detected in the brain cells of THC-treated rats was reason for concern. Since neurons do not proliferate, increased levels of DNA damage present threats to these cells in terms of both viability and genome stability, while inefficient DNA repair might lead to their progressive loss. The present study contributes to existing knowledge with evidence that acute exposure to a high THC dose led to low-level DNA damage in white blood cells and brain cells of rats and induced oxidative stress in brain, but did not disturb ChE activities.
Collapse
Affiliation(s)
- Nevenka Kopjar
- Institute for Medical Research and Occupational Health, Zagreb HR-10001, Croatia.
| | - Nino Fuchs
- University Hospital Centre Zagreb, Zagreb HR-10000 Croatia.
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Zagreb HR-10001, Croatia.
| | - Anja Mikolić
- Institute for Medical Research and Occupational Health, Zagreb HR-10001, Croatia.
| | - Vedran Micek
- Institute for Medical Research and Occupational Health, Zagreb HR-10001, Croatia.
| | - Goran Kozina
- University Centre Varaždin, University North, Varaždin HR-42000, Croatia.
| | - Ana Lucić Vrdoljak
- Institute for Medical Research and Occupational Health, Zagreb HR-10001, Croatia.
| | | |
Collapse
|
11
|
Burggren AC, Siddarth P, Mahmood Z, London ED, Harrison TM, Merrill DA, Small GW, Bookheimer SY. Subregional Hippocampal Thickness Abnormalities in Older Adults with a History of Heavy Cannabis Use. Cannabis Cannabinoid Res 2018; 3:242-251. [PMID: 30547094 PMCID: PMC6290479 DOI: 10.1089/can.2018.0035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background and Aims: Legalization of cannabis (CB) for both medicinal and, in some states, recreational use, has given rise to increasing usage rates across the country. Of particular concern are indications that frequent CB use may be selectively harmful to the developing adolescent brain compared with adult-onset usage. However, the long-term effects of heavy, adolescent CB use on brain structure and cognitive performance in late-life remain unknown. A critical brain region is the hippocampus (HC), where there is a striking intersection between high concentrations of cannabinoid 1 (CB1) receptors and age-related pathology. Design: We investigated whether older adults (average age=66.6+7.2 years old) with a history of early life CB use show morphological differences in hippocampal subregions compared with older, nonusers. Methods: We performed high-resolution magnetic resonance imaging combined with computational techniques to assess cortical thickness of the medial temporal lobe, neuropsychological testing, and extensive drug use histories on 50 subjects (24 formerly heavy cannabis users [CB+ group] abstinent for an average of 28.7 years, 26 nonusers [CB− group]). We investigated group differences in hippocampal subregions, controlling for age, sex, and intelligence (as measured by the Wechsler Test of Adult Reading), years of education, and cigarette use. Results: The CB+ subjects exhibited thinner cortices in subfields cornu ammonis 1 [CA1; F(1,42)=9.96, p=0.0003], and CA2, 3, and the dentate gyrus [CA23DG; F(1,42)=23.17, p<0.0001], and in the entire HC averaged over all subregions [F(1,42)=8.49, p=0.006]. Conclusions: Negative effects of chronic adolescent CB use on hippocampal structure are maintained well into late life. Because hippocampal cortical loss underlies and exacerbates age-related cognitive decline, these findings have profound implications for aging adults with a history of early life usage. Clinical Trial Registration: ClinicalTrials.gov # NCT01874886.
Collapse
Affiliation(s)
- Alison C Burggren
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California.,Center for Cognitive Neurosciences, University of California, Los Angeles, California
| | - Prabha Siddarth
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Zanjbeel Mahmood
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, California
| | - Edythe D London
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - David A Merrill
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Gary W Small
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Susan Y Bookheimer
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California.,Center for Cognitive Neurosciences, University of California, Los Angeles, California
| |
Collapse
|
12
|
Colizzi M, Bhattacharyya S. Cannabis use and the development of tolerance: a systematic review of human evidence. Neurosci Biobehav Rev 2018; 93:1-25. [DOI: 10.1016/j.neubiorev.2018.07.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 01/15/2023]
|
13
|
Beale C, Broyd SJ, Chye Y, Suo C, Schira M, Galettis P, Martin JH, Yücel M, Solowij N. Prolonged Cannabidiol Treatment Effects on Hippocampal Subfield Volumes in Current Cannabis Users. Cannabis Cannabinoid Res 2018; 3:94-107. [PMID: 29682609 PMCID: PMC5908414 DOI: 10.1089/can.2017.0047] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Chronic cannabis use is associated with neuroanatomical alterations in the hippocampus. While adverse impacts of cannabis use are generally attributed to Δ9-tetrahydrocannabinol, emerging naturalistic evidence suggests cannabidiol (CBD) is neuroprotective and may ameliorate brain harms associated with cannabis use, including protection from hippocampal volume loss. This study examined whether prolonged administration of CBD to regular cannabis users within the community could reverse or reduce the characteristic hippocampal harms associated with chronic cannabis use. Materials and Methods: Eighteen regular cannabis users participated in an ∼10-week open-label pragmatic trial involving daily oral administration of 200 mg CBD, with no change to their ongoing cannabis use requested. Participants were assessed at baseline and post-CBD treatment using structural magnetic resonance imaging. Automated longitudinal hippocampal segmentation was performed to assess volumetric change over the whole hippocampus and within 12 subfields. Results: No change was observed in left or right hippocampus as a whole. However, left subicular complex (parasubiculum, presubiculum, and subiculum) volume significantly increased from baseline to post-treatment (p=0.017 uncorrected) by 1.58% (Cohen's d=0.63; 2.83% in parasubiculum). Heavy cannabis users demonstrated marked growth in the left subicular complex, predominantly within the presubiculum, and right cornu ammonis (CA)1 compared to lighter users. Associations between greater right subicular complex and total hippocampal volume and higher plasma CBD concentration were evident, particularly in heavy users. Conclusions: Our findings suggest a restorative effect of CBD on the subicular and CA1 subfields in current cannabis users, especially those with greater lifetime exposure to cannabis. While replication is required in a larger, placebo-controlled trial, these findings support a protective role of CBD against brain structural harms conferred by chronic cannabis use. Furthermore, these outcomes suggest that CBD may be a useful adjunct in treatments for cannabis dependence and may be therapeutic for a range of clinical disorders characterized by hippocampal pathology (e.g., schizophrenia, Alzheimer's disease, and major depressive disorder).
Collapse
Affiliation(s)
- Camilla Beale
- School of Psychology, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Samantha J Broyd
- School of Psychology, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Yann Chye
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Chao Suo
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Mark Schira
- School of Psychology, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Peter Galettis
- Discipline of Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, Callaghan, Australia.,The Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, Australia
| | - Jennifer H Martin
- Discipline of Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, Callaghan, Australia.,The Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, Australia
| | - Murat Yücel
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Nadia Solowij
- School of Psychology, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia.,The Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, Australia
| |
Collapse
|
14
|
Colizzi M, Bhattacharyya S. Neurocognitive effects of cannabis: Lessons learned from human experimental studies. PROGRESS IN BRAIN RESEARCH 2018; 242:179-216. [DOI: 10.1016/bs.pbr.2018.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Abulseoud OA, Zuccoli ML, Zhang L, Barnes A, Huestis MA, Lin DT. The acute effect of cannabis on plasma, liver and brain ammonia dynamics, a translational study. Eur Neuropsychopharmacol 2017; 27:679-690. [PMID: 28456476 PMCID: PMC6091863 DOI: 10.1016/j.euroneuro.2017.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/22/2017] [Accepted: 03/18/2017] [Indexed: 01/08/2023]
Abstract
Recent reports of ammonia released during cannabis smoking raise concerns about putative neurotoxic effects. Cannabis (54mg) was administered in a double-blind, placebo-controlled design to healthy cannabis users (n=15) either orally, or through smoking (6.9%THC cigarette) or inhalation of vaporized cannabis (Volcano®). Serial assay of plasma ammonia concentrations at 0, 2, 4, 6, 8, 10, 15, 30, and 90min from onset of cannabis administration showed significant time (P=0.016), and treatment (P=0.0004) effects with robust differences between placebo and edible at 30 (P=0.002), and 90min (P=0.007) and between placebo and vaporized (P=0.02) and smoking routes (P=0.01) at 90min. Furthermore, plasma ammonia positively correlated with blood THC concentrations (P=0.03). To test the hypothesis that this delayed increase in plasma ammonia originates from the brain we administered THC (3 and 10mg/kg) to mice and measured plasma, liver, and brain ammonia concentrations at 1, 3, 5 and 30min post-injection. Administration of THC to mice did not cause significant change in plasma ammonia concentrations within the first 5min, but significantly reduced striatal glutamine-synthetase (GS) activity (P=0.046) and increased striatal ammonia concentration (P=0.016). Furthermore, plasma THC correlated positively with striatal ammonia concentration (P<0.001) and negatively with striatal GS activity (P=0.030). At 30min, we found marked increase in striatal ammonia (P<0.0001) associated with significant increase in plasma ammonia (P=0.042) concentration. In conclusion, the results of these studies demonstrate that cannabis intake caused time and route-dependent increases in plasma ammonia concentrations in human cannabis users and reduced brain GS activity and increased brain and plasma ammonia concentrations in mice.
Collapse
Affiliation(s)
- Osama A Abulseoud
- Chemistry and Drug Metabolism Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.
| | - Maria Laura Zuccoli
- Chemistry and Drug Metabolism Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; Department of Internal Medicine, Pharmacology and Toxicology Unit, University of Genoa, Italy
| | - Lifeng Zhang
- Neural Engineering Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Allan Barnes
- Chemistry and Drug Metabolism Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Marilyn A Huestis
- Chemistry and Drug Metabolism Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Da-Ting Lin
- Neural Engineering Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
16
|
Lorenzetti V, Solowij N, Yücel M. The Role of Cannabinoids in Neuroanatomic Alterations in Cannabis Users. Biol Psychiatry 2016; 79:e17-31. [PMID: 26858212 DOI: 10.1016/j.biopsych.2015.11.013] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/28/2015] [Accepted: 11/01/2015] [Indexed: 01/18/2023]
Abstract
The past few decades have seen a marked change in the composition of commonly smoked cannabis. These changes primarily involve an increase of the psychoactive compound ∆(9)-tetrahydrocannabinol (THC) and a decrease of the potentially therapeutic compound cannabidiol (CBD). This altered composition of cannabis may be linked to persistent neuroanatomic alterations typically seen in regular cannabis users. In this review, we summarize recent findings from human structural neuroimaging investigations. We examine whether neuroanatomic alterations are 1) consistently observed in samples of regular cannabis users, particularly in cannabinoid receptor-high areas, which are vulnerable to the effects of high circulating levels of THC, and 2) associated either with greater levels of cannabis use (e.g., higher dosage, longer duration, and earlier age of onset) or with distinct cannabinoid compounds (i.e., THC and CBD). Across the 31 studies selected for inclusion in this review, neuroanatomic alterations emerged across regions that are high in cannabinoid receptors (i.e., hippocampus, prefrontal cortex, amygdala, cerebellum). Greater dose and earlier age of onset were associated with these alterations. Preliminary evidence shows that THC exacerbates, whereas CBD protects from, such harmful effects. Methodologic differences in the quantification of levels of cannabis use prevent accurate assessment of cannabis exposure and direct comparison of findings across studies. Consequently, the field lacks large "consortium-style" data sets that can be used to develop reliable neurobiological models of cannabis-related harm, recovery, and protection. To move the field forward, we encourage a coordinated approach and suggest the urgent development of consensus-based guidelines to accurately and comprehensively quantify cannabis use and exposure in human studies.
Collapse
Affiliation(s)
- Valentina Lorenzetti
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne; Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne
| | - Nadia Solowij
- School of Psychology, Centre for Health Initiatives and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Murat Yücel
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne; Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne.
| |
Collapse
|
17
|
Colizzi M, McGuire P, Pertwee RG, Bhattacharyya S. Effect of cannabis on glutamate signalling in the brain: A systematic review of human and animal evidence. Neurosci Biobehav Rev 2016; 64:359-81. [PMID: 26987641 DOI: 10.1016/j.neubiorev.2016.03.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 01/04/2023]
Abstract
Use of cannabis or delta-9-tetrahydrocannabinol (Δ9-THC), its main psychoactive ingredient, is associated with psychotic symptoms or disorder. However, the neurochemical mechanism that may underlie this psychotomimetic effect is poorly understood. Although dopaminergic dysfunction is generally recognized as the final common pathway in psychosis, evidence of the effects of Δ9-THC or cannabis use on dopaminergic measures in the brain is equivocal. In fact, it is thought that cannabis or Δ9-THC may not act on dopamine firing directly but indirectly by altering glutamate neurotransmission. Here we systematically review all studies examining acute and chronic effects of cannabis or Δ9-THC on glutamate signalling in both animals and man. Limited research carried out in humans tends to support the evidence that chronic cannabis use reduces levels of glutamate-derived metabolites in both cortical and subcortical brain areas. Research in animals tends to consistently suggest that Δ9-THC depresses glutamate synaptic transmission via CB1 receptor activation, affecting glutamate release, inhibiting receptors and transporters function, reducing enzyme activity, and disrupting glutamate synaptic plasticity after prolonged exposure.
Collapse
Affiliation(s)
- Marco Colizzi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Roger G Pertwee
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| |
Collapse
|
18
|
Vichi S, Sandström von Tobel J, Gemma S, Stanzel S, Kopp-Schneider A, Monnet-Tschudi F, Testai E, Zurich MG. Cell type-specific expression and localization of cytochrome P450 isoforms in tridimensional aggregating rat brain cell cultures. Toxicol In Vitro 2015; 30:176-84. [PMID: 25795400 DOI: 10.1016/j.tiv.2015.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 02/04/2015] [Accepted: 03/06/2015] [Indexed: 02/05/2023]
Abstract
Within the Predict-IV FP7 project a strategy for measurement of in vitro biokinetics was developed, requiring the characterization of the cellular model used, especially regarding biotransformation, which frequently depends on cytochrome P450 (CYP) activity. The extrahepatic in situ CYP-mediated metabolism is especially relevant in target organ toxicity. In this study, the constitutive mRNA levels and protein localization of different CYP isoforms were investigated in 3D aggregating brain cell cultures. CYP1A1, CYP2B1/B2, CYP2D2/4, CYP2E1 and CYP3A were expressed; CYP1A1 and 2B1 represented almost 80% of the total mRNA content. Double-immunolabeling revealed their presence in astrocytes, in neurons, and to a minor extent in oligodendrocytes, confirming the cell-specific localization of CYPs in the brain. These results together with the recently reported formation of an amiodarone metabolite following repeated exposure suggest that this cell culture system possesses some metabolic potential, most likely contributing to its high performance in neurotoxicological studies and support the use of this model in studying brain neurotoxicity involving mechanisms of toxication/detoxication.
Collapse
Affiliation(s)
- S Vichi
- Istituto Superiore di Sanità, Environment and Primary Prevention Department, Mechanisms of Toxicity Unit, Rome, Italy.
| | - J Sandström von Tobel
- Department of Physiology, University of Lausanne, Lausanne, Switzerland; Swiss Center for Applied Human Toxicology (SCAHT), Switzerland
| | - S Gemma
- Istituto Superiore di Sanità, Environment and Primary Prevention Department, Mechanisms of Toxicity Unit, Rome, Italy
| | - S Stanzel
- Department of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - A Kopp-Schneider
- Department of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - F Monnet-Tschudi
- Department of Physiology, University of Lausanne, Lausanne, Switzerland; Swiss Center for Applied Human Toxicology (SCAHT), Switzerland
| | - E Testai
- Istituto Superiore di Sanità, Environment and Primary Prevention Department, Mechanisms of Toxicity Unit, Rome, Italy
| | - M G Zurich
- Department of Physiology, University of Lausanne, Lausanne, Switzerland; Swiss Center for Applied Human Toxicology (SCAHT), Switzerland
| |
Collapse
|
19
|
Using Pluripotent Stem Cells and Their Progeny as an In VitroModel to Assess (Developmental) Neurotoxicity. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527674183.ch13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Association between interleukin-6 and neurocognitive performance as a function of self-reported lifetime marijuana use in a community based sample of African American adults. J Int Neuropsychol Soc 2014; 20:773-83. [PMID: 25241622 DOI: 10.1017/s1355617714000691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The purpose of the current study was to determine if self-reported lifetime marijuana use moderates the relationship between interleukin-6 (IL-6) and neurocognitive performance. Participants included 161 African American adults (50.3% women), with a mean age of 45.24 (SD=11.34). Serum was drawn upon entry into the study and participants completed a demographic questionnaire, which included drug use history, and a battery of neuropsychological tests. Using multiple regression analyses and adjusting for demographic covariates, the interaction term comprised of IL-6 and self-reported lifetime marijuana use was significantly associated with poorer performance on the Written (β=-.116; SE=.059; p=.049) and Oral trials (β=-.143; SE=.062; p=.022) of the Symbol Digit Modalities Test, as well as the Trail Making Test trial A (β=.157; SE=.071; p=.028). Current findings support previous literature, which presents the inverse relationship between IL-6 and neurocognitive dysfunction. The potential protective properties of marijuana use in African Americans, who are at increased risk for inflammatory diseases, are discussed.
Collapse
|
21
|
Keen L, Pereira D, Latimer W. Self-reported lifetime marijuana use and interleukin-6 levels in middle-aged African Americans. Drug Alcohol Depend 2014; 140:156-60. [PMID: 24799289 DOI: 10.1016/j.drugalcdep.2014.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/11/2014] [Accepted: 04/13/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Research examining the relationship between marijuana and cytokine function has been well developed in the biochemical literature. However, scant literature exists regarding this relationship between inflammatory markers and marijuana use in public health or behavioral studies and is virtually nonexistent in non-neurologically compromised African American samples. METHODS The current study examined the differences in serum interleukin-6 (IL-6), a proinflammatory cytokine, between non-drug users (n=78), marijuana only users (n=46) and marijuana plus other drugs users (n=45) in a community-based sample of middle aged African Americans. Participants included 169 African American adults (50.30% female), with a mean age of 45.68 years (SD=11.72 years) from the Washington, DC metropolitan area. Serum was drawn upon entry into the study and the participants completed a demographic questionnaire, which included questions regarding drug use history. RESULTS After adjusting for demographic and physiological covariates, analysis of covariance revealed a significant difference between the three groups, F(2,158)=3.08, p=0.04). Post hoc analyses revealed lifetime marijuana only users had significantly lower IL-6 levels (M=2.20 pg/mL, SD=1.93) than their lifetime nonuser counterparts (M=3.73 pg/mL, SD=6.28). No other comparisons among the groups were statistically significantly different. CONCLUSION The current findings extend previous cellular and biochemical literature, which identifies an inverse association between IL-6 and marijuana use. Examining this relationship in the psychological and behavioral literature could be informative to the development of clinical interventions for inflammatory diseases.
Collapse
Affiliation(s)
- Larry Keen
- Department of Clinical and Health Psychology, University of Florida, United States.
| | - Deidre Pereira
- Department of Clinical and Health Psychology, University of Florida, United States.
| | - William Latimer
- Department of Clinical and Health Psychology, University of Florida, United States.
| |
Collapse
|
22
|
Gates P, Jaffe A, Copeland J. Cannabis smoking and respiratory health: consideration of the literature. Respirology 2014; 19:655-62. [PMID: 24831571 DOI: 10.1111/resp.12298] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/16/2014] [Accepted: 03/17/2014] [Indexed: 12/20/2022]
Abstract
The respiratory health effects from tobacco smoking are well described. Cannabis smoke contains a similar profile of carcinogenic chemicals as tobacco smoke but is inhaled more deeply. Although cannabis smoke is known to contain similar harmful and carcinogenic substances to tobacco smoke, relatively little is understood regarding the respiratory health effects from cannabis smoking. There is a need to integrate research on cannabis and respiratory health effects so that gaps in the literature can be identified and the more consistent findings can be consolidated with the purpose of educating smokers and health service providers. This review focuses on several aspects of respiratory health and cannabis use (as well as concurrent cannabis and tobacco use) and provides an update to (i) the pathophysiology; (ii) general respiratory health including symptoms of chronic bronchitis; and (iii) lung cancer.
Collapse
Affiliation(s)
- Peter Gates
- National Cannabis Prevention and Information Centre, University of New South Wales Medicine, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
23
|
Cabral GA, Jamerson M. Marijuana use and brain immune mechanisms. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:199-230. [PMID: 25175866 DOI: 10.1016/b978-0-12-801284-0.00008-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The recreational smoking of marijuana, or Cannabis sativa, has become widespread, including among adolescents. Marijuana contains a class of compounds known as phytocannabinoids that include cannabidiol (CBD) and Δ(9)-tetrahydrocannabinol (THC). THC is the major psychoactive component in marijuana, but also exhibits immunosuppressive activity. CBD, while not psychotropic, also modulates immune function, but its mechanism of action appears to differ from that of THC. Since both compounds are highly lipophilic, they readily passage the blood-brain barrier and access the central nervous system. Since CBD is not psychotropic, it has been considered as a candidate therapeutic compound for ablating neuropathological processes characterized by hyperinflammation. However, an unresolved question centers around the impact of these compounds on immune-competent cells within the CNS in relation to susceptibility to infection. There are accumulating data indicating that THC inhibits the migratory capability of macrophage-like cells resident in the CNS, such as microglia, toward nodes of microbial invasion. Furthermore, phytocannabinoids have been reported to exert developmental and long-term effects on the immune system suggesting that exposure to these substances during an early stage in life has the potential to alter the fundamental neuroimmune response to select microbial agents in the adult.
Collapse
Affiliation(s)
- Guy A Cabral
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - Melissa Jamerson
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
24
|
Laprairie RB, Kelly MEM, Denovan-Wright EM. Cannabinoids increase type 1 cannabinoid receptor expression in a cell culture model of striatal neurons: implications for Huntington's disease. Neuropharmacology 2013; 72:47-57. [PMID: 23602984 DOI: 10.1016/j.neuropharm.2013.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/14/2013] [Accepted: 04/02/2013] [Indexed: 10/27/2022]
Abstract
The type 1 cannabinoid receptor (CB1) is a G protein-coupled receptor that is expressed at high levels in the striatum. Activation of CB1 increases expression of neuronal trophic factors and inhibits neurotransmitter release from GABA-ergic striatal neurons. CB1 mRNA levels can be elevated by treatment with cannabinoids in non-neuronal cells. We wanted to determine whether cannabinoid treatment could induce CB1 expression in a cell culture model of striatal neurons and, if possible, determine the molecular mechanism by which this occurred. We found that treatment of STHdh(7/7) cells with the cannabinoids ACEA, mAEA, and AEA produced a CB1receptor-dependent increase in CB1 promoter activity, mRNA, and protein expression. This response was Akt- and NF-κB-dependent. Because decreased CB1 expression is thought to contribute to the pathogenesis of Huntington's disease (HD), we wanted to determine whether cannabinoids could increase CB1 expression in STHdh(7/111) and (111/111) cells expressing the mutant huntingtin protein. We observed that cannabinoid treatment increased CB1 mRNA levels approximately 10-fold in STHdh(7/111) and (111/111) cells, compared to vehicle treatment. Importantly, cannabinoid treatment improved ATP production, increased the expression of the trophic factor BDNF-2, and the mitochondrial regulator PGC1α, and reduced spontaneous GABA release, in HD cells. Therefore, cannabinoid-mediated increases in CB1 levels could reduce the severity of some molecular pathologies observed in HD.
Collapse
Affiliation(s)
- Robert B Laprairie
- Rm 6E Sir Charles Tupper Medical Bldg, Department of Pharmacology, Dalhousie University, 5850 College St., Halifax, NS, Canada B3H 4R2.
| | | | | |
Collapse
|
25
|
Koller VJ, Zlabinger GJ, Auwärter V, Fuchs S, Knasmueller S. Toxicological profiles of selected synthetic cannabinoids showing high binding affinities to the cannabinoid receptor subtype CB₁. Arch Toxicol 2013; 87:1287-97. [PMID: 23494106 DOI: 10.1007/s00204-013-1029-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/25/2013] [Indexed: 11/28/2022]
Abstract
Products containing synthetic cannabinoids are consumed as a surrogate for marihuana due to their non-detectability with commonly used drug tests and their strong cannabimimetic effects. Because data concerning their toxicological properties are scarce, the cytotoxic, genotoxic, immunomodulatory, and hormonal activities of four naphthoylindole compounds (JWH-018, JWH-073, JWH-122 and JWH-210) and of one benzoylindole (AM-694) were studied in human cell lines and primary cells; tetrahydrocannabinol was included as the classical non-endogenous cannabinoid receptor ligand. All compounds induced damage to the cell membranes of buccal (TR146) and breast (MCF-7) derived cells at concentrations of ≥75-100 μM. No cytotoxic responses were seen in other assays which reflect mitochondrial damage, protein synthesis, and lysosomal activities. JWH-073 and JWH-122 induced DNA migration in buccal and liver cells (HepG2) in single cell gel electrophoresis assays, while JWH-210 was only in the latter cell line active. No estrogenic activities were detected in bone marrow cells (U2-OS), but all compounds caused anti-estrogenic effects at levels between 2.1 and 23.0 μM. Furthermore, no impact on cytokine release (i.e., on IL-10, IL-6, IL-12/23p40 and TNFα levels) was seen in LPS-stimulated human PBMCs, except with JWH-210 and JWH-122 which caused a decrease of TNFα and IL-12/23p40. All toxic effects were observed with concentrations higher than those expected in body fluids of users. Since genotoxic effects are in general linear over a wide concentration range and the exposure levels may be higher in epithelial cells than [corrected] in serum, further experimental work is required to find out if DNA damage takes place in drug users.
Collapse
Affiliation(s)
- Verena J Koller
- Department of Internal Medicine 1, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
26
|
Solowij N, Yücel M, Respondek C, Whittle S, Lindsay E, Pantelis C, Lubman DI. Cerebellar white-matter changes in cannabis users with and without schizophrenia. Psychol Med 2011; 41:2349-2359. [PMID: 21466751 DOI: 10.1017/s003329171100050x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The cerebellum is rich in cannabinoid receptors and implicated in the neuropathology of schizophrenia. Long-term cannabis use is associated with functional and structural brain changes similar to those evident in schizophrenia, yet its impact on cerebellar structure has not been determined. We examined cerebellar grey and white matter in cannabis users with and without schizophrenia. METHOD Seventeen patients with schizophrenia and 31 healthy controls were recruited; 48% of the healthy group and 47% of the patients were long-term heavy cannabis users (mean 19.7 and 17.9 years near daily use respectively). Cerebellar measures were extracted from structural 3-T magnetic resonance imaging (MRI) scans using semi-automated methods, and examined using analysis of covariance (ANCOVA) and correlational analyses. RESULTS Cerebellar white-matter volume was reduced in cannabis users with and without schizophrenia compared to healthy non-users, by 29.7% and 23.9% respectively, and by 17.7% in patients without cannabis use. Healthy cannabis users did not differ in white-matter volume from either of the schizophrenia groups. There were no group differences in cerebellar grey matter or total volumes. Total cerebellar volume decreased as a function of duration of cannabis use in the healthy users. Psychotic symptoms and illness duration correlated with cerebellar measures differentially between patients with and without cannabis use. CONCLUSIONS Long-term heavy cannabis use in healthy individuals is associated with smaller cerebellar white-matter volume similar to that observed in schizophrenia. Reduced volumes were even more pronounced in patients with schizophrenia who use cannabis. Cannabis use may alter the course of brain maturational processes associated with schizophrenia.
Collapse
Affiliation(s)
- N Solowij
- School of Psychology, University of Wollongong, Australia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Inhibition of monoamine oxidase activity by cannabinoids. Naunyn Schmiedebergs Arch Pharmacol 2010; 381:563-72. [PMID: 20401651 DOI: 10.1007/s00210-010-0517-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/30/2010] [Indexed: 12/17/2022]
Abstract
Brain monoamines are involved in many of the same processes affected by neuropsychiatric disorders and psychotropic drugs, including cannabinoids. This study investigated in vitro effects of cannabinoids on the activity of monoamine oxidase (MAO), the enzyme responsible for metabolism of monoamine neurotransmitters and affecting brain development and function. The effects of the phytocannabinoid Delta(9)-tetrahydrocannabinol (THC), the endocannabinoid anandamide (N-arachidonoylethanolamide [AEA]), and the synthetic cannabinoid receptor agonist WIN 55,212-2 (WIN) on the activity of MAO were measured in a crude mitochondrial fraction isolated from pig brain cortex. Monoamine oxidase activity was inhibited by the cannabinoids; however, higher half maximal inhibitory concentrations (IC(50)) of cannabinoids were required compared to the known MAO inhibitor iproniazid. The IC(50) was 24.7 micromol/l for THC, 751 micromol/l for AEA, and 17.9 micromol/l for WIN when serotonin was used as substrate (MAO-A), and 22.6 micromol/l for THC, 1,668 micromol/l for AEA, and 21.2 micromol/l for WIN when phenylethylamine was used as substrate (MAO-B). The inhibition of MAOs by THC was noncompetitive. N-Arachidonoylethanolamide was a competitive inhibitor of MAO-A and a noncompetitive inhibitor of MAO-B. WIN was a noncompetitive inhibitor of MAO-A and an uncompetitive inhibitor of MAO-B. Monoamine oxidase activity is affected by cannabinoids at relatively high drug concentrations, and this effect is inhibitory. Decrease of MAO activity may play a role in some effects of cannabinoids on serotonergic, noradrenergic, and dopaminergic neurotransmission.
Collapse
|
28
|
Zurich M, Monnet-Tschudi F. Contribution of in vitro neurotoxicology studies to the elucidation of neurodegenerative processes. Brain Res Bull 2009; 80:211-6. [DOI: 10.1016/j.brainresbull.2009.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 01/26/2023]
|
29
|
Giroud C, Bollmann M, Thomas A, Mangin P, Favrat B. Consommation de cannabis: quels sont les risques ? ACTA ACUST UNITED AC 2009. [DOI: 10.1051/ata/2009021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|