1
|
Kichou H, Bonnier F, Caritá AC, Byrne HJ, Chourpa I, Munnier E. Confocal Raman spectroscopy coupled with in vitro permeation testing to study the effects of formalin fixation on the skin barrier function of reconstructed human epidermis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124617. [PMID: 38870697 DOI: 10.1016/j.saa.2024.124617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Confocal Raman Spectroscopy is recognised as a potent tool for molecular characterisation of biological specimens. There is a growing demand for In Vitro Permeation Tests (IVPT) in the pharmaceutical and cosmetic areas, increasingly conducted using Reconstructed Human Epidermis (RHE) skin models. In this study, chemical fixation of RHE in 10 % Neutral Buffered Formalin for 24 h has been examined for storing RHE samples at 4 °C for up to 21 days. Confocal Raman Spectroscopy (CRS), combined with Principal Components Analysis, revealed the molecular-level effects of fixation, notably in protein and lipid conformation within the stratum corneum and viable epidermis. IVPT by means of high-performance liquid chromatography, using caffeine as a model compound, showed minimal impact of formalin fixation on the cumulative amount, flux, and permeability coefficient after 12 h. While the biochemical architecture is altered, the function of the model as a barrier to maintain rate-limiting diffusion of active molecules within skin layers remains intact. This study opens avenues for enhanced flexibility and utility in skin model research, promising insights into mitigating the limited shelf life of RHE models by preserving performance in fixed samples for up to 21 days.
Collapse
Affiliation(s)
- Hichem Kichou
- UPR CNRS 4301 CBM, Département NMNS « NanoMédicaments et NanoSondes », Université de Tours, 31 Avenue Monge, 37200 Tours, France
| | - Franck Bonnier
- LVMH Recherche, 185 Av. de Verdun, 45800, Saint-Jean-de-Braye, France
| | - Amanda C Caritá
- UPR CNRS 4301 CBM, Département NMNS « NanoMédicaments et NanoSondes », Université de Tours, 31 Avenue Monge, 37200 Tours, France
| | - Hugh J Byrne
- FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, D08 CKP1, Ireland
| | - Igor Chourpa
- UPR CNRS 4301 CBM, Département NMNS « NanoMédicaments et NanoSondes », Université de Tours, 31 Avenue Monge, 37200 Tours, France
| | - Emilie Munnier
- UPR CNRS 4301 CBM, Département NMNS « NanoMédicaments et NanoSondes », Université de Tours, 31 Avenue Monge, 37200 Tours, France.
| |
Collapse
|
2
|
Arora S, Singh S, Mittal A, Desai N, Khatri DK, Gugulothu D, Lather V, Pandita D, Vora LK. Spheroids in cancer research: Recent advances and opportunities. J Drug Deliv Sci Technol 2024; 100:106033. [DOI: 10.1016/j.jddst.2024.106033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
|
3
|
Kovrlija I, Menshikh K, Abreu H, Cochis A, Rimondini L, Marsan O, Rey C, Combes C, Locs J, Loca D. Challenging applicability of ISO 10993-5 for calcium phosphate biomaterials evaluation: Towards more accurate in vitro cytotoxicity assessment. BIOMATERIALS ADVANCES 2024; 160:213866. [PMID: 38642518 DOI: 10.1016/j.bioadv.2024.213866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Research on biomaterials typically starts with cytocompatibility evaluation, using the ISO 10993-5 standard as a reference that relies on extract tests to determine whether the material is safe (cell metabolic activity should exceed 70 %). However, the generalized approach within the standard may not accurately reflect the material's behavior in direct contact with cells, raising concerns about its effectiveness. Calcium phosphates (CaPs) are a group of materials that, despite being highly biocompatible and promoting bone formation, still exhibit inconsistencies in basic cytotoxicity evaluations. Hence, in order to test the cytocompatibility dependence on different experimental setups and material-cell interactions, we used amorphous calcium phosphate, α-tricalcium phosphate, hydroxyapatite, and octacalcium phosphate (0.1 mg/mL to 5 mg/mL) with core cell lines of bone microenvironment: mesenchymal stem cells, osteoblast-like and endothelial cells. All materials have been characterized for their physicochemical properties before and after cellular contact and once in vitro assays were finalized, groups identified as 'cytotoxic' were further analyzed using a modified Annexin V apoptosis assay to accurately determine cell death. The obtained results showed that indirect contact following ISO standards had no sensitivity of tested cells to the materials, but direct contact tests at physiological concentrations revealed decreased metabolic activity and viability. In summary, our findings offer valuable guidelines for handling biomaterials, especially in powder form, to better evaluate their biological properties and avoid false negatives commonly associated with the traditional standard approach.
Collapse
Affiliation(s)
- Ilijana Kovrlija
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Ksenia Menshikh
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Hugo Abreu
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Andrea Cochis
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Lia Rimondini
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Olivier Marsan
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, 31030 Toulouse cedex 4, France
| | - Christian Rey
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, 31030 Toulouse cedex 4, France
| | - Christèle Combes
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 allée Emile Monso, 31030 Toulouse cedex 4, France
| | - Janis Locs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Dagnija Loca
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia.
| |
Collapse
|
4
|
Martins-Gomes C, Nunes FM, Silva AM. Linking Variability in Phytochemical Composition with Safety Profile of Thymus carnosus Boiss. Extracts: Effect of Major Compounds and Evaluation of Markers of Oxidative Stress and Cell Death. Int J Mol Sci 2024; 25:5343. [PMID: 38791385 PMCID: PMC11120720 DOI: 10.3390/ijms25105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Natural products are generally considered safe for human consumption, but this classification is often based on ethnobotanical surveys or their use in traditional medicine over a long period of time. However, edaphoclimatic factors are known to produce different chemotypes, which may affect the safety profile and bioactivities, and are not commonly considered for plants exploited as crops worldwide. Thymus carnosus Boiss., a thyme species with various health-promoting effects, has potential pharmaceutical applications, but edaphoclimatic factors were found to significantly impact its phytochemical composition. Thus, we aimed to assess the safety profile of T. carnosus extracts obtained from plants harvested in two locations over three consecutive years and to establish an association with specific components, an essential study in the search for new sources of nutraceuticals. Thus, the antiproliferative effect of an aqueous decoction (AD), hydroethanolic (HE) extracts, and major extracts' components of T. carnosus was evaluated on intestinal (Caco-2) and hepatic (HepG2) cell models, revealing effects dependent on extract type, cell line, and tested compounds. Flavonoids induced different cytotoxic patterns, which could be attributed to molecular structural differences. Flow cytometry analysis showed apoptosis and necrosis induction, mediated by the modulation of intracellular reactive oxygen species and mitochondrial membrane potential, effects that were dependent on the cell line and phytochemical composition and on the synergism between extracts components, rather than on the activity of an isolated compound. While ursolic acid was the component with the strongest impact on the difference between extraction methods, flavonoids assumed a pivotal role in the response of different cell lines to the extracts. We report for the first time, for Thymus spp. extracts, that variations in the phytochemical composition clearly influence the cellular response, thus highlighting the need for extract standardization for medicinal applications.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Chemistry, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4gro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
5
|
Marzi A, Eder KM, Barroso Á, Kemper B, Schnekenburger J. Quantitative Phase Imaging as Sensitive Screening Method for Nanoparticle-Induced Cytotoxicity Assessment. Cells 2024; 13:697. [PMID: 38667312 PMCID: PMC11049110 DOI: 10.3390/cells13080697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The assessment of nanoparticle cytotoxicity is challenging due to the lack of customized and standardized guidelines for nanoparticle testing. Nanoparticles, with their unique properties, can interfere with biochemical test methods, so multiple tests are required to fully assess their cellular effects. For a more reliable and comprehensive assessment, it is therefore imperative to include methods in nanoparticle testing routines that are not affected by particles and allow for the efficient integration of additional molecular techniques into the workflow. Digital holographic microscopy (DHM), an interferometric variant of quantitative phase imaging (QPI), has been demonstrated as a promising method for the label-free assessment of the cytotoxic potential of nanoparticles. Due to minimal interactions with the sample, DHM allows for further downstream analyses. In this study, we investigated the capabilities of DHM in a multimodal approach to assess cytotoxicity by directly comparing DHM-detected effects on the same cell population with two downstream biochemical assays. Therefore, the dry mass increase in RAW 264.7 macrophages and NIH-3T3 fibroblast populations measured by quantitative DHM phase contrast after incubation with poly(alkyl cyanoacrylate) nanoparticles for 24 h was compared to the cytotoxic control digitonin, and cell culture medium control. Viability was then determined using a metabolic activity assay (WST-8). Moreover, to determine cell death, supernatants were analyzed for the release of the enzyme lactate dehydrogenase (LDH assay). In a comparative analysis, in which the average half-maximal effective concentration (EC50) of the nanocarriers on the cells was determined, DHM was more sensitive to the effect of the nanoparticles on the used cell lines compared to the biochemical assays.
Collapse
Affiliation(s)
- Anne Marzi
- Biomedical Technology Center, University of Muenster, Mendelstraße 17, D-48149 Muenster, Germany; (K.M.E.); (Á.B.); (B.K.)
| | | | | | | | | |
Collapse
|
6
|
Almeida TL, Moreira AF, de Oliveira JL, Rogerio CB, Kiihl SF, Fraceto LF, de Jesus MB. A multiparametric and orthogonal approach indicates low toxicity for zein nanoparticles in a repellent formulation. Toxicol In Vitro 2024; 95:105747. [PMID: 38043627 DOI: 10.1016/j.tiv.2023.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The incidence of viruses such as Zika, Dengue, and Chikungunya affects human health worldwide, and insect repellents are recommended for individual protection. Formulations incorporating nanotechnology should be carefully assessed for toxicity, particularly regarding the security levels established for human health and the environment. This study evaluates the cytotoxicity of a repellent formulation containing zein nanoparticles (NP) loading geraniol (Ger) and icaridin (Ica) in three cell lines: NIH/3T3, HaCaT, and SIRC. To address formulation hazards, IC50 values were determined by MTT and Calcein-AM assays. In both NIH/3T3 and HaCaT, the IC50 values for NP + Ger + Ica formulation were around 0.2%. For risk assessment, cell viability was also determined after a single exposure and repeated exposure to the formulation. No evidence of cytotoxicity was observed for NP + Ger + Ica formulation-treated cells. The risk assessment for eye damage revealed cytotoxicity in SIRC cells when exposed to a 5% concentration, which may be attributed to ocular geraniol toxicity, because zein nanoparticles alone did not exhibit any signs of toxicity. Cell internalization indicated low uptake in NIH/3T3 and HaCaT cells. Phenotypic profiling resulted in similar phenotypes for untreated cells and cells exposed to NP + Ger + Ica formulation. The toxicological profile outlined by the multiparametric and orthogonal approach suggests that the NP + Ger + Ica formulation poses no significant risk to the topical application under the tested conditions. Adopting an orthogonal approach brings robustness to our findings.
Collapse
Affiliation(s)
- Tuanny Leite Almeida
- Laboratório de Interações Nanopartículas & Células, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia CP 6109, Universidade Estadual de Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Aline Francisca Moreira
- Laboratório de Interações Nanopartículas & Células, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia CP 6109, Universidade Estadual de Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Jhones Luiz de Oliveira
- Institute of Science and Technology, São Paulo State University (UNESP), Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil
| | - Carolina Barbara Rogerio
- Institute of Science and Technology, São Paulo State University (UNESP), Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil
| | - Samara Flamini Kiihl
- Departamento de Estatística, Instituto de Matemática, Estatística e Computação Científica (IMECC), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Leonardo Fernandes Fraceto
- Institute of Science and Technology, São Paulo State University (UNESP), Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil
| | - Marcelo Bispo de Jesus
- Laboratório de Interações Nanopartículas & Células, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia CP 6109, Universidade Estadual de Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
7
|
Martin L, Lopez K, Fritz S, Easterling CP, Krawchuck JA, Poerwoprajitno AR, Xu W. Determination of the optical interference of iron oxide nanoparticles in fluorometric cytotoxicity assays. Heliyon 2024; 10:e25378. [PMID: 38322934 PMCID: PMC10845919 DOI: 10.1016/j.heliyon.2024.e25378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
Nanomaterials are known to exhibit unique interactions with light. Iron oxide nanoparticles (IONPs), composed of magnetite (black iron oxide) specifically, are known to be highly absorptive throughout the visible portion of the spectrum. We sought to investigate and overcome optical interference of IONPs in colorimetric, fluorometric and luminescence assays by introducing additional controls and determining the concentration-dependent contribution to optical artifacts which could confound, skew, or invalidate results. We tested the in vitro cytotoxicity of ∼8 nm spherical magnetite nanoparticles capped with alginate on a human lung carcinoma (A549) cell line for different exposure periods and at various concentrations. We observed significant interference with both the MTT reagent and the absorption at 590 nm, a concentration-dependent reduction in the luminescence, fluorescence at ∼490 nm (viability marker), and fluorescence at 530 nm (cytotoxicity marker). After introducing an additional correction, we obtained more accurate results, including a clear decrease in viability at 12-h post-treatment, with apparent near complete recovery after 24-h in addition to a dose-independent, time-dependent alteration in the cell proliferation rate. A small increase in cytotoxicity was noted at the 24-h timepoint at the two highest concentrations. According to our results, the MTT reagents appear to interact substantially with IONPs at concentrations above 0.1 mg/mL, therefore, this assay is not recommended for IONP cytotoxicity assessment at higher concentrations.
Collapse
Affiliation(s)
- Leisha Martin
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Kimberly Lopez
- Department of Physical and Environmental Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Shayden Fritz
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, USA
- Department of Physical and Environmental Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Charles P. Easterling
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Jacob A. Krawchuck
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Agus R. Poerwoprajitno
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Wei Xu
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, USA
| |
Collapse
|
8
|
Goenka S, Lee HM. Effect of Commercial Children's Mouthrinses and Toothpastes on the Viability of Neonatal Human Melanocytes: An In Vitro Study. Dent J (Basel) 2023; 11:287. [PMID: 38132425 PMCID: PMC10742640 DOI: 10.3390/dj11120287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
In this study, we examined the cytotoxic effects of six commercial children's mouthrinses (designated as #1, #2, #3, #4, #5, and #6) and four commercial children's toothpastes (designated as #1, #2, #3, and #4) on primary human neonatal melanocytes that were used as a representative model for oral melanocytes. Mouthrinses diluted directly with culture medium (1:2, 1:5, 1:10, 1:100, and 1:1000) were added to monolayers of melanocytes for 2 min, followed by 24 h recovery, after which MTS cytotoxicity assay was conducted. The extracts of each toothpaste were prepared (50% w/v), diluted in culture medium (1:2, 1:5, 1:10, 1:50, 1:100, and 1:1000), and added to cell monolayers for 2 min (standard brushing time), followed by an analysis of cell viability after 24 h. Results showed that all mouthrinses except mouthrinse #4 showed significantly greater loss of cell viability, ascribed to cetylpyridinium chloride (CPC) that induced significant cytotoxicity to melanocytes (IC50 = 54.33 µM). In the case of toothpastes, the examination of cellular morphology showed that a 2 min exposure to all toothpaste extracts induced a concentration-dependent decline in cell viability, pronounced in toothpaste containing sodium lauryl sulfate (SLS) detergent. Further results suggested SLS to be the critical driver of cytotoxicity (IC50 = 317.73 µM). It is noteworthy that toothpaste #1 exhibited much lower levels of cytotoxicity compared to the other three toothpastes containing SLS. Taken together, these findings suggest that the melanocytotoxicity of children's mouthrinse (#4) and toothpaste (#1) is comparatively low. To the best of our knowledge, this is the first study to examine the impact of children's toothpastes and mouthrinses on neonatal primary human melanocytes. Future studies to investigate these findings in a realistic scenario replicating oral cavity conditions of the presence of microbiota, pellicle layer and saliva, and other cell types are warranted.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
9
|
Moratin H, Thöle A, Lang J, Ehret Kasemo T, Stöth M, Hagen R, Scherzad A, Hackenberg S. Ag- but Not ZnO-Nanoparticles Disturb the Airway Epithelial Barrier at Subtoxic Concentrations. Pharmaceutics 2023; 15:2506. [PMID: 37896266 PMCID: PMC10610507 DOI: 10.3390/pharmaceutics15102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Inhalation is considered to be the most relevant source of human exposure to nanoparticles (NPs); however, only a few investigations have addressed the influence of exposing the respiratory mucosal barrier to subcytotoxic doses. In the nasal respiratory epithelium, cells of the mucosa represent one of the first contact points of the human organism with airborne NPs. Disruption of the epithelial barrier by harmful materials can lead to inflammation in addition to potential intrinsic toxicity of the particles. The aim of this study was to investigate whether subtoxic concentrations of zinc oxide (ZnO)- and silver (Ag)-NPs have an influence on upper airway barrier integrity. Nasal epithelial cells from 17 donors were cultured at the air-liquid interface and exposed to ZnO- and Ag-NPs. Barrier function, quantified by transepithelial electrical resistance (TEER), decreased after treatment with 10 µg/mL Ag-NPs, but FITC-dextran permeability remained stable and no change in mRNA levels of tight junction proteins and E-cadherin was detected by real-time quantitative PCR (RT-qPCR). The results indicate that subtoxic concentrations of Ag-NPs may already induce damage of the upper airway epithelial barrier in vitro. The lack of similar disruption by ZnO-NPs of similar size suggests a specific effect by Ag-NPs.
Collapse
Affiliation(s)
- Helena Moratin
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Wuerzburg, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany (S.H.)
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kitchin KT, Richards JA, Robinette BL, Wallace KA, Coates NH, Castellon BT, Grulke EA. Biochemical effects of copper nanomaterials in human hepatocellular carcinoma (HepG2) cells. Cell Biol Toxicol 2023; 39:2311-2329. [PMID: 35877023 DOI: 10.1007/s10565-022-09720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 04/27/2022] [Indexed: 11/02/2022]
Abstract
In dose-response and structure-activity studies, human hepatic HepG2 cells were exposed for 3 days to nano Cu, nano CuO or CuCl2 (ions) at doses between 0.1 and 30 ug/ml (approximately the no observable adverse effect level to a high degree of cytotoxicity). Various biochemical parameters were then evaluated to study cytotoxicity, cell growth, hepatic function, and oxidative stress. With nano Cu and nano CuO, few indications of cytotoxicity were observed between 0.1 and 3 ug/ml. In respect to dose, lactate dehydrogenase and aspartate transaminase were the most sensitive cytotoxicity parameters. The next most responsive parameters were alanine aminotransferase, glutathione reductase, glucose 6-phosphate dehydrogenase, and protein concentration. The medium responsive parameters were superoxide dismutase, gamma glutamyltranspeptidase, total bilirubin, and microalbumin. The parameters glutathione peroxidase, glutathione reductase, and protein were all altered by nano Cu and nano CuO but not by CuCl2 exposures. Our chief observations were (1) significant decreases in glucose 6-phosphate dehydrogenase and glutathione reductase was observed at doses below the doses that show high cytotoxicity, (2) even high cytotoxicity did not induce large changes in some study parameters (e.g., alkaline phosphatase, catalase, microalbumin, total bilirubin, thioredoxin reductase, and triglycerides), (3) even though many significant biochemical effects happen only at doses showing varying degrees of cytotoxicity, it was not clear that cytotoxicity alone caused all of the observed significant biochemical effects, and (4) the decreased glucose 6-phosphate dehydrogenase and glutathione reductase support the view that oxidative stress is a main toxicity pathway of CuCl2 and Cu-containing nanomaterials.
Collapse
Affiliation(s)
- Kirk T Kitchin
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, 109 Alexander Drive, Mail Drop B105-03, Research Triangle Park, NC, 27711, USA.
| | - Judy A Richards
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Brian L Robinette
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, 109 Alexander Drive, Mail Drop B105-03, Research Triangle Park, NC, 27711, USA
| | - Kathleen A Wallace
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, 109 Alexander Drive, Mail Drop B105-03, Research Triangle Park, NC, 27711, USA
| | - Najwa H Coates
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Benjamin T Castellon
- Institute of Biomedical Studies and Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Eric A Grulke
- Chemical & Materials Engineering, University of Kentucky, Lexington, KY, 20506-0046, USA
| |
Collapse
|
11
|
Wang H, Meng Z, Zhao CY, Xiao YH, Zeng H, Lian H, Guan RQ, Liu Y, Feng ZG, Han QQ. Research progress of implantation materials and its biological evaluation. Biomed Mater 2023; 18:062001. [PMID: 37591254 DOI: 10.1088/1748-605x/acf17b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
With the development of modern material science, life science and medical science, implantation materials are widely employed in clinical fields. In recent years, these materials have also evolved from inert supports or functional substitutes to bioactive materials able to trigger or promote the regenerative potential of tissues. Reasonable biological evaluation of implantation materials is the premise to make sure their safe application in clinical practice. With the continual development of implantation materials and the emergence of new implantation materials, new challenges to biological evaluation have been presented. In this paper, the research progress of implantation materials, the progress of biological evaluation methods, and also the characteristics of biocompatibility evaluation for novel implantation materials, like animal-derived implantation materials, nerve contact implantation materials, nanomaterials and tissue-engineered medical products were reviewed in order to provide references for the rational biological evaluation of implantable materials.
Collapse
Affiliation(s)
- Han Wang
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
| | - Zhu Meng
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
| | - Chen-Yu Zhao
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
| | - Yong-Hao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Hang Zeng
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
- China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Huan Lian
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
| | - Rui-Qin Guan
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
- Yantai University, Yantai 264005, People's Republic of China
| | - Yu Liu
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
- Yantai University, Yantai 264005, People's Republic of China
| | - Zeng-Guo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Qian-Qian Han
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
| |
Collapse
|
12
|
Tilly TB, Ward RX, Morea AF, Nelson MT, Robinson SE, Eiguren-Fernandez A, Lewis GS, Lednicky JA, Sabo-Attwood T, Hussain SM, Wu CY. Toxicity assessment of CeO₂ and CuO nanoparticles at the air-liquid interface using bioinspired condensational particle growth. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2023; 7:100074. [PMID: 37711680 PMCID: PMC10500621 DOI: 10.1016/j.heha.2023.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
CeO2 and CuO nanoparticles (NPs) are used as additives in petrodiesel to enhance engine performance leading to reduced diesel combustion emissions. Despite their benefits, the additive application poses human health concerns by releasing inhalable NPs into the ambient air. In this study, a bioinspired lung cell exposure system, Dosimetric Aerosol in Vitro Inhalation Device (DAVID), was employed for evaluating the toxicity of aerosolized CeO2 and CuO NPs with a short duration of exposure (≤10 min vs. hours in other systems) and without exerting toxicity from non-NP factors. Human epithelial A549 lung cells were cultured and maintained within DAVID at the air-liquid interface (ALI), onto which aerosolized NPs were deposited, and experiments in submerged cells were used for comparison. Exposure of the cells to the CeO2 NPs did not result in detectable IL-8 release, nor did it produce a significant reduction in cell viability based on lactate dehydrogenase (LDH) assay, with a marginal decrease (10%) at the dose of 388 μg/cm2 (273 cm2/cm2). In contrast, exposure to CuO NPs resulted in a concentration dependent reduction in LDH release based on LDH leakage, with 38% reduction in viability at the highest dose of 52 μg/cm2 (28.3 cm2/cm2). Cells exposed to CuO NPs resulted in a dose dependent cellular membrane toxicity and expressed IL-8 secretion at a global dose five times lower than cells exposed under submerged conditions. However, when comparing the ALI results at the local cellular dose of CuO NPs to the submerged results, the IL-8 secretion was similar. In this study, we demonstrated DAVID as a new exposure tool that helps evaluate aerosol toxicity in simulated lung environment. Our results also highlight the necessity in choosing the right assay endpoints for the given exposure scenario, e.g., LDH for ALI and Deep Blue for submerged conditions for cell viability.
Collapse
Affiliation(s)
- Trevor B. Tilly
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, United States
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, United States
| | - Ryan X. Ward
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, United States
| | - Alyssa F. Morea
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, United States
| | - M. Tyler Nelson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, United States
| | - Sarah E. Robinson
- Department of Environmental & Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | | | | | - John A. Lednicky
- Department of Environmental & Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Tara Sabo-Attwood
- Department of Environmental & Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Saber M. Hussain
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, United States
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Valdiglesias V, Alba-González A, Fernández-Bertólez N, Touzani A, Ramos-Pan L, Reis AT, Moreda-Piñeiro J, Yáñez J, Laffon B, Folgueira M. Effects of Zinc Oxide Nanoparticle Exposure on Human Glial Cells and Zebrafish Embryos. Int J Mol Sci 2023; 24:12297. [PMID: 37569675 PMCID: PMC10418813 DOI: 10.3390/ijms241512297] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) are among the most widely used nanomaterials. They have multiple applications in cosmetics, textiles, paints, electronics and, recently, also in biomedicine. This extensive use of ZnO NPs notably increases the probability that both humans and wildlife are subjected to undesirable effects. Despite being among the most studied NPs from a toxicological point of view, much remains unknown about their ecotoxicological effects or how they may affect specific cell types, such as cells of the central nervous system. The main objective of this work was to investigate the effects of ZnO NPs on human glial cells and zebrafish embryo development and to explore the role of the released Zn2+ ions in these effects. The effects on cell viability on human A172 glial cells were assessed with an MTT assay and morphological analysis. The potential acute and developmental toxicity was assessed employing zebrafish (Danio rerio) embryos. To determine the role of Zn2+ ions in the in vitro and in vivo observed effects, we measured their release from ZnO NPs with flame atomic absorption spectrometry. Then, cells and zebrafish embryos were treated with a water-soluble salt (zinc sulfate) at concentrations that equal the number of Zn2+ ions released by the tested concentrations of ZnO NPs. Exposure to ZnO NPs induced morphological alterations and a significant decrease in cell viability depending on the concentration and duration of treatment, even after removing the overestimation due to NP interference. Although there were no signs of acute toxicity in zebrafish embryos, a decrease in hatching was detected after exposure to the highest ZnO NP concentrations tested. The ability of ZnO NPs to release Zn2+ ions into the medium in a concentration-dependent manner was confirmed. Zn2+ ions did not seem entirely responsible for the effects observed in the glial cells, but they were likely responsible for the decrease in zebrafish hatching rate. The results obtained in this work contribute to the knowledge of the toxicological potential of ZnO NPs.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía—CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain; (V.V.); (N.F.-B.); (A.T.); (L.R.-P.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oza, 15071 A Coruña, Spain
| | - Anabel Alba-González
- Universidade da Coruña, Grupo NEUROVER, Centro Interdisciplinar de Química e Bioloxía—CICA, Rúa As Carballeiras, 15071 A Coruña, Spain; (A.A.-G.); (J.Y.); (M.F.)
- Universidade da Coruña, Grupo NEUROVER, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain
| | - Natalia Fernández-Bertólez
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía—CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain; (V.V.); (N.F.-B.); (A.T.); (L.R.-P.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oza, 15071 A Coruña, Spain
| | - Assia Touzani
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía—CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain; (V.V.); (N.F.-B.); (A.T.); (L.R.-P.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oza, 15071 A Coruña, Spain
| | - Lucía Ramos-Pan
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía—CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain; (V.V.); (N.F.-B.); (A.T.); (L.R.-P.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oza, 15071 A Coruña, Spain
| | - Ana Teresa Reis
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal;
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Rua das Taipas 135, 4050-600 Porto, Portugal
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Jorge Moreda-Piñeiro
- Universidade da Coruña, Grupo Química Analítica Aplicada (QANAP), Instituto Universitario Medio Ambiente (IUMA), Departamento de Química, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain;
| | - Julián Yáñez
- Universidade da Coruña, Grupo NEUROVER, Centro Interdisciplinar de Química e Bioloxía—CICA, Rúa As Carballeiras, 15071 A Coruña, Spain; (A.A.-G.); (J.Y.); (M.F.)
- Universidade da Coruña, Grupo NEUROVER, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oza, 15071 A Coruña, Spain
- Universidade da Coruña, Grupo DICOMOSA, Centro Interdisciplinar de Química e Bioloxía—CICA, Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071 A Coruña, Spain
| | - Mónica Folgueira
- Universidade da Coruña, Grupo NEUROVER, Centro Interdisciplinar de Química e Bioloxía—CICA, Rúa As Carballeiras, 15071 A Coruña, Spain; (A.A.-G.); (J.Y.); (M.F.)
- Universidade da Coruña, Grupo NEUROVER, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain
| |
Collapse
|
14
|
Coyle JP, Johnson C, Jensen J, Farcas M, Derk R, Stueckle TA, Kornberg TG, Rojanasakul Y, Rojanasakul LW. Variation in pentose phosphate pathway-associated metabolism dictates cytotoxicity outcomes determined by tetrazolium reduction assays. Sci Rep 2023; 13:8220. [PMID: 37217524 DOI: 10.1038/s41598-023-35310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
Tetrazolium reduction and resazurin assays are the mainstay of routine in vitro toxicity batteries. However, potentially erroneous characterization of cytotoxicity and cell proliferation can arise if verification of baseline interaction of test article with method employed is neglected. The current investigation aimed to demonstrate how interpretation of results from several standard cytotoxicity and proliferation assays vary in dependence on contributions from the pentose phosphate pathway (PPP). Non-tumorigenic Beas-2B cells were treated with graded concentrations of benzo[a]pyrene (B[a]P) for 24 and 48 h prior to cytotoxicity and proliferation assessment with commonly used MTT, MTS, WST1, and Alamar Blue assays. B[a]P caused enhanced metabolism of each dye assessed despite reductions in mitochondrial membrane potential and was reversed by 6-aminonicotinamide (6AN)-a glucose-6-phosphate dehydrogenase inhibitor. These results demonstrate differential sensitivity of standard cytotoxicity assessments on the PPP, thus (1) decoupling "mitochondrial activity" as an interpretation of cellular formazan and Alamar Blue metabolism, and (2) demonstrating the implicit requirement for investigators to sufficiently verify interaction of these methods in routine cytotoxicity and proliferation characterization. The nuances of method-specific extramitochondrial metabolism must be scrutinized to properly qualify specific endpoints employed, particularly under the circumstances of metabolic reprogramming.
Collapse
Affiliation(s)
- Jayme P Coyle
- HELD/ACIB, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, 1095 Willowdale Rd., Morgantown, WV, 26505, USA.
| | - Caroline Johnson
- HELD/ACIB, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jake Jensen
- Department of Environmental Health, Harvard University, Boston, MA, USA
| | - Mariana Farcas
- HELD/ACIB, National Institute for Occupational Safety and Health, Morgantown, WV, USA
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
| | - Raymond Derk
- HELD/ACIB, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Todd A Stueckle
- HELD/ACIB, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Tiffany G Kornberg
- HELD/ACIB, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
| | - Liying W Rojanasakul
- HELD/ACIB, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, 1095 Willowdale Rd., Morgantown, WV, 26505, USA.
| |
Collapse
|
15
|
Armakolas A, Kotsari M, Koskinas J. Liquid Biopsies, Novel Approaches and Future Directions. Cancers (Basel) 2023; 15:1579. [PMID: 36900369 PMCID: PMC10000663 DOI: 10.3390/cancers15051579] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer is among the leading causes of death worldwide. Early diagnosis and prognosis are vital to improve patients' outcomes. The gold standard of tumor characterization leading to tumor diagnosis and prognosis is tissue biopsy. Amongst the constraints of tissue biopsy collection is the sampling frequency and the incomplete representation of the entire tumor bulk. Liquid biopsy approaches, including the analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating miRNAs, and tumor-derived extracellular vesicles (EVs), as well as certain protein signatures that are released in the circulation from primary tumors and their metastatic sites, present a promising and more potent candidate for patient diagnosis and follow up monitoring. The minimally invasive nature of liquid biopsies, allowing frequent collection, can be used in the monitoring of therapy response in real time, allowing the development of novel approaches in the therapeutic management of cancer patients. In this review we will describe recent advances in the field of liquid biopsy markers focusing on their advantages and disadvantages.
Collapse
Affiliation(s)
- Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- B' Department of Medicine, Hippokration Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Maria Kotsari
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - John Koskinas
- B' Department of Medicine, Hippokration Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
16
|
Vijayalakshmi V, Sadanandan B, Anjanapura RV. In vitro comparative cytotoxic assessment of pristine and carboxylic functionalized multiwalled carbon nanotubes on LN18 cells. J Biochem Mol Toxicol 2023; 37:e23283. [PMID: 36541368 DOI: 10.1002/jbt.23283] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/20/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Multiwalled carbon nanotubes (MWCNTs) have been used in biomedical applications due to their ability to enter the cells. Carboxylic functionalization of MWCNT (MWCNT-COOH) is used to mitigate the toxicity of MWCNTs. Our study focuses on comparing the toxicity of MWCNT and MWCNT-COOH on the neuronal cells, LN18. Concentrations of 5, 10, 20, and 40 µg ml-1 were used for the study, and cytotoxicity was determined at 0, 1, 3, 6, 12, 24, and 48 h of incubation. Cell viability was assessed by Trypan Blue, MTT, and Live dead cell assays, and the oxidative stress produced was determined by reactive oxygen species (ROS) and Lipid peroxidation assays. MWCNT-COOH showed higher cell viability than MWCNT for 20 and 40 µg ml-1 at 24 and 48 h. This was also visually observed in the live dead cell imaging. However, at 48 h, the morphology of the cells appeared more stretched for all the concentrations of MWCNT and MWCNT-COOH in comparison to the control. A significant amount of ROS production can also be observed at the same concentration and time. Viability and oxidative stress results together revealed that MWCNT-COOH is less toxic when compared to MWCNT at longer incubation periods and higher concentrations. However, otherwise, the effect of both are comparable. A concentration of 5-10 µg ml-1 is ideal while using MWCNT and MWCNT-COOH as the toxicity is negligible. These findings can further be extended to various functionalizations of MWCNT for wider applications.
Collapse
Affiliation(s)
| | - Bindu Sadanandan
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Raghu V Anjanapura
- Department of Chemistry, Jain Deemed-to-be University, Bengaluru, Karnataka, India
- Faculty of Allied Health Sciences, BLDE (Deemed-to-be University), Vijayapura, Karnataka, India
| |
Collapse
|
17
|
Lomphithak T, Fadeel B. Die hard: cell death mechanisms and their implications in nanotoxicology. Toxicol Sci 2023; 192:kfad008. [PMID: 36752525 PMCID: PMC10109533 DOI: 10.1093/toxsci/kfad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Cell death is a fundamental biological process, and its fine-tuned regulation is required for life. However, the complexity of regulated cell death is often reduced to a matter of live-dead discrimination. Here, we provide a perspective on programmed or regulated cell death, focusing on apoptosis, pyroptosis, necroptosis, and ferroptosis (the latter three cell death modalities are examples of regulated necrosis). We also touch on other, recently described manifestations of (pathological) cell death including cuproptosis. Furthermore, we address how engineered nanomaterials impact on regulated cell death. We posit that an improved understanding of nanomaterial-induced perturbations of cell death may allow for a better prediction of the consequences of human exposure and could also yield novel approaches by which to mitigate these effects. Finally, we provide examples of the harnessing of nanomaterials to achieve cancer cell killing through the induction of regulated cell death.
Collapse
Affiliation(s)
- Thanpisit Lomphithak
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
18
|
Boinapalli Y, Shankar Pandey R, Singh Chauhan A, Sudheesh MS. Physiological relevance of in-vitro cell-nanoparticle interaction studies as a predictive tool in cancer nanomedicine research. Int J Pharm 2023; 632:122579. [PMID: 36603671 DOI: 10.1016/j.ijpharm.2022.122579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Cell uptake study is a routine experiment used as a surrogate to predict in vivo response in cancer nanomedicine research. Cell culture conditions should be designed in such a way that it emulates 'real' physiological conditions and avoid artefacts. It is critical to dissect the steps involved in cellular uptake to understand the physical, chemical, and biological factors responsible for particle internalization. The two-dimensional model (2D) of cell culture is overly simplistic to mimic the complexity of cancer tissues that exist in vivo. It cannot simulate the critical tissue-specific properties like cell-cell interaction and cell-extracellular matrix (ECM) interaction and its influences on the temporal and spatial distribution of nanoparticles (NPs). The three dimensional model organization of heterogenous cancer and normal cells with the ECM acts as a formidable barrier to NP penetration and cellular uptake. The three dimensional cell culture (3D) technology is a breakthrough in this direction that can mimic the barrier properties of the tumor microenvironment (TME). Herein, we discuss the physiological factors that should be considered to bridge the translational gap between in and vitro cell culture studies and in-vivo studies in cancer nanomedicine.
Collapse
Affiliation(s)
- Yamini Boinapalli
- Dept. of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - Ravi Shankar Pandey
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G. 495009, India
| | - Abhay Singh Chauhan
- Department of Biopharmaceutical Sciences, School of Pharmacy, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | - M S Sudheesh
- Dept. of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India.
| |
Collapse
|
19
|
Fávaro WJ, Alonso JCC, de Souza BR, Reis IB, Gonçalves JM, Deckmann AC, Oliveira G, Dias QC, Durán N. New synthetic nano-immunotherapy (OncoTherad®) for non-muscle invasive bladder cancer: Its synthesis, characterization and anticancer property. Tissue Cell 2023; 80:101988. [PMID: 36521234 DOI: 10.1016/j.tice.2022.101988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Bacillus Calmette-Guérin (BCG)-based intravesical immunotherapy has been applied as gold standard treatment for high-risk non-muscle invasive bladder cancer (NMIBC) for almost half a century. However, several patients with high-risk disease experience relapse, including those whose condition has worsened and who failed to respond to BCG. Non-significant therapeutic options have been developed for these at-risk patients, for many years. Immunotherapies have shown promising outcomes for bladder cancer treatment. Accordingly, our research group developed the OncoTherad® (MRB-CFI-1) immunotherapy, which has shown positive outcomes in NMIBC treatment. The aim of the current study is to describe, in details, the physicochemical features and potential action mechanisms of OncoTherad® nano-immunotherapy, based on toll-like receptor 4 (TLR4)-mediated interferon and on RANK/RANKL signaling pathways, in animal model with NMIBC. Based on the current findings, OncoTherad® nano-immunotherapy did not have genotoxic effect on the investigated model and did not show signs of limiting local and/or systemic toxicity at therapeutic doses. OncoTherad® nano-immunotherapy was more effective than the BCG treatment, since it reduced by 70% the malignancy rate. Furthermore, it was possible identifying an important action mechanism of OncoTherad®, which was based on the modulation of TLR4-mediated interferon and RANK/RANKL signaling pathways that, altogether, were essential to reduce malignancy rate. OncoTherad® mechanisms in these pathways helped preventing tumor recurrence.
Collapse
Affiliation(s)
- W J Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - J C C Alonso
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Paulínia Municipal Hospital, Paulínia, São Paulo, Brazil
| | - B R de Souza
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - I B Reis
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - J M Gonçalves
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - A C Deckmann
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - G Oliveira
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Q C Dias
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - N Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, São Paulo, Brazil.
| |
Collapse
|
20
|
Dziedzic DSM, Mogharbel BF, Irioda AC, Stricker PEF, Woiski TD, Machado TN, Bezerra Jr AG, Athayde Teixeira de Carvalho K. Laser Ablated Albumin Functionalized Spherical Gold Nanoparticles Indicated for Stem Cell Tracking. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1034. [PMID: 36770041 PMCID: PMC9919444 DOI: 10.3390/ma16031034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Cell tracking in cell-based therapy applications helps distinguish cell participation among paracrine effect, neovascularization, and matrix deposition. This preliminary study examined the cellular uptake of gold nanoparticles (AuNPs), observing cytotoxicity and uptake of different sizes and AuNPs concentrations in Adipose-derived stromal cells (ASCs). ASCs were incubated for 24 h with Laser ablated Albumin functionalized spherical AuNPs (LA-AuNPs), with average sizes of 2 nm and 53 nm in diameter, in four concentrations, 127 µM, 84 µM, 42 µM, and 23 µM. Cytotoxicity was examined by Live/Dead assay, and erythrocyte hemolysis, and the effect on the cytoskeleton was investigated by immunocytochemistry for β-actin. The LA-AuNPs were internalized by the ASCs in a size and concentration-dependent manner. Clusters were observed as dispersed small ones in the cytosol, and as a sizeable perinuclear cluster, without significant harmful effects on the cells for up to 2 weeks. The Live/Dead and hemolysis percentage results complemented the observations that the larger 53 nm LA-AuNPs in the highest concentrated solution significantly lowered cell viability. The demonstrated safety, cellular uptake, and labelling persistency with LA-AuNPs, synthesized without the combination of chemical solutions, support their use for cell tracking in tissue engineering applications.
Collapse
Affiliation(s)
- Dilcele Silva Moreira Dziedzic
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba 80230-901, PR, Brazil
| | - Bassam Felipe Mogharbel
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba 80230-901, PR, Brazil
| | - Ana Carolina Irioda
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba 80230-901, PR, Brazil
| | - Priscila Elias Ferreira Stricker
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba 80230-901, PR, Brazil
| | - Thiago Demetrius Woiski
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba 80230-901, PR, Brazil
| | - Thiago Neves Machado
- Physics Department, Federal University of Technology, Curitiba 80230-901, PR, Brazil
| | | | - Katherine Athayde Teixeira de Carvalho
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba 80230-901, PR, Brazil
| |
Collapse
|
21
|
Ruijter N, Soeteman-Hernández LG, Carrière M, Boyles M, McLean P, Catalán J, Katsumiti A, Cabellos J, Delpivo C, Sánchez Jiménez A, Candalija A, Rodríguez-Llopis I, Vázquez-Campos S, Cassee FR, Braakhuis H. The State of the Art and Challenges of In Vitro Methods for Human Hazard Assessment of Nanomaterials in the Context of Safe-by-Design. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:472. [PMID: 36770432 PMCID: PMC9920318 DOI: 10.3390/nano13030472] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The Safe-by-Design (SbD) concept aims to facilitate the development of safer materials/products, safer production, and safer use and end-of-life by performing timely SbD interventions to reduce hazard, exposure, or both. Early hazard screening is a crucial first step in this process. In this review, for the first time, commonly used in vitro assays are evaluated for their suitability for SbD hazard testing of nanomaterials (NMs). The goal of SbD hazard testing is identifying hazard warnings in the early stages of innovation. For this purpose, assays should be simple, cost-effective, predictive, robust, and compatible. For several toxicological endpoints, there are indications that commonly used in vitro assays are able to predict hazard warnings. In addition to the evaluation of assays, this review provides insights into the effects of the choice of cell type, exposure and dispersion protocol, and the (in)accurate determination of dose delivered to cells on predictivity. Furthermore, compatibility of assays with challenging advanced materials and NMs released from nano-enabled products (NEPs) during the lifecycle is assessed, as these aspects are crucial for SbD hazard testing. To conclude, hazard screening of NMs is complex and joint efforts between innovators, scientists, and regulators are needed to further improve SbD hazard testing.
Collapse
Affiliation(s)
- Nienke Ruijter
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | | | - Marie Carrière
- Univ. Grenoble-Alpes, CEA, CNRS, SyMMES-CIBEST, 17 rue des Martyrs, 38000 Grenoble, France
| | - Matthew Boyles
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Polly McLean
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Julia Catalán
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | | | | | | | - Isabel Rodríguez-Llopis
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | - Flemming R. Cassee
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Hedwig Braakhuis
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
22
|
Góral D, Marczuk A, Góral-Kowalczyk M, Koval I, Andrejko D. Application of Iron Nanoparticle-Based Materials in the Food Industry. MATERIALS (BASEL, SWITZERLAND) 2023; 16:780. [PMID: 36676517 PMCID: PMC9862918 DOI: 10.3390/ma16020780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Due to their different properties compared to other materials, nanoparticles of iron and iron oxides are increasingly used in the food industry. Food technologists have especially paid attention to their ease of separation by magnetic fields and biocompatibility. Unfortunately, the consumption of increasing amounts of nanoparticles has raised concerns about their biotoxicity. Hence, knowledge about the applicability of iron nanoparticle-based materials in the food industry is needed not only among scientists, but also among all individuals who are involved in food production. The first part of this article describes typical methods of obtaining iron nanoparticles using chemical synthesis and so-called green chemistry. The second part of this article describes the use of iron nanoparticles and iron nanoparticle-based materials for active packaging, including the ability to eliminate oxygen and antimicrobial activity. Then, the possibilities of using the magnetic properties of iron nano-oxides for enzyme immobilization, food analysis, protein purification and mycotoxin and histamine removal from food are described. Other described applications of materials based on iron nanoparticles are the production of artificial enzymes, process control, food fortification and preserving food in a supercooled state. The third part of the article analyzes the biocompatibility of iron nanoparticles, their impact on the human body and the safety of their use.
Collapse
Affiliation(s)
- Dariusz Góral
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Andrzej Marczuk
- Department of Agricultural Forestry and Transport Machines, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Małgorzata Góral-Kowalczyk
- Department of Agricultural Forestry and Transport Machines, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Iryna Koval
- Department of Physical, Analytical and General Chemistry, Lviv Polytechnic National University, 79013 Lviv, Ukraine
| | - Dariusz Andrejko
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| |
Collapse
|
23
|
Oner E, Gray SG, Finn SP. Cell Viability Assay with 3D Prostate Tumor Spheroids. Methods Mol Biol 2023; 2645:263-275. [PMID: 37202626 DOI: 10.1007/978-1-0716-3056-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
WST-8 (Cell Counting Kit 8; CCK-8) is the last generation tetrazolium-based cell viability assay and has recently been accepted as a validated method for measuring the cell viability of 3D in vitro models. Here, we describe how to form 3D prostate tumor spheroids using the polyHEMA technique, apply drug treatments and WST-8 assay to these spheroids, and calculate their cell viability. The advantages of our protocol are the formation of spheroids without adding extracellular matrix components, and the elimination of the critique handling process needed for transferring spheroids. Although this protocol exemplifies the determination of percentage cell viability in PC-3 prostate tumor spheroids, it can be adapted and optimized for other prostate cell lines and other types of cancers.
Collapse
Affiliation(s)
- Ezgi Oner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, Balatcik, Izmir, Turkey
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Stephen P Finn
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland.
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland.
- Department of Histopathology and Morbid Anatomy, Sir Patrick Dun Translational Research Lab, St. James's Hospital, Dublin, Ireland.
- Department of Histopathology, Labmed Directorate, St. James's Hospital, Dublin, Ireland.
- Cancer Molecular Diagnostics, Labmed Directorate, St. James's Hospital, Dublin, Ireland.
| |
Collapse
|
24
|
Landsiedel R, Honarvar N, Seiffert SB, Oesch B, Oesch F. Genotoxicity testing of nanomaterials. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1833. [DOI: 10.1002/wnan.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
- Pharmacy, Pharmacology and Toxicology Free University of Berlin Berlin Germany
| | - Naveed Honarvar
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
| | | | - Barbara Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
| | - Franz Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
- Institute of Toxicology Johannes Gutenberg University Mainz Germany
| |
Collapse
|
25
|
Chen Q, Riviere JE, Lin Z. Toxicokinetics, dose-response, and risk assessment of nanomaterials: Methodology, challenges, and future perspectives. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1808. [PMID: 36416026 PMCID: PMC9699155 DOI: 10.1002/wnan.1808] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022]
Abstract
The rapid growth of nanomaterial applications has raised safety concerns for human health. A number of studies have been conducted to assess the toxicokinetics, toxicology, dose-response, and risk assessment of different nanomaterials using in vitro and in vivo animal and human models. However, current studies cannot meet the demand for efficient assessment of toxicokinetics, dose-response relationships, or the toxicological risk arising from the rapidly increasing number of newly synthesized nanomaterials. In this article, we review the methods for conducting toxicokinetics, hazard identification, dose-response, exposure, and risk assessment studies of nanomaterials, identify the knowledge gaps, and discuss the challenges remaining. We provide the rationale behind the appropriate design of nanomaterial plasma toxicokinetic and tissue distribution studies, including caveats on the interpretation and correlation of in vitro and in vivo toxicology studies. The potential of using physiologically based pharmacokinetic (PBPK) models to extrapolate toxicokinetic and toxicity findings from in vitro to in vivo and from animals to humans is discussed, and the knowledge gaps of PBPK modeling for nanomaterials are identified. While challenges still exist, there has been progress in the toxicokinetics, hazard identification, and risk assessment of nanomaterials in the past two decades. Recent advancements in the field are highlighted with relevant examples. We also share latest guidelines as well as our perspectives on future studies needed to characterize the toxicokinetics, toxicity, and dose-response relationship in support of nanomaterial risk assessment. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Qiran Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| | - Jim E. Riviere
- 1Data Consortium, Kansas State University, Olathe, Kansas, USA
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
26
|
Saleem K, Siddiqui B, .ur.Rehman A, Taqi MM, Ahmed N. Exploiting Recent Trends in the Treatment of Androgenic Alopecia through Topical Nanocarriers of Minoxidil. AAPS PharmSciTech 2022; 23:292. [DOI: 10.1208/s12249-022-02444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
|
27
|
Antonio LC, Ribovski L, Pincela Lins PM, Zucolotto V. The amount of dextran in PLGA nanocarriers modulates protein corona and promotes cell membrane damage. J Mater Chem B 2022; 10:8282-8294. [PMID: 36155711 DOI: 10.1039/d2tb01296k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymeric nanocarriers (NCs) are efficient vehicles to prevent drug unspecific biodistribution and increase the drug amounts delivered to tumor tissues. However, some toxicological aspects of NCs still lack a comprehensive assessment, such as their effects on cellular processes that lead to toxicity. We evaluate the interaction of poly(lactic-co-glycolic acid) (PLGA) NCs prepared using dextran (Dex) and Pluronic®-F127 as stabilizing agents with myocardial cells (H9C2), breast adenocarcinoma cells (MCF-7) and macrophages (RAW 264.7) to address the effect of Dex in PLGA NC formulations. By an emulsion diffusion method, doxorubicin-loaded NCs were prepared with no Dex (PLGA-DOX), 1% (w/v) Dex (Dex1/PLGA-DOX) and 5% (w/v) Dex (Dex5/PLGA-DOX). Uptake analyses revealed a significant reduction in Dex5/PLGA-DOX NC uptake by H9C2 and MCF-7, as in the case of Dex1/PLGA-DOX NCs in the absence of in vitro protein corona, revealing an effect of dextran concentration on the formation of protein corona. RAW 264.7 cells presented a greater uptake of Dex5/PLGA-DOX NCs than the other NCs likely because of receptor mediated endocytosis, since C-type lectins like SIGN-R1, mannose receptors and scavenger receptor type 1 that are expressed in RAW 264.7 can mediate Dex uptake. Despite the lower uptake, Dex5/PLGA-DOX NCs promote the generation of reactive oxygen species and oxidative membrane damage in MCF-7 and H9C2 even though cellular metabolic activity assessed by MTT was comparable among all the NCs. Our results highlight the importance of an in-depth investigation of the NC-cell interaction considering additional mechanisms of damage apart from metabolic variations, as nanoparticle-induced damage is not limited to imbalance in metabolic processes, but also associated with other mechanisms, e.g., membrane and DNA damage.
Collapse
Affiliation(s)
- Luana Corsi Antonio
- University of São Paulo, Physics Institute of São Carlos, Nanomedicine and Nanotoxicology Group, CP 369, 13566-590, São Carlos, SP, Brazil
| | - Laís Ribovski
- University of São Paulo, Physics Institute of São Carlos, Nanomedicine and Nanotoxicology Group, CP 369, 13566-590, São Carlos, SP, Brazil.,University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands.
| | - Paula Maria Pincela Lins
- University of São Paulo, Physics Institute of São Carlos, Nanomedicine and Nanotoxicology Group, CP 369, 13566-590, São Carlos, SP, Brazil
| | - Valtencir Zucolotto
- University of São Paulo, Physics Institute of São Carlos, Nanomedicine and Nanotoxicology Group, CP 369, 13566-590, São Carlos, SP, Brazil
| |
Collapse
|
28
|
Li X, Li D, Zhang G, Zeng Y, Monteiro-Riviere NA, Chang YZ, Li Y. Biocorona modulates the inflammatory response induced by gold nanoparticles in human epidermal keratinocytes. Toxicol Lett 2022; 369:34-42. [PMID: 36057382 DOI: 10.1016/j.toxlet.2022.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
The functional activities of gold nanoparticles (AuNPs) on biological systems depend on their physical-chemical properties and their surface functionalizations. Within a biological environment and depending on their surface characteristics, NPs can adsorb biomolecules (mostly proteins) present in the microenvironment, thereby forming a dynamic biomolecular corona on the surface. The presence of this biocorona changes the physical-chemical and functional properties of the NPs and how it interacts with cells. Here, we show that primary human epidermal keratinocytes (HEK) exposed in culture to branched polyethyleneimine (BPEI)-AuNPs, but not to lipoic acid (LA)-AuNPs, show potent particle uptake, decreased viability and enhanced production of inflammatory factors, while the presence of a human plasma-derived biocorona decreased NPs uptake and rescued cells from BPEI-AuNP-induced cell death. The mechanistic study revealed that the intracellular oxidative level greatly increased after the BPEI-AuNPs treatment, and the transcriptomic analysis showed that the dominant modulated pathways were related to oxidative stress and an antioxidant response. The stress level measured by flow cytometry also showed a significant decrease in the presence of a biocorona. Further anaylsis discovered that nuclear factor erythroid-2 related factor (Nrf2), a major regulator of anti-oxidant and anti-inflammatory gene, as the key factor related to the AuNPs induced oxidative stress and inflammation. This study provides futher understanding into the mechanisms on how NPs-induced cellular stress and reveals the protective effects of a biocorona on inflammatory responses in HEK at the molecular level, which provides important insights into the biological responses of AuNPs and their biocorona.
Collapse
Affiliation(s)
- Xuejin Li
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, Hebei, China; Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Dongjie Li
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, Hebei, China; Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Guofang Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
| | - Yanqiao Zeng
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Nancy A Monteiro-Riviere
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS, 66506 USA
| | - Yan-Zhong Chang
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, Hebei, China.
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
| |
Collapse
|
29
|
Tolardo V, Magrì D, Fumagalli F, Cassano D, Athanassiou A, Fragouli D, Gioria S. In Vitro High-Throughput Toxicological Assessment of Nanoplastics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1947. [PMID: 35745286 PMCID: PMC9230863 DOI: 10.3390/nano12121947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022]
Abstract
Sub-micrometer particles derived from the fragmentation of plastics in the environment can enter the food chain and reach humans, posing significant health risks. To date, there is a lack of adequate toxicological assessment of the effects of nanoplastics (NPs) in mammalian systems, particularly in humans. In this work, we evaluated the potential toxic effects of three different NPs in vitro: two NPs obtained by laser ablation (polycarbonate (PC) and polyethylene terephthalate (PET1)) and one (PET2) produced by nanoprecipitation. The physicochemical characterization of the NPs showed a smaller size, a larger size distribution, and a higher degree of surface oxidation for the particles produced by laser ablation. Toxicological evaluation performed on human cell line models (HePG2 and Caco-2) showed a higher toxic effect for the particles synthesized by laser ablation, with PC more toxic than PET. Interestingly, on differentiated Caco-2 cells, a conventional intestinal barrier model, none of the NPs produced toxic effects. This work wants to contribute to increase knowledge on the potential risks posed by NPs.
Collapse
Affiliation(s)
- Valentina Tolardo
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy; (V.T.); (A.A.); (D.F.)
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Via All’ Opera Pia, 13, 16145 Genova, Italy
| | - Davide Magrì
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.M.); (F.F.); (D.C.)
| | - Francesco Fumagalli
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.M.); (F.F.); (D.C.)
| | - Domenico Cassano
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.M.); (F.F.); (D.C.)
| | - Athanassia Athanassiou
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy; (V.T.); (A.A.); (D.F.)
| | - Despina Fragouli
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy; (V.T.); (A.A.); (D.F.)
| | - Sabrina Gioria
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.M.); (F.F.); (D.C.)
| |
Collapse
|
30
|
Chetyrkina MR, Fedorov FS, Nasibulin AG. In vitro toxicity of carbon nanotubes: a systematic review. RSC Adv 2022; 12:16235-16256. [PMID: 35733671 PMCID: PMC9152879 DOI: 10.1039/d2ra02519a] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
Carbon nanotube (CNT) toxicity-related issues provoke many debates in the scientific community. The controversial and disputable data about toxicity doses, proposed hazard effects, and human health concerns significantly restrict CNT applications in biomedical studies, laboratory practices, and industry, creating a barrier for mankind in the way of understanding how exactly the material behaves in contact with living systems. Raising the toxicity question again, many research groups conclude low toxicity of the material and its potential safeness at some doses for contact with biological systems. To get new momentum for researchers working on the intersection of the biological field and nanomaterials, i.e., CNT materials, we systematically reviewed existing studies with in vitro toxicological data to propose exact doses that yield toxic effects, summarize studied cell types for a more thorough comparison, the impact of incubation time, and applied toxicity tests. Using several criteria and different scientific databases, we identified and analyzed nearly 200 original publications forming a "golden core" of the field to propose safe doses of the material based on a statistical analysis of retrieved data. We also differentiated the impact of various forms of CNTs: on a substrate and in the form of dispersion because in both cases, some studies demonstrated good biocompatibility of CNTs. We revealed that CNTs located on a substrate had negligible impact, i.e., 90% of studies report good viability and cell behavior similar to control, therefore CNTs could be considered as a prospective conductive substrate for cell cultivation. In the case of dispersions, our analysis revealed mean values of dose/incubation time to be 4-5 μg mL-1 h-1, which suggested the material to be a suitable candidate for further studies to get a more in-depth understanding of its properties in biointerfaces and offer CNTs as a promising platform for fundamental studies in targeted drug delivery, chemotherapy, tissue engineering, biosensing fields, etc. We hope that the present systematic review will shed light on the current knowledge about CNT toxicity, indicate "dark" spots and offer possible directions for the subsequent studies based on the demonstrated here tabulated and statistical data of doses, cell models, toxicity tests, viability, etc.
Collapse
Affiliation(s)
| | - Fedor S Fedorov
- Skolkovo Institute of Science and Technology Nobel Str. 3 143026 Moscow Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology Nobel Str. 3 143026 Moscow Russia
- Aalto University FI-00076 15100 Espoo Finland
| |
Collapse
|
31
|
High Drug Capacity Doxorubicin-Loaded Iron Oxide Nanocomposites for Cancer Therapy. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8050054] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Magnetic nanoparticles (MNPs) have great potential in the drug delivery area. Iron oxide (Fe3O4) MNPs have demonstrated a promising effect due to their ferrimagnetic properties, large surface area, stability, low cost, easy synthesis, and functionalization. Some coating procedures are required to improve stability, biocompatibility, and decrease toxicity for medical applications. Herein, the co-precipitation synthesis of iron oxide MNPs coated with four types of primary surfactants, polyethylene glycol 2000 (PEG 2000), oleic acid (OA), Tween 20 (Tw20), and Tween 80 (Tw80), were investigated. Dynamic light scattering (DLS), ζ-potential, and transmission electron microscopy (TEM) techniques were used for morphology, size, charge, and stability analysis. Methylene blue reactive oxygen species (ROS) detection assay and the toxicity experiment on the lung adenocarcinoma A549 cell line were conducted. Two loading conditions for anticancer drug doxorubicin (DOX) on MNPs were proposed. The first one provides high loading efficiency (~90%) with up to 870 μg/mg (DOX/MNPs) drug capacity. The second is perspective for extremely high capacity 1757 μg/mg with drug wasting (DOX loading efficiency ~24%). For the most perspective MNP_OA and MNP_OA_DOX in cell media, pH 7.4, 5, and 3, the stability experiments are also presented. MNP_OA_DOX shows DOX pH-dependent release in the acidic pH and effective inhibition of A549 cancer cell growth. The IC50 values were calculated as 1.13 ± 0.02 mM in terms of doxorubicin and 0.4 ± 0.03 µg/mL in terms of the amount of the nanoparticles. Considering this, the MNP_OA_DOX nano theranostics agent is a highly potential candidate for cancer treatment.
Collapse
|
32
|
Won H, Kim SH, Yang JY, Jung K, Jeong J, Oh JH, Lee JH. Colony-Forming Efficiency Assay to Assess Nanotoxicity of Graphene Nanomaterials. TOXICS 2022; 10:236. [PMID: 35622649 PMCID: PMC9146674 DOI: 10.3390/toxics10050236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
The nano-market has grown rapidly over the past decades and a wide variety of products are now being manufactured, including those for biomedical applications. Despite the widespread use of nanomaterials in various industries, safety and health effects on humans are still controversial, and testing methods for nanotoxicity have not yet been clearly established. Nanomaterials have been reported to interfere with conventional cytotoxicity tests due to their unique properties, such as light absorption or light scattering. In this regard, the colony-forming efficacy (CFE) assay has been suggested as a suitable test method for testing some nanomaterials without these color-interferences. In this study, we selected two types of GNPs (Graphene nanoplatelets) as test nanomaterials and evaluated CFE assay to assess the cytotoxicity of GNPs. Moreover, for further investigation, including expansion into other cell types, GNPs were evaluated by the conventional cytotoxicity tests including the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), Cell Counting Kit-8 (CCK-8), and Neutral red uptake (NRU) assay using MDCK, A549 and HepG2 cells. The results of CFE assay suggest that this test method for three cell lines can be applied for GNPs. In addition, the CFE assay was able to evaluate cytotoxicity regardless more accurately of color interference caused by residual nanomaterials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jin-Hee Lee
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187, Osongsaengmyeong 2-Ro, Cheongju 28159, Korea; (H.W.); (S.-H.K.); (J.-Y.Y.); (K.J.); (J.J.); (J.-H.O.)
| |
Collapse
|
33
|
Biodegradable Nanoparticles Loaded with Levodopa and Curcumin for Treatment of Parkinson's Disease. Molecules 2022; 27:molecules27092811. [PMID: 35566173 PMCID: PMC9101601 DOI: 10.3390/molecules27092811] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Parkinson’s disease (PD) is the second most common age-related neurodegenerative disorder. Levodopa (L-DOPA) remains the gold-standard drug available for treating PD. Curcumin has many pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, anti-amyloid, and antitumor properties. Copolymers composed of Poly (ethylene oxide) (PEO) and biodegradable polyesters such as Poly (ε-caprolactone) (PCL) can self-assemble into nanoparticles (NPs). This study describes the development of NH2–PEO–PCL diblock copolymer positively charged and modified by adding glutathione (GSH) on the outer surface, resulting in a synergistic delivery of L-DOPA curcumin that would be able to pass the blood–brain barrier. Methods: The NH2–PEO–PCL NPs suspensions were prepared by using a nanoprecipitation and solvent displacement method and coated with GSH. NPs were submitted to characterization assays. In order to ensure the bioavailability, Vero and PC12 cells were treated with various concentrations of the loaded and unloaded NPs to observe cytotoxicity. Results: NPs have successfully loaded L-DOPA and curcumin and were stable after freeze-drying, indicating advancing into in vitro toxicity testing. Vero and PC12 cells that were treated up to 72 h with various concentrations of L-DOPA and curcumin-loaded NP maintained high viability percentage, indicating that the NPs are biocompatible. Conclusions: NPs consisting of NH2–PEO–PCL were characterized as potential formulations for brain delivery of L-DOPA and curcumin. The results also indicate that the developed biodegradable nanomicelles that were blood compatible presented low cytotoxicity.
Collapse
|
34
|
Mass Cytometry Exploration of Immunomodulatory Responses of Human Immune Cells Exposed to Silver Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14030630. [PMID: 35336005 PMCID: PMC8954471 DOI: 10.3390/pharmaceutics14030630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing production and application of silver nanoparticles (Ag NPs) have raised concerns on their possible adverse effects on human health. However, a comprehensive understanding of their effects on biological systems, especially immunomodulatory responses involving various immune cell types and biomolecules (e.g., cytokines and chemokines), is still incomplete. In this study, a single-cell-based, high-dimensional mass cytometry approach is used to investigate the immunomodulatory responses of Ag NPs using human peripheral blood mononuclear cells (hPBMCs) exposed to poly-vinyl-pyrrolidone (PVP)-coated Ag NPs of different core sizes (i.e., 10-, 20-, and 40-nm). Although there were no severe cytotoxic effects observed, PVPAg10 and PVPAg20 were excessively found in monocytes and dendritic cells, while PVPAg40 displayed more affinity with B cells and natural killer cells, thereby triggering the release of proinflammatory cytokines such as IL-2, IL-17A, IL-17F, MIP1β, TNFα, and IFNγ. Our findings indicate that under the exposure conditions tested in this study, Ag NPs only triggered the inflammatory responses in a size-dependent manner rather than induce cytotoxicity in hPBMCs. Our study provides an appropriate ex vivo model to better understand the human immune responses against Ag NP at a single-cell level, which can contribute to the development of targeted drug delivery, vaccine developments, and cancer radiotherapy treatments.
Collapse
|
35
|
Rajput VD, Minkina T, Upadhyay SK, Kumari A, Ranjan A, Mandzhieva S, Sushkova S, Singh RK, Verma KK. Nanotechnology in the Restoration of Polluted Soil. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:769. [PMID: 35269257 PMCID: PMC8911862 DOI: 10.3390/nano12050769] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
The advancements in nanoparticles (NPs) may be lighting the sustainable and eco-friendly path to accelerate the removal of toxic compounds from contaminated soils. Many efforts have been made to increase the efficiency of phytoremediation, such as the inclusion of chemical additives, the application of rhizobacteria, genetic engineering, etc. In this context, the integration of nanotechnology with bioremediation has introduced new dimensions for revamping the remediation methods. Hence, advanced remediation approaches combine nanotechnological and biological remediation methods in which the nanoscale process regulation supports the adsorption and deterioration of pollutants. Nanoparticles absorb/adsorb a large variety of contaminants and also catalyze reactions by lowering the energy required to break them down, owing to their unique surface properties. As a result, this remediation process reduces the accumulation of pollutants while limiting their spread from one medium to another. Therefore, this review article deals with all possibilities for the application of NPs for the remediation of contaminated soils and associated environmental concerns.
Collapse
Affiliation(s)
- Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (A.K.); (A.R.); (S.M.); (S.S.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (A.K.); (A.R.); (S.M.); (S.S.)
| | - Sudhir K. Upadhyay
- Department of Environmental Science, V.B.S. Purvanhal University, Jaunpur 222003, India;
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (A.K.); (A.R.); (S.M.); (S.S.)
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (A.K.); (A.R.); (S.M.); (S.S.)
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (A.K.); (A.R.); (S.M.); (S.S.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (A.K.); (A.R.); (S.M.); (S.S.)
| | - Rupesh Kumar Singh
- InnovPlantProtect Collaborative Laboratory, Department of Protection of Specific Crops, 7350-999 Elvas, Portugal;
| | - Krishan K. Verma
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| |
Collapse
|
36
|
Sudheesh MS, Pavithran K, M S. Revisiting the outstanding questions in cancer nanomedicine with a future outlook. NANOSCALE ADVANCES 2022; 4:634-653. [PMID: 36131837 PMCID: PMC9418065 DOI: 10.1039/d1na00810b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 06/01/2023]
Abstract
The field of cancer nanomedicine has been fueled by the expectation of mitigating the inefficiencies and life-threatening side effects of conventional chemotherapy. Nanomedicine proposes to utilize the unique nanoscale properties of nanoparticles to address the most pressing questions in cancer treatment and diagnosis. The approval of nano-based products in the 1990s inspired scientific explorations in this direction. However, despite significant progress in the understanding of nanoscale properties, there are only very few success stories in terms of substantial increase in clinical efficacy and overall patient survival. All existing paradigms such as the concept of enhanced permeability and retention (EPR), the stealth effect and immunocompatibility of nanomedicine have been questioned in recent times. In this review we critically examine impediments posed by biological factors to the clinical success of nanomedicine. We put forth current observations on critical outstanding questions in nanomedicine. We also provide the promising side of cancer nanomedicine as we move forward in nanomedicine research. This would provide a future direction for research in nanomedicine and inspire ongoing investigations.
Collapse
Affiliation(s)
- M S Sudheesh
- Dept. of Pharmaceutics, Amrita School of Pharmacy Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara Kochi - 682041 India +91-9669372019
| | - K Pavithran
- Department of Medical Oncology, Amrita Institute of Medial Sciences and Research Centre Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara Kochi - 682041 India
| | - Sabitha M
- Dept. of Pharmaceutics, Amrita School of Pharmacy Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara Kochi - 682041 India +91-9669372019
| |
Collapse
|
37
|
Martin LMA, Gan N, Wang E, Merrill M, Xu W. Materials, surfaces, and interfacial phenomena in nanoplastics toxicology research. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118442. [PMID: 34748888 PMCID: PMC8823333 DOI: 10.1016/j.envpol.2021.118442] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/08/2021] [Accepted: 10/28/2021] [Indexed: 05/22/2023]
Abstract
In response to the growing worldwide plastic pollution problem, the field of nanoplastics research is attempting to determine the risk of exposure to nanoparticles amidst their ever-increasing presence in the environment. Since little is known about the attributes of environmental nanoplastics (concentration, composition, morphology, and size) due to fundamental limitations in detection and quantification of smaller plastic particles, researchers often improvise by engineering nanoplastic particles with various surface modifications as models for laboratory toxicological testing. Polystyrene and other commercially available or easily synthesized polymer materials functionalized with surfactants or fluorophores are typically used for these studies. How surfactants, additives, fluorophores, the addition of surface functional groups for conjugation, or other changes to surface attributes alter toxicological profiles remains unclear. Additionally, the limited polymers used in laboratory models do not mimic the vast range of polymer types comprising environmental pollutants. Nanomaterials are tricky materials to investigate due to their high surface area, high surface energies, and their propensity to interact with molecules, proteins, and biological probes. These unique properties can often invalidate common laboratory assays. Extreme care must be taken to ensure that results are not artefactual. We have gathered zeta potential values for various polystyrene nanoparticles with different functionalization, in different solvents, from the reported literature. We also discuss the effects of surface engineering and solvent properties on interparticle interactions, agglomeration, particle-protein interactions, corona formation, nano-bio interfaces, and contemplate how these parameters might confound results. Various toxicological exemplars are critically reviewed, and the relevance and shortfalls of the most popular models used in nanoplastics toxicity studies published in the current literature are considered.
Collapse
Affiliation(s)
- Leisha M A Martin
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX, United States
| | - Nin Gan
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX, United States
| | - Erica Wang
- Department of Mechanical Engineering, Texas A&M University, Corpus Christi, TX, United States
| | - Mackenzie Merrill
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX, United States
| | - Wei Xu
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX, United States.
| |
Collapse
|
38
|
Vijayalakshmi V, Sadanandan B, Venkataramanaiah Raghu A. Single walled carbon nanotubes in high concentrations is cytotoxic to the human neuronal cell LN18. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
39
|
Petersen EJ, Ceger P, Allen DG, Coyle J, Derk R, Reyero NG, Gordon J, Kleinstreuer N, Matheson J, McShan D, Nelson BC, Patri AK, Rice P, Rojanasakul L, Sasidharan A, Scarano L, Chang X. U.S. Federal Agency interests and key considerations for new approach methodologies for nanomaterials. ALTEX 2021; 39:183–206. [PMID: 34874455 PMCID: PMC9115850 DOI: 10.14573/altex.2105041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022]
Abstract
Engineered nanomaterials (ENMs) come in a wide array of shapes, sizes, surface coatings, and compositions, and often possess novel or enhanced properties compared to larger sized particles of the same elemental composition. To ensure the safe commercialization of products containing ENMs, it is important to thoroughly understand their potential risks. Given that ENMs can be created in an almost infinite number of variations, it is not feasible to conduct in vivo testing on each type of ENM. Instead, new approach methodologies (NAMs) such as in vitro or in chemico test methods may be needed, given their capacity for higher throughput testing, lower cost, and ability to provide information on toxicological mechanisms. However, the different behaviors of ENMs compared to dissolved chemicals may challenge safety testing of ENMs using NAMs. In this study, member agencies within the Interagency Coordinating Committee on the Validation of Alternative Methods were queried about what types of ENMs are of agency interest and whether there is agency-specific guidance for ENM toxicity testing. To support the ability of NAMs to provide robust results in ENM testing, two key issues in the usage of NAMs, namely dosimetry and interference/bias controls, are thoroughly discussed.
Collapse
Affiliation(s)
- Elijah J. Petersen
- U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Patricia Ceger
- Integrated Laboratory Systems LLC, Research Triangle Park, NC, USA
| | - David G. Allen
- Integrated Laboratory Systems LLC, Research Triangle Park, NC, USA
| | - Jayme Coyle
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV, USA
- Current affiliation: UES, Inc., Dayton, OH, USA
| | - Raymond Derk
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV, USA
| | | | - John Gordon
- U.S. Consumer Product Safety Commission, Bethesda, MD, USA
| | - Nicole Kleinstreuer
- National Institute of Environmental Health Sciences, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, NC, USA
| | | | - Danielle McShan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Bryant C. Nelson
- U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Anil K. Patri
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, USA
| | - Penelope Rice
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Liying Rojanasakul
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV, USA
| | - Abhilash Sasidharan
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, USA
| | - Louis Scarano
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, USA
| | - Xiaoqing Chang
- Integrated Laboratory Systems LLC, Research Triangle Park, NC, USA
| |
Collapse
|
40
|
Schlich M, Musazzi UM, Campani V, Biondi M, Franzé S, Lai F, De Rosa G, Sinico C, Cilurzo F. Design and development of topical liposomal formulations in a regulatory perspective. Drug Deliv Transl Res 2021; 12:1811-1828. [PMID: 34755281 PMCID: PMC8577404 DOI: 10.1007/s13346-021-01089-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 01/29/2023]
Abstract
The skin is the absorption site for drug substances intended to treat loco-regional diseases, although its barrier properties limit the permeation of drug molecules. The growing knowledge of the skin structure and its physiology have supported the design of innovative nanosystems (e.g. liposomal systems) to improve the absorption of poorly skin-permeable drugs. However, despite the dozens of clinical trials started, few topically applied liposomal systems have been authorized both in the EU and the USA. Indeed, the intrinsic complexity of the topically applied liposomal systems, the higher production costs, the lack of standardized methods and the more stringent guidelines for assessing their benefit/risk balance can be seen as causes of such inefficient translation. The present work aimed to provide an overview of the physicochemical and biopharmaceutical characterization methods that can be applied to topical liposomal systems intended to be marketed as medicinal products, and the current regulatory provisions. The discussion highlights how such methodologies can be relevant for defining the critical quality attributes of the final product, and they can be usefully applied based on the phase of the life cycle of a liposomal product: to guide the formulation studies in the early stages of development, to rationally design preclinical and clinical trials, to support the pharmaceutical quality control system and to sustain post-marketing variations. The provided information can help define harmonized quality standards able to overcome the case-by-case approach currently applied by regulatory agencies in assessing the benefit/risk of the topically applied liposomal systems.
Collapse
Affiliation(s)
- Michele Schlich
- Dipartimento Di Scienze Della Vita E Dell'Ambiente, Sezione Scienze del Farmaco, Università Di Cagliari, via Ospedale 72, 09124, Cagliari, Italy.,Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano Di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Umberto M Musazzi
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, via G. Colombo 71, 20133, Milan, Italy
| | - Virginia Campani
- Dipartimento Di Farmacia, Università Degli Studi Di Napoli Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Marco Biondi
- Dipartimento Di Farmacia, Università Degli Studi Di Napoli Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Silvia Franzé
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, via G. Colombo 71, 20133, Milan, Italy
| | - Francesco Lai
- Dipartimento Di Scienze Della Vita E Dell'Ambiente, Sezione Scienze del Farmaco, Università Di Cagliari, via Ospedale 72, 09124, Cagliari, Italy
| | - Giuseppe De Rosa
- Dipartimento Di Farmacia, Università Degli Studi Di Napoli Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Chiara Sinico
- Dipartimento Di Scienze Della Vita E Dell'Ambiente, Sezione Scienze del Farmaco, Università Di Cagliari, via Ospedale 72, 09124, Cagliari, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, via G. Colombo 71, 20133, Milan, Italy.
| |
Collapse
|
41
|
Lee H, Kim S, Hwang KS, Lim NR, Oh HB, Cho IJ, Kim J, Kim KH, Kim HN. Effect of carbon nanomaterial dimension on the functional activity and degeneration of neurons. Biomaterials 2021; 279:121232. [PMID: 34739983 DOI: 10.1016/j.biomaterials.2021.121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/01/2022]
Abstract
Despite growing concerns regarding the threat of airborne nanoparticle-mediated brain degeneration, the underlying pathological mechanisms remain unclear. Carbon nanomaterials, the main components of airborne nanoparticles, have multi-dimensional structures. Therefore, the dimensional effect of carbon-based nanomaterials on the regulation of neural function in brain disorders requires additional clarification. Herein, we report the interaction between zero-to three-dimensional carbon nanostructures and the amyloid-beta protein, which can either activate or interrupt neuronal functions, depending on the dimension of the carbon nanostructures. The carbon nanomaterials induced significant cellular activation by short-term exposure, while prolonged exposure eventually caused neuronal cell death. Such dimension-dependent activation or degeneration was more evident in the higher-dimension carbon nanomaterials, as confirmed by the increases in neurotransmitter secretion and synapse-related protein levels to more than five times at 72 h of monitoring and calcium signaling in the neurons. The inclusion of amyloid-beta proteins ameliorated the cytotoxic effects of carbon nanomaterials in higher-dimensional carbon nanomaterials by regulating 333 genes. We found that the ɑ-synuclein gene is the key factor in carbon-induced abnormal neuronal function. Therefore, through biological analyses and in vitro feasibility studies, this new insight may contribute toward understanding the pathological mechanism and finding a new target for therapy in human brain pathologies.
Collapse
Affiliation(s)
- Hyojin Lee
- Center for Biomaterials, Biomedical Engineering Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Seongchan Kim
- Center for Biomaterials, Biomedical Engineering Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kyeong Seob Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Nu Ri Lim
- Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Chemistry, Sogang University, Seoul, 04107, South Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul, 04107, South Korea
| | - Il-Joo Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea; School of Electrical and Electronics Engineering, Yonsei University, Seoul, 03722, Republic of Korea; Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jongbaeg Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Ki Hun Kim
- Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea; Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
42
|
Keshavan S, Gupta G, Martin S, Fadeel B. Multi-walled carbon nanotubes trigger lysosome-dependent cell death (pyroptosis) in macrophages but not in neutrophils. Nanotoxicology 2021; 15:1125-1150. [PMID: 34657549 DOI: 10.1080/17435390.2021.1988171] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Carbon nanotubes (CNTs) have been extensively investigated, and several studies have shown that multi-walled CNTs can trigger inflammation and fibrosis in animal models. However, while neutrophils are involved in inflammation, most in vitro studies have addressed macrophages. Here we explored the impact of three MWCNTs with varying morphology (i.e. long and rigid versus short and/or tangled) on primary human macrophages and macrophage-differentiated THP-1 cells versus primary human neutrophils and neutrophil-differentiated HL-60 cells. We found that long and rigid MWCNTs triggered caspase-dependent cell death in macrophages, accompanied by NLRP3 inflammasome activation and gasdermin D (GSDMD)-mediated release of pro-inflammatory IL-1β. The release of IL-1β was suppressed by disulfiram, an FDA-approved drug known to act as an inhibitor of membrane pore formation by GSDMD. Evidence of autophagic cell death was noted in macrophages exposed to higher concentrations of the long and rigid MWCNTs. Furthermore, lysosomal damage with cytosolic release of cathepsin B was observed in macrophages exposed to the latter MWCNTs. On the other hand, there was little evidence of uptake of MWCNTs in neutrophils and the cells failed to undergo MWCNT-triggered cell death. Our studies have demonstrated that long and rigid MWCNTs trigger pyroptosis in human macrophages.
Collapse
Affiliation(s)
- Sandeep Keshavan
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Govind Gupta
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastin Martin
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Pang G, Liu Y, Wang Y, Wang Y, Wang F, Zhao J, Zhang LW. Endotoxin contamination in ovalbumin as viewed from a nano-immunotherapy perspective. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1747. [PMID: 34374214 DOI: 10.1002/wnan.1747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022]
Abstract
Ovalbumin (OVA) is a model antigen commonly incorporated in smartly designed nanoparticles for delivery into antigen-presenting cells (APC), aiming to investigate the immune activity and therapeutic efficacy of nanoparticles that contain immunoregulatory compounds. However, the immunoresponse observed in nano-immunotherapy may unexpectedly arise from endotoxin impurity of OVA in the nanoparticles. Literature review shows that most researchers did not notice the importance of endotoxin-free OVA when used in nano-immunotherapy studies. Concentration at as low as 5 μg/ml OVA from Sigma-Aldrich (contains 0.625 ng/ml endotoxin) was able to activate APC such as dendritic cells and macrophages. Here, we proposed that the endotoxin impurity in OVA or the finished nanoproducts should be determined by both Limulus Amebocyte Lysate (LAL) and cell-based assay, to ensure the endotoxin-free quality of the nanoparticles. The endotoxin in OVA can be removed by endotoxin removal column and phase separation methods and endotoxin-free OVA can be purchased. This perspective alerts the researchers of endotoxin impurity of OVA that may transfer into the finished nanoparticles and introduce an unfavorable immunoregulatory function with false-positive results. OVA with minimal endotoxin level should be used in nano-immunotherapy studies to accurately reflect the true effects of nanoparticles on the immune system. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Guibin Pang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yun Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yangyun Wang
- Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yong Wang
- Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Fujun Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Leshuai W Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
44
|
Preparation of a 99mTc-labeled graft polymer and its in vitro and in vivo evaluation. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Audira G, Lai YH, Huang JC, Chen KHC, Hsiao CD. Phenomics Approach to Investigate Behavioral Toxicity of Environmental or Occupational Toxicants in Adult Zebrafish (Danio rerio). Curr Protoc 2021; 1:e223. [PMID: 34387947 DOI: 10.1002/cpz1.223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Over the last few years, environmental pollution, especially water pollution, has become a serious issue worldwide. Thus, methods that can help us understand the impact and effects of these pollutants, especially on aquatic animals, are needed. Behavioral assessment has emerged as a crucial tool in toxicology and pharmacology because many studies have shown, in multiple animal models, that various pharmacological compounds can alter behavior, with many of the findings being translatable to humans. Moreover, behavior study can also be used as a suitable indicator in the ecotoxicological risk assessment of pollutants. Several model organisms, especially rodent models, have been extensively employed for behavior studies. However, assessments using this model are generally time consuming, expensive, and require extensive facilities for housing experimental animals. Moreover, behavioral studies typically use different measurements and assessment tools, making comparisons difficult. In addition, even though behavioral phenomics has the potential to comprehensively illustrate the toxicities of chemicals, there is only a limited number of studies focusing on animal behavior using such a global approach. Here, we describe a phenomics approach that can be used to investigate the impact of pollutants using zebrafish. The approach consists of several behavioral tests, including response to a novel environment, mirror-reflection image, predator fish, and conspecifics, after exposure to a test chemical. Phenotype fingerprinting, a method for summarizing individual phenotypes based on the results of the behavioral tests, is then conducted to reduce data complexity and display the pattern of each compound on behavioral phenotypes in zebrafish. This approach may be useful to researchers studying the potential adverse effects of different pollutants. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Novel tank test Basic Protocol 2: Shoaling test Basic Protocol 3: Aggression test (mirror biting test) Basic Protocol 4: Social interaction test Basic Protocol 5: Fear response test Basic Protocol 6: PCA and heatmap clustering.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei, Taiwan
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung, Taiwan
| | - Kelvin H-C Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung, Taiwan
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
- Center of Nanotechnology, Chung Yuan Christian University, Chung-Li, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li, Taiwan
| |
Collapse
|
46
|
Yu H, Zhao Z, Cheng F. Predicting and investigating cytotoxicity of nanoparticles by translucent machine learning. CHEMOSPHERE 2021; 276:130164. [PMID: 33725618 DOI: 10.1016/j.chemosphere.2021.130164] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Safety concerns of engineered nanoparticles (ENPs) hamper their applications and commercialization in many potential fields. Machine learning has been proved as a great tool to understand the complex ENP-organism-environment relationship. However, good-performance machine learning models usually exist as black boxes, which may be difficult to build trust and whose ways of expressing knowledge rarely directly map to forms familiar to scientists. Here, we present an approach for uncovering causal structure in nanotoxicity datasets by mutual-validated and model-agnostic interpretation methods. Model predictions can be explained from feature importance, feature effects, and feature interactions. The utility of this approach is demonstrated through two case studies, the cytotoxicity of cadmium-containing quantum dots and metal oxide nanoparticles. Further, these case studies indicate the efficacy and impacts at two scales: (i) model interpretation, where the most relevant features for correlating cytotoxicity are identified and their influence on model predictions and interactions with other features are then explained, and (ii) model validation, where the difference among interpretation results of different methods (or the difference between interpretation results and well-known toxicity mechanisms) may reflect some inherent problems in the used dataset (or the developed models). Our approach of integrating machine learning models and interpretation methods provides a roadmap for predicting the toxicity of ENPs in a translucent way.
Collapse
Affiliation(s)
- Hengjie Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhilin Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Fang Cheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
47
|
Mohtar N, Parumasivam T, Gazzali AM, Tan CS, Tan ML, Othman R, Fazalul Rahiman SS, Wahab HA. Advanced Nanoparticle-Based Drug Delivery Systems and Their Cellular Evaluation for Non-Small Cell Lung Cancer Treatment. Cancers (Basel) 2021; 13:3539. [PMID: 34298753 PMCID: PMC8303683 DOI: 10.3390/cancers13143539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancers, the number one cancer killer, can be broadly divided into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), with NSCLC being the most commonly diagnosed type. Anticancer agents for NSCLC suffer from various limitations that can be partly overcome by the application of nanomedicines. Nanoparticles is a branch within nanomedicine that can improve the delivery of anticancer drugs, whilst ensuring the stability and sufficient bioavailability following administration. There are many publications available in the literature exploring different types of nanoparticles from different materials. The effectiveness of a treatment option needs to be validated in suitable in vitro and/or in vivo models. This includes the developed nanoparticles, to prove their safety and efficacy. Many researchers have turned towards in vitro models that use normal cells or specific cells from diseased tissues. However, in cellular works, the physiological dynamics that is available in the body could not be mimicked entirely, and hence, there is still possible development of false positive or false negative results from the in vitro models. This article provides an overview of NSCLC, the different nanoparticles available to date, and in vitro evaluation of the nanoparticles. Different types of cells suitable for in vitro study and the important precautions to limit the development of false results are also extensively discussed.
Collapse
Affiliation(s)
- Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Chu Shan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Mei Lan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Rozana Othman
- Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Center for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siti Sarah Fazalul Rahiman
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (N.M.); (T.P.); (A.M.G.); (C.S.T.); (M.L.T.); (H.A.W.)
| |
Collapse
|
48
|
Zhu Y, Huang R, Wu Z, Song S, Cheng L, Zhu R. Deep learning-based predictive identification of neural stem cell differentiation. Nat Commun 2021; 12:2614. [PMID: 33972525 PMCID: PMC8110743 DOI: 10.1038/s41467-021-22758-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/24/2021] [Indexed: 12/31/2022] Open
Abstract
The differentiation of neural stem cells (NSCs) into neurons is proposed to be critical in devising potential cell-based therapeutic strategies for central nervous system (CNS) diseases, however, the determination and prediction of differentiation is complex and not yet clearly established, especially at the early stage. We hypothesize that deep learning could extract minutiae from large-scale datasets, and present a deep neural network model for predictable reliable identification of NSCs fate. Remarkably, using only bright field images without artificial labelling, our model is surprisingly effective at identifying the differentiated cell types, even as early as 1 day of culture. Moreover, our approach showcases superior precision and robustness in designed independent test scenarios involving various inducers, including neurotrophins, hormones, small molecule compounds and even nanoparticles, suggesting excellent generalizability and applicability. We anticipate that our accurate and robust deep learning-based platform for NSCs differentiation identification will accelerate the progress of NSCs applications. The differentiation of neural stem cells (NSCs) into neurons is a critical part in devising potential cell-based therapeutic strategies for central nervous system diseases but NSCs fate determination and prediction is problematic. Here, the authors present a deep neural network model for predictable reliable identification of NSCs fate.
Collapse
Affiliation(s)
- Yanjing Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Ruiqi Huang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Simin Song
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, China. .,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China.
| | - Rongrong Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, China. .,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China.
| |
Collapse
|
49
|
Lei L, Zhao C, Zhu X, Yuan S, Dong X, Zuo Y, Liu H. Nonenzymatic Electrochemical Sensor for Wearable Interstitial Fluid Glucose Monitoring. ELECTROANAL 2021. [DOI: 10.1002/elan.202060601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Xiaofei Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Shuai Yuan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Xing Dong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Yinxiu Zuo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
| |
Collapse
|
50
|
Yadav K, Ali SA, Mohanty AK, Muthusamy E, Subaharan K, Kaul G. MSN, MWCNT and ZnO nanoparticle-induced CHO-K1 cell polarisation is linked to cytoskeleton ablation. J Nanobiotechnology 2021; 19:45. [PMID: 33579304 PMCID: PMC7881565 DOI: 10.1186/s12951-021-00779-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/19/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The cellular response to nanoparticles (NPs) for the mechanical clue and biochemical changes are unexplored. Here, we provide the comprehensive analysis of the Chinese Hamster Ovary (CHO-K1) cell line to study cell behaviour following the exposure of mesoporous silica nanoparticle (MSN), multiwall carbon nanotubes (MWCNTs), and zinc oxide (ZnO) NPs. RESULTS Through the high-throughput proteomic study, we observed that the effect of NPs is alone not restricted to cell viability but also on cell polarisation. In the case of MSN, no drastic changes were observed in cellular morphology, but it upregulated chaperons that might prevent protein aggregation. However, MWCNT showed elongated cell appearance with numerous cytoplasmic vacuoles, and induce lamellipodia formation through actin polymerisation. The cytoskeleton remodelling was accompanied by the increased expression of Dlc-1, cofilin and Rac1 proteins. While ZnO NPs resulted in the rounded cell morphology along with nuclear abnormalities. The proteome analysis revealed that UBXN11 control cell roundness and DOCK3 leads to actin stress fibre formation and finally, loss of cell adhesion. It enhances the expression of catastrophic DNA damage and apoptotic proteins, which was unrecoverable even after 72 h, as confirmed by the colony formation assay. All three NPs trigger over-expression of the endocytic pathway, ubiquitination, and proteasomal complex proteins. The data indicate that ZnO and MSN entered into the cells through clathrin-mediated pathways; whereas, MWCNT invades through ER-mediated phagocytosis. CONCLUSIONS Based on the incubation and concentration of NPs, our work provides evidence for the activation of Rac-Rho signalling pathway to alter cytoskeleton dynamics. Our results assist as a sensitive early molecular readout for nanosafety assessment.
Collapse
Affiliation(s)
- Karmveer Yadav
- N.T. Lab-1, Division of Animal Biochemistry, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Ashok Kumar Mohanty
- Cell Biology and Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Eshwarmoorthy Muthusamy
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Kesavan Subaharan
- Division of Germplasm, Conservation and Utilisation, National Bureau of Agricultural Insect Resources, Bangalore, 560024, India
| | - Gautam Kaul
- N.T. Lab-1, Division of Animal Biochemistry, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| |
Collapse
|