1
|
Jeong JY, Kim J, Kim M, Shim SH, Park C, Jung S, Jung H. Effects of Increasing Oral Deoxynivalenol Gavage on Growth Performance, Blood Biochemistry, Metabolism, Histology, and Microbiome in Rats. BIOLOGY 2024; 13:836. [PMID: 39452144 PMCID: PMC11505534 DOI: 10.3390/biology13100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Mycotoxin-contaminated feed or food can affect physiological responses and cause illnesses in humans and animals. In this study, we evaluated the effects of deoxynivalenol (DON) toxicity on the growth performance, blood biochemistry, histology, microbiome, and metabolism of rats fed with different toxin concentrations. After 1 week of acclimatization, seven-week-old male rats received 0.9% saline as a control, 0.02 mg/kg DON as T1, and 0.2 mg/kg DON as T2 via oral gavage for 4 weeks. The final body weight of the T2 group was significantly lower than that of the control and T1; however, the average daily gain, feed intake, and feed conversion ratio did not differ. Fibrosis and apoptosis were observed in various tissues as DON concentration increased. Creatinine and alkaline phosphatase levels were significantly lower in the DON-treated group than in the control. Firmicutes and Desulfobacterota phyla dominated the cecum, whereas those in the feces were Proteobacteria and Bacteroidetes. Metabolomic profiling showed phenylalanine, tyrosine, and tryptophan biosynthesis as the most prominent pathways. Overall, our results suggest that low-dose and short-term DON exposure can trigger several adverse effects in rats. Dietary toxicants in rats may explain the physiological effects associated with the metabolism commonly reported in animals.
Collapse
Affiliation(s)
- Jin-Young Jeong
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.); (S.-H.S.); (H.J.)
| | - Junsik Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.); (S.-H.S.); (H.J.)
| | - Minji Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.); (S.-H.S.); (H.J.)
| | - Seong-Hoon Shim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.); (S.-H.S.); (H.J.)
| | - Cheolju Park
- Division of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (C.P.); (S.J.)
| | - Sungju Jung
- Division of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (C.P.); (S.J.)
| | - Hyunjung Jung
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.); (S.-H.S.); (H.J.)
| |
Collapse
|
2
|
Qin YC, Jin CL, Hu TC, Zhou JY, Wang XF, Wang XQ, Kong XF, Yan HC. Early Weaning Inhibits Intestinal Stem Cell Expansion to Disrupt the Intestinal Integrity of Duroc Piglets via Regulating the Keap1/Nrf2 Signaling. Antioxidants (Basel) 2024; 13:1188. [PMID: 39456442 PMCID: PMC11505184 DOI: 10.3390/antiox13101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
There are different stress resistance among different breeds of pigs. Changes in intestinal stem cells (ISCs) are still unclear among various breeds of piglets after early weaning. In the current study, Taoyuan Black and Duroc piglets were slaughtered at 21 days of age (early weaning day) and 24 days of age (3 days after early weaning) for 10 piglets in each group. The results showed that the rate of ISC-driven epithelial renewal in local Taoyuan Black pigs hardly changed after weaning for 3 days. However, weaning stress significantly reduced the weight of the duodenum and jejunum in Duroc piglets. Meanwhile, the jejunal villus height, tight junction-related proteins (ZO-1, Occludin, and Claudin1), as well as the trans-epithelial electrical resistance (TEER) values, were down-regulated after weaning for 3 days in Duroc piglets. Moreover, compared with Unweaned Duroc piglets, the numbers of Olfm4+ ISC cells, PCNA+ mitotic cells, SOX9+ secretory progenitor cells, and Villin+ absorptive cells in the jejunum were reduced significantly 3 days after weaning. And ex vivo jejunal crypt-derived organoids exhibited growth disadvantages in weaned Duroc piglets. Notably, the Keap1/Nrf2 signaling activities and the expression of HO-1 were significantly depressed in weaned Duroc piglets compared to Unweaned Duroc piglets. Thus, we can conclude that ISCs of Duroc piglets were more sensitive to weaning stress injury than Taoyuan Black piglets, and Keap1/Nrf2 signaling is involved in this process.
Collapse
Affiliation(s)
- Ying-Chao Qin
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Cheng-Long Jin
- Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China;
| | - Ting-Cai Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Jia-Yi Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Xiao-Fan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Xiu-Qi Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Xiang-Feng Kong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hui-Chao Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| |
Collapse
|
3
|
Alharbi K, Ekesi N, Hasan A, Asnayanti A, Liu J, Murugesan R, Ramirez S, Rochell S, Kidd MT, Alrubaye A. Deoxynivalenol and fumonisin predispose broilers to bacterial chondronecrosis with osteomyelitis lameness. Poult Sci 2024; 103:103598. [PMID: 38489885 PMCID: PMC10951539 DOI: 10.1016/j.psj.2024.103598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Bacterial chondronecrosis with osteomyelitis (BCO) lameness is the most critical animal health and welfare issue facing the broiler industry worldwide. It is estimated that 1 to 2% of bird condemnation at marketing age is caused by BCO lameness, resulting in tens of millions of dollars in annual losses. Fast-growing broilers are prone to mechanical stress that triggers bacterial translocation across epithelial barriers into the bloodstream, followed by bacterial colonization in the growth plate of long bones, and eventually, bone necrosis and lameness. Mycotoxins (MTX) are secondary metabolites produced naturally by microfungi, of which deoxynivalenol (DON), fumonisin (FUM), and zearalenone are the most prevalent in corn and soybean-meal-based diets. The presence of these mycotoxins in feed has been proven to reduce the barrier strength of the intestinal tracts and trigger immunosuppressive effects. In this study, we investigated the effects of the DON and FUM-contaminated feeds on the incidence of BCO lameness in broilers reared in both wire- and litter-floors. 720 one-day-old broiler chicks were assigned to the 2 × 2 factorial design: 2 MTX diets containing DON and FUM on wire flooring (MTX-W) and litter flooring (MTX-L), and 2 diets without MTX contamination on control wire flooring (CW) and control litter flooring (CL). Throughout the trial, the cumulative incidence of lameness per treatment was assessed by necropsying the lame birds. Birds in the MTX-W group had a higher incidence of lameness compared to those in CW (73.3% vs. 62.0%) (P < 0.05), and birds in the MTX-L group had a higher incidence of lameness compared to birds in CL (54.0% vs. 34.0%) (P < 0.05). MTX elicited net increases in BCO to a greater degree on litter (+20%) than on wire flooring (+12%). The increased incidence of BCO lameness in the MTX-W coincided with increased intestinal permeability supporting a correlation between intestinal barrier integrity and BCO lameness. To conclude, DON and FUM are predisposing factors for increasing BCO. However, no significant interaction exists between the diet and floor types in inducing lameness in broilers.
Collapse
Affiliation(s)
- Khawla Alharbi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA; Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Nnamdi Ekesi
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK, USA
| | - Amer Hasan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA; Department of Veterinary Public Health, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Andi Asnayanti
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA; Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jundi Liu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Raj Murugesan
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | | | - Samuel Rochell
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Michael T Kidd
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Adnan Alrubaye
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA; Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA.
| |
Collapse
|
4
|
Wang Q, Wang Y, Wang Y, Zhang Q, Mi J, Ma Q, Li T, Huang S. Agaro-oligosaccharides mitigate deoxynivalenol-induced intestinal inflammation by regulating gut microbiota and enhancing intestinal barrier function in mice. Food Funct 2024; 15:3380-3394. [PMID: 38498054 DOI: 10.1039/d3fo04898e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Agarose-derived agaro-oligosaccharides (AgaroS) have been extensively studied in terms of structures and bioactivities; they reportedly possess antioxidant and anti-inflammatory activities that maintain intestinal homeostasis and host health. However, the protective effects of AgaroS on deoxynivalenol (DON)-induced intestinal dysfunction remain unclear. We investigated the effects of AgaroS on DON-induced intestinal dysfunction in mice and explored the underlying protective mechanisms. In total, 32 mice were randomly allocated to four treatments (n = 8 each) for 28 days. From day 1 to day 21, the control (CON) and DON groups received oral phosphate-buffered saline (200 μL per day); the AgaroS and AgaroS + DON groups received 200 mg AgaroS per kg body weight once daily by orogastric gavage. Experimental intestinal injury was induced by adding DON (4.8 mg per kg body weight) via gavage from day 21 to day 28. Phosphate-buffered saline was administered once daily by gavage in the CON and AgaroS groups. Herein, AgaroS supplementation led to a higher final body weight and smaller body weight loss and a lower concentration of plasma inflammatory cytokines, compared with the DON group. The DON group showed a significantly reduced ileal villus height and villus height/crypt depth, compared with the CON and AgaroS + DON groups. However, AgaroS supplementation improved DON-induced intestinal injury in mice. Compared with the DON group, ileal and colonic protein expression levels of claudin, occludin, Ki67, and mucin2 were significantly higher in the AgaroS supplementation group. Colonic levels of the anti-inflammatory cytokine IL-1β tended to be higher in the DON group than in the AgaroS + DON group. AgaroS altered the gut microbiota composition, accompanied by increased production of short-chain fatty acids in mice. In conclusion, our findings highlight a promising anti-mycotoxin approach whereby AgaroS alleviate DON-induced intestinal inflammation by modulating intestinal barrier functional integrity and gut microbiota in mice.
Collapse
Affiliation(s)
- Qingfeng Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Yanwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
- School of Life Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Qiyue Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 21001, Liaoning, China
| | - Jinqiu Mi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Tiantian Li
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| |
Collapse
|
5
|
Cai P, Liu S, Tu Y, Shan T. Toxicity, biodegradation, and nutritional intervention mechanism of zearalenone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168648. [PMID: 37992844 DOI: 10.1016/j.scitotenv.2023.168648] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Zearalenone (ZEA), a global mycotoxin commonly found in a variety of grain products and animal feed, causes damage to the gastrointestinal tract, immune organs, liver and reproductive system. Many treatments, including physical, chemical and biological methods, have been reported for the degradation of ZEA. Each degradation method has different degradation efficacies and distinct mechanisms. In this article, the global pollution status, hazard and toxicity of ZEA are summarized. We also review the biological detoxification methods and nutritional regulation strategies for alleviating the toxicity of ZEA. Moreover, we discuss the molecular detoxification mechanism of ZEA to help explore more efficient detoxification methods to better reduce the global pollution and hazard of ZEA.
Collapse
Affiliation(s)
- Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
6
|
Murtaza B, Wang L, Li X, Nawaz MY, Saleemi MK, Khatoon A, Yongping X. Recalling the reported toxicity assessment of deoxynivalenol, mitigating strategies and its toxicity mechanisms: Comprehensive review. Chem Biol Interact 2024; 387:110799. [PMID: 37967807 DOI: 10.1016/j.cbi.2023.110799] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Mycotoxins frequently contaminate a variety of food items, posing significant concerns for both food safety and public health. The adverse consequences linked to poisoning from these substances encompass symptoms such as vomiting, loss of appetite, diarrhea, the potential for cancer development, impairments to the immune system, disruptions in neuroendocrine function, genetic damage, and, in severe cases, fatality. The deoxynivalenol (DON) raises significant concerns for both food safety and human health, particularly due to its potential harm to vital organs in the body. It is one of the most prevalent fungal contaminants found in edible items used by humans and animals globally. The presence of harmful mycotoxins, including DON, in food has caused widespread worry. Altered versions of DON have arisen as possible risks to the environment and well-being, as they exhibit a greater propensity to revert back to the original mycotoxins. This can result in the buildup of mycotoxins in both animals and humans, underscoring the pressing requirement for additional investigation into the adverse consequences of these modified mycotoxins. Furthermore, due to the lack of sufficient safety data, accurately evaluating the risk posed by modified mycotoxins remains challenging. Our review study delves into conjugated forms of DON, exploring its structure, toxicity, control strategies, and a novel animal model for assessing its toxicity. Various toxicities, such as acute, sub-acute, chronic, and cellular, are proposed as potential mechanisms contributing to the toxicity of conjugated forms of DON. Additionally, the study offers an overview of DON's toxicity mechanisms and discusses its widespread presence worldwide. A thorough exploration of the health risk evaluation associated with conjugated form of DON is also provided in this discussion.
Collapse
Affiliation(s)
- Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | | | | | - Aisha Khatoon
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Xu Yongping
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China.
| |
Collapse
|
7
|
Sauvé B, Guay F, Létourneau Montminy MP. Impact of deoxynivalenol in a calcium depletion and repletion nutritional strategy in piglets. J Anim Sci 2024; 102:skae099. [PMID: 38613476 PMCID: PMC11056887 DOI: 10.1093/jas/skae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/12/2024] [Indexed: 04/15/2024] Open
Abstract
This study evaluated the effect of dietary calcium (Ca) levels and deoxynivalenol (DON) contamination on Ca and phosphorus (P) utilization and bone mineralization in piglets. During an initial 13-d depletion phase, 64 piglets (15.7 ± 0.7 kg) received a control (DON-) or DON-contaminated treatment (DON+, 2.7 mg DON/kg) with either a low Ca (Ca-, 0.39%) or normal Ca level (Ca+, 0.65%) with a constant digestible P level (0.40%). A second group of 16 piglets received DON- or DON+ treatments for 9 d for gene expression analysis. During the subsequent 14-d repletion phase, all piglets were fed a Ca+ DON- diet containing 0.65% Ca and 0.35% digestible P without DON. After 5 d of the depletion phase, the absorption of P (DON × Ca; P < 0.05) and Ca was increased by the Ca- (P < 0.01) and DON+ (P < 0.01) diet. After 13 d, feed conversion ratio (P < 0.01) and average daily feed intake (P = 0.06) tended to decrease with the Ca- diet. The bone mineral content (BMC) gain was decreased by Ca, especially with Ca- DON + (DON × Ca, P < 0.05). The P absorption was increased by Ca- DON + (DON × Ca, P < 0.01), although the P retention efficiency was only increased by Ca+ DON + (DON × Ca, P < 0.001). The absorption of Ca was increased by DON+ (P < 0.001), and the Ca efficiency was increased by Ca- DON- (DON × Ca, P < 0.01). After 9 d, the gene expression of intestinal claudin 12 (P < 0.01) and CYP24A1 (P < 0.05), femur cortical RANKL (P < 0.05) and OPG (P = 0.06), and renal calbindin D9K (P < 0.05) and Klotho (P = 0.07) were decreased by DON+. The Ca (P = 0.06) and magnesium (P < 0.01) concentrations were decreased by DON+, and the Ca (P = 0.06) and P digestibility (P < 0.01) were increased. After the repletion phase, Ca- piglets recovered their BMC deficit, but not those receiving DON+ (DON × Ca; P = 0.06). The Ca (P < 0.05) and P (P = 0.06) retention efficiency tended to increase with Ca-. The absorption of Ca and P was increased by Ca- and DON+ (DON × Ca, P < 0.05). The results show that piglets increased their Ca and P utilization efficiency, allowing them to recover the BMC deficit caused by Ca-, but not when the piglets were exposed to DON. Pigs previously receiving Ca-deficient diet with DON still have lower body Ca and P, leading to elevated calcitriol concentrations and enhanced Ca and P intestinal absorption. The fact that DON decreased the expression of genes implicated in Ca intestinal and renal transport and P excretion after 9 d can potentially explain the reduced plasma Ca concentration.
Collapse
Affiliation(s)
- Béatrice Sauvé
- Department of Animal Sciences, Université Laval, Québec (QC), CanadaG1V 0A6
| | - Frédéric Guay
- Department of Animal Sciences, Université Laval, Québec (QC), CanadaG1V 0A6
| | | |
Collapse
|
8
|
Zhang L, Huang S, Ma K, Chen Y, Wei T, Ye H, Wu J, Liu L, Deng J, Luo H, Tan C. Retinoic Acid-PPARα Mediates β-Carotene Resistance to Placental Dysfunction Induced by Deoxynivalenol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18696-18708. [PMID: 38012857 DOI: 10.1021/acs.jafc.3c06647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Deoxynivalenol (DON), one of the most polluted mycotoxins in the environment and food, has been proven to have strong embryonic and reproductive toxicities. However, the effects of DON on placental impairment and effective interventions are still unclear. This study investigated the effect of β-carotene on placental functional impairment and its underlying molecular mechanism under DON exposure. Adverse pregnancy outcomes were caused by intraperitoneal injection of DON from 13.5 to 15.5 days of gestation in mice, resulting in higher enrichment of DON in placenta than in other tissue samples. Interestingly, 0.1% β-carotene dietary supplementation could significantly alleviate DON-induced pregnancy outcomes. Additionally, in vivo and in vitro placental barrier models demonstrated the association of DON-induced placental function impairment with placental permeability barrier disruption, angiogenesis impairment, and oxidative stress induction. Moreover, β-carotene regulated DON-induced placental toxicity by activating the expressions of claudin 1, zonula occludens-1, and vascular endothelial growth factor-A through retinoic acid-peroxisome proliferator-activated receptor α signaling.
Collapse
Affiliation(s)
- Longmiao Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Kaidi Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yiling Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Tanghong Wei
- Dekon Food and Agriculture Group, Chengdu, Sichuan 610225, China
| | - Hongxuan Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Junyi Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Liudan Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hefeng Luo
- Dekon Food and Agriculture Group, Chengdu, Sichuan 610225, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
9
|
Liao Y, Peng Z, Xu S, Meng Z, Li D, Zhou X, Zhang R, Shi S, Hao L, Liu L, Yang W. Deoxynivalenol Exposure Induced Colon Damage in Mice Independent of the Gut Microbiota. Mol Nutr Food Res 2023; 67:e2300317. [PMID: 37712110 DOI: 10.1002/mnfr.202300317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/05/2023] [Indexed: 09/16/2023]
Abstract
SCOPE To investigate whether deoxynivalenol (DON) can induce intestinal damage through gut microbiota in mice. METHODS AND RESULTS Mice are orally administered DON (1 mg kg-1 bw day-1 ) for 4 weeks, and then recipient mice receive fecal microbiota transplantation (FMT) from DON-exposed mice after antibiotic treatment. Furthermore, the mice are orally treated with DON (1 mg kg-1 bw day-1 ) for 4 weeks after antibiotic treatment. Histological damage, disruption of tight junction protein expression, and increased oxidative stress and apoptosis in the colon as well as higher serum lipopolysaccharides are observed after DON exposure. Moreover, DON exposure changes the composition and diversity of the gut microbiota as well as the contents of fecal metabolites (mainly bile acids). Differential metabolic pathways may be related to mitochondrial metabolism, apoptosis, and inflammation following DON exposure. However, only a decrease in mRNA levels of occludin and claudin-3 is observed in the colon of recipient mice after FMT. After depleting the gut microbiota in mice, DON exposure can also cause histological damage, disorders of tight junction protein expression, and increased oxidative stress and apoptosis in the colon. CONCLUSIONS DON exposure can induce colon damage in mice independent of the gut microbiota.
Collapse
Affiliation(s)
- Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, P. R. China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, P. R. China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, P. R. China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, P. R. China
| | - Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, P. R. China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, P. R. China
| | - Zitong Meng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, P. R. China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, P. R. China
| | - Dan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, P. R. China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, P. R. China
| | - Xiaolei Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, P. R. China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, P. R. China
| | - Rui Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Shaojun Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
- Union Jiangnan Hospital, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, P. R. China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, P. R. China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, P. R. China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, P. R. China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, P. R. China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, P. R. China
| |
Collapse
|
10
|
Garofalo M, Payros D, Taieb F, Oswald E, Nougayrède JP, Oswald IP. From ribosome to ribotoxins: understanding the toxicity of deoxynivalenol and Shiga toxin, two food borne toxins. Crit Rev Food Sci Nutr 2023:1-13. [PMID: 37862145 DOI: 10.1080/10408398.2023.2271101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Ribosomes that synthesize proteins are among the most central and evolutionarily conserved organelles. Given the key role of proteins in cellular functions, prokaryotic and eukaryotic pathogens have evolved potent toxins to inhibit ribosomal functions and weaken their host. Many of these ribotoxin-producing pathogens are associated with food. For example, food can be contaminated with bacterial pathogens that produce the ribotoxin Shiga toxin, but also with the fungal ribotoxin deoxynivalenol. Shiga toxin cleaves ribosomal RNA, while deoxynivalenol binds to and inhibits the peptidyl transferase center. Despite their distinct modes of action, both groups of ribotoxins hinder protein translation, but also trigger other comparable toxic effects, which depend or not on the activation of the ribotoxic stress response. Ribotoxic stress response-dependent effects include inflammation and apoptosis, whereas ribotoxic stress response-independent effects include endoplasmic reticulum stress, oxidative stress, and autophagy. For other effects, such as cell cycle arrest and cytoskeleton modulation, the involvement of the ribotoxic stress response is still controversial. Ribotoxins affect one organelle yet induce multiple toxic effects with multiple consequences for the cell. The ribosome can therefore be considered as the cellular "Achilles heel" targeted by food borne ribotoxins. Considering the high toxicity of ribotoxins, they pose a substantial health risk, as humans are highly susceptible to widespread exposure to these toxins through contaminated food sources.
Collapse
Affiliation(s)
- Marion Garofalo
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Delphine Payros
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Frederic Taieb
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Toulouse, France
| | | | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
11
|
Liu J, Zhou M, Xu Q, Lv Q, Guo J, Qin X, Xu X, Chen S, Zhao J, Xiao K, Liu Y. Quercetin Ameliorates Deoxynivalenol-Induced Intestinal Injury and Barrier Dysfunction Associated with Inhibiting Necroptosis Signaling Pathway in Weaned Pigs. Int J Mol Sci 2023; 24:15172. [PMID: 37894853 PMCID: PMC10607508 DOI: 10.3390/ijms242015172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Quercetin (Que) is a flavonol compound found in plants, which has a variety of biological activities. Necroptosis, a special form of programmed cell death, plays a vital role in the development of many gastrointestinal diseases. This study aimed to explore whether Que could attenuate the intestinal injury and barrier dysfunction of piglets after deoxynivalenol (DON) exposure through modulating the necroptosis signaling pathway. Firstly, twenty-four weaned piglets were used in a 2 × 2 factorial design and the main factors, including Que (basal diet or diet supplemented with 100 mg/kg Que) and DON exposure (control feed or feed contaminated with 4 mg/kg DON). After feeding for 21 d, piglets were killed for samples. Next, the intestinal porcine epithelial cell line (IPEC-1) was pretreated with or without Que (10 μmol/mL) in the presence or absence of a DON challenge (0.5 μg/mL). Dietary Que increased the body weight, average daily gain, and average daily feed intake (p < 0.05) through the trial. Que supplementation improved the villus height, and enhanced the intestinal barrier function (p < 0.05) indicated by the higher protein expression of occludin and claudin-1 (p < 0.05) in the jejunum of the weaned piglets after DON exposure. Dietary Que also down-regulated the protein abundance of total receptor interacting protein kinase 1 (t-RIP1), phosphorylated RIP1 (p-RIP1), p-RIP3, total mixed lineage kinase domain-like protein (t-MLKL), and p-MLKL (p < 0.05) in piglets after DON exposure. Moreover, Que pretreatment increased the cell viability and decreased the lactate dehydrogenase (LDH) activity (p < 0.05) in the supernatant of IPEC-1 cells after DON challenge. Que treatment also improved the epithelial barrier function indicated by a higher transepithelial electrical resistance (TEER) (p < 0.001), lower fluorescein isothiocyanate-labeled dextran (FD4) flux (p < 0.001), and better distribution of occludin and claudin-1 (p < 0.05) after DON challenge. Additionally, pretreatment with Que also inhibited the protein abundance of t-RIP1, p-RIP1, t-RIP3, p-RIP3, t-MLKL, and p-MLKL (p < 0.05) in IPEC-1 cells after DON challenge. In general, our data suggest that Que can ameliorate DON-induced intestinal injury and barrier dysfunction associated with suppressing the necroptosis signaling pathway.
Collapse
Affiliation(s)
- Jiahao Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Mohan Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Qilong Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Qingqing Lv
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Xu Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Xiaoye Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| |
Collapse
|
12
|
Zhou F, Zhang GD, Tan Y, Hu SA, Tang Q, Pei G. NOD-like receptors mediate homeostatic intestinal epithelial barrier function: promising therapeutic targets for inflammatory bowel disease. Therap Adv Gastroenterol 2023; 16:17562848231176889. [PMID: 37701792 PMCID: PMC10493068 DOI: 10.1177/17562848231176889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 05/01/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal inflammatory disease that involves host genetics, the microbiome, and inflammatory responses. The current consensus is that the disruption of the intestinal mucosal barrier is the core pathogenesis of IBD, including intestinal microbial factors, abnormal immune responses, and impaired intestinal mucosal barrier. Cumulative data show that nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are dominant mediators in maintaining the homeostasis of the intestinal mucosal barrier, which play critical roles in sensing the commensal microbiota, maintaining homeostasis, and regulating intestinal inflammation. Blocking NLRs inflammasome activation by botanicals may be a promising way to prevent IBD progression. In this review, we systematically introduce the multiple roles of NLRs in regulating intestinal mucosal barrier homeostasis and focus on summarizing the activities and potential mechanisms of natural products against IBD. Aiming to propose new directions on the pathogenesis and precise treatment of IBD.
Collapse
Affiliation(s)
- Feng Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| | | | - Yang Tan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Science and Technology Innovation Center/State Key Laboratory Breeding Base of Chinese Medicine Powder and Innovative Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shi An Hu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of TCM Prevention and Treatment of Depression Diseases, Changsha, China
| | - Qun Tang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Gang Pei
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| |
Collapse
|
13
|
Hasuda AL, Person E, Khoshal A, Bruel S, Puel S, Oswald IP, Bracarense APFRL, Pinton P. Emerging mycotoxins induce hepatotoxicity in pigs' precision-cut liver slices and HepG2 cells. Toxicon 2023; 231:107195. [PMID: 37315815 DOI: 10.1016/j.toxicon.2023.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Emerging mycotoxins are currently gaining more attention due to their high frequency of contamination in foods and grains. However, most data available in the literature are in vitro, with few in vivo results that prevent establishing their regulation. Beauvericin (BEA), enniatins (ENNs), emodin (EMO), apicidin (API) and aurofusarin (AFN) are emerging mycotoxins frequently found contaminating food and there is growing interest in studying their impact on the liver, a key organ in the metabolization of these components. We used an ex vivo model of precision-cut liver slices (PCLS) to verify morphological and transcriptional changes after acute exposure (4 h) to these mycotoxins. The human liver cell line HepG2 was used for comparison purposes. Most of the emerging mycotoxins were cytotoxic to the cells, except for AFN. In cells, BEA and ENNs were able to increase the expression of genes related to transcription factors, inflammation, and hepatic metabolism. In the explants, only ENN B1 led to significant changes in the morphology and expression of a few genes. Overall, our results demonstrate that BEA, ENNs, and API have the potential to be hepatotoxic.
Collapse
Affiliation(s)
- Amanda Lopes Hasuda
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, P.O. Box 10.011, Londrina, PR, 86057-970, Brazil; TOXALIM (UMR 1331), Institute National de Recherche pour L'Agriculture L'Alimentation et L'Environnement Centre Occitanie-Toulouse, UPS, 31027, Toulouse, France.
| | - Elodie Person
- TOXALIM (UMR 1331), Institute National de Recherche pour L'Agriculture L'Alimentation et L'Environnement Centre Occitanie-Toulouse, UPS, 31027, Toulouse, France.
| | - Abdullah Khoshal
- TOXALIM (UMR 1331), Institute National de Recherche pour L'Agriculture L'Alimentation et L'Environnement Centre Occitanie-Toulouse, UPS, 31027, Toulouse, France.
| | - Sandrine Bruel
- TOXALIM (UMR 1331), Institute National de Recherche pour L'Agriculture L'Alimentation et L'Environnement Centre Occitanie-Toulouse, UPS, 31027, Toulouse, France
| | - Sylvie Puel
- TOXALIM (UMR 1331), Institute National de Recherche pour L'Agriculture L'Alimentation et L'Environnement Centre Occitanie-Toulouse, UPS, 31027, Toulouse, France.
| | - Isabelle P Oswald
- TOXALIM (UMR 1331), Institute National de Recherche pour L'Agriculture L'Alimentation et L'Environnement Centre Occitanie-Toulouse, UPS, 31027, Toulouse, France.
| | - Ana Paula F R L Bracarense
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, P.O. Box 10.011, Londrina, PR, 86057-970, Brazil.
| | - Philippe Pinton
- TOXALIM (UMR 1331), Institute National de Recherche pour L'Agriculture L'Alimentation et L'Environnement Centre Occitanie-Toulouse, UPS, 31027, Toulouse, France.
| |
Collapse
|
14
|
Song X, Qiao L, Dou X, Chang J, Zhang Y, Xu C. Selenium nanoparticles alleviate deoxynivalenol-induced intestinal epithelial barrier dysfunction by regulating endoplasmic reticulum stress in IPEC-J2 cells. Toxicology 2023; 494:153593. [PMID: 37442268 DOI: 10.1016/j.tox.2023.153593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
The intestinal epithelial barrier plays a crucial role in maintaining human and animal health. Deoxynivalenol (DON) is a mycotoxin that contaminates cereal-based foods worldwide, which is a serious threat to human and animal health. This study was aimed to investigate the protective effect of selenium nanoparticles (SeNPs) synthesized by Lactobacillus casei ATCC 393 against DON-induced intestinal epithelial barrier dysfunction and its relationship with PERK-mediated signaling pathway. IPEC-J2 cells were randomly assigned to four groups: Con (vehicle), DON (0.6 μg DON/mL, 48 h), SeNPs+DON (8 μg Se/mL, 24 h; 0.6 μg DON/mL, 48 h) and SeNPs (8 μg Se/mL, 24 h). Compared with Con group, the transepithelial electrical resistance (TEER) and the tight junction proteins expression of IPEC-J2 cells exposed to DON was increased and decreased, respectively. In addition, DON exposure led to increased ROS content, decreased antioxidant capacity, structural damage of endoplasmic reticulum (ER), and activation of endoplasmic reticulum stress (ERS)-related protein kinase R-like endoplasmic reticulum kinase (PERK) pathway in IPEC-J2. Compared with SeNPs+DON group, SeNPs alleviated oxidative stress, ER structure damage and PERK pathway activation and the increase of intestinal epithelial permeability of IPEC-J2 cells exposed to DON. PERK agonist (CCT020312) and inhibitor (GSK2656157) treatments were performed to identify the role of PERK signaling pathway in the regulatory effects of SeNPs on DON-induced intestinal epithelial barrier dysfunction. Compared with SeNPs+DON group, PERK agonist increased the expression levels of p-PERK. PERK inhibitor exerted a similar inhibitory effect to SeNPs on the p-PERK expression. In conclusion, SeNPs effectively alleviate DON-induced intestinal epithelial barrier dysfunction in IPEC-J2 cells, which are closely associated with ERS-related PERK signaling pathway. This will provide a potential solution for prevention and control of DON in the aquaculture industry.
Collapse
Affiliation(s)
- Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jiajing Chang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yafeng Zhang
- No. 889, Xi'an Institute for Food and Drug, Cangtai West Road, Chang'an District, Xi'an, Shaanxi, 710700, China.
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
15
|
Ye L, Chen H, Tsim KWK, Shen X, Li X, Li X, Lei H, Liu Y. Aflatoxin B 1 Induces Inflammatory Liver Injury via Gut Microbiota in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37406338 DOI: 10.1021/acs.jafc.3c02617] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Aflatoxin B1 (AFB1), a potent food-borne hepatocarcinogen, is the most toxic aflatoxin that induces liver injury in humans and animals. Species-specific sensitivities of aflatoxins cannot be fully explained by differences in the metabolism of AFB1 between animal species. The gut microbiota are critical in inflammatory liver injury, but it remains to reveal the role of gut microbiota in AFB1-induced liver injury. Here, mice were gavaged with AFB1 for 28 days. Then, the modulation of gut microbiota, colonic barrier, and liver pyroptosis and inflammation were analyzed. To further verify the direct role of gut microbiota in AFB1-induced liver injury, mice were treated with antibiotic mixtures (ABXs) to deplete the microbiota, and fecal microbiota transplantation (FMT) was conducted. The treatment of AFB1 in mice altered gut microbiota composition, such as increasing the relative abundance of Bacteroides, Parabacteroides, and Lactobacillus, inducing colonic barrier dysfunction and promoting liver pyroptosis. In ABX-treated mice, AFB1 had little effect on the colonic barrier and liver pyroptosis. Notably, after FMT, in which the mice were colonized with gut microbiota from AFB1-treated mice, colonic barrier dysfunction, and liver pyroptosis and inflammation were obliviously identified. We proposed that the gut microbiota directly participated in AFB1-induced liver pyroptosis and inflammation. These results provide new insights into the mechanisms of AFB1 hepatotoxicity and pave a window for new targeted interventions to prevent or reduce AFB1 hepatotoxicity.
Collapse
Affiliation(s)
- Lin Ye
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Huodai Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Karl Wah Keung Tsim
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Xueling Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yunle Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
16
|
Li L, Xin J, Wang H, Wang Y, Peng W, Sun N, Huang H, Zhou Y, Liu X, Lin Y, Fang J, Jing B, Pan K, Zeng Y, Zeng D, Qin X, Bai Y, Ni X. Fluoride disrupts intestinal epithelial tight junction integrity through intracellular calcium-mediated RhoA/ROCK signaling and myosin light chain kinase. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114940. [PMID: 37099960 DOI: 10.1016/j.ecoenv.2023.114940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
Fluoride is a common contaminant of groundwater and agricultural commodity, which poses challenges to animal and human health. A wealth of research has demonstrated its detrimental effects on intestinal mucosal integrity; however, the underlying mechanisms remain obscure. This study aimed to investigate the role of the cytoskeleton in fluoride-induced barrier dysfunction. After sodium fluoride (NaF) treatment of the cultured Caco-2 cells, both cytotoxicity and cytomorphological changes (internal vacuoles or massive ablation) were observed. NaF lowered transepithelial electrical resistance (TEER) and enhanced paracellular permeation of fluorescein isothiocyanate dextran 4 (FD-4), indicating Caco-2 monolayers hyperpermeability. In the meantime, NaF treatment altered both the expression and distribution of the tight junction protein ZO-1. Fluoride exposure increased myosin light chain II (MLC2) phosphorylation and triggered actin filament (F-actin) remodeling. While inhibition of myosin II by Blebbistatin blocked NaF-induced barrier failure and ZO-1 discontinuity, the corresponding agonist Ionomycin had effects comparable to those of fluoride, suggesting that MLC2 serves as an effector. Given the mechanisms upstream of p-MLC2 regulation, further studies demonstrated that NaF activated RhoA/ROCK signaling pathway and myosin light chain kinase (MLCK), strikingly increasing the expression of both. Pharmacological inhibitors (Rhosin, Y-27632 and ML-7) reversed NaF-induced barrier breakdown and stress fiber formation. The role of intracellular calcium ions ([Ca2+]i) in NaF effects on Rho/ROCK pathway and MLCK was investigated. We found that NaF elevated [Ca2+]i, whereas chelator BAPTA-AM attenuated increased RhoA and MLCK expression as well as ZO-1 rupture, thus, restoring barrier function. Collectively, abovementioned results suggest that NaF induces barrier impairment via Ca2+-dependent RhoA/ROCK pathway and MLCK, which in turn triggers MLC2 phosphorylation and rearrangement of ZO-1 and F-actin. These results provide potential therapeutic targets for fluoride-induced intestinal injury.
Collapse
Affiliation(s)
- Lianxin Li
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinge Xin
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hesong Wang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yadong Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiqi Peng
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haonan Huang
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanxi Zhou
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xingmei Liu
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Fang
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiang Qin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Yang Bai
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Nossol C, Landgraf P, Barta-Böszörmenyi A, Kahlert S, Kluess J, Isermann B, Stork O, Dieterich DC, Dänicke S, Rothkötter HJ. Deoxynivalenol affects cell metabolism in vivo and inhibits protein synthesis in IPEC-1 cells. Mycotoxin Res 2023:10.1007/s12550-023-00489-z. [PMID: 37256505 PMCID: PMC10393834 DOI: 10.1007/s12550-023-00489-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Deoxynivalenol is present in forage crops in concentrations that endanger animal welfare but is also found in cereal-based food. The amphipathic nature of mycotoxins allows them to cross the cell membrane and interacts with different cell organelles such as mitochondria and ribosomes. In our study, we investigated the gene expression of several genes in vivo and in vitro that are related to the metabolism. We observed a significantly higher COX5B and MHCII expression in enterocytes of DON-fed pigs compared to CON-fed pigs and a marked increase in GAPDH and SLC7A11 in DON-fed pigs, but we could not confirm this in vitro in IPEC-1. In vitro, functional metabolic analyses were performed with a seahorse analyzer. A significant increase of non-mitochondrial respiration was observed in all DON-treatment groups (50-2000 ng/mL). The oxygen consumption of cells, which were cultured on membranes, was examined with a fiber-glass electrode. Here, we found significantly lower values for DON 200- and DON 2000-treatment group. The effect on ribosomes was investigated using biorthogonal non-canonical amino acid tagging (BONCAT) to tag newly synthesized proteins. A significantly reduced amount was found in almost all DON-treatment groups. Our findings clearly show that apical and basolateral DON-treatment of epithelial cell layer results in decreasing amounts of newly synthesized proteins. Furthermore, our study shows that DON affects enterocyte metabolism in vivo and in vitro.
Collapse
Affiliation(s)
- Constanze Nossol
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, Magdeburg, 39120, Germany.
| | - Peter Landgraf
- Institute of Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, Magdeburg, 39120, Germany
| | - Anikó Barta-Böszörmenyi
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, Magdeburg, 39120, Germany
| | - Stefan Kahlert
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, Magdeburg, 39120, Germany
| | | | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, 04103, Germany
| | - Oliver Stork
- Deparment of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, Magdeburg, 39120, Germany
| | - Daniela C Dieterich
- Institute of Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, Magdeburg, 39120, Germany
| | - Sven Dänicke
- Friedrich-Loeffler Institute, Braunschweig, 38116, Germany
| | - H-J Rothkötter
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, Magdeburg, 39120, Germany
| |
Collapse
|
18
|
Xie Z, Zhang G, Liu R, Wang Y, Tsapieva AN, Zhang L, Han J. Heat-Killed Lacticaseibacillus paracasei Repairs Lipopolysaccharide-Induced Intestinal Epithelial Barrier Damage via MLCK/MLC Pathway Activation. Nutrients 2023; 15:nu15071758. [PMID: 37049598 PMCID: PMC10097264 DOI: 10.3390/nu15071758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Intestinal epithelial barrier function is closely associated with the development of many intestinal diseases. Heat-killed Lacticaseibacillus paracasei (HK-LP) has been shown to improve intestinal health and enhance immunity. However, the function of HK-LP in the intestinal barrier is still unclear. This study characterized the inflammatory effects of seven HK-LP (1 μg/mL) on the intestinal barrier using lipopolysaccharide (LPS) (100 μg/mL)-induced Caco-2 cells. In this study, HK-LP 6105, 6115, and 6235 were selected, and their effects on the modulation of inflammatory factors and tight junction protein expression (claudin-1, zona occludens-1, and occludin) were compared. The effect of different cultivation times (18 and 48 h) was investigated in response to LPS-induced intestinal epithelial barrier dysfunction. Our results showed that HK-LP 6105, 6115, and 6235 improved LPS-induced intestinal barrier permeability reduction and transepithelial resistance. Furthermore, HK-LP 6105, 6115, and 6235 inhibited the pro-inflammatory factors (TNF-α, IL-1β, IL-6) and increased the expression of the anti-inflammatory factors (IL-4, IL-10, and TGF-β). HK-LP 6105, 6115, and 6235 ameliorated the inflammatory response. It inhibited the nuclear factor kappa B (NF-κB) signaling pathway-mediated myosin light chain (MLC)/MLC kinase signaling pathway by downregulating the Toll-like receptor 4 (TLR4)/NF-κB pathway. Thus, the results suggest that HK-LP 6150, 6115, and 6235 may improve intestinal health by regulating inflammation and TJ proteins. Postbiotics produced by these strains exhibit anti-inflammatory properties that can protect the intestinal barrier.
Collapse
Affiliation(s)
- Zhixin Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Gongsheng Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Rongxu Liu
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
| | - Yucong Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Anna N Tsapieva
- Department of Molecular Microbiology, FSBSI Institute of Experimental Medicine, Acad.,197376 St. Petersburg, Russia
| | - Lili Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
| |
Collapse
|
19
|
Pöschl F, Höher T, Pirklbauer S, Wolinski H, Lienhart L, Ressler M, Riederer M. Dose and route dependent effects of the mycotoxin deoxynivalenol in a 3D gut-on-a-chip model with flow. Toxicol In Vitro 2023; 88:105563. [PMID: 36709839 DOI: 10.1016/j.tiv.2023.105563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
Deoxynivalenol (DON) is the most prevalent mycotoxin in human food and is ubiquitously detected in human bodyfluids. DON leads to intestinal barrier dysfunction, as observed from animal- and cell culture models with the known disadvantages. Here we present the effects of DON in a gut-on-a-chip model, as the first study incorporating the effects of intestinal flow. Using the OrganoPlate 3-lane, Caco-2 cells were seeded against an extracellular matrix (ECM) and formed leak tight tubules. DON was then applied in different concentrations (3 μM to 300 μM) via the apical or the basolateral channel. Permeability was assessed using continuous TEER and barrier integrity assays (BIA). Zonulin-1, toxicity (LDH) and proinflammatory status (IL-8) was analyzed. DON exposure led to a dose dependent decrease in para-and transcellular barrier integrity, which was more sensitive to basal than apical application (route). Timelaps/Continuous TEER measurements however revealed bidirectional effects, with even TEER-inducing effects of lower concentrations (until 10 μM). IL-8 secretion into luminal supernatants was only induced by apical DON. Attributed to the flow, the barrier-disintegrating effects of DON start at higher concentrations than in other culture models. The barrier was more sensitive to basolateral DON, even though DON had to pass the ECM; and IL-8 secretion was independent of TEER-alterations. Thus, the gut-on-a chip model might be a good alternative to further characterize the bidirectional effects of DON with reasonable throughput incorporating flow.
Collapse
Affiliation(s)
- Franziska Pöschl
- Institute of Biomedical Science, University of Applied Sciences, JOANNEUM, Graz, Austria.
| | - Theresa Höher
- Institute of Biomedical Science, University of Applied Sciences, JOANNEUM, Graz, Austria.
| | - Sarah Pirklbauer
- Institute of Biomedical Science, University of Applied Sciences, JOANNEUM, Graz, Austria.
| | - Heimo Wolinski
- Institute of Molecular Biosciences, BioTechMed-Graz, University of Graz, Graz, Austria.
| | - Lisa Lienhart
- Institute of Biomedical Science, University of Applied Sciences, JOANNEUM, Graz, Austria.
| | - Miriam Ressler
- Institute of Biomedical Science, University of Applied Sciences, JOANNEUM, Graz, Austria.
| | - Monika Riederer
- Institute of Biomedical Science, University of Applied Sciences, JOANNEUM, Graz, Austria.
| |
Collapse
|
20
|
Liu JD, Shanmugasundaram R, Doupovec B, Schatzmayr D, Murugesan GR, Applegate TJ. Short-term exposure to fumonisins and deoxynivalenol, on broiler growth performance and cecal Salmonella load during experimental Salmonella Enteritidis infection. Poult Sci 2023; 102:102677. [PMID: 37104905 PMCID: PMC10160587 DOI: 10.1016/j.psj.2023.102677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Fumonisins (FUM) and deoxynivalenol (DON) are two common mycotoxins in poultry feed. Salmonella enterica ser. Enteritidis (S. Enteritidis) is a primary foodborne bacterium in broilers. This trial was conducted to evaluate the effects of naturally occurring FUM and DON and their combination at subclinical doses on broiler performance during a S. Enteritidis challenge. The experiment consisted of five treatments: NCC, no-challenge no-mycotoxin treatment; CC, Salmonella challenge + no-mycotoxin treatment; DON, DON 0.6 mg/kg + Salmonella challenge; FUM, FUM 14 mg/kg + Salmonella challenge; DON + FUM + T-2 + neosolaniol, DON 0.6 mg/kg + FUM 14 mg/kg + T-2 toxin 0.6 mg/kg + 0.8 mg/kg neosolaniol + Salmonella challenge. On d 4, birds were challenged with either 0 or 1 × 109 CFU/mL S. Enteritidis orally. There were no significant effects on growth performance among treatments at 0, 3, 7, and 14 d of post-inoculation (dpi). On 14 dpi, the combined DON + FUM + T-2 + neosolaniol significantly increased the Salmonella load by 1.5 logs compared to the control groups (P < 0.05). FUM significantly increased the cecal tonsil IL-10 gene expression by 1.2-fold at 7 dpi (P < 0.05) and downregulated TNF-α by 1.8-fold on 14 dpi compared to the control, nonchallenge groups (P < 0.05). On 7 dpi, the combined DON + FUM + T-2 + neosolaniol reduced occludin by 4.4-fold (P < 0.05) when compared to the control groups. Similarly, combined DON + FUM+ T-2 + neosolaniol decreased zona-occluden transcription by 2.3 and 7.6-fold on 3 and 14 dpi, respectively (P < 0.05). Furthermore, combined DON + FUM + T-2 + neosolaniol decreased Claudin-1 by 2.2-fold and Claudin-4 by 5.1-fold on 14 dpi when compared to the control groups (P < 0.05). In conclusion, short-term exposure to a subclinical dose of combined DON + FUM + T-2 + neosolaniol had an impact on broiler intestinal tight junction proteins and cecal Salmonella abundance under experimental Salmonella challenge.
Collapse
Affiliation(s)
- J D Liu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - R Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA.
| | - B Doupovec
- DSM - BIOMIN Research Center, Tulln 3430, Austria
| | - D Schatzmayr
- DSM - BIOMIN Research Center, Tulln 3430, Austria
| | | | - T J Applegate
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
21
|
Wilson VC, McCormick SP, Kerr BJ. Feeding thermally processed spray-dried egg whites, singly or in combination with 15-acetyldeoxynivalenol or peroxidized soybean oil on growth performance, digestibility, intestinal morphology, and oxidative status in nursery pigs. J Anim Sci 2023; 101:skac429. [PMID: 36610406 PMCID: PMC9904174 DOI: 10.1093/jas/skac429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Two experiments (EXP) determined the susceptibility of spray-dried egg white (SDEW) to oxidation (heating at 100 °C for 72 h; thermally processed, TP) and whether feeding TP-SDEW, 15-acetyldeoxynivalenol (15-ADON), or peroxidized soybean oil (PSO), singularly or in combination, would affect pig performance, intestinal morphology, digestibility, and markers of oxidative stress in nursery pigs. In EXP 1, 32 pigs (7.14 kg body weight, BW) were placed individually into pens and fed diets containing either 12% SDEW, 6% TP-SDEW plus 6% SDEW, or 12% TP-SDEW. Performance was measured at the end of the 24-d feeding period with biological samples harvested following euthanasia. In EXP 2, 64 pigs (10.6 kg BW) were placed individually into pens and fed diets containing 7.5% soybean oil or PSO, 10% SDEW or TP-SDEW, and diets without or with 3 mg 15-ADON/kg diet in a 2 × 2 × 2 factorial arrangement. Performance was measured at the end of the 28-d feeding period with biological samples harvested following euthanasia. In EXP 1, dietary treatment did not affect pig performance, apparent ileal digestibility of amino acids (AAs), apparent total tract digestibility (ATTD) of gross energy (GE) or nitrogen (N), ileal crypt depth, or villi height:crypt depth ratio (P > 0.05). The effects of feeding TP-SDEW on protein damage in the plasma and liver (P < 0.05) were variable. In EXP 2, there were no three-way interactions and only one two-way interactions among dietary treatments on parameters evaluated. There was no effect of feeding TP-SDEW on ATTD of GE or N, intestinal morphology, or on oxidative markers in the plasma, liver, or ileum (P > 0.05). There was no effect of feeding diets containing added 15-ADON on ATTD of GE, ileal AA digestibility, intestinal morphology, oxidative markers in the plasma, liver, or ileum, or pig performance (P > 0.05). Feeding pigs diets containing PSO resulted in reduced ATTD of GE and N, plasma vitamin E concentration, and pig performance (P < 0.01) but did not affect intestinal morphology or oxidative markers in the liver or ileum (P > 0.05). In conclusion, it was difficult to induce protein oxidation in SDEW and when achieved there were limited effects on performance, digestibility, intestinal morphology, and oxidative status. Furthermore, singly adding 15-A-DON to a diet had no effect on the animal. At last, adding PSO reduces animal performance, but has limited effect on digestibility, intestinal morphology, and oxidative status in nursery pigs.
Collapse
Affiliation(s)
- Victoria C Wilson
- Department of Animal Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Susan P McCormick
- USDA-ARS National Center for Agriculture Utilization Research, Peoria, IL 61604, USA
| | - Brian J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, Iowa 50011, USA
| |
Collapse
|
22
|
Hosseini A, Alipour A, Baradaran Rahimi V, Askari VR. A comprehensive and mechanistic review on protective effects of kaempferol against natural and chemical toxins: Role of NF-κB inhibition and Nrf2 activation. Biofactors 2022; 49:322-350. [PMID: 36471898 DOI: 10.1002/biof.1923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Different toxins, including chemicals and natural, can be entered from various routes and influence human health. Herbal medicines and their active components can attenuate the toxicity of agents via multiple mechanisms. For example, kaempferol, as a flavonoid, can be found in fruits and vegetables, and has an essential role in improving disorders such as cardiovascular disorders, neurological diseases, cancer, pain, and inflammation situations. The beneficial effects of kaempferol may be related to the inhibition of oxidative stress, attenuation of inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2 (COX-2) and nuclear factor ĸB (NF-ĸB) as well as the modulation of apoptosis and mitogen-activated protein kinase (MAPK) signaling pathways. This flavonoid boasts a wide spectrum of toxin targeting effects in tissue fibrosis, inflammation, and oxidative stress thus shows promising protective effects against natural and chemical toxin induced hepatotoxicity, nephrotoxicity, cardiotoxicity, neurotoxicity, lung, and intestinal in the in vitro and in vivo setting. The most remarkable aspect of kaempferol is that it does not focus its efforts on just one organ or one molecular pathway. Although its significance as a treatment option remains questionable and requires more clinical studies, it seems to be a low-risk therapeutic option. It is crucial to emphasize that kaempferol's poor bioavailability is a significant barrier to its use as a therapeutic option. Nanotechnology can be a promising way to overcome this challenge, reviving optimism in using kaempferol as a viable treatment agent against toxin-induced disorders.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Centre of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alieh Alipour
- Pharmacological Research Centre of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Mo W, Liu G, Wu C, Jia G, Zhao H, Chen X, Wang J. STIM1 promotes IPEC-J2 porcine epithelial cell restitution by TRPC1 signaling. Anim Biotechnol 2022; 33:1492-1503. [PMID: 33866928 DOI: 10.1080/10495398.2021.1910044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Intestinal epithelial restitution is partly dependent on cell migration, which reseals superficial wounding after injury. Here, we tested the hypothesis that stromal interaction molecule 1(STIM1) regulates porcine intestinal epithelial cell migration by activating transient receptor potential canonical 1 (TRPC1) signaling. Results showed that the knockdown of STIM1 repressed cell migration after wounding, reduced the protein concentration of STIM1 and TRPC1, and decreased the inositol trisphosphate (IP3) content in IPEC-J2 cells (p < 0.05). However, overexpression of STIM1 obtained opposite results (p < 0.05). The inhibition of TRPC1 activity by treatment with SKF96365 in cells overexpressing wild-type and mutant STIM1 attenuated the STIM1 overexpression-induced increase of cell migration, STIM1, TRPC1 and IP3 (p < 0.05). In addition, polyamine depletion caused by α-difluoromethylornithine (DFMO) resulted in the decrease of above-mentioned parameters, and exogenous polyamine could attenuate the negative effects of DFMO on IPEC-J2 cells (p < 0.05). Moreover, the overexpression of STIM1 could rescue cell migration, the protein level of STIM1 and TRPC1, and IP3 content in polyamine-deficient IPEC-J2 cells (p < 0.05). These results indicated that STIM1 could enhance porcine intestinal epithelial cell migration via the TRPC1 signaling pathway. Inhibition of cell migration by polyamine depletion resulted from the reduction of STIM1 activity.
Collapse
Affiliation(s)
- Weiwei Mo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
24
|
Maidana L, de Souza M, Bracarense APFRL. Lactobacillus plantarum and Deoxynivalenol Detoxification: A Concise Review. J Food Prot 2022; 85:1815-1823. [PMID: 36173895 DOI: 10.4315/jfp-22-077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/25/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Mycotoxins are toxic secondary fungal metabolites that contaminate feeds, and their levels remain stable during feed processing. The economic impact of mycotoxins on animal production happens mainly due to losses related to direct effects on animal health and trade losses related to grain rejection. Deoxynivalenol (DON) is a trichothecene mycotoxin that has contaminated approximately 60% of the grains worldwide. Ingestion of DON induces many toxic effects on human and animal health. Detoxification strategies to decrease DON levels in food and feeds include physical and chemical methods; however, they are not very effective when incorporated into the industrial production process. A valuable alternative to achieve this aim is the use of lactic acid bacteria. These bacteria can control fungal growth and thus overcome DON production or can detoxify the mycotoxin through adsorption and biotransformation. Some Lactobacillus spp. strains, such as Lactobacillus plantarum, have demonstrated preventive effects against DON toxicity in poultry and swine. This beneficial effect is associated with a binding capacity of lactic acid bacteria cell wall peptidoglycan with mycotoxins. Moreover, several antifungal compounds have been isolated from L. plantarum supernatants, including lactic, acetic, caproic, phenyl lactic, 3-hydroxylated fatty, and cyclic dipeptide acids. Biotransformation of DON by L. plantarum into other products is also hypothesized, but the mechanism remains unknown. In this concise review, we highlight the use of L. plantarum as an alternative approach to reduce DON levels and toxicity. Although the action mechanism of L. plantarum is still not fully understood, these bacteria are a safe, efficient, and low-cost strategy to reduce economic losses from mycotoxin contamination cases. HIGHLIGHTS
Collapse
Affiliation(s)
- Leila Maidana
- Laboratory of Animal Pathology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil.,Department of Pathological Sciences, Veterinary Sciences Faculty, Universidad Nacional de Asunción, San Lorenzo, 111408, Paraguay
| | - Marielen de Souza
- Laboratory of Animal Pathology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| | - Ana Paula F R L Bracarense
- Laboratory of Animal Pathology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| |
Collapse
|
25
|
Xu R, Shandilya UK, Yiannikouris A, Karrow NA. Traditional and emerging Fusarium mycotoxins disrupt homeostasis of bovine mammary cells by altering cell permeability and innate immune function. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:388-397. [PMID: 36733782 PMCID: PMC9883199 DOI: 10.1016/j.aninu.2022.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 12/05/2022]
Abstract
High incidence of traditional and emerging Fusarium mycotoxins in cereal grains and silages can be a potential threat to feed safety and ruminants. Inadequate biodegradation of Fusarium mycotoxins by rumen microflora following ingestion of mycotoxin-contaminated feeds can lead to their circulatory transport to target tissues such as mammary gland. The bovine udder plays a pivotal role in maintaining milk yield and composition, thus, human health. However, toxic effects of Fusarium mycotoxins on bovine mammary gland are rarely studied. In this study, the bovine mammary epithelial cell line was used as an in-vitro model of bovine mammary epithelium to investigate effects of deoxynivalenol (DON), enniatin B (ENB) and beauvericin (BEA) on bovine mammary gland homeostasis. Results indicated that exposure to DON, ENB and BEA for 48 h significantly decreased cell viability in a concentration-dependent manner (P < 0.001). Exposure to DON at 0.39 μmol/L and BEA at 2.5 μmol/L for 48 h also decreased paracellular flux of FITC-40 kDa dextran (P < 0.05), whereas none of the mycotoxins affected transepithelial electrical resistance after 48 h exposure. The qPCR was performed for assessment of expression of gene coding tight junction (TJ) proteins, toll-like receptor 4 (TLR4) and cytokines after 4, 24 and 48 h of exposure. DON, ENB and BEA significantly upregulated the TJ protein zonula occludens-1, whereas markedly downregulated claudin 3 (P < 0.05). Exposure to DON at 1.35 μmol/L for 4 h significantly increased expression of occludin (P < 0.01). DON, ENB and BEA significant downregulated TLR4 (P < 0.05). In contrast, ENB markedly increased expression of cytokines interleukin-6 (IL-6) (P < 0.001), tumor necrosis factor α (TNF-a) (P < 0.05) and transforming growth factor-β (TGF-β) (P < 0.01). BEA significantly upregulated IL- 6 (P < 0.001) and TGF-β (P = 0.01), but downregulated TNF-α (P < 0.001). These results suggest that DON, ENB and BEA can disrupt mammary gland homeostasis by inducing cell death as well as altering its paracellular permeability and expression of genes involved in innate immune function.
Collapse
Affiliation(s)
- Ran Xu
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alexandros Yiannikouris
- Alltech Inc., Center for Animal Nutrigenomics and Applied Animal Nutrition, Nicholasville, KY 40356, USA
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada,Corresponding author.
| |
Collapse
|
26
|
Zearalenone Exposure Affects the Keap1-Nrf2 Signaling Pathway and Glucose Nutrient Absorption Related Genes of Porcine Jejunal Epithelial Cells. Toxins (Basel) 2022; 14:toxins14110793. [PMID: 36422967 PMCID: PMC9696209 DOI: 10.3390/toxins14110793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022] Open
Abstract
This study aims to examine the impact of zearalenone (ZEA) on glucose nutrient absorption and the role of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in zearalenone-induced oxidative stress of porcine jejunal epithelial cells (IPEC-J2). For 24 and 36 h, the IPEC-J2 cells were exposed to ZEA at concentrations of 0, 10, 20, and 40 (Control, ZEA10, ZEA20, ZEA40) mol/L. With the increase of ZEA concentration and prolongation of the action time, the apoptosis rate and malondialdehyde level and relative expression of sodium-dependent glucose co-transporter 1 (Sglt1), glucose transporter 2 (Glut2), Nrf2, quinone oxidoreductase 1 (Nqo1), and hemeoxygenase 1 (Ho1) at mRNA and protein level, fluorescence intensity of Nrf2 and reactive oxygen species increased significantly (p < 0.05), total superoxide dismutase and glutathione peroxidase activities and relative expression of Keap1 at mRNA and protein level, fluorescence intensity of Sglt1 around the cytoplasm and the cell membrane of IPEC-J2 reduced significantly (p < 0.05). In conclusion, ZEA can impact glucose absorption by affecting the expression of Sglt1 and Glut2, and ZEA can activate the Keap1-Nrf2 signaling pathway by enhancing Nrf2, Nqo1, and Ho1 expression of IPEC-J2.
Collapse
|
27
|
Does Deoxynivalenol Affect Amoxicillin and Doxycycline Absorption in the Gastrointestinal Tract? Ex Vivo Study on Swine Jejunum Mucosa Explants. Toxins (Basel) 2022; 14:toxins14110743. [PMID: 36355993 PMCID: PMC9697695 DOI: 10.3390/toxins14110743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 01/26/2023] Open
Abstract
The presence of deoxynivalenol (DON) in feed may increase intestinal barrier permeability. Disturbance of the intestinal barrier integrity may affect the absorption of antibiotics used in animals. Since the bioavailability of orally administered antibiotics significantly affects their efficacy and safety, it was decided to evaluate how DON influences the absorption of the most commonly used antibiotics in pigs, i.e., amoxicillin (AMX) and doxycycline (DOX). The studies were conducted using jejunal explants from adult pigs. Explants were incubated in Ussing chambers, in which a buffer containing DON (30 µg/mL), AMX (50 µg/mL), DOX (30 µg/mL), a combination of AMX + DON, or a combination of DOX + DON was used. Changes in transepithelial electrical resistance (TEER), the flux of transcellular and intracellular transport markers, and the flux of antibiotics across explants were measured. DON increased the permeability of small intestine explants, expressed by a reduction in TEER and an intensification of transcellular marker transport. DON did not affect AMX transport, but it accelerated DOX transport by approximately five times. The results suggest that DON inhibits the efflux transport of DOX to the intestinal lumen, and thus significantly changes its absorption from the gastrointestinal tract.
Collapse
|
28
|
Shi D, Shan Y, Zhu X, Wang H, Wu S, Wu Z, Bao W. Histone Methyltransferase MLL1 Mediates Oxidative Stress and Apoptosis upon Deoxynivalenol Exposure in the Intestinal Porcine Epithelial Cells. Antioxidants (Basel) 2022; 11:antiox11102006. [PMID: 36290729 PMCID: PMC9598511 DOI: 10.3390/antiox11102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/21/2022] Open
Abstract
Deoxynivalenol (DON), as a secondary metabolite of fungi, is continually detected in livestock feed and has a high risk to animals and humans. Moreover, pigs are very sensitive to DON. Recently, the role of histone modification has drawn people’s attention; however, few studies have elucidated how histone modification participates in the cytotoxicity or genotoxicity induced by mycotoxins. In this study, we used intestinal porcine epithelial cells (IPEC-J2 cells) as a model to DON exposure in vitro. Mixed lineage leukemia 1 (MLL1) regulates gene expression by exerting the role of methyltransferase. Our studies demonstrated that H3K4me3 enrichment was enhanced and MLL1 was highly upregulated upon 1 μg/mL DON exposure in IPEC-J2 cells. We found that the silencing of MLL1 resulted in increasing the apoptosis rate, arresting the cell cycle, and activating the mitogen-activated protein kinases (MAPKs) pathway. An RNA-sequencing analysis proved that differentially expressed genes (DEGs) were enriched in the cell cycle, apoptosis, and tumor necrosis factor (TNF) signaling pathway between the knockdown of MLL1 and negative control groups, which were associated with cytotoxicity induced by DON. In summary, these current results might provide new insight into how MLL1 regulates cytotoxic effects induced by DON via an epigenetic mechanism.
Collapse
Affiliation(s)
- Dongfeng Shi
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yiyi Shan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Zhu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.W.); (W.B.)
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.W.); (W.B.)
| |
Collapse
|
29
|
Possible Toxic Mechanisms of Deoxynivalenol (DON) Exposure to Intestinal Barrier Damage and Dysbiosis of the Gut Microbiota in Laying Hens. Toxins (Basel) 2022; 14:toxins14100682. [PMID: 36287951 PMCID: PMC9609298 DOI: 10.3390/toxins14100682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Deoxynivalenol is one the of most common mycotoxins in cereals and grains and causes a serious health threat to poultry and farm animals. Our previous study found that DON decreased the production performance of laying hens. It has been reported that DON could exert significant toxic effects on the intestinal barrier and microbiota. However, whether the decline of laying performance is related to intestinal barrier damage, and the underlying mechanisms of DON induced intestine function injury remain largely unclear in laying hens. In this study, 80 Hy-line brown laying hens at 26 weeks were randomly divided into 0, 1, 5 and 10 mg/kg.bw (body weight) DON daily for 6 weeks. The morphology of the duodenum, the expression of inflammation factors and tight junction proteins, and the diversity and abundance of microbiota were analyzed in different levels of DON treated to laying hens. The results demonstrated that the mucosal detachment and reduction of the villi number were presented in different DON treated groups with a dose-effect manner. Additionally, the genes expression of pro-inflammatory factors IL-1β, IL-8, TNF-α and anti-inflammatory factors IL-10 were increased or decreased at 5 and 10 mg/kg.bw DON groups, respectively. The levels of ZO-1 and claudin-1 expression were significantly decreased in 5 and 10 mg/kg.bw DON groups. Moreover, the alpha diversity including Chao, ACE and Shannon indices were all reduced in DON treated groups. At the phylum level, Firmicutes and Actinobacteria and Bacteroidetes, Proteobacteria, and Spirochaetes were decreased and increased in 10 mg/kg.bw DON group, respectively. At the genus levels, the relative abundance of Clostridium and Lactobacillus in 5 and 10 mg/kg.bw DON groups, and Alkanindiges and Spirochaeta in the 10 mg/kg.bw DON were significantly decreased and increased, respectively. Moreover, there were significant correlation between the expression of tight junction proteins and the relative abundance of Lactobacillus and Succinispira. These results indicated that DON exposure to the laying hens can induce the inflammation and disrupt intestinal tight junctions, suggesting that DON can directly damage barrier function, which may be closely related to the dysbiosis of intestinal microbiota.
Collapse
|
30
|
Wang L, Wang X, Chang J, Wang P, Liu C, Yuan L, Yin Q, Zhu Q, Lu F. Effect of the Combined Compound Probiotics with Glycyrrhinic Acid on Alleviating Cytotoxicity of IPEC-J2 Cells Induced by Multi-Mycotoxins. Toxins (Basel) 2022; 14:toxins14100670. [PMID: 36287939 PMCID: PMC9612255 DOI: 10.3390/toxins14100670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Aflatoxins B1 (AFB1), deoxynivalenol (DON) and zearalenone (ZEA) are the three most prevalent mycotoxins, whose contamination of food and feed is a severe worldwide problem. In order to alleviate the toxic effects of multi-mycotoxins (AFB1 + DON + ZEA, ADZ) on inflammation and apoptosis in swine jejunal epithelial cells (IPEC-J2), three species of probiotics (Bacillus subtilis, Saccharomyces cerevisiae and Pseudomonas lactis at 1 × 105 CFU/mL, respectively) were mixed together to make compound probiotics (CP), which were further combined with 400 μg/mL of glycyrrhinic acid (GA) to make bioactive materials (CGA). The experiment was divided into four groups, i.e., the control, ADZ, CGA and ADZ + CGA groups. The results showed that ADZ decreased cell viability and induced cytotoxicity, while CGA addition could alleviate ADZ-induced cytotoxicity. Moreover, the mRNA expressions of IL-8, TNF-α, NF-Κb, Bcl-2, Caspase-3, ZO-1, Occludin, Claudin-1 and ASCT2 genes, and protein expressions of TNF-α and Claudin-1 were significantly upregulated in ADZ group; while the mRNA abundances of IL-8, TNF-α, NF-Κb, Caspase-3, ASCT2 genes, and protein expressions of TNF-α and Claudin-1 were significantly downregulated in the ADZ + CGA group. In addition, the protein expressions of COX-2, ZO-1, and ASCT2 were significantly downregulated in the ADZ group, compared with the control group; whereas CGA co-incubation with ADZ could increase these protein expressions to recover to normal levels. This study indicated that CGA could alleviate cytotoxicity, apoptosis and inflammation in ADZ-induced IPEC-J2 cells and protect intestinal cell integrity from ADZ damages.
Collapse
Affiliation(s)
- Lijun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaomin Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Juan Chang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ping Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Chaoqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lin Yuan
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou 450003, China
| | - Qingqiang Yin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Correspondence:
| | - Qun Zhu
- Henan Delin Biological Product Co., Ltd., Xinxiang 453000, China
| | - Fushan Lu
- Henan Puai Feed Co., Ltd., Zhoukou 466000, China
| |
Collapse
|
31
|
Ochratoxin A and Citrinin Differentially Modulate Bovine Mammary Epithelial Cell Permeability and Innate Immune Function. Toxins (Basel) 2022; 14:toxins14090640. [PMID: 36136578 PMCID: PMC9502480 DOI: 10.3390/toxins14090640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Frequent detection of mycotoxins ochratoxin A (OTA) and citrinin (CIT) in ruminant feed and feedstuff can be a potential threat to feed safety, animal performance and health. Ineffective biodegradation of these mycotoxins by rumen microflora following ingestion of contaminated feeds can lead to their circulatory transport to tissues such as mammary gland as the result of their biodistribution throughout the body. The bovine mammary epithelium plays a pivotal role in maintaining milk yield and composition and contributes to innate immune defense of the udder. The present study is the first to investigate individual effects of OTA and CIT on barrier and innate immune functions of the bovine mammary epithelium using a bovine mammary epithelial cell line (MAC-T). Results indicated that OTA and CIT exposure for 48 h significantly decreased cell viability in a concentration-dependent manner (p < 0.05). A decrease in transepithelial electrical resistance and increase in paracellular flux of FITC-40 kDa dextran was significantly induced by OTA treatment (p < 0.05), but not by CIT after 48 h exposure. qPCR was performed for assessment of expression of tight-junction proteins, Toll-like receptor 4 (TLR4) and cytokines after 4, 24 and 48 h of exposure. Both OTA and CIT markedly downregulated expression of claudin 3 and occludin (p < 0.05), whereas CIT did not affect zonula occludens-1 expression. Expression of TLR4 was significantly upregulated by OTA (p < 0.001) but downregulated by CIT (p < 0.05) at 48 h. Expression of IL-6, TNF-a and TGF-β was significantly upregulated by OTA (p < 0.05), whereas IL-6 and TGF-β expression was downregulated by CIT (p < 0.01). These results suggest that OTA and CIT could potentially differentially modulate barrier and innate immune functions of mammary epithelium. The present study not only throws light on the individual toxicity of each mycotoxin on bovine mammary epithelium but also lays the foundation for future studies on the combined effects of the two mycotoxins.
Collapse
|
32
|
Zhang J, Liu X, Su Y, Li T. An update on T2-toxins: metabolism, immunotoxicity mechanism and human assessment exposure of intestinal microbiota. Heliyon 2022; 8:e10012. [PMID: 35928103 PMCID: PMC9344027 DOI: 10.1016/j.heliyon.2022.e10012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/26/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022] Open
Abstract
Mycotoxins are naturally produced secondary metabolites or low molecular organic compounds produced by fungus with high diversification, which cause mycotoxicosis (food contamination) in humans and animals. T-2 toxin is simply one of the metabolites belonging to fungi trichothecene mycotoxin. Specifically, Trichothecenes-2 (T-2) mycotoxin of genus fusarium is considered one of the most hotspot agricultural commodities and carcinogenic compounds worldwide. There are well-known examples of salmonellosis in mice and pigs, necrotic enteritis in chickens, catfish enteric septicemia and colibacillosis in pigs as T-2 toxic agent. On the other hand, it has shown a significant reduction in the Salmonella population's aptitude in the pig intestinal tract. Although the impact of the excess Fusarium contaminants on humans in creating infectious illness is less well-known, some toxins are harmful; for example, salmonellosis and colibacillosis have been frequently observed in humans. More than 20 different metabolites are synthesized and excreted after ingestion, but the T-2 toxin is one of the most protuberant metabolites. Less absorption of mycotoxins in intestinal tract results in biotransformation of toxic metabolites into less toxic variants. In addition to these, effects of microbiota on harmful mycotoxins are not limited to intestinal tract, it may harm the other human vital organs. However, detoxification of microbiota is considered as an alternative way to decontaminate the feed for both animals and humans. These transformations of toxic metabolites depend upon the formation of metabolites. This study is complete in all perspectives regarding interactions between microbiota and mycotoxins, their mechanism and practical applications based on experimental studies.
Collapse
|
33
|
Metabolism of versicolorin A, a genotoxic precursor of aflatoxin B1: Characterization of metabolites using in vitro production of standards. Food Chem Toxicol 2022; 167:113272. [PMID: 35803361 DOI: 10.1016/j.fct.2022.113272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022]
Abstract
The toxicity of mycotoxins containing bisfuranoid structures such as aflatoxin B1 (AFB1) depends largely on biotransformation processes. While the genotoxicity and mutagenicity of several bisfuranoid mycotoxins including AFB1 and sterigmatocystin have been linked to in vivo bioactivation of these molecules into reactive epoxide forms, the metabolites of genotoxic and mutagenic AFB1 precursor versicolorin A (VerA) have not yet been characterized. Because this molecule is not available commercially, our strategy was to produce a library of metabolites derived from the biotransformation of in-house purified VerA, following incubation with human liver S9 fractions, in presence of appropriate cofactors. The resulting chromatographic and mass-spectrometric data were used to identify VerA metabolites produced by intestinal cell lines as well as intestinal and liver tissues exposed ex vivo. In this way, we obtained a panel of metabolites suggesting the involvement of phase I (M + O) and phase II (glucuronide and sulfate metabolites) enzymes, the latter of which is implicated in the detoxification process. This first qualitative description of the metabolization products of VerA suggests bioactivation of the molecule into an epoxide form and provides qualitative analytic data to further conduct a precise metabolism study of VerA required for the risk assessment of this emerging mycotoxin.
Collapse
|
34
|
Wilson VC, Ramirez SM, Murugesan GR, Hofstetter U, Kerr BJ. Effects of feeding variable levels of mycotoxins with or without a mitigation strategy on growth performance, gut permeability, and oxidative biomarkers in nursery pigs. Transl Anim Sci 2022; 6:txac126. [DOI: 10.1093/tas/txac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
The objectives were to determine how high levels (> 2.5 mg/kg diet) of deoxynivalenol (DON), in conjunction with other naturally occurring mycotoxins (MTX) would impact growth, intestinal integrity, and oxidative status, with or without a mitigation strategy, in nursery pigs. One-hundred and five pigs (5.5 ± 0.52 kg) were randomly allotted to 35 pens and fed dietary treatments for 45 d. Treatments were factorially arranged with the inclusion of MTX being low (L-MTX; < 1 mg/kg diet) or high (H-MTX; > 2.5 mg/kg diet) in combination with no mitigation strategy or the inclusion of a mitigation strategy (Biofix® Plus, BPL; 1.5 mg/kg diet). There was no interaction between MTX level and BPL inclusion on average daily gain (ADG) or gain to feed ratio (GF), (P > 0.10). Compared to pigs fed diets containing L-MTX, feeding pigs diets containing H-MTX decreased ADG and GF (P < 0.05). The addition of BPL had no effect on ADG (P > 0.10), but improved GF (P = 0.09). There was an interaction between MTX and BPL on average daily feed intake (ADFI), where the addition of BPL had no effect on ADFI of pigs fed L-MTX diets but improved ADFI of pigs fed H-MTX diets (P = 0.09). An interaction was detected between MTX and BPL on protein oxidation as measured by plasma protein carbonyls (PC, P = 0.01), where the inclusion of BPL decreased plasma PC in pigs fed H-MTX diets to a greater extent than pigs fed the L-MTX diets. There was no interaction between MTX and BPL, or an effect of MTX or BPL on DNA damage as measured by 8-hydroxy-2ʹdexoxyguanosine (P > 0.10). There was no interaction between MTX and BPL, or a BPL effect on lipid damage as measured by thiobarbituic acid reactive substances (TBARS, P > 0.10), but pigs fed diets containing H-MTX exhibited lower concentrations of plasma TBARS (P = 0.07) compared to pigs fed L-MTX diets. There was no interaction between MTX and BPL, or an effect of MTX or BPL on plasma lactulose and mannitol ratio as a measure of intestinal permeability (P > 0.10). In conclusion, feeding H-MTX decreased ADG and GF, decreased plasma TBARS, but did not affect plasma 8-hydroxy-2ʹdexoxyguanosine or plasma LM ratio. The inclusion of a mitigation strategy improved ADFI when pigs were fed H-MTX diets and improved GF regardless of MTX level. Addition of a mitigation strategy also reduced plasma protein damage but did not affect indicators of DNA or lipid damage or affect gastrointestinal integrity.
Collapse
Affiliation(s)
- Victoria C Wilson
- Department of Animal Science, Iowa State University , Ames, IA 50011 , USA
| | | | | | | | - Brian J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment , Ames, IA 50011 , USA
| |
Collapse
|
35
|
von Buchholz JS, Ruhnau D, Hess C, Aschenbach JR, Hess M, Awad WA. Paracellular intestinal permeability of chickens induced by DON and/or C. jejuni is associated with alterations in tight junction mRNA expression. Microb Pathog 2022; 168:105509. [PMID: 35367310 DOI: 10.1016/j.micpath.2022.105509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
Abstract
Toxins, antigens, and harmful pathogens continuously challenge the intestinal mucosa. Therefore, regulation of the intestinal barrier is crucial for the maintenance of mucosal homeostasis and gut health. Intercellular complexes, namely, tight junctions (TJs), regulate paracellular permeability. TJs are mainly composed of claudins (CLDN), occludin (OCLN), tight junction associated MARVEL-domain proteins (TAMPS), the scaffolding zonula occludens (ZO) proteins and junction-adhesion molecules (JAMs). Different studies have shown that a Campylobacter infection can lead to a phenomenon so-called "leaky gut", including the translocation of luminal bacteria to the underlying tissue and internal organs. Based on the effects of C. jejuni on the chicken gut, we hypothesize that impacts on TJ proteins play a crucial role in the destructive effects of the intestinal barrier. Likewise, the mycotoxin deoxynivalenol (DON) can also alter gut permeability in chickens. Albeit DON and C. jejuni are widely distributed, no data are available on their effect on the tight junctions' barrier in the broiler intestine and consequences for permeability. Therefore, the aim of this study was to analyze the interaction between DON and C. jejuni on the gut barrier by linking permeability with gene expression of TJ proteins and to determine the relationships between the measurements. Following oral infection of birds with C. jejuni NCTC 12744 at 14 days of age, we demonstrate that the co-exposure with DON has considerable consequences on gut permeability as well as on gut TJ mRNA expression. Co-exposure of DON and C. jejuni enhanced the negative effect on paracellular permeability of the intestine, which was also noticed for the bacteria or the mycotoxin alone by the Ussing chamber technique at certain time points in both jejunum and caecum. Furthermore, the increased paracellular permeability was associated with significant changes in TJ mRNA expression in the small and large intestine. The actual study demonstrates that co-exposure of broiler chickens to DON and C. jejuni resulted in a decreased barrier function via up-regulation of pore-forming tight junctions (CLDN7 and CLDN10), as well as the cytosolic TJ protein occludin (OCLN) that can shift to various paracellular locations and are therefore able to alter the epithelial permeability. These findings indicate that the co-exposure of broiler chickens to DON and C. jejuni affects the paracellular permeability of the gut by altering the tight junction proteins. Furthermore, analysing of correlations between TJs revealed that the mRNA expression levels of most tight junctions were correlated with each other in both jejunum and caecum. Finally, the findings indicate that the molecular composition of tight junctions can be used as a marker for gut health and integrity.
Collapse
Affiliation(s)
- J Sophia von Buchholz
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Daniel Ruhnau
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Jörg R Aschenbach
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Wageha A Awad
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
36
|
Recharla N, Park S, Kim M, Kim B, Jeong JY. Protective effects of biological feed additives on gut microbiota and
the health of pigs exposed to deoxynivalenol: a review. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:640-653. [PMID: 35969702 PMCID: PMC9353346 DOI: 10.5187/jast.2022.e40] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022]
Abstract
Deoxynivalenol (DON) is the most common mycotoxin contaminant of cereal-based
food and animal feed. The toxicity of DON is very low compared to that of other
toxins; however, the most prominent signs of DON exposure include inappetence
and body weight loss, which causes considerable economic losses in the livestock
industry. This review summarizes critical studies on biological DON mycotoxin
mitigation strategies and the respective in vitro and
in vivo intestinal effects. Focus areas include growth
performance, gut health in terms of intestinal histomorphology, epithelial
barrier functions, the intestinal immune system and microflora, and short-chain
fatty acid production in the intestines. In addition, DON detoxification and
modulation of these parameters, through biological supplements, are discussed.
Biological detoxification of DON using microorganisms can attenuate DON toxicity
by modulating gut microbiota and improving gut health with or without
influencing the growth performance of pigs. However, the use of microorganisms
as feed additives to livestock for mycotoxins detoxification needs more research
before commercial use.
Collapse
Affiliation(s)
- Neeraja Recharla
- Department of Food Science and
Biotechnology, Sejong University, Seoul 05006, Korea
| | - Sungkwon Park
- Department of Food Science and
Biotechnology, Sejong University, Seoul 05006, Korea
| | - Minji Kim
- Animal Nutrition and Physiology Division,
National Institute of Animal Science, Wanju 55365, Korea
| | - Byeonghyeon Kim
- Animal Nutrition and Physiology Division,
National Institute of Animal Science, Wanju 55365, Korea
| | - Jin Young Jeong
- Animal Nutrition and Physiology Division,
National Institute of Animal Science, Wanju 55365, Korea
- Corresponding author: Jin Young Jeong,
Animal Nutrition and Physiology Division, National Institute of Animal Science,
Wanju 55365, Korea. Tel: +82-63-238-7487, E-mail:
| |
Collapse
|
37
|
Groestlinger J, Seidl C, Varga E, Del Favero G, Marko D. Combinatory Exposure to Urolithin A, Alternariol, and Deoxynivalenol Affects Colon Cancer Metabolism and Epithelial Barrier Integrity in vitro. Front Nutr 2022; 9:882222. [PMID: 35811943 PMCID: PMC9263571 DOI: 10.3389/fnut.2022.882222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022] Open
Abstract
The human gastrointestinal tract is an important site of nutrient absorption and a crucial barrier against xenobiotics. It regularly faces “chemical cocktails” composed of food constituents, their human and microbial metabolites, and foodborne contaminants, such as mycotoxins. Hence, the colonic epithelium adapts to dietary molecules tuning its immune response, structural integrity, and metabolism to maintain intestinal homeostasis. While gut microbiota metabolites of berry ellagitannins, such as urolithin A (Uro A) might contribute to physiological epithelial barrier integrity, foodborne co-contaminating mycotoxins like alternariol (AOH) and deoxynivalenol (DON) could hamper epithelial function. Hence, we investigated the response of differentiated Caco-2 cells (clone C2BBe1) in vitro to the three compounds alone or in binary mixtures. In virtue of the possible interactions of Uro A, AOH, and DON with the aryl hydrocarbon receptor (AhR) pathway, potential effects on phase-I-metabolism enzymes and epithelial structural integrity were taken as endpoints for the evaluation. Finally, Liquid chromatography tandem mass spectrometry measurements elucidated the absorption, secretion, and metabolic capacity of the cells under single and combinatory exposure scenarios. Uro A and AOH as single compounds, and as a binary mixture, were capable to induce CYP1A1/1A2/1B1 enzymes triggered by the AhR pathway. In light of its ribosome inhibiting capacity, the trichothecene suppressed the effects of both dibenzo-α-pyrones. In turn, cellular responsiveness to Uro A and AOH could be sustained when co-exposed to DON-3-sulfate, instead of DON. Colonic epithelial structural integrity was rather maintained after incubation with Uro A and AOH: this was reinforced in the combinatory exposure scenario and disrupted by DON, an effect, opposed in combination. Passage through the cells as well as the metabolism of Uro A and AOH were rather influenced by co-exposure to DON, than by interaction with each other. Therefore, we conclude that although single foodborne bioactive substances individually could either support or disrupt the epithelial structure and metabolic capacity of colon cancer, exposure to chemical mixtures changes the experimental outcome and calls for the need of combinatory investigations for proper risk assessment.
Collapse
Affiliation(s)
- Julia Groestlinger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Carina Seidl
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
- *Correspondence: Giorgia Del Favero,
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Doris Marko,
| |
Collapse
|
38
|
Exposure of intestinal explants to NX, but not to DON, enriches the secretome in mitochondrial proteins. Arch Toxicol 2022; 96:2609-2619. [PMID: 35674809 PMCID: PMC9325857 DOI: 10.1007/s00204-022-03318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022]
Abstract
NX is a type A trichothecene produced by Fusarium graminearum with limited information on its toxicity. NX is structurally similar to deoxynivalenol (DON), only differing by the lacking keto group at C8. Because of the structural similarity of the two toxins as well as their potential co-occurrence in food and feed, it is of interest to determine the toxicity of this new compound. In this study, we compared the protein composition of the extracellular media of pig intestinal explants (secretome) exposed to 10 µM of DON or NX for 4 h compared with controls. The combination of two complementary quantitative proteomic approaches (a gel-based and a gel-free approach) identified 18 and 23 differentially abundant proteins (DAPs) for DON and NX, respectively, compared to controls. Functional analysis suggested that, whereas DON toxicity was associated with decreased cell viability and cell destruction, NX toxicity was associated with an enrichment of mitochondrial proteins in the secretome. The presence of these proteins may be associated with the already known ability of NX to induce an intestinal inflammation. Overall, our results indicated that DON- and NX-induced changes in the extracellular proteome of intestinal explants are different. The increased leakage/secretion of mitochondrial proteins by NX may be a feature of NX toxicity.
Collapse
|
39
|
Garofalo M, Payros D, Oswald E, Nougayrède JP, Oswald IP. The foodborne contaminant deoxynivalenol exacerbates DNA damage caused by a broad spectrum of genotoxic agents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153280. [PMID: 35066032 DOI: 10.1016/j.scitotenv.2022.153280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Humans are exposed to different contaminants including mycotoxins. Deoxynivalenol (DON), a potent ribosome inhibitor, is a highly prevalent mycotoxin in the food chain worldwide. Although DON is not genotoxic, we previously showed that it exacerbates the genotoxicity of colibactin, a DNA-crosslinking toxin produced by bacteria in the gut. In the present study, we investigated whether this phenotype can be extended to other genotoxic compounds with different modes of action. Our data showed that, at a dose that can be found in food, DON exacerbated the DNA damage caused by etoposide, cisplatin and phleomycin. In contrast, de-epoxy-deoxynivalenol (DOM-1), a modified form of DON that does not induce ribotoxic stress, did not exacerbate DNA damage. The effect of DON was mimicked with other ribosome inhibitors such as anisomycin and cycloheximide, suggesting that ribotoxicity plays a key role in exacerbating DNA damage. In conclusion, a new effect of DON was identified, this toxin aggravates the DNA damage induced by a broad spectrum of genotoxic agents with different modes of action. These results are of utmost importance as our food can be co-contaminated with DON and DNA-damaging agents.
Collapse
Affiliation(s)
- Marion Garofalo
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Delphine Payros
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France; CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| | | | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
40
|
Li J, Wang Y, Deng Y, Wang X, Wu W, Nepovimova E, Wu Q, Kuca K. Toxic mechanisms of the trichothecenes T-2 toxin and deoxynivalenol on protein synthesis. Food Chem Toxicol 2022; 164:113044. [PMID: 35452771 DOI: 10.1016/j.fct.2022.113044] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Abstract
The toxic mechanisms of trichothecenes, including T-2 toxin and deoxynivalenol (DON), are closely related with their effects on protein synthesis. Increasing lines of evidence show that T-2 toxin can reduce the levels of tight junction proteins, and nuclear factor erythroid 2-related factor 2 (Nrf2) by disrupting cellular barriers and the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Nrf2/heme oxygenase (HO)-1 pathways. Moreover, it can inhibit aggrecan synthesis, thus causing Kashin-Beck disease. Regarding type B trichothecene, DON inhibits activation marker and β-catenin synthesis by acting on immune cells and the wingless/integrated (Wnt) pathway; it also inhibits cell proliferation and immune surveillance. In addition, DON has been shown to destroy tight junctions, glucose transport, and tumor endothelial marker 8, thus disturbing intestinal function and changing cell migration. This review summarizes the inhibitory effects of the trichothecenes T-2 toxin and DON on different protein synthesis, while discussing their underlying mechanisms. Focus is given to the effects of these toxins on tight junctions, aggrecan, activation markers, and hormones including testosterone under the influence of steroidogenic enzymes. This review can extend the current understanding of the effects of trichothecenes on protein synthesis and help to further understand their toxic mechanisms.
Collapse
Affiliation(s)
- Jiefeng Li
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Yating Wang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Ying Deng
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, Hubei, 430070, China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
41
|
Wang J, Bakker W, Zheng W, de Haan L, Rietjens IMCM, Bouwmeester H. Exposure to the mycotoxin deoxynivalenol reduces the transport of conjugated bile acids by intestinal Caco-2 cells. Arch Toxicol 2022; 96:1473-1482. [PMID: 35224661 PMCID: PMC9013688 DOI: 10.1007/s00204-022-03256-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
Conjugated bile acids are synthesized in liver and subsequently secreted into the intestinal lumen from which they are actively reabsorbed and transported back to liver. The efficient enterohepatic circulation of conjugated bile acids is important to maintain homeostasis. The mycotoxin deoxynivalenol (DON) is a fungal secondary metabolite that contaminates cereal food. Upon human exposure, it can cause intestinal dysfunction. We explored the effects of DON exposure on the intestinal absorption of conjugated bile acids and the expression of bile acid transporters using an in vitro model based on Caco-2 cell layers grown in transwells. Our study shows that the transport rate of taurocholic acid (TCA) is decreased after 48-h pre-exposure of the Caco-2 cells to 2 µM DON, which is a realistic intestinal DON concentration. Exposure to DON downregulates expression of the genes coding for the apical sodium-dependent bile acid transporter (ASBT), the ileal bile acid-binding protein (IBABP) and the organic solute transporter α (OSTα), and it counteracts the agonist activity of Farnesoid X receptor (FXR) agonist GW4064 on these genes. In addition, the transport of ten taurine or glycine-conjugated bile acids in a physiological relevant mixture by the intestinal Caco-2 cell layers was decreased after pre-exposure of the cells to DON, pointing at a potential for DON-mediated accumulation of the conjugated bile acids at the intestinal luminal side. Together the results reveal that DON inhibits intestinal bile acid reabsorption by reducing the expression of bile acid transporters thereby affecting bile acid intestinal kinetics, leading to bile acid malabsorption in the intestine. Our study provides new insights into the hazards of DON exposure.
Collapse
Affiliation(s)
- Jingxuan Wang
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Wouter Bakker
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Weijia Zheng
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Laura de Haan
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
42
|
Lu Q, Luo JY, Ruan HN, Wang CJ, Yang MH. Structure-toxicity relationships, toxicity mechanisms and health risk assessment of food-borne modified deoxynivalenol and zearalenone: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151192. [PMID: 34710421 DOI: 10.1016/j.scitotenv.2021.151192] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Mycotoxin, as one of the most common pollutants in foodstuffs, poses great threat to food security and human health. Specifically, deoxynivalenol (DON) and zearalenone (ZEN)-two mycotoxin contaminants with considerable toxicity widely existing in food products-have aroused broad public concerns. Adding to this picture, modified forms of DON and ZEN, have emerged as another potential environmental and health threat, owing to their higher re-transformation rate into parent mycotoxins inducing accumulation of mycotoxin in humans and animals. Given this, a better understanding of the toxicity of modified mycotoxins is urgently needed. Moreover, the lack of toxicity data means a proper risk assessment of modified mycotoxins remains challenging. To better evaluate the toxicity of modified DON and ZEN, we have reviewed the relationship between their structures and toxicities. The toxicity mechanisms behind modified DON and ZEN have also been discussed; briefly, these involve acute, subacute, chronic, and combined toxicities. In addition, this review also addresses the global occurrence of modified DON and ZEN, and summarizes novel methods-including in silico analysis and implementation of relative potency factors-for risk assessment of modified DON and ZEN. Finally, the health risk assessment of modified DON and ZEN has also been discussed comprehensively.
Collapse
Affiliation(s)
- Qian Lu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiao-Yang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hao-Nan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chang-Jian Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mei-Hua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
43
|
Hong Q, Li X, Lin Q, Shen Z, Feng J, Hu C. Resveratrol Improves Intestinal Morphology and Anti-Oxidation Ability in Deoxynivalenol-Challenged Piglets. Animals (Basel) 2022; 12:ani12030311. [PMID: 35158635 PMCID: PMC8833336 DOI: 10.3390/ani12030311] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Deoxynivalenol (DON)-contaminated feed may cause anorexia, vomiting, immunosuppression, and intestinal dysfunction in pigs, which would lead to growth retardation and great losses in the pig industry. In this study, the effects of resveratrol (RES) on growth performance, the intestinal barrier, antioxidant capacity, and mitochondrial function in weaned pigs fed with DON-contaminated diets were investigated. Dietary supplementation with resveratrol increased the average daily feed intake of piglets. Diets supplemented with resveratrol increased the villus height and the ratio of the jejunum villus height to crypt depth, increased the activities of superoxide dismutase (SOD), and increased the total antioxidant capacity in the jejunum mucosa. After being supplemented with RES, the level of reactive oxygen species (ROS) in mitochondria was decreased, while the mitochondrial membrane potential in the jejunum was increased. In conclusion, these results suggested that resveratrol effectively relieved DON-induced oxidative stress in weaned piglets, improved intestinal barrier function, enhanced mitochondrial function, and improved the growth performance of piglets. Abstract This study aimed to investigate the potential effects of resveratrol (RES) on intestinal function and oxidative stress in deoxynivalenol (DON)-challenged piglets. Twenty-four healthy Duroc × Yorkshire × Landrace weaned piglets at the age of 28 ± 1 days were randomly divided into four groups with six repetitions per group. The four groups were as follows: the control group (CON), fed with a basic diet; the RES group, fed with a basal diet + 300 mg/kg RES; the DON group, fed with a basal diet containing 2.65 mg/kg DON; and the DON + RES group, fed with a basal diet containing 2.65 mg/kg DON + 300 mg/kg RES. The results showed that the growth performance and intestinal function of DON-challenged piglets were significantly decreased (p < 0.05). Compared with the DON group, the average daily feed intake of piglets in the DON + RES group was significantly increased (p < 0.05). Additionally, dietary RES ameliorated DON-induced intestinal morphology impairment, as indicated by the increased (p < 0.05) jejunal villi height and the ratio of the jejunal villi height/crypt depth. Furthermore, after the addition of RES, the activities of superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) in the jejunum mucosa were significantly increased, and the content of malondialdehyde (MDA) was significantly declined (p < 0.05). In addition, the level of reactive oxygen species (ROS) in the mitochondria was significantly reduced by RES, while the mitochondrial membrane potential in jejunum was significantly increased by RES (p < 0.05). However, there was no obvious difference between DON + RES and DON groups on average daily gain and the ratio of feed togain, except for the significant inhibition of average daily feed intake (p < 0.05). In conclusion, RES could effectively alleviate the DON-induced oxidative stress on weaned piglets, and reduce the damage to mitochondria and intestinal morphology, so as to improve the growth performance of piglets.
Collapse
Affiliation(s)
- Qihua Hong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.L.); (Q.L.); (Z.S.); (J.F.)
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Q.H.); (C.H.)
| | - Xin Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.L.); (Q.L.); (Z.S.); (J.F.)
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Qian Lin
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.L.); (Q.L.); (Z.S.); (J.F.)
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Zhuojun Shen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.L.); (Q.L.); (Z.S.); (J.F.)
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Jie Feng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.L.); (Q.L.); (Z.S.); (J.F.)
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Caihong Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.L.); (Q.L.); (Z.S.); (J.F.)
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Q.H.); (C.H.)
| |
Collapse
|
44
|
Yong Y, Li J, Gong D, Yu T, Wu L, Hu C, Liu X, Yu Z, Ma X, Gooneratne R, El-Aty AMA, Chen J, Ju X. ERK1/2 mitogen-activated protein kinase mediates downregulation of intestinal tight junction proteins in heat stress-induced IBD model in pig. J Therm Biol 2021; 101:103103. [PMID: 34879918 DOI: 10.1016/j.jtherbio.2021.103103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/25/2021] [Accepted: 09/15/2021] [Indexed: 01/13/2023]
Abstract
In many mammalian species, including pigs, heat stress (HS) detrimentally leads to epithelium damage and increases intestinal permeability. However, the underlying molecular mechanisms are not thoroughly investigated yet. This study aimed to examine the RIP1/RIP3-ERK1/2 signaling pathway that regulates the expression of tight junction proteins in HS-treated pigs. In in vitro cultured intestinal porcine epithelial cells (IPEC-J2), HS induced the expression of tight junction proteins, ZO-1, claudin-1, and claudin-4, that are regulated by the ERK1/2-MAPK signaling pathway. Further, high expression of HSP70 in IPEC-J2 cells induced a significant decrease in receptor-interacting protein 1/3 (RIP1/3), phosphorylated ERK, and tight junction protein claudin-1 (P < 0.05). Necrostatin-1 (A selective inhibitor of RIPK1) suppressed the upregulation of phosphorylated ERK1/2 induced by HS, indicating that the RIP1/RIP3 regulates ERK1/2 phosphorylation in IPEC-J2 under heat stress. In addition, HS significantly damaged the intestinal morphology characterized by reduction of villus length and crypt depth in in vivo porcine model. Moreover, the expression of tight junction, ZO-1, and claudin-4 were downregulated, whereas phosphorylated p38 and ERK1/2 were upregulated in the duodenum of heat-stressed pigs. Interestingly, a decrease in ZO-1 and claudin-1 was observed in the colon, where phosphorylated ERK1/2 was similar to that in the duodenum. Our results demonstrate that RIP1/RIP3-ERK1/2 signaling pathway regulates the expression of tight junction proteins in HS-pigs. This finding further advances the intestinal barrier function's underlying mechanisms associated with signaling regulation.
Collapse
Affiliation(s)
- Yanhong Yong
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518018, China; Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Junyu Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518018, China; Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Dongliang Gong
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Tianyue Yu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Lianyun Wu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Canying Hu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhichao Yu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xingbin Ma
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Jinjun Chen
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Xianghong Ju
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518018, China; Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
45
|
Novak B, Lopes Hasuda A, Ghanbari M, Mayumi Maruo V, Bracarense APFRL, Neves M, Emsenhuber C, Wein S, Oswald IP, Pinton P, Schatzmayr D. Effects of Fusarium metabolites beauvericin and enniatins alone or in mixture with deoxynivalenol on weaning piglets. Food Chem Toxicol 2021; 158:112719. [PMID: 34843867 DOI: 10.1016/j.fct.2021.112719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 01/16/2023]
Abstract
The impact of the Fusarium-derived metabolites beauvericin, enniatin B and B1 (EB) alone or in combination with deoxynivalenol (DON) was investigated in 28-29 days old weaning piglets over a time period of 14 days. The co-application of EB and DON (EB + DON) led to a significant decrease in the weight gain of the animals. Liver enzyme activities in plasma were significantly decreased at day 14 in piglets receiving the EB + DON-containing diet compared to piglets receiving the control diet. All mycotoxin-contaminated diets led to moderate to severe histological lesions in the jejunum, the liver and lymph nodes. Shotgun metagenomics revealed a significant effect of EB-application on the gut microbiota. Our results provide novel insights into the harmful impact of emerging mycotoxins alone or with DON on the performance, gut health and immunological parameters in pigs.
Collapse
Affiliation(s)
- Barbara Novak
- BIOMIN Research Center, Technopark 1, 3430, Tulln, Austria.
| | - Amanda Lopes Hasuda
- Laboratory of Animal Pathology, State University of Londrina, P.O. Box 10.011, Londrina, PR, 86057-970, Brazil; Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France.
| | - Mahdi Ghanbari
- BIOMIN Research Center, Technopark 1, 3430, Tulln, Austria.
| | - Viviane Mayumi Maruo
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France; Universidade Federal do Tocantins, Araguaína, 77824-838, Brazil.
| | - Ana Paula F R L Bracarense
- Laboratory of Animal Pathology, State University of Londrina, P.O. Box 10.011, Londrina, PR, 86057-970, Brazil.
| | - Manon Neves
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France.
| | | | - Silvia Wein
- BIOMIN Research Center, Technopark 1, 3430, Tulln, Austria.
| | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France.
| | - Philippe Pinton
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France.
| | | |
Collapse
|
46
|
Kozieł MJ, Ziaja M, Piastowska-Ciesielska AW. Intestinal Barrier, Claudins and Mycotoxins. Toxins (Basel) 2021; 13:758. [PMID: 34822542 PMCID: PMC8622050 DOI: 10.3390/toxins13110758] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023] Open
Abstract
The intestinal barrier is the main barrier against all of the substances that enter the body. Proper functioning of this barrier guarantees maintained balance in the organism. Mycotoxins are toxic, secondary fungi metabolites, that have a negative impact both on human and animal health. It was postulated that various mycotoxins may affect homeostasis by disturbing the intestinal barrier. Claudins are proteins that are involved in creating tight junctions between epithelial cells. A growing body of evidence underlines their role in molecular response to mycotoxin-induced cytotoxicity. This review summarizes the information connected with claudins, their association with an intestinal barrier, physiological conditions in general, and with gastrointestinal cancers. Moreover, this review also includes information about the changes in claudin expression upon exposition to various mycotoxins.
Collapse
|
47
|
Gerber W, Svitina H, Steyn D, Peterson B, Kotzé A, Weldon C, Hamman JH. Comparison of RPMI 2650 cell layers and excised sheep nasal epithelial tissues in terms of nasal drug delivery and immunocytochemistry properties. J Pharmacol Toxicol Methods 2021; 113:107131. [PMID: 34699972 DOI: 10.1016/j.vascn.2021.107131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Nasal drug administration has been identified as a potential alternative to oral drug administration, especially for systemic delivery of large molecular weight compounds. Major advantages of nasal drug delivery include high vascularity and permeability of the epithelial membranes as well as circumvention of first-pass metabolism. RPMI 2650 cell layers (in vitro cell model) and excised sheep nasal mucosal tissues (ex vivo sheep model) were evaluated with regard to epithelial thickness, selected tight junction protein expression (i.e. claudin-1, F-actin chains, zonula occludin-1), extent of p-glycoprotein (P-gp) related efflux of a model compound (Rhodamine-123, R123) and paracellular permeation of a large molecular weight model compound (FITC-dextran 4400, FD4). The cell model grown under liquid cover conditions (LCC) was thinner (24 ± 4 μm) than the epithelial layer of the sheep model (53 ± 4 μm), whereas the thickness of cell model grown under air liquid interface (ALI) conditions (53 ± 8 μm) compared well with that of the sheep model. Although the location and distribution of tight junction proteins and F-actin differed to some extent between the cell model grown under ALI conditions and the sheep model, the extent of paracellular permeation of FD4 was similar (Papp = 0.48 × 10-6 cm.s-1 and 0.46 × 10-6 cm.s-1, respectively). Furthermore, the bi-directional permeation of R123 yielded the same efflux ratio (ER = 2.33) in both models. The permeation results from this exploratory study indicated similarity in terms of compound permeation between the RPMI 2650 nasal epithelial cell line and the excised sheep nasal epithelial tissue model.
Collapse
Affiliation(s)
- Werner Gerber
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa
| | - Hanna Svitina
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa
| | - Dewald Steyn
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa.
| | - Bianca Peterson
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa.
| | - Awie Kotzé
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa.
| | - Ché Weldon
- School of Environmental Sciences and Development, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Josias H Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa.
| |
Collapse
|
48
|
Hooft JM, Bureau DP. Deoxynivalenol: Mechanisms of action and its effects on various terrestrial and aquatic species. Food Chem Toxicol 2021; 157:112616. [PMID: 34662691 DOI: 10.1016/j.fct.2021.112616] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 11/26/2022]
Abstract
Deoxynivalenol, a type B trichothecene mycotoxin produced by Fusarium species of fungi, is a ubiquitious contaminant of cereal grains worldwide. Chronic, low dose consumption of feeds contaminated with DON is associated with a wide range of symptoms in terrestrial and aquatic species including decreased feed intake and feed refusal, reduced weight gain, and altered nutritional efficiency. Acute, high dose exposure to DON may be associated with more severe symptoms such as vomiting, diarrhea, intestinal inflammation and gastrointestinal hemorrhage. The toxicity of DON is partly related to its ability to disrupt eukaryotic protein synthesis via binding to the peptidyl transferase site of the ribosome. Moreover, DON exerts its effects at the cellular level by activating mitogen activated protein kinases (MAPK) through a process known as the ribotoxic stress response (RSR). The outcome of DON-associated MAPK activation is dose and duration dependent; acute low dose exposure results in immunostimulation characterized by the upregulation of cytokines, chemokines and other proinflammatory-related proteins, whereas longer term exposure to higher doses generally results in apoptosis, cell cycle arrest, and immunosuppression. The order of decreasing sensitivity to DON is considered to be: swine > rats > mice > poultry ≈ ruminants. However, studies conducted within the past 10 years have demonstrated that some species of fish, such as rainbow trout, are highly sensitive to DON. The aims of this review are to explore the effects of DON on terrestrial and aquatic species as well as its mechanisms of action, metabolism, and interaction with other Fusarium mycotoxins. Notably, a considerable emphasis is placed on reviewing the effects of DON on different species of fish.
Collapse
Affiliation(s)
- Jamie M Hooft
- Wittaya Aqua International, 1 University Ave, Floor 5, Toronto, ON, M5J 2P1, Canada.
| | - Dominique P Bureau
- Wittaya Aqua International, 1 University Ave, Floor 5, Toronto, ON, M5J 2P1, Canada; Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
49
|
Payros D, Alassane-Kpembi I, Laffitte J, Lencina C, Neves M, Bracarense AP, Pinton P, Ménard S, Oswald IP. Dietary Exposure to the Food Contaminant Deoxynivalenol Triggers Colonic Breakdown by Activating the Mitochondrial and the Death Receptor Pathways. Mol Nutr Food Res 2021; 65:e2100191. [PMID: 34626057 DOI: 10.1002/mnfr.202100191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/20/2021] [Indexed: 11/11/2022]
Abstract
INTRODUCTION The food contamination by mycotoxins is of increasing public health concerns. Deoxynivalenol (DON), a mycotoxin contaminating cereals, has been associated with the exacerbation of inflammatory bowel diseases (IBD), thereby raising the question of its role in the development of IBD. Moreover, the effect of DON on the colon is poorly described. METHODS AND RESULTS Wistar rats exposed (1-4 weeks) to low doses of DON (2 or 9 mg kg-1 feed) show microscopic alterations of colonic tissue (dilated lymphatic vessels, luminal debris, and cubic and flattened enterocytes). Ingestion of DON also alters colonic functions by increasing paracellular permeability while reducing the expression of the tight junction proteins and increased apoptosis in colonic tissue. Pro-apoptotic factors Bax/Bak, cytochrome C, and caspase 9 are upregulated, whereas expression of anti-apoptotic protein Bcl2 tends to decrease for the mitochondrial pathway. An increased expression of FasR and caspase-8 is observed for the extrinsic pathway. An increase in the pro-inflammatory markers TNFα, IL-17, and myeloperoxidase is also observed. CONCLUSION These results indicate that the dietary exposure to low levels of DON in food targets the colon inducing a health-threatening breakdown of the colonic barrier, highlighting oral exposure to DON as a potential risk factor in triggering IBD.
Collapse
Affiliation(s)
- Delphine Payros
- Research center in Food Toxicology, Université de Toulouse, INRAE, ENVT, INP- PURPAN, UPS, Toxalim, Toulouse, F-31027, France.,Université de Toulouse, INSERM, INRAE, ENVT, UPS, IRSD, Toulouse, France
| | - Imourana Alassane-Kpembi
- Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, 3200, Rue Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| | - Joelle Laffitte
- Research center in Food Toxicology, Université de Toulouse, INRAE, ENVT, INP- PURPAN, UPS, Toxalim, Toulouse, F-31027, France
| | - Corine Lencina
- Research center in Food Toxicology, Université de Toulouse, INRAE, ENVT, INP- PURPAN, UPS, Toxalim, Toulouse, F-31027, France
| | - Manon Neves
- Research center in Food Toxicology, Université de Toulouse, INRAE, ENVT, INP- PURPAN, UPS, Toxalim, Toulouse, F-31027, France
| | - Ana Paula Bracarense
- Universidade Estadual de Londrina, Laboratory of Animal Pathology, Londrina, Parana, CP 6001, Brazil
| | - Philippe Pinton
- Research center in Food Toxicology, Université de Toulouse, INRAE, ENVT, INP- PURPAN, UPS, Toxalim, Toulouse, F-31027, France
| | - Sandrine Ménard
- Research center in Food Toxicology, Université de Toulouse, INRAE, ENVT, INP- PURPAN, UPS, Toxalim, Toulouse, F-31027, France.,Université de Toulouse, INSERM, INRAE, ENVT, UPS, IRSD, Toulouse, France
| | - Isabelle P Oswald
- Research center in Food Toxicology, Université de Toulouse, INRAE, ENVT, INP- PURPAN, UPS, Toxalim, Toulouse, F-31027, France
| |
Collapse
|
50
|
Rajput SA, Liang SJ, Wang XQ, Yan HC. Lycopene Protects Intestinal Epithelium from Deoxynivalenol-Induced Oxidative Damage via Regulating Keap1/Nrf2 Signaling. Antioxidants (Basel) 2021; 10:antiox10091493. [PMID: 34573125 PMCID: PMC8466454 DOI: 10.3390/antiox10091493] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022] Open
Abstract
Deoxynivalenol (DON) is a threatening mycotoxin primarily present in the agricultural environment, especially in food commodities and animal forages, and exerts significant global health hazards. Lycopene (LYC) is a potent antioxidant carotenoid mainly present in tomatoes and other fruits with enormous health benefits. The present study was designed to ascertain whether LYC could protect DON-induced intestinal epithelium oxidative injury by regulating Keap1/Nrf2 signaling in the intestine of mice. A total of forty-eight mice were randomly distributed into four groups (n = 12), Control (CON), 10 mg/kg BW LYC, 3 mg/kg BW DON, and 3 mg/kg DON + 10 mg/kg LYC BW (DON + LYC). The experimental groups were treated by intragastric administration for 11 days. Our results showed that LYC significantly increased average daily feed intake (ADFI), average daily gain (ADG), and repaired intestinal injury and barrier dysfunction, as evident by increased trans-epithelial electrical resistance (TEER) and decreased diamine oxidase (DAO) activity, as well as up-regulated tight junction proteins (occludin, claudin-1) under DON exposure. Furthermore, LYC treatment stabilized the functions of intestinal epithelial cells (Lgr5, PCNA, MUC2, LYZ, and Villin) under DON exposure. Additionally, LYC alleviated DON-induced oxidative stress by reducing ROS and MDA accumulation and enhancing the activity of antioxidant enzymes (CAT, T-SOD, T-AOC, and GSH-Px), which was linked with the activation of Nrf2 signaling and degradation of Keap1 expression. Conclusively, our findings demonstrated that LYC protects intestinal epithelium from oxidative injury by modulating the Keap1/Nrf2 signaling pathway under DON exposure. These novel findings could lead to future research into the therapeutic use of LYC to protect the DON-induced harmful effects in humans and/or animals.
Collapse
Affiliation(s)
| | | | - Xiu-Qi Wang
- Correspondence: (X.-Q.W.); (H.-C.Y.); Tel./Fax: +86-20-38295462 (X.-Q.W.)
| | - Hui-Chao Yan
- Correspondence: (X.-Q.W.); (H.-C.Y.); Tel./Fax: +86-20-38295462 (X.-Q.W.)
| |
Collapse
|