1
|
Song YP, Lv JW, Zhang ZC, Qian QH, Fan YJ, Chen DZ, Zhang H, Xu FX, Zhang C, Huang Y, Wang H, Wei W, Xu DX. Effects of Gestational Arsenic Exposures on Placental and Fetal Development in Mice: The Role of Cyr61 m6A. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:97004. [PMID: 37682722 PMCID: PMC10489955 DOI: 10.1289/ehp12207] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 06/13/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Several epidemiological investigations demonstrated that maternal arsenic (As) exposure elevated risk of fetal growth restriction (FGR), but the mechanism remains unclear. OBJECTIVES This study aimed to investigate the effects of gestational As exposure on placental and fetal development and its underlying mechanism. METHODS Dams were exposed to 0.15, 1.5, and 15 mg / L NaAsO 2 throughout pregnancy via drinking water. Sizes of fetuses and placentas, placental histopathology, and glycogen content were measured. Placental RNA sequencing was conducted. Human trophoblasts were exposed to NaAsO 2 (2 μ M ) to establish an in vitro model of As exposure. The mRNA stability and protein level of genes identified through RNA sequencing were measured. N 6 -Methyladenosine (m 6 A ) modification was detected by methylated RNA immunoprecipitation-quantitative real-time polymerase chain reason (qPCR). The binding ability of insulin-like growth factor 2 binding protein 2 to the gene of interest was detected by RNA-binding protein immunoprecipitation-qPCR. Intracellular S-adenosylmethionine (SAM) and methyltransferase activity were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and colorimetry, respectively. In vitro As + 3 methyltransferase (As3MT) knockdown or SAM supplementation and in vivo folic acid (FA) supplementation were used to evaluate the protective effect. A case-control study verified the findings. RESULTS Sizes of fetuses (exposed to 1.5 and 15 mg / L NaAsO 2 ) and placentas (exposed to 15 mg / L NaAsO 2 ) were lower in As-exposed mice. More glycogen + trophoblasts accumulated and the expression of markers of interstitial invasion was lower in the 15 mg / L NaAsO 2 -exposed mouse group in comparison with control. Placental RNA sequencing identified cysteine-rich angiogenic inducer 61 (Cyr61) as a candidate gene of interest. Mechanistically, mice and cells exposed to As had lower protein expression of CYR61, and this was attributed to a lower incidence of Cyr61 m 6 A . Furthermore, cells exposed to As had lower methyltransferase activity, suggesting that this could be the mechanism by which Cyr61 m 6 A was affected. Depletion of intracellular SAM, a cofactor for m 6 A methyltransferase catalytic domain, partially contributed to As-induced methyltransferase activity reduction. Either As3MT knockdown or SAM supplementation attenuated As-induced Cyr61 m 6 A down-regulation. In mice, FA supplementation rescued As-induced defective trophoblastic invasion and FGR. In humans, a negative correlation between maternal urinary As and plasma CYR61 was observed in infants who were small for gestational age. DISCUSSION Using in vitro and in vivo models, we found that intracellular SAM depletion-mediated Cyr61 m 6 A down-regulation partially contributed to As-induced defective trophoblastic invasion and FGR. https://doi.org/10.1289/EHP12207.
Collapse
Affiliation(s)
- Ya-Ping Song
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Jin-Wei Lv
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Zhi-Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Qing-Hua Qian
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Yi-Jun Fan
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
- Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Dao-Zhen Chen
- Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Heng Zhang
- Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Fei-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Yichao Huang
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Education Ministry of China, Anhui Medical University, Hefei, Anhui, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Cui YH, Wilkinson E, Peterson J, He YY. ALKBH4 Stabilization Is Required for Arsenic-Induced 6mA DNA Methylation Inhibition, Keratinocyte Malignant Transformation, and Tumorigenicity. WATER 2022; 14:3595. [PMID: 37207134 PMCID: PMC10194016 DOI: 10.3390/w14223595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Inorganic arsenic is one of the well-known human skin carcinogens. However, the molecular mechanism by which arsenic promotes carcinogenesis remains unclear. Previous studies have established that epigenetic changes, including changes in DNA methylation, are among the critical mechanisms that drive carcinogenesis. N6-methyladenine (6mA) methylation on DNA is a widespread epigenetic modification that was initially found on bacterial and phage DNA. Only recently has 6mA been identified in mammalian genomes. However, the function of 6mA in gene expression and cancer development is not well understood. Here, we show that chronic low doses of arsenic induce malignant transformation and tumorigenesis in keratinocytes and lead to the upregulation of ALKBH4 and downregulation of 6mA on DNA. We found that reduced 6mA levels in response to low levels of arsenic were mediated by the upregulation of the 6mA DNA demethylase ALKBH4. Moreover, we found that arsenic increased ALKBH4 protein levels and that ALKBH4 deletion impaired arsenic-induced tumorigenicity in vitro and in mice. Mechanistically, we found that arsenic promoted ALKBH4 protein stability through reduced autophagy. Together, our findings reveal that the DNA 6mA demethylaseALKBH4 promotes arsenic tumorigenicity and establishes ALKBH4 as a promising target for arsenic-induced tumorigenesis.
Collapse
Affiliation(s)
- Yan-Hong Cui
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Emma Wilkinson
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jack Peterson
- The College, Biological Science Division, University of Chicago, Chicago, IL 60637, USA
| | - Yu-Ying He
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Chen Y, Sun Y, Zhao A, Cai X, Yu A, Xu Q, Wang P, Yao J, Wang Q, Wang W. Arsenic exposure diminishes ovarian follicular reserve and induces abnormal steroidogenesis by DNA methylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113816. [PMID: 36068745 DOI: 10.1016/j.ecoenv.2022.113816] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Arsenic contamination is a worldwide public health problem, and the effect of arsenic on male reproduction has been extensively studied; however, data on the biotoxicity of arsenic in terms of female reproduction are more scarce. In this study, a human-cell-animal translational strategy was applied to explore the effect of arsenic exposure on ovarian steroidogenesis and its potential mechanism. We conducted a 1:1 propensity score matched case-control study involving 127 diminished ovarian reserve (DOR) cases and 127 healthy controls. The ovarian follicular fluid levels of 21 metal elements, including arsenic, were measured. The results showed that there were significant differences in follicular fluid metal profiles between DOR patients and controls and that arsenic, molybdenum, and strontium played important roles in DOR progression [OR (95 % CI): 2.203 (1.385, 3.503), 2.308 (1.490, 3.575) and 2.922 (1.864, 4.580), respectively]. In the primary ovarian granulosa cell culture model, we found that treatment with 8 μM arsenic for 24 and 48 h induced a decrease in human granulosa cell viability. The estradiol (E2) level was significantly decreased after arsenic exposure (P < 0.05), which was dependent on significant alterations (P < 0.05) in key enzymes in steroidogenesis. In addition, a model for sodium arsenite exposure through water in rats from weaning to sexual maturity was established. We evaluated ovarian development by monitoring the estrous cycle, observing ovarian pathology, and calculating the follicular proportion. RT-qPCR, Western blotting, and bisulfite-sequencing PCR were used to investigate the effect of arsenic exposure on ovarian steroidogenesis and its possible mechanism. The results indicated that steroidogenic factor-1 (SF-1) was an important target of the steroidogenesis disorder induced by arsenic exposure. Arsenic significantly increased the DNA methylation level (P < 0.05) in the promoter region of SF-1 to reduce its expression, subsequently decreasing the levels of steroidogenic acute regulatory protein (StAR), P450 cholesterol side-chain cleavage enzyme (CYP11A1), and aromatase (CYP19A1) (P < 0.05), leading to premature depletion of ovarian follicles.
Collapse
Affiliation(s)
- Yiqin Chen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yan Sun
- Center for Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Aili Zhao
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Xuefen Cai
- Center for Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Aili Yu
- Center for Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Qian Xu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Panlin Wang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Jing Yao
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Qi Wang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
4
|
Reichmann F, Pilic J, Trajanoski S, Norton WHJ. Transcriptomic underpinnings of high and low mirror aggression zebrafish behaviours. BMC Biol 2022; 20:97. [PMID: 35501893 PMCID: PMC9059464 DOI: 10.1186/s12915-022-01298-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Aggression is an adaptive behaviour that animals use to protect offspring, defend themselves and obtain resources. Zebrafish, like many other animals, are not able to recognize themselves in the mirror and typically respond to their own reflection with aggression. However, mirror aggression is not an all-or-nothing phenomenon, with some individuals displaying high levels of aggression against their mirror image, while others show none at all. In the current work, we have investigated the genetic basis of mirror aggression by using a classic forward genetics approach - selective breeding for high and low mirror aggression zebrafish (HAZ and LAZ). Results We characterized AB wild-type zebrafish for their response to the mirror image. Both aggressive and non-aggressive fish were inbred over several generations. We found that HAZ were on average more aggressive than the corresponding LAZ across generations and that the most aggressive adult HAZ were less anxious than the least aggressive adult LAZ after prolonged selective breeding. RNAseq analysis of these fish revealed that hundreds of protein-encoding genes with important diverse biological functions such as arsenic metabolism (as3mt), cell migration (arl4ab), immune system activity (ptgr1), actin cytoskeletal remodelling (wdr1), corticogenesis (dgcr2), protein dephosphorylation (ublcp1), sialic acid metabolism (st6galnac3) and ketone body metabolism (aacs) were differentially expressed between HAZ and LAZ, suggesting a strong genetic contribution to this phenotype. DAVID pathway analysis showed that a number of diverse pathways are enriched in HAZ over LAZ including pathways related to immune function, oxidation-reduction processes and cell signalling. In addition, weighted gene co-expression network analysis (WGCNA) identified 12 modules of highly correlated genes that were significantly associated with aggression duration and/or experimental group. Conclusions The current study shows that selective breeding based of the mirror aggression phenotype induces strong, heritable changes in behaviour and gene expression within the brain of zebrafish suggesting a strong genetic basis for this behaviour. Our transcriptomic analysis of fish selectively bred for high and low levels of mirror aggression revealed specific transcriptomic signatures induced by selective breeding and mirror aggression and thus provides a large and novel resource of candidate genes for future study. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01298-z.
Collapse
Affiliation(s)
- Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
| | - Johannes Pilic
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Slave Trajanoski
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - William H J Norton
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, UK. .,Department of Genetics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
5
|
Thakur M, Rachamalla M, Niyogi S, Datusalia AK, Flora SJS. Molecular Mechanism of Arsenic-Induced Neurotoxicity including Neuronal Dysfunctions. Int J Mol Sci 2021; 22:ijms221810077. [PMID: 34576240 PMCID: PMC8471829 DOI: 10.3390/ijms221810077] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Arsenic is a key environmental toxicant having significant impacts on human health. Millions of people in developing countries such as Bangladesh, Mexico, Taiwan, and India are affected by arsenic contamination through groundwater. Environmental contamination of arsenic leads to leads to various types of cancers, coronary and neurological ailments in human. There are several sources of arsenic exposure such as drinking water, diet, wood preservatives, smoking, air and cosmetics, while, drinking water is the most explored route. Inorganic arsenic exhibits higher levels of toxicity compared its organic forms. Exposure to inorganic arsenic is known to cause major neurological effects such as cytotoxicity, chromosomal aberration, damage to cellular DNA and genotoxicity. On the other hand, long-term exposure to arsenic may cause neurobehavioral effects in the juvenile stage, which may have detrimental effects in the later stages of life. Thus, it is important to understand the toxicology and underlying molecular mechanism of arsenic which will help to mitigate its detrimental effects. The present review focuses on the epidemiology, and the toxic mechanisms responsible for arsenic induced neurobehavioral diseases, including strategies for its management from water, community and household premises. The review also provides a critical analysis of epigenetic and transgenerational modifications, mitochondrial oxidative stress, molecular mechanisms of arsenic-induced oxidative stress, and neuronal dysfunction.
Collapse
Affiliation(s)
- Manisha Thakur
- Department of Pharmacology and Toxicology, Transit Campus, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India; (M.T.); (A.K.D.)
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.R.); (S.N.)
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.R.); (S.N.)
- Toxicology Centre, Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, Transit Campus, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India; (M.T.); (A.K.D.)
| | - Swaran Jeet Singh Flora
- Department of Pharmacology and Toxicology, Transit Campus, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India; (M.T.); (A.K.D.)
- Correspondence:
| |
Collapse
|
6
|
Wang X, Liu L, Liang D, Liu Y, Zhao Q, Huang P, Li X, Fan W. Accumulation, transformation and subcellular distribution of arsenite associated with five carbon nanomaterials in freshwater zebrafish specific-tissues. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125579. [PMID: 33721782 DOI: 10.1016/j.jhazmat.2021.125579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Although carbon nanomaterials (CNMs) commonly exist throughout the aquatic environment, their effect on arsenic (As) distribution and toxicity is unclear. In this study, arsenite accumulation, transformation, subcellular distribution, and enzyme activity were assessed in adult zebrafish (Danio rerio) intestines, heads and muscles, following co-exposure to arsenite and CNMs with different structures (single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), fullerene (C60), graphene oxide (GO), and graphene (GN)). Results show that GN and GO promoted As toxicity in D. rerio, as carriers increasing total As accumulation in the intestine, resulting in arsenite adsorbed by GO and GN being released and transformed mainly into moderately-toxic monomethylarsonic acid (MMA), which was mostly distributed in organelles and metallothionein-like proteins (MTLPs). Moreover, GO and GN influenced As species distribution in D. rerio due to the excellent electron transfer ability. However, the effect was marginal for SWCNT, MWCNT and C60, because of the different structure and suspension stability in fish-culture water. In addition, in the muscle and head tissues, As was mainly distributed in cellular debris in the forms of dimethylarsinic acid (DMA) and arsenobetaine (AsB). These findings help better understand the influence of CNMs on the mechanism of As toxicity in natural aquatic environments.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Liping Liu
- Beijing Center for Disease Prevention and Control, Beijing 100013, PR China
| | - Dingyuan Liang
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Yingying Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian, Beijing 100875, PR China
| | - Qing Zhao
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Peng Huang
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - XiaoMin Li
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, PR China.
| |
Collapse
|
7
|
Byeon E, Kang HM, Yoon C, Lee JS. Toxicity mechanisms of arsenic compounds in aquatic organisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105901. [PMID: 34198209 DOI: 10.1016/j.aquatox.2021.105901] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is a toxic metalloid that is widely distributed in the environment due to its persistence and accumulative properties. The occurrence, distribution, and biological effects of arsenic in aquatic environments have been extensively studied. Acute and chronic toxicities to arsenic are associated with fatal effects at the individual and molecular levels. The toxicity of arsenic in aquatic organisms depends on its speciation and concentration. In aquatic environments, inorganic arsenic is the dominant form. While trivalent arsenicals have greater toxicity compared with pentavalent arsenicals, inorganic arsenic can assume a variety of forms through biotransformation in aquatic organisms. Biotransformation mechanisms and speciation of arsenic have been studied, but few reports have addressed the relationships among speciation, toxicity, and bioavailability in biological systems. This paper reviews the modes of action of arsenic along with its toxic effects and distribution in an attempt to improve our understanding of the mechanisms of arsenic toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea
| | - Cheolho Yoon
- Ochang Center, Korea Basic Science Institute, Cheongju 28119, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
8
|
Park D, Propper CR, Wang G, Salanga MC. Synonymous single nucleotide polymorphism in arsenic (+3) methyltransferase of the Western mosquitofish (Gambusia affinis) and its gene expression among field populations. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:711-718. [PMID: 33811567 PMCID: PMC8060185 DOI: 10.1007/s10646-021-02376-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 05/05/2023]
Abstract
Naturally occurring arsenic is toxic at extremely low concentrations, yet some species persist even in high arsenic environments. We wanted to test if these species show evidence of evolution associated with arsenic exposure. To do this, we compared allelic variation across 872 coding nucleotides of arsenic (+3) methyltransferase (as3mt) and whole fish as3mt gene expression from three field populations of Gambusia affinis, from water sources containing low (1.9 ppb), medium-low (3.3 ppb), and high (15.7 ppb) levels of arsenic. The high arsenic site exceeds the US EPA's Maximum Contamination Level for drinking water. Medium-low and high populations exhibited homozygosity, and no sequence variation across all animals sampled. Eleven of 24 fish examined (45.8%) in the low arsenic population harbored synonymous single nucleotide polymorphisms (SNPs) in exons 4 and/or 10. SNP presence in the low arsenic population was not associated with differences in as3mt transcript levels compared to fish from the medium-low site, where SNPs were noted; however, as3mt expression in fish from the high arsenic concentration site was significantly lower than the other two sites. Low sequence variation in fish populations from sites with medium-low and high arsenic concentrations suggests greater selective pressure on this allele, while higher variation in the low population suggests a relaxed selection. Our results suggest gene regulation associated with arsenic detoxification may play a more crucial role in influencing responses to arsenic than polymorphic gene sequence. Understanding microevolutionary processes to various contaminants require the evaluation of multiple populations across a wide range of pollution exposures.
Collapse
Affiliation(s)
- Daesik Park
- Division of Science Education, Kangwon National University, Chuncheon, Kangwon, 24341, South Korea
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Guangning Wang
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Matthew C Salanga
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA.
| |
Collapse
|
9
|
Torbøl Pedersen J, De Loma J, Levi M, Palmgren M, Broberg K. Predicted AS3MT Proteins Methylate Arsenic and Support Two Major Phylogenetic AS3MT Groups. Chem Res Toxicol 2020; 33:3041-3047. [PMID: 33156617 PMCID: PMC7759005 DOI: 10.1021/acs.chemrestox.0c00375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Inorganic
arsenic is one of the most toxic and carcinogenic substances
in the environment, but many organisms, including humans, methylate
inorganic arsenic to mono-, di-, and trimethylated arsenic metabolites,
which the organism can excrete. In humans and other eukaryotic organisms,
the arsenite methyltransferase (AS3MT) protein methylates arsenite.
AS3MT sequences from eukaryotic organisms group phylogenetically with
predicted eubacterial AS3MT sequences, which has led to the suggestion
that AS3MT was acquired from eubacteria by multiple events of horizontal
gene transfer. In this study, we evaluated whether 55 (out of which
47 were predicted based on protein sequence similarity) sequences
encoding putative AS3MT orthologues in 47 species from different kingdoms
can indeed methylate arsenic. Fifty-three of the proteins showed arsenic
methylating capacity. For example, the predicted AS3MT of the human
gut bacterium Faecalibacterium prausnitzii methylated
arsenic efficiently. We performed a kinetic analysis of 14 AS3MT proteins
representing two phylogenetically distinct clades (Group 1 and 2)
that each contain both eubacterial and eukaryotic sequences. We found
that animal and bacterial AS3MTs in Group 1 rarely produce trimethylated
arsenic, whereas Hydra vulgaris and the bacterium Rhodopseudomonas palustris in Group 2 produce trimethylated
arsenic metabolites. These findings suggest that animals during evolution
have acquired different arsenic methylating phenotypes from different
bacteria. Further, it shows that humans carry two bacterial systems
for arsenic methylation: one bacterium-derived AS3MT from Group 1
incorporated in the human genome and one from Group 2 in F.
prausnitzii present in the gut microbiome.
Collapse
Affiliation(s)
- Jesper Torbøl Pedersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen DK-1871, Denmark.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Jessica De Loma
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Michael Levi
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen DK-1871, Denmark
| | - Karin Broberg
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen DK-1871, Denmark.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
10
|
Delaney P, Ramdas Nair A, Palmer C, Khan N, Sadler KC. Arsenic induced redox imbalance triggers the unfolded protein response in the liver of zebrafish. Toxicol Appl Pharmacol 2020; 409:115307. [PMID: 33147493 DOI: 10.1016/j.taap.2020.115307] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
Inorganic arsenic (iAs) is one of the most endemic toxicants worldwide and oxidative stress is a key cellular pathway underlying iAs toxicity. Other cellular stress response pathways, such as the unfolded protein response (UPR), are also impacted by iAs exposure, however it is not known how these pathways intersect to cause disease. We optimized the use of zebrafish larvae to identify the relationship between these cellular stress response pathways and arsenic toxicity. We found that the window of iAs susceptibility during zebrafish development corresponds with the development of the liver, and that even a 24-h exposure can cause lethality if administered to mature larvae, but not to early embryos. Acute exposure of larvae to iAs generates reactive oxygen species (ROS), an antioxidant response, endoplasmic reticulum (ER) stress and UPR activation in the liver. An in vivo assay using transgenic larvae expressing a GFP-tagged secreted glycoprotein in hepatocytes (Tg(fabp10a:Gc-EGFP)) revealed acute iAs exposure selectively decreased expression of Gc-EGFP, indicating that iAs impairs secretory protein folding in the liver. The transcriptional output of UPR activation is preceded by ROS production and activation of genes involved in the oxidative stress response. These studies implicate redox imbalance as the mechanism of iAs-induced ER stress and suggest that crosstalk between these pathways underlie iAs-induced hepatic toxicity.
Collapse
Affiliation(s)
- Patrice Delaney
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Anjana Ramdas Nair
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Catherine Palmer
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Nouf Khan
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates.
| |
Collapse
|
11
|
Exposure to low doses of inorganic arsenic induces transgenerational changes on behavioral and epigenetic markers in zebrafish (Danio rerio). Toxicol Appl Pharmacol 2020; 396:115002. [PMID: 32277946 DOI: 10.1016/j.taap.2020.115002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
The ability of environmental pollutants to alter the epigenome with resultant development of behavioral alterations has received more attention in recent years. These alterations can be transmitted and affect later generations that have not been directly in contact with the contaminant. Arsenic (As) is a neurotoxicant and potent epigenetic disruptor that is widespread in the environment; however, the precise potential of As to produce transgenerational effects is unknown. Our study focused on the possible transgenerational effects on behavior by ancestral exposure to doses relevant to the environment of As, and the epigenetic mechanisms that could be involved. Embryos of F0 (ancestral generation) were directly exposed to 50 or 500 ppb of As for 150 days. F0 adults were raised to produce the F1 generation (intergeneration) and subsequently the F2 generation (transgeneration). We evaluated motor and cognitive behavior, neurodevelopment-related genes, and epigenetic markers on the F0 and F2 generation. As proposed in our hypothesis, ancestral arsenic exposure altered motor activity through the development and increased anxiety-like behaviors which were transmitted to the F2 generation. Additionally, we found a reduction in brain-derived neurotrophic factor expression between the F0 and F2 generation, and an increase in methylation on histone H3K4me3 in the nervous system.
Collapse
|
12
|
Wang X, Liu L, Wang X, Ren J, Jia P, Fan W. Influence of humic acid on arsenic bioaccumulation and biotransformation to zebrafish: A comparative study between As(III) and As(V) exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113459. [PMID: 31708282 DOI: 10.1016/j.envpol.2019.113459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/27/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Previous studies have indicated that natural organic matter in the aquatic environment could affect arsenic bioaccumulation and biotransformation to aquatic organisms. However, the differences between the effects of arsenite and arsenate exposure have not been studied and compared in fish exposure models. In this study, adult zebrafish (Danio rerio) were exposed to 5 mg/L inorganic As solutions, in the presence of a range of humic acid (HA) concentrations (1, 2.5, 5, 10, 20 mg/L) in 96 h waterborne exposure. Results showed that in the presence of HA, total As bioaccumulation was significantly reduced in zebrafish following arsenite exposure, while this reduction was not observed during arsenate exposure. The reduction in total arsenic bioaccumulation for arsenite exposure can be explained by the fact that HA forming a surface coating on the cell surface, hindering transport and internalization. However, this reduction in total As was not observed due to differences in uptake pathways for arsenate exposure. Results also showed that Arsenobetaine (AsB) was the main biotransformation product in zebrafish following inorganic As exposure, accounting for 44.8%-64.7% of extracted arsenic species in all exposure groups. The addition of HA caused levels of MMA and As(III) to decrease, while the distribution of AsB significantly increased in arsenite exposure groups. The increase in AsB could be because the As(III)-HA complex was formed, affecting the methylation of As(III). In contrast, the addition of HA to arsenate exposure groups, did not affect the reduction of As(V) to As(III) and therefore, an increase in the distribution of AsB was not observed in arsenate exposure groups. This study provides useful information on the mechanisms of toxicity, for improved risk assessment of As in natural aquatic environments.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Liping Liu
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Xiangrui Wang
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Jinqian Ren
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Pei Jia
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, Beijing 100191, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, PR China.
| |
Collapse
|
13
|
Rahman Z, Singh VP. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:419. [PMID: 31177337 DOI: 10.1007/s10661-019-7528-7] [Citation(s) in RCA: 489] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/08/2019] [Indexed: 05/18/2023]
Abstract
Certain five heavy metals viz. arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb) are non-threshold toxins and can exert toxic effects at very low concentrations. These heavy metals are known as most problematic heavy metals and as toxic heavy metals (THMs). Several industrial activities and some natural processes are responsible for their high contamination in the environment. In recent years, high concentrations of heavy metals in different natural systems including atmosphere, pedosphere, hydrosphere, and biosphere have become a global issue. These THMs have severe deteriorating effects on various microorganisms, plants, and animals. Human exposure to the THMs may evoke serious health injuries and impairments in the body, and even certain extremities can cause death. In all these perspectives, this review provides a comprehensive account of the relative impact of the THMs As, Cd, Cr(VI), Hg, and Pb on our total environment.
Collapse
Affiliation(s)
- Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Delhi, 110002, India.
| | - Ved Pal Singh
- Department of Botany, University of Delhi, Delhi, 110007, India
| |
Collapse
|
14
|
Soza-Ried C, Bustamante E, Caglevic C, Rolfo C, Sirera R, Marsiglia H. Oncogenic role of arsenic exposure in lung cancer: A forgotten risk factor. Crit Rev Oncol Hematol 2019; 139:128-133. [PMID: 30878179 DOI: 10.1016/j.critrevonc.2019.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Several drinkable water sources worldwide have been highly contaminated with arsenic, which means that an estimated 160 million people have been exposed to this chemical agent. If we analyse exposure by region, we will find a high correlation between arsenic contamination and the incidence of lung cancer (among other malignancies). In order to determine what the risks of these exposures are, we need to understand how this chemical is processed in our body and how it is linked to cancer. In this article we reviewed how biotransformation of ingested arsenic may lead to cancer by modulating the activation of several essential signalling pathways such as EGFR, PI3K/AKT, RTK/Ras/PI3K, JNK/STAT3 and Nrf2-KEAP1; by producing epigenetics modifications and by disrupting normal expression of miRNAs. In order to design effective health policies, educational strategies, decontaminations plans and effective medical treatments are necessary to understand the impact of arsenic pollution and the relevance of the environment in our health.
Collapse
Affiliation(s)
- Cristian Soza-Ried
- Escuela de Bioquímica, Facultad de Ciencia, Universidad San Sebastián, Santiago, Chile; Fundación Oncoloop, Santiago, Chile
| | - Eva Bustamante
- Instituto Oncológico Fundación Arturo López, Santiago, Chile.
| | - Christian Caglevic
- Departamento Oncología Médica, Clínica Alemana, Santiago, Chile; Instituto Oncológico Fundación Arturo López, Santiago, Chile
| | - Christian Rolfo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, USA
| | - Rafael Sirera
- Departamento de Biotecnología, Universitat Politenica de Valencia, España
| | - Hugo Marsiglia
- Instituto Oncológico Fundación Arturo López, Santiago, Chile
| |
Collapse
|
15
|
Li J, Sun Y, Zhang X, Hu Y, Li T, Zhang X, Wang Z, Wu S, Wu Z, Chen B. A methyltransferase gene from arbuscular mycorrhizal fungi involved in arsenic methylation and volatilization. CHEMOSPHERE 2018; 209:392-400. [PMID: 29935468 DOI: 10.1016/j.chemosphere.2018.06.092] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 05/27/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF), ubiquitous symbiotic fungi associated with the majority of terrestrial plants, were demonstrated to play important roles in arsenic (As) translocation and transformation in the plant-soil continuum, and substantially influence plant As tolerance. However, the direct involvement of AMF in As methylation and volatilization and their molecular mechanisms remain unsolved. Here, an arsenite methyltransferase gene RiMT-11 was identified and characterized from AM fungus Rhizophagus irregularis. Heterologous expression of RiMT-11 enhanced arsenite resistance of E. coli (Δars) through methylating As into monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and ultimately volatile trimethyl arsine (TMAs). In a two-compartment in vitro monoxenic cultivation system, methylated and volatile As were also detected from AM symbioses with arsenate addition, accompanied by strong up-regulation of RiMT-11 expression in extraradical hyphae. The present study provided direct evidence and illustrated an underlying mechanism of As methylation and volatilization by AMF, leading to a deeper insight into the role of AMF in As biogeochemical cycling.
Collapse
Affiliation(s)
- Jinglong Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqing Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yajun Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Tao Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuemeng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Forestry, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Songlin Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhaoxiang Wu
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Biology and Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Dipp VR, Valles S, Ortiz-Kerbertt H, Suarez JV, Bardullas U. Neurobehavioral Alterations in Zebrafish Due to Long-Term Exposure to Low Doses of Inorganic Arsenic. Zebrafish 2018; 15:575-585. [PMID: 30183563 DOI: 10.1089/zeb.2018.1627] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inorganic arsenic (As) is one of the most ubiquitous and toxic substances with widespread health effects on human populations and biodiversity. Although arsenic is a frequent surface water pollutant, there is scant evidence about neurotoxicity in aquatic species in different stages of development. In the present study, we investigated the neurobehavioral effects of chronic exposure to environmentally relevant doses of arsenic. We exposed zebrafish to 50 and 500 ppb during the larval, juvenile, and adult stage (from 4 h to 150 days postfertilization). We then used broad behavioral screening to evaluate motor function, social behavior, learning and memory, and anxiety-like behaviors. Our results show that arsenic exposure to 500 ppb alters motor function from the embryo to the adult stage. Furthermore, during the adult phase, associative learning and the sensorimotor response are affected with both high and low doses of As, respectively. Notably, exposure to 500 ppb of As induces behaviors associated with anxiety, during the juvenile and adult phase but not the larval stage, without changes in whole-body cortisol levels. These results indicate that chronic exposure to arsenic during their lifespan is capable of producing alterations in different behavioral markers in aquatic vertebrates.
Collapse
Affiliation(s)
- Víctor René Dipp
- Laboratorio de Biología Integrativa, Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) , Ensenada, México
| | - Selma Valles
- Laboratorio de Biología Integrativa, Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) , Ensenada, México
| | - Héctor Ortiz-Kerbertt
- Laboratorio de Biología Integrativa, Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) , Ensenada, México
| | - Julio V Suarez
- Laboratorio de Biología Integrativa, Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) , Ensenada, México
| | - Ulises Bardullas
- Laboratorio de Biología Integrativa, Facultad de Ciencias, Universidad Autónoma de Baja California (UABC) , Ensenada, México
| |
Collapse
|
17
|
Bambino K, Zhang C, Austin C, Amarasiriwardena C, Arora M, Chu J, Sadler KC. Inorganic arsenic causes fatty liver and interacts with ethanol to cause alcoholic liver disease in zebrafish. Dis Model Mech 2018; 11:dmm.031575. [PMID: 29361514 PMCID: PMC5894941 DOI: 10.1242/dmm.031575] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022] Open
Abstract
The rapid increase in fatty liver disease (FLD) incidence is attributed largely to genetic and lifestyle factors; however, environmental toxicants are a frequently overlooked factor that can modify the effects of more common causes of FLD. Chronic exposure to inorganic arsenic (iAs) is associated with liver disease in humans and animal models, but neither the mechanism of action nor the combinatorial interaction with other disease-causing factors has been fully investigated. Here, we examined the contribution of iAs to FLD using zebrafish and tested the interaction with ethanol to cause alcoholic liver disease (ALD). We report that zebrafish exposed to iAs throughout development developed specific phenotypes beginning at 4 days post-fertilization (dpf), including the development of FLD in over 50% of larvae by 5 dpf. Comparative transcriptomic analysis of livers from larvae exposed to either iAs or ethanol revealed the oxidative stress response and the unfolded protein response (UPR) caused by endoplasmic reticulum (ER) stress as common pathways in both these models of FLD, suggesting that they target similar cellular processes. This was confirmed by our finding that arsenic is synthetically lethal with both ethanol and a well-characterized ER-stress-inducing agent (tunicamycin), suggesting that these exposures work together through UPR activation to cause iAs toxicity. Most significantly, combined exposure to sub-toxic concentrations of iAs and ethanol potentiated the expression of UPR-associated genes, cooperated to induce FLD, reduced the expression of as3mt, which encodes an arsenic-metabolizing enzyme, and significantly increased the concentration of iAs in the liver. This demonstrates that iAs exposure is sufficient to cause FLD and that low doses of iAs can potentiate the effects of ethanol to cause liver disease. This article has an associated First Person interview with the first author of the paper. Summary: Using zebrafish, the authors show that exposure to a common environmental contaminant, inorganic arsenic, increases the risk of alcoholic liver disease.
Collapse
Affiliation(s)
- Kathryn Bambino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Chi Zhang
- Program in Biology, New York University Abu Dhabi, Saadiyat Island Campus, PO Box 129188 Abu Dhabi, United Arab Emirates
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jaime Chu
- Department of Pediatrics, Division of Pediatric Hepatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, Saadiyat Island Campus, PO Box 129188 Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Babangida S, Ibrahim S, Muhammad A, Arthur DE, Uzairu A, Garba A. The role of molecular modelling strategies in validating the effects of chrysin on sodium arsenite-induced chromosomal and DNA damage. Hum Exp Toxicol 2018; 37:1037-1047. [DOI: 10.1177/0960327117751233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chrysin (CHR) is a food-based bioactive ingredient whereas, sodium arsenite (SA) is one of the major contaminant in drinking water. When ingested, SA contributes to tissue damage due to bioactivation by S-adenosyl methionine (SAM)-dependent methyltransferase. Hence, the needs to nullify this effect by investigating the potentials of CHR on SA-induced genotoxicity in rats. The experiment was divided into two successive stages (ameliorative and preventive, curative studies) for 1 week. Rats were divided into four groups: distilled water, 10mg/kg SA, 10mg/kg CHR and co-administration. In stage 2, the experimental groups were given either CHR or SA for 1 week, and treated in reversed order for additional week. Lipid peroxidation, protein carbonyl and DNA fragmentation in liver, blood brain and bone marrow cells micronucleus were assayed for using standard protocols. Molecular docking of SAM-dependent methyltransferase in the presence of CHR was conducted. CHR significantly ( p < 0.05) decreased the level of lipid peroxidation, protein carbonyls and DNA fragmentation in blood, liver and brain tissues as against group treated with SA. It also significantly ( p<0.05) reduced the level of micronuclei generated in bone marrow cells. The effects of CHR were shown to be ameliorative, preventive and curative in nature. Furthermore, CHR was able to dock (with binding energy of −24.81 kcal/mol and predicted inhibition kinetic constant (Ki) of 0.959 µM) into the active site of SAM-dependent methyltransferase with strong hydrogen bond and hydrophobic interactions. The study might have unravelled the potentials of CHR against SA-induced chromosomal and DNA damage, which might be due to inhibition of SAM-dependent methyltransferase.
Collapse
Affiliation(s)
- S Babangida
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - S Ibrahim
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - A Muhammad
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - DE Arthur
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | - A Uzairu
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | - A Garba
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
19
|
Huang K, Xu Y, Packianathan C, Gao F, Chen C, Zhang J, Shen Q, Rosen BP, Zhao FJ. Arsenic methylation by a novel ArsM As(III) S-adenosylmethionine methyltransferase that requires only two conserved cysteine residues. Mol Microbiol 2017; 107:265-276. [PMID: 29134708 DOI: 10.1111/mmi.13882] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/08/2017] [Accepted: 11/11/2017] [Indexed: 12/19/2022]
Abstract
Arsenic (As) biomethylation is an important component of the As biogeochemical cycle that can influence As toxicity and mobility in the environment. Biomethylation of As is catalyzed by the enzyme arsenite (As[III]) S-adenosylmethionine methyltransferase (ArsM). To date, all identified ArsM orthologs with As(III) methylation activities have four conserved cysteine residues, which are thought to be essential for As(III) methylation. Here, we isolated an As(III)-methylating bacterium, Bacillus sp. CX-1, and identified a gene encoding a S-adenosylmethionine methyltranserase termed BlArsM with low sequence similarities (≤ 39%) to other ArsMs. BlArsM has six cysteine residues (Cys10, Cys11, Cys145, Cys193, Cys195 and Cys268), three of which (Cys10, Cys145 and Cys195) align with conserved cysteine residues found in most ArsMs. BlarsM is constitutively expressed in Bacillus sp. CX-1. Heterologous expression of BlarsM conferred As(III) resistance. Purified BlArsM methylated both As(III) and methylarsenite (MAs[III]), with a final product of dimethylarsenate (DMAs[V]). When all six cysteines were individually altered to serine residues, only C145S and C195S derivatives lost the ability to methylate As(III) and MAs(III). The derivative C10S/C11S/C193S/C268S was still active. These results suggest that BlArsM is a novel As(III) S-adenosylmethionine methyltransferase requiring only two conserved cysteine residues. A model of As(III) methylation by BlArsM is proposed.
Collapse
Affiliation(s)
- Ke Huang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Xu
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Charles Packianathan
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Fan Gao
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuan Chen
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Zhang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Fang-Jie Zhao
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
20
|
Hanson D, Hu J, Hendry AP, Barrett RDH. Heritable gene expression differences between lake and stream stickleback include both parallel and antiparallel components. Heredity (Edinb) 2017; 119:339-348. [PMID: 28832577 PMCID: PMC5637370 DOI: 10.1038/hdy.2017.50] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022] Open
Abstract
The repeated phenotypic patterns that characterize populations undergoing parallel evolution provide support for a deterministic role of adaptation by natural selection. Determining the level of parallelism also at the genetic level is thus central to our understanding of how natural selection works. Many studies have looked for repeated genomic patterns in natural populations, but work on gene expression is less common. The studies that have examined gene expression have found some support for parallelism, but those studies almost always used samples collected from the wild that potentially confounds the effects of plasticity with heritable differences. Here we use two independent pairs of lake and stream threespine stickleback (Gasterosteus aculeatus) raised in common garden conditions to assess both parallel and antiparallel (that is, similar versus different directions of lake–stream expression divergence in the two watersheds) heritable gene expression differences as measured by total RNA sequencing. We find that more genes than expected by chance show either parallel (22 genes, 0.18% of expressed genes) or antiparallel (24 genes, 0.20% of expressed genes) lake–stream expression differences. These results correspond well with previous genomic studies in stickleback ecotype pairs that found similar levels of parallelism. We suggest that parallelism might be similarly constrained at the genomic and transcriptomic levels.
Collapse
Affiliation(s)
- D Hanson
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - J Hu
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - A P Hendry
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - R D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Chen J, Li J, Jiang X, Rosen BP. Conserved cysteine residues determine substrate specificity in a novel As(III) S-adenosylmethionine methyltransferase from Aspergillus fumigatus. Mol Microbiol 2017; 104:250-259. [PMID: 28127843 DOI: 10.1111/mmi.13628] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2017] [Indexed: 01/26/2023]
Abstract
Methylation of inorganic arsenic is a central process in the organoarsenical biogeochemical cycle. Members of every kingdom have ArsM As(III) S-adenosylmethionine (SAM) methyltransferases that methylates inorganic As(III) into mono- (MAs(III)), di- (DMAs(III)) and tri- (TMAs(III)) methylarsenicals. Every characterized ArsM to date has four conserved cysteine residues. All four cysteines are required for methylation of As(III) to MAs(III), but methylation of MAs(III) to DMAs(III) requires only the two cysteines closest to the C-terminus. Fungi produce volatile and toxic arsines, but the physiological roles of arsenic methylation and the biochemical basis is unknown. Here they demonstrate that most fungal species have ArsM orthologs with only three conserved cysteine residues. The genome of Aspergillus fumigatus has four arsM genes encoding ArsMs with only the second, third and fourth conserved cysteine residues. AfArsM1 methylates MAs(III) but not As(III). Heterologous expression of AfarsM1 in an Escherichia coli conferred resistance to MAs(III) but not As(III). The existence of ArsMs with only three conserved cysteine residues suggest that the ability to methylate MAs(III) may be an evolutionary step toward enzymes capable of methylating As(III), the result of a loss of function mutation in organisms with infrequent exposure to inorganic As(III) or as a resistance mechanism for MAs(III).
Collapse
Affiliation(s)
- Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Jiaojiao Li
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Xuan Jiang
- Department of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
22
|
Abstract
As manufacturing processes and development of new synthetic compounds increase to keep pace with the expanding global demand, environmental health, and the effects of toxicant exposure are emerging as critical public health concerns. Additionally, chemicals that naturally occur in the environment, such as metals, have profound effects on human and animal health. Many of these compounds are in the news: lead, arsenic, and endocrine disruptors such as bisphenol A have all been widely publicized as causing disease or damage to humans and wildlife in recent years. Despite the widespread appreciation that environmental toxins can be harmful, there is limited understanding of how many toxins cause disease. Zebrafish are at the forefront of toxicology research; this system has been widely used as a tool to detect toxins in water samples and to investigate the mechanisms of action of environmental toxins and their related diseases. The benefits of zebrafish for studying vertebrate development are equally useful for studying teratogens. Here, we review how zebrafish are being used both to detect the presence of some toxins as well as to identify how environmental exposures affect human health and disease. We focus on areas where zebrafish have been most effectively used in ecotoxicology and in environmental health, including investigation of exposures to endocrine disruptors, industrial waste byproducts, and arsenic.
Collapse
Affiliation(s)
- Kathryn Bambino
- Icahn School of Medicine at Mount Sinai, New York, United States
| | - Jaime Chu
- Icahn School of Medicine at Mount Sinai, New York, United States.
| |
Collapse
|
23
|
Guo Y, Xue X, Yan Y, Zhu Y, Yang G, Ye J. Arsenic methylation by an arsenite S-adenosylmethionine methyltransferase from Spirulina platensis. J Environ Sci (China) 2016; 49:162-168. [PMID: 28007171 DOI: 10.1016/j.jes.2016.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/17/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Arsenic-contaminated water is a serious hazard for human health. Plankton plays a critical role in the fate and toxicity of arsenic in water by accumulation and biotransformation. Spirulina platensis (S. platensis), a typical plankton, is often used as a supplement or feed for pharmacy and aquiculture, and may introduce arsenic into the food chain, resulting in a risk to human health. However, there are few studies about how S. platensis biotransforms arsenic. In this study, we investigated arsenic biotransformation by S. platensis. When exposed to arsenite (As(III)), S. platensis accumulated arsenic up to 4.1mg/kg dry weight. After exposure to As(III), arsenate (As(V)) was the predominant species making up 64% to 86% of the total arsenic. Monomethylarsenate (MMA(V)) and dimethylarsenate (DMA(V)) were also detected. An arsenite S-adenosylmethionine methyltransferase from S. platensis (SpArsM) was identified and characterized. SpArsM showed low identity with other reported ArsM enzymes. The Escherichia coli AW3110 bearing SparsM gene resulted in As(III) methylation and conferring resistance to As(III). The in vitro assay showed that SpArsM exhibited As(III) methylation activity. DMA(V) and a small amount of MMA(V) were detected in the reaction system within 0.5hr. A truncated SpArsM derivative lacking the last 34 residues still had the ability to methylate As(III). The three single mutants of SpArsM (C59S, C186S, and C238S) abolished the capability of As(III) methylation, suggesting the three cysteine residues are involved in catalysis. We propose that SpArsM is responsible for As methylation and detoxification of As(III) and may contribute to As biogeochemistry.
Collapse
Affiliation(s)
- Yuqing Guo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Ximei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yu Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yongguan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guidi Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jun Ye
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
24
|
Hallauer J, Geng X, Yang HC, Shen J, Tsai KJ, Liu Z. The Effect of Chronic Arsenic Exposure in Zebrafish. Zebrafish 2016; 13:405-12. [PMID: 27140519 PMCID: PMC5035366 DOI: 10.1089/zeb.2016.1252] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Arsenic is a prevalent environmental toxin and a Group one human carcinogenic agent. Chronic arsenic exposure has been associated with many human diseases. The aim of this study is to evaluate zebrafish as an animal model to assess arsenic toxicity in elevated long-term arsenic exposure. With prolonged exposure (6 months) to various concentrations of arsenic from 50 ppb to 300 ppb, effects of arsenic accumulation in zebrafish tissues, and phenotypes were investigated. Results showed that there are no significant changes of arsenic retention in zebrafish tissues, and zebrafish did not exhibit any visible tumor formation under arsenic exposure conditions. However, the zebrafish demonstrate a dysfunction in their neurological system, which is reflected by a reduction of locomotive activity. Moreover, elevated levels of the superoxide dismutase (SOD2) protein were detected in the eye and liver, suggesting increased oxidative stress. In addition, the progenies of arsenic-treated parents displayed a smaller biomass (four-fold reduction in body weight) compared with those from their parental controls. This result indicates that arsenic may induce genetic or epigenetic changes that are then passed on to the next generation. Overall, this study demonstrates that zebrafish is a convenient vertebrate model with advantages in the evaluation of arsenic-associated neurological disorders as well as its influences on the offspring.
Collapse
Affiliation(s)
- Janell Hallauer
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Xiangrong Geng
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Hung-Chi Yang
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Jian Shen
- Department of Pathology, Creighton University School of Medicine, Omaha, Nebraska
| | - Kan-Jen Tsai
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Zijuan Liu
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| |
Collapse
|
25
|
Wang J, Wu M, Lu G, Si Y. Biotransformation and biomethylation of arsenic by Shewanella oneidensis MR-1. CHEMOSPHERE 2016; 145:329-335. [PMID: 26692509 DOI: 10.1016/j.chemosphere.2015.11.107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/21/2015] [Accepted: 11/26/2015] [Indexed: 06/05/2023]
Abstract
The resistance of Shewanella oneidensis MR-1 to toxic arsenic was investigated by measuring the growth of the bacteria in the presence of As(III) and As(V) in different growth media. The bacteria were shown to biotransform arsenic through the partial methylation of inorganic arsenic into methylated metabolites. This biotransformation of inorganic arsenic by S. oneidensis MR-1 was affected by the methyl donor, the composition of the medium, and the presence of Fe(III). The relative content of methylated arsenic in the medium containing S-adenosyl methionine as the methyl donor was greater than that in the medium containing methylcobalamin. The biotransformation process driven by Fe-reducing bacteria, and occurred in combination with microbially mediated As-Fe reduction in the presence of Fe(III). The results demonstrate that S. oneidensis MR-1 methylates inorganic arsenic into less toxic organoarsenic compounds. This process has potential applications in the bioremediation of environmental arsenic, and the results provide new insights into the control of in situ arsenic pollution.
Collapse
Affiliation(s)
- Juan Wang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Mingyin Wu
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Gan Lu
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Youbin Si
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
26
|
Kamstra JH, Aleström P, Kooter JM, Legler J. Zebrafish as a model to study the role of DNA methylation in environmental toxicology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16262-16276. [PMID: 25172464 DOI: 10.1007/s11356-014-3466-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
Environmental epigenetics is a rapidly growing field which studies the effects of environmental factors such as nutrition, stress, and exposure to compounds on epigenetic gene regulation. Recent studies have shown that exposure to toxicants in vertebrates is associated with changes in DNA methylation, a major epigenetic mechanism affecting gene transcription. Zebra fish, a well-known model in toxicology and developmental biology, are emerging as a model species in environmental epigenetics despite their evolutionary distance to rodents and humans. In this review, recent insights in DNA methylation during zebra fish development are discussed and compared to mammalian models in order to evaluate zebra fish as a model to study the role of DNA methylation in environmental toxicology. Differences exist in DNA methylation reprogramming during early development, whereas in later developmental stages, tissue distribution of both 5-methylcytosine and 5-hydroxymethylcytosine seems more conserved between species, as well as basic DNA (de)methylation mechanisms. All DNA methyl transferases identified so far in mammals are present in zebra fish, as well as a number of major demethylation pathways. However, zebra fish appear to lack some methylation pathways present in mammals, such as parental imprinting. Several studies report effects on DNA methylation in zebra fish following exposure to environmental contaminants, such as arsenic, benzo[a]pyrene, and tris(1,3-dichloro-2-propyl)phosphate. Though more research is needed to examine heritable effects of contaminant exposure on DNA methylation, recent data suggests the usefulness of the zebra fish as a model in environmental epigenetics.
Collapse
Affiliation(s)
- Jorke H Kamstra
- Institute for Environmental Studies, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| | - Peter Aleström
- Faculty of Veterinary Medicine and Biosciences, Dept. of Basic Science and Aquatic Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway.
| | - Jan M Kooter
- Department of Molecular Cell Biology, Section Genetics, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| | - Juliette Legler
- Institute for Environmental Studies, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Goessling W, Sadler KC. Zebrafish: an important tool for liver disease research. Gastroenterology 2015; 149:1361-77. [PMID: 26319012 PMCID: PMC4762709 DOI: 10.1053/j.gastro.2015.08.034] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/06/2015] [Accepted: 08/18/2015] [Indexed: 02/07/2023]
Abstract
As the incidence of hepatobiliary diseases increases, we must improve our understanding of the molecular, cellular, and physiological factors that contribute to the pathogenesis of liver disease. Animal models help us identify disease mechanisms that might be targeted therapeutically. Zebrafish (Danio rerio) have traditionally been used to study embryonic development but are also important to the study of liver disease. Zebrafish embryos develop rapidly; all of their digestive organs are mature in larvae by 5 days of age. At this stage, they can develop hepatobiliary diseases caused by developmental defects or toxin- or ethanol-induced injury and manifest premalignant changes within weeks. Zebrafish are similar to humans in hepatic cellular composition, function, signaling, and response to injury as well as the cellular processes that mediate liver diseases. Genes are highly conserved between humans and zebrafish, making them a useful system to study the basic mechanisms of liver disease. We can perform genetic screens to identify novel genes involved in specific disease processes and chemical screens to identify pathways and compounds that act on specific processes. We review how studies of zebrafish have advanced our understanding of inherited and acquired liver diseases as well as liver cancer and regeneration.
Collapse
Affiliation(s)
- Wolfram Goessling
- Divisions of Genetics and Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts; Broad Institute of MIT and Harvard, Harvard Medical School, Boston, Massachusetts
| | - Kirsten C Sadler
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
28
|
Wang PP, Bao P, Sun GX. Identification and catalytic residues of the arsenite methyltransferase from a sulfate-reducing bacterium, Clostridium sp. BXM. FEMS Microbiol Lett 2014; 362:1-8. [PMID: 25790486 DOI: 10.1093/femsle/fnu003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Arsenic methylation is an important process frequently occurring in anaerobic environments. Anaerobic microorganisms have been implicated as the major contributors for As methylation. However, very little information is available regarding the enzymatic mechanism of As methylation by anaerobes. In this study, one novel sulfate-reducing bacterium isolate, Clostridium sp. BXM, which was isolated from a paddy soil in our laboratory, was demonstrated to have the ability of methylating As. One putative arsenite S-Adenosyl-Methionine methyltransferase (ArsM) gene, CsarsM was cloned from Clostridium sp. BXM. Heterologous expression of CsarsM conferred As resistance and the ability of methylating As to an As-sensitive strain of Escherichia coli. Purified methyltransferase CsArsM catalyzed the formation of methylated products from arsenite, further confirming its function of As methylation. Site-directed mutagenesis studies demonstrated that three conserved cysteine residues at positions 65, 153 and 203 in CsArsM are necessary for arsenite methylation, but only Cysteine 153 and Cysteine 203 are required for the methylation of monomethylarsenic to dimethylarsenic. These results provided the characterization of arsenic methyltransferase from anaerobic sulfate-reducing bacterium. Given that sulfate-reducing bacteria are ubiquitous in various wetlands including paddy soils, enzymatic methylation mediated by these anaerobes is proposed to contribute to the arsenic biogeochemical cycling.
Collapse
Affiliation(s)
- Pei-Pei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Peng Bao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guo-Xin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
29
|
McCollum CW, Hans C, Shah S, Merchant FA, Gustafsson JÅ, Bondesson M. Embryonic exposure to sodium arsenite perturbs vascular development in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:152-163. [PMID: 24768856 DOI: 10.1016/j.aquatox.2014.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/02/2014] [Accepted: 04/05/2014] [Indexed: 06/03/2023]
Abstract
Exposure to arsenic in its inorganic form, arsenite, causes adverse effects to many different organs and tissues. Here, we have investigated arsenite-induced adverse effects on vascular tissues in the model organism zebrafish, Danio rerio. Zebrafish embryos were exposed to arsenite at different exposure windows and the susceptibility to vascular tissue damage was recorded at 72hours post fertilization (hpf). Intersegmental vessel sprouting and growth was most perturbed by exposure to arsenite during the 24-48hpf window, while disruption in the condensation of the caudal vein plexus was more often observed at the 48-72hpf exposure window, reflecting when these structures develop during normal embryogenesis. The vascular growth rate was decreased by arsenite exposure, and deviated from that of control embryos at around 24-26.5hpf. We further mapped changes in expression of key regulators of angiogenesis and vasculogenesis. Downregulation of vascular endothelial growth factor receptor 1/fms-related tyrosine kinase 1 (vegfr1/flt1) expression was evident already at 24hpf, coinciding with the decreased vascular growth rate. At later time points, matrix metalloproteinase 9 (mmp9) expression was upregulated, suggesting that arsenite affects the composition of the extracellular matrix. In total, the expression of eight key factors involved in different aspects of vascularization was significantly altered by arsenic exposure. In conclusion, our results show that arsenite is a potent vascular disruptor in the developing zebrafish embryo, a finding that calls for an evaluation of arsenite as a developmental vascular toxicant in mammalian model systems.
Collapse
Affiliation(s)
- Catherine W McCollum
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | - Charu Hans
- Department of Computer Science, University of Houston, Houston, TX 77204, USA
| | - Shishir Shah
- Department of Computer Science, University of Houston, Houston, TX 77204, USA
| | - Fatima A Merchant
- Department of Computer Science, University of Houston, Houston, TX 77204, USA; Department of Engineering Technology, University of Houston, Houston, TX 77204, USA
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Maria Bondesson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
30
|
Ye J, Chang Y, Yan Y, Xiong J, Xue XM, Yuan D, Sun GX, Zhu YG, Miao W. Identification and characterization of the arsenite methyltransferase from a protozoan, Tetrahymena pyriformis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 149:50-7. [PMID: 24561426 DOI: 10.1016/j.aquatox.2014.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 05/21/2023]
Abstract
Arsenic (As) methylation in aquatic microbes plays a major role in the biogeochemistry of As. Protozoa, especially the free-living freshwater species, are important players in aquatic ecological health. In this study, an arsenite (As(III)) methyltransferase, TpyArsM, was identified and characterized in a free-living protozoan, Tetrahymena pyriformis. In order to confirm its function, TpyarsM gene was knocked-out in Tetrahymena and was also heterologously expressed in hypersensitive E. coli; these events resulted in expected decreases in As tolerance and methylation ability, respectively. In-vitro tests revealed that purified TpyArsM protein methylated inorganic As to mono- and di- methylarsenate, and also had the novel property of producing trimethylarsenite (TMA(III)) and dimethylarsine (Me2AsH) gases. This new methyltransferase gene, identified in a species near the base of the food web, has enriched our knowledge of As methyltransferases and has great potential for bioremediation of As-contaminated environments.
Collapse
Affiliation(s)
- Jun Ye
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yue Chang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yu Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xi-Mei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxia Yuan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guo-Xin Sun
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
31
|
Farmen E, Hultman MT, Anglès d'Auriac M, Tollefsen KE. Development of a screening system for the detection of chemically induced DNA methylation alterations in a zebrafish liver cell line. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:587-599. [PMID: 24754394 DOI: 10.1080/15287394.2014.887423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Early molecular events with correlation to disease, such as aberrant DNA methylation, emphasize the importance of DNA methylation as a potential environmental biomarker. Currently, little is known regarding how various environmental contaminants and mixtures alter DNA methylation in aquatic organisms, and testing is both time- and labor-consuming. Therefore, the potential of an in vitro screening method was evaluated by exposing zebrafish liver cells (ZF-L) for 96 h to the nonmutagenic model substance 5'-azacytidine (AZA), as well as a selection of environmental pollutants such as sodium arsenite (NAS), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 17α-ethinylestradiol (EE2), and diethylstilbestrol (DES). Six single genes with reported and anticipated importance in cancer were selected for analysis. Methylation of gene promoter areas was monitored by bisulfite conversion and high-resolution melt (HRM) analysis after exposure to sublethal concentrations of the test compounds. Subsequently, results were validated with direct bisulfite sequencing. Exposure of ZF-L cells to 0.5 μM AZA for 96 h led to hypomethylation of genes with both low and high basal methylation indicating similarity to mechanism of action in mammals. Further, NAS, EE2, and DES were shown to induce significant alterations in methylation, whereas TCDD did not. It was concluded that cell line exposure in combination with HRM may provide an initial contaminant screening assay by quantifying DNA methylation alterations with high throughput capacity. In addition, the rapid determination of effects following contaminant exposure with this in vitro system points to the possibility for new in vivo applications to be useful for environmental monitoring.
Collapse
Affiliation(s)
- Eivind Farmen
- a Norwegian Institute for Water Research , Oslo , Norway
| | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Shengwen Shen
- Department
of Laboratory Medicine
and Pathology, 10-102 Clinical Sciences Building, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| | - Xing-Fang Li
- Department
of Laboratory Medicine
and Pathology, 10-102 Clinical Sciences Building, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| | - William R. Cullen
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver,
British Columbia, Canada, V6T 1Z1
| | - Michael Weinfeld
- Department of Oncology, Cross
Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, Canada, T6G 1Z2
| | - X. Chris Le
- Department
of Laboratory Medicine
and Pathology, 10-102 Clinical Sciences Building, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| |
Collapse
|