1
|
Duan X, Wan JMF, Yu ACH. The molecular impact of sonoporation: A transcriptomic analysis of gene regulation profile. ULTRASONICS SONOCHEMISTRY 2024; 111:107077. [PMID: 39368882 DOI: 10.1016/j.ultsonch.2024.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/17/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
Sonoporation has long been known to disrupt intracellular signaling, yet the involved molecules and pathways have not been identified with clarity. In this study, we employed whole transcriptome shotgun sequencing (RNA-seq) to profile sonoporation-induced gene responses after membrane resealing has taken place. Sonoporation was achieved by microbubble-mediated ultrasound (MB-US) exposure in the form of 1 MHz ultrasound pulsing (0.50 MPa peak negative pressure, 10 % duty cycle, 30 s exposure period) in the presence of microbubbles (1:1 cell-to-bubble ratio). Using propidium iodide (PI) and calcein respectively as cell viability and cytoplasmic uptake labels, post-exposure flow cytometry was performed to identify three viable cell populations: 1) unsonoporated cells, 2) sonoporated cells with low uptake, and 3) sonoporated cells with high uptake. Fluorescence-activated cell sorting was then conducted to separate the different groups followed by RNA-seq analysis of the gene expressions in each group of cells. We found that sonoporated cells with low or high calcein uptake showed high similarity in the gene responses, including the activation of multiple heat shock protein (HSP) genes and immediate early response genes mediating apoptosis and transcriptional regulation. In contrast, unsonoporated cells exhibited a more extensive gene expression alteration that included the activation of more HSP genes and the upregulation of diverse apoptotic mediators. Four oxidative stress-related and three immune-related genes were also differentially expressed in unsonoporated cells. Our results provided new information for understanding the intracellular mobilization in response to sonoporation at the molecular level, including the identification of new molecules in the sonoporation-induced apoptosis regulatory network. Our data also shed light on the innovative therapeutic strategy which could potentially leverage the responses of viable unsonoporated cells as a synergistic effector in the microenvironment to favor tumor treatment.
Collapse
Affiliation(s)
- Xinxing Duan
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON N2L3G1, Canada; School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Jennifer M F Wan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Alfred C H Yu
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON N2L3G1, Canada.
| |
Collapse
|
2
|
Hong Y, Li X, Li J, He Q, Huang M, Tang Y, Chen X, Chen J, Tang KJ, Wei C. H3K27ac acts as a molecular switch for doxorubicin-induced activation of cardiotoxic genes. Clin Epigenetics 2024; 16:91. [PMID: 39014511 PMCID: PMC11251309 DOI: 10.1186/s13148-024-01709-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Doxorubicin (Dox) is an effective chemotherapeutic drug for various cancers, but its clinical application is limited by severe cardiotoxicity. Dox treatment can transcriptionally activate multiple cardiotoxicity-associated genes in cardiomyocytes, the mechanisms underlying this global gene activation remain poorly understood. METHODS AND RESULTS Herein, we integrated data from animal models, CUT&Tag and RNA-seq after Dox treatment, and discovered that the level of H3K27ac (a histone modification associated with gene activation) significantly increased in cardiomyocytes following Dox treatment. C646, an inhibitor of histone acetyltransferase, reversed Dox-induced H3K27ac accumulation in cardiomyocytes, which subsequently prevented the increase of Dox-induced DNA damage and apoptosis. Furthermore, C646 alleviated cardiac dysfunction in Dox-treated mice by restoring ejection fraction and reversing fractional shortening percentages. Additionally, Dox treatment increased H3K27ac deposition at the promoters of multiple cardiotoxic genes including Bax, Fas and Bnip3, resulting in their up-regulation. Moreover, the deposition of H3K27ac at cardiotoxicity-related genes exhibited a broad feature across the genome. Based on the deposition of H3K27ac and mRNA expression levels, several potential genes that might contribute to Dox-induced cardiotoxicity were predicted. Finally, the up-regulation of H3K27ac-regulated cardiotoxic genes upon Dox treatment is conservative across species. CONCLUSIONS Taken together, Dox-induced epigenetic modification, specifically H3K27ac, acts as a molecular switch for the activation of robust cardiotoxicity-related genes, leading to cardiomyocyte death and cardiac dysfunction. These findings provide new insights into the relationship between Dox-induced cardiotoxicity and epigenetic regulation, and identify H3K27ac as a potential target for the prevention and treatment of Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yu Hong
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xinlan Li
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jia Li
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiuyi He
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Manbing Huang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ke-Jing Tang
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chao Wei
- Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Rd.2, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Slawski J, Jaśkiewicz M, Barton A, Kozioł S, Collawn JF, Bartoszewski R. Regulation of the HIF switch in human endothelial and cancer cells. Eur J Cell Biol 2024; 103:151386. [PMID: 38262137 DOI: 10.1016/j.ejcb.2024.151386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that reprogram the transcriptome for cells to survive hypoxic insults and oxidative stress. They are important during embryonic development and reprogram the cells to utilize glycolysis when the oxygen levels are extremely low. This metabolic change facilitates normal cell survival as well as cancer cell survival. The key feature in survival is the transition between acute hypoxia and chronic hypoxia, and this is regulated by the transition between HIF-1 expression and HIF-2/HIF-3 expression. This transition is observed in many human cancers and endothelial cells and referred to as the HIF Switch. Here we discuss the mechanisms involved in the HIF Switch in human endothelial and cancer cells which include mRNA and protein levels of the alpha chains of the HIFs. A major continuing effort in this field is directed towards determining the differences between normal and tumor cell utilization of this important pathway, and how this could lead to potential therapeutic approaches.
Collapse
Affiliation(s)
- Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Maciej Jaśkiewicz
- International Research Agenda 3P, Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Anna Barton
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Sylwia Kozioł
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
4
|
Wang Y, Yang S, Hao C, Chen J, Wang J, Xu L. DDIT4 is essential for DINP-induced autophagy of ovarian granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115686. [PMID: 37976928 DOI: 10.1016/j.ecoenv.2023.115686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
As one of the most important phthalates, di-isononyl phthalate (DINP) has been widely used as a common plasticizer in the food and personal care products sectors. In our previous study, we found that DINP can induce autophagy of ovarian granulosa cells; while the underlying mechanism is unclear. In the study, we showed that DINP exposure could induce autophagy of ovarian granulosa cells and KGN cells, accompanied with the increase in the mRNA and protein level of DDIT4. Furthermore, overexpression of DDIT4 were shown to induce autophagy of KGN cells; while knockdown of DDIT4 inhibited DINP-induced autophagy, implying that DDIT4 played an important role in DINP-induced autophagy of ovarian granulosa cells. There were three putative binding sites of transcription factor ATF4 in the promoter region of DDIT4 gene, suggesting that DDIT4 might be regulated by ATF4. Herein, we found that overexpression of ATF4 could upregulate the expression of DDIT4 in KGN cells, while knockdown of ATF4 inhibited its expression. Subsequently, ATF4 was identified to bind to the promoter region of DDIT4 gene and promote its transcription. The expression of ATF4 was also increased in the DINP-exposed granulosa cells, and ATF4 overexpression promoted autophagy of KGN cells; whereas knockdown of ATF4 alleviated DINP-induced upregulation of DDIT4 and autophagy of the cells. Taken together, DINP triggered autophagy of ovarian granulosa cells through activating ATF4/DDIT4 signals.
Collapse
Affiliation(s)
- Yijing Wang
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China; Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Si Yang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Chaoju Hao
- Library, Medical College of Nanchang University, Nanchang 330006, PR China
| | - Jiaxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang 330006, PR China
| | - Jinglei Wang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang 330006, PR China.
| | - Linlin Xu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
5
|
Tajik F, Fattahi F, Rezagholizadeh F, Bouzari B, Babaheidarian P, Baghai Wadji M, Madjd Z. Nuclear overexpression of DNA damage-inducible transcript 4 (DDIT4) is associated with aggressive tumor behavior in patients with pancreatic tumors. Sci Rep 2023; 13:19403. [PMID: 37938616 PMCID: PMC10632485 DOI: 10.1038/s41598-023-46484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023] Open
Abstract
DNA damage-inducible transcript 4 (DDIT4) is induced in various cellular stress conditions. Several studies showed that the dysregulation of DDIT4 is involved in different malignancies with paradoxical expressions and roles. Therefore, this study investigated the clinical significance, prognostic, and diagnostic value of DDIT4 in different types of pancreatic tumors (PT). The expression of DDIT4 and long non-coding RNA (TPTEP1) in mRNA level was examined in 27 fresh PT samples using Real-time quantitative PCR (RT-qPCR). Moreover, 200 formalin-fixed paraffin-embedded PT tissues, as well as 27 adjacent normal tissues, were collected to evaluate the clinical significance, prognostic, and diagnosis value of DDIT4 expression by immunohistochemistry (IHC) on tissue microarrays (TMA) slides. The results of RT-qPCR showed that the expression of DDIT4 in tumor samples was higher than in normal samples which was associated with high tumor grade (P = 0.015) and lymphovascular invasion (P = 0.048). Similar to this, IHC findings for nucleus, cytoplasm, and membrane localization showed higher expression of DDIT4 protein in PT samples rather than in nearby normal tissues. A statistically significant association was detected between a high level of nuclear expression of DDIT4 protein, and lymphovascular invasion (P = 0.025), as well as advanced TNM stage (P = 0.034) pancreatic ductal adenocarcinoma (PDAC) and in pancreatic neuroendocrine tumor (PNET), respectively. In contrast, a low level of membranous expression of DDIT4 protein showed a significant association with advanced histological grade (P = 0.011), margin involvement (P = 0.007), perineural invasion (P = 0.023), as well as lymphovascular invasion (P = 0.005) in PDAC. No significant association was found between survival outcomes and expression of DDIT4 in both types. It was found that DDIT4 has rational accuracy and high sensitivity as a diagnostic marker. Our results revealed a paradoxical role of DDIT4 expression protein based on the site of nuclear and membranous expression. The findings of this research indicated that there is a correlation between elevated nuclear expression of DDIT4 and the advancement and progression of disease in patients with PT. Conversely, high membranous expression of DDIT4 was associated with less aggressive tumor behavior in patients with PDAC. However, further studies into the prognostic value and biological function of DDIT4 are needed in future studies.
Collapse
Affiliation(s)
- Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Surgery, University of California, Irvine, CA, USA
| | - Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Fereshteh Rezagholizadeh
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Bouzari
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pegah Babaheidarian
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Baghai Wadji
- Department of Surgery, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Yuan Y, Lv X, Wu Y, Weng Y, Dai F, Ding H, Chen R, Zheng B, Zhao W, Tong Q, Ding J, Lou D, Lai Y, Chu X, Zhao L, Lu S, Kong Q. Mining host candidate regulators of schistosomiasis-induced liver fibrosis in response to artesunate therapy through transcriptomics approach. PLoS Negl Trop Dis 2023; 17:e0011626. [PMID: 37773953 PMCID: PMC10566724 DOI: 10.1371/journal.pntd.0011626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2023] [Accepted: 08/29/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Artesunate (ART) has been reported to have an antifibrotic effect in various organs. The underlying mechanism has not been systematically elucidated. We aimed to clarify the effect of ART on liver fibrosis induced by Schistosoma japonicum (S. japonicum) in an experimentally infected rodent model and the potential underlying mechanisms. METHODS The effect of ART on hepatic stellate cells (HSCs) was assessed using CCK-8 and Annexin V-FITC/PI staining assays. The experimental model of liver fibrosis was established in the Mongolian gerbil model infected with S. japonicum cercariae and then treated with 20 mg/kg or 40 mg/kg ART. The hydroxyproline (Hyp) content, malondialdehyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities in liver tissue were measured and histopathological changes of liver tissues were observed. Whole-transcriptome RNA sequencing (RNA-seq) of the liver tissues was performed. Differentially expressed genes (DEGs) were identified using bioinformatic analysis and verified by quantitative PCR (qPCR) and western blot assay. RESULTS ART significantly inhibited the proliferation and induce the apoptosis of HSCs in a dose-dependent manner. In vivo, Hyp content decreased significantly in the ART-H group compared to the model (MOD) group and GPX activity was significantly higher in the ART-H group than in the MOD group. Besides, ART treatment significantly reduced collagen production (p <0.05). A total of 158 DEGs and 44 differentially expressed miRNAs related to ART-induced anti-schistosomiasis liver fibrosis were identified. The qPCR and western blot results of selected DEGs were consistent with the sequencing results. These DEGs were implicated in key pathways such as immune and inflammatory response, integrin-mediated signaling and toll-like receptor signaling pathways. CONCLUSION ART is effective against liver fibrosis using Mongolian gerbil model induced by S. japonicum infection. We identified host candidate regulators of schistosomiasis-induced liver fibrosis in response to ART through transcriptomics approach.
Collapse
Affiliation(s)
- Yajie Yuan
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Xinyue Lv
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Yahan Wu
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Youhong Weng
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Fangwei Dai
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Haojie Ding
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Riping Chen
- School of Public Health, Hangzhou Medical College, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Bin Zheng
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Wenxia Zhao
- School of Public Health, Hangzhou Medical College, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Qunbo Tong
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Jianzu Ding
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Di Lou
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Yunru Lai
- Department of Laboratory Medicine, Lishui Second People’s Hospital Affiliated to Wenzhou Medical University, Lishui, China
| | - Xiaofeng Chu
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People’s Hospital Affiliated to Wenzhou Medical University, Lishui, China
| | - Shaohong Lu
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Qingming Kong
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
7
|
Dong W, Wan J, Yu H, Shen B, Yang G, Nie Q, Tian Y, Qin L, Song C, Chen B, Li L, Hong S. Nrf2 protects against methamphetamine-induced nephrotoxicity by mitigating oxidative stress and autophagy in mice. Toxicol Lett 2023; 384:136-148. [PMID: 37567421 DOI: 10.1016/j.toxlet.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Methamphetamine (MA) is a widely abused drug that can cause kidney damage. However, the molecular mechanism remains unclear. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor that regulates resistance to oxidative and proteotoxic stress. In this study, we investigated the role of Nrf2 in MA-induced renal injury in mice. Nrf2 was pharmacologically activated and genetically knocked-out in mice. The animal model of MA-induced nephrotoxicity was established by injecting MA (2 mg/kg) intraperitoneally twice a day for 5 days. Histopathological alterations were shown in the MA-exposed kidneys. MA significantly increased renal function biomarkers and kidney injury molecule-1 (KIM-1) levels. MA decreased superoxide dismutase activity and increased malondialdehyde levels. Autophagy-related factors (LC3 and Beclin 1) were elevated in MA-treated mice. Furthermore, Nrf2 increased in the MA-exposed kidneys. Activation of Nrf2 may attenuate histopathological changes in the kidneys of MA-treated mice. Pre-administration of Nrf2 agonist significantly decreased KIM-1 expression, oxidative stress, and autophagy in the kidneys after MA toxicity. In contrast, Nrf2 knockout mice treated with MA lost renal tubular morphology. Nrf2 deficiency increased KIM-1 expression, oxidative stress, and autophagy in the MA-exposed kidneys. Our results demonstrate that Nrf2 may protect against MA-induced nephrotoxicity by mitigating oxidative stress and autophagy.
Collapse
Affiliation(s)
- Wenjuan Dong
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Jia Wan
- Hunan Provincial People's Hospital, Hunan 410005, China
| | - Hao Yu
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China; West China Hospital, Sichuan University, Chengdu 610041, China
| | - Baoyu Shen
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Qianyun Nie
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China; Department of Pathology Medicine, Hainan Medical University, Haikou 571199, China
| | - Yan Tian
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Lixiang Qin
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Chunhui Song
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Bingzheng Chen
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China.
| | - Shijun Hong
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
8
|
Liu Y, Chen LJ, Li XW, Yang JZ, Liu JL, Zhang KK, Li JH, Wang Q, Xu JT, Zhi X. Gut microbiota contribute to Methamphetamine-induced cardiotoxicity in mouse model. Chem Biol Interact 2023; 379:110512. [PMID: 37116852 DOI: 10.1016/j.cbi.2023.110512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Methamphetamine (METH) is a psychotropic drug known to cause cardiotoxicity. The gut-heart axis is emerging as an important pathway linking gut microbiota to cardiovascular disease, but the precise association between METH-induced cardiotoxicity and gut microbiota has yet to be elucidated. In this study, we established an escalating dose-multiple METH administration model in male BALB/c mice, examined cardiac injury and gut microbiota, and investigated the contribution of gut microbiota to cardiotoxicity induced by METH. Additionally, we treated mice with antibiotics and fecal microbiota transplantation (FMT) to assess the impact of gut microbiota on cardiotoxicity. Our results showed that METH exposure altered the p53 and PI3K/Akt signaling pathways and modulated the apoptosis pathway in heart tissue, accompanied by elevated levels of Bax/BCL-2 expression and cleaved caspase-3 proteins. METH exposure increased the diversity and richness of gut microbiota, and significantly changed the microbial community composition, accompanied by elevated abundance of Lactobacillus, Bifidobacterium, and decreased abundance of Bacteroides, norank_f_Muribaculaceae and Alistipes. Eliminating gut microbiota by antibiotics treatment alleviated METH-induced cardiotoxicity, while FMT treatment transferred similar cardiac injury manifestations from METH-exposed mice to healthy recipient mice. Our study unveils the crucial involvement of gut microbiota in the development of cardiotoxicity induced by METH and provides potential strategies for treating cardiac complications caused by METH.
Collapse
Affiliation(s)
- Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Kai-Kai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China.
| | - Jing-Tao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China.
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
9
|
Peng X, Yang R, Peng W, Zhao Z, Tu G, He B, Cai Q, Shi S, Yin W, Yu F, Tao Y, Wang X. Overexpression of LINC00551 promotes autophagy-dependent ferroptosis of lung adenocarcinoma via upregulating DDIT4 by sponging miR-4328. PeerJ 2022; 10:e14180. [PMID: 36570007 PMCID: PMC9772902 DOI: 10.7717/peerj.14180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/13/2022] [Indexed: 12/27/2022] Open
Abstract
According to mounting evidence, long noncoding RNAs (lncRNAs) play a vital role in regulated cell death (RCD). A potential strategy for cancer therapy involves triggering ferroptosis, a novel form of RCD. Although it is thought to be an autophagy-dependent process, it is still unclear how the two processes interact. This study characterized a long intergenic noncoding RNA, LINC00551, expressed at a low level in lung adenocarcinoma (LUAD) and some other cancers. Overexpression of LINC00551 suppresses cell viability while promoting autophagy and RSL-3-induced ferroptosis in LUAD cells. LINC00551 acts as a competing endogenous RNA (ceRNA) and binds with miR-4328 which up-regulates the target DNA damage-inducible transcript 4 (DDIT4). DDIT4 inhibits the activity of mTOR, promotes LUAD autophagy, and then promotes the ferroptosis of LUAD cells in an autophagy-dependent manner. This study provided an insight into the molecular mechanism regulating ferroptosis and highlighted LINC00551 as a potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Xiong Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Rui Yang
- Department of Pathology, School of Basic Medicine and Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weilin Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenyu Zhao
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Guangxu Tu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Boxue He
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qidong Cai
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuai Shi
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Yin
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yongguang Tao
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China,Department of Pathology, Xiangya Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Luo BY, Zhou J, Guo D, Yang Q, Tian Q, Cai DP, Zhou RM, Xu ZZ, Wang HJ, Chen SY, Xie WB. Methamphetamine induces thoracic aortic aneurysm/dissection through C/EBPβ. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166447. [PMID: 35643386 PMCID: PMC9753351 DOI: 10.1016/j.bbadis.2022.166447] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 01/25/2023]
Abstract
AIMS Thoracic aortic aneurysm/dissection (TAAD) is a life-threatening disease with diverse clinical manifestations. Although the association between methamphetamine (METH) and TAAD is frequently observed, the causal relationship between METH abuse and aortic aneurysm/dissection has not been established. This study was designed to determine if METH causes aortic aneurysm/dissection and delineate the underlying mechanism. METHODS AND RESULTS A new TAAD model was developed by exposing METH to SD rats pre-treated with lysyl oxidase inhibitor β-aminopropionitrile (BAPN). Combination of METH and BAPN caused thoracic aortic aneurysm/dissection in 60% of rats. BAPN+METH significantly increased the expression and activities of both matrix metalloproteinase MMP2 and MMP9, consistent with the severe elastin breakage and dissection. Mechanistically, METH increased CCAAT-enhancer binding protein β (C/EBPβ) expression by enhancing mothers against decapentaplegic homolog 3 (Smad3) and extracellular regulated protein kinase (ERK1/2) signaling. METH also promoted C/EBPβ binding to MMP2 and MMP9 promoters. Blocking C/EBPβ significantly attenuated METH+BAPN-induced TAAD and MMP2/MMP9 expression. Moreover, BAPN+METH promoted aortic medial smooth muscle cell (SMC) apoptosis through C/EBPβ-mediated IGFBP5/p53/PUMA signaling pathways. More importantly, the expression of C/EBPβ, MMP2/MMP9, and apoptosis-promoting proteins was increased in the aorta of human patients with thoracic aortic dissection, suggesting that the mechanisms identified in animal study could be relevant to human disease. CONCLUSIONS Our study demonstrated that METH exposure has a casual effect on TAAD. C/EBPβ mediates METH-introduced TAAD formation by causing elastin breakage, medial cell loss and degeneration. Therefore, C/EBPβ may be a potential factor for TAAD clinical diagnosis or treatment.
Collapse
Affiliation(s)
- Bao-Ying Luo
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China; Zhangzhou Health Vocational College, Zhangzhou 363000, PR China
| | - Jie Zhou
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Dan Guo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Qian Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Qin Tian
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Dun-Peng Cai
- Department of Surgery, Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Rui-Mei Zhou
- Department of Surgery, Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Zhen-Zhen Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Hui-Jun Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China.
| | - Shi-You Chen
- Department of Surgery, Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| | - Wei-Bing Xie
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China; NHC Key Laboratory of Drug Addiction Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China.
| |
Collapse
|
11
|
Guo D, Huang X, Xiong T, Wang X, Zhang J, Wang Y, Liang J. Molecular mechanisms of programmed cell death in methamphetamine-induced neuronal damage. Front Pharmacol 2022; 13:980340. [PMID: 36059947 PMCID: PMC9428134 DOI: 10.3389/fphar.2022.980340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Methamphetamine, commonly referred to as METH, is a highly addictive psychostimulant and one of the most commonly misused drugs on the planet. Using METH continuously can increase your risk for drug addiction, along with other health complications like attention deficit disorder, memory loss, and cognitive decline. Neurotoxicity caused by METH is thought to play a significant role in the onset of these neurological complications. The molecular mechanisms responsible for METH-caused neuronal damage are discussed in this review. According to our analysis, METH is closely associated with programmed cell death (PCD) in the process that causes neuronal impairment, such as apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. In reviewing this article, some insights are gained into how METH addiction is accompanied by cell death and may help to identify potential therapeutic targets for the neurological impairment caused by METH abuse.
Collapse
Affiliation(s)
- Dongming Guo
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Xinlei Huang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Tianqing Xiong
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Xingyi Wang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Jingwen Zhang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Yingge Wang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
- *Correspondence: Jingyan Liang,
| |
Collapse
|
12
|
Effect of High-Intensity Interval Training on Cardiac Apoptosis Markers in Methamphetamine-Dependent Rats. Curr Issues Mol Biol 2022; 44:3030-3038. [PMID: 35877433 PMCID: PMC9315973 DOI: 10.3390/cimb44070209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic methamphetamine use increases apoptosis, leading to heart failure and sudden cardiac death. Previous studies have shown the importance of high-intensity interval training (HIIT) in reducing indices of cardiac tissue apoptosis in different patients, but in the field of sports science, the molecular mechanisms of apoptosis in methamphetamine-dependent rats are still unclear. The present article aimed to investigate the changes in cardiac apoptosis markers in methamphetamine-dependent rats in response to HIIT. Left ventricular tissue was used to evaluate caspase-3, melusin, FAK, and IQGAP1 gene expression. Rats were divided into four groups: sham, methamphetamine (METH), METH-control, and METH-HIIT. METH was injected for 21 days and then the METH-HIIT group performed HIIT for 8 weeks at 5 sessions per week. The METH groups showed increased caspase-3 gene expression and decreased melusin, FAK, and IQGAP1 when compared to the sham group. METH-HIIT showed decreased caspase-3 and increased melusin and FAK gene expression compared with the METH and METH-control groups. The IQGAP1 gene was higher in METH-HIIT when compared with METH, while no difference was observed between METH-HIIT and METH-control. Twenty-one days of METH exposure increased apoptosis markers in rat cardiac tissue; however, HIIT might have a protective effect, as shown by the apoptosis markers.
Collapse
|
13
|
Jaskiewicz M, Moszynska A, Serocki M, Króliczewski J, Bartoszewska S, Collawn JF, Bartoszewski R. Hypoxia-inducible factor (HIF)-3a2 serves as an endothelial cell fate executor during chronic hypoxia. EXCLI JOURNAL 2022; 21:454-469. [PMID: 35391921 PMCID: PMC8983852 DOI: 10.17179/excli2021-4622] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022]
Abstract
The adaptive response to hypoxia involves the transcriptional induction of three transcription factors called hypoxia inducible factor alpha 1, 2 and 3 (HIF-1α, HIF-2α, and HIF-3α) which dimerize with constitutively expressed beta chains that together form the HIF-1, -2 and -3 transcription factors. During normoxic conditions, the alpha chain is expressed at low levels since its stability is regulated by prolyl-hydroxylation that promotes subsequent ubiquitination and degradation. During hypoxic conditions, however, the prolyl hydroxylases are less active, and the alpha chain accumulates through elevated protein stability and the elevated induction of expression. Two of the three HIFs isoforms present in mammals, HIF-1 and HIF-2, are well characterized and have overlapping functions that promote cell survival, whereas HIF-3's role remains less clear. The HIF-3 response is complicated because the HIF3A gene can utilize different promotors and alternate splicing sites that result in a number of different HIF-3α isoforms. Here, using human umbilical vein endothelial cells (HUVECs), we demonstrate that one of the isoforms of HIF-3α, isoform 2 (HIF-3α2) accumulates at a late stage of hypoxia and induces the expression of DNA damage inducible transcript 3 (DDIT4), a gene known to promote apoptosis. We also demonstrate that caspase 3/7 activity is elevated, supporting that the role of the HIF-3α2 isoform is to promote apoptosis. Furthermore, we provide evidence that HIF-3α2 is also expressed in seven other primary endothelial cell types, suggesting that this may be a common feature of HIF-3α2 in endothelial cells.
Collapse
Affiliation(s)
- Maciej Jaskiewicz
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Adrianna Moszynska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Serocki
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Jaroslaw Króliczewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA, Birmingham, AL 35233
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
14
|
Zhang W, Deng X, Liu H, Ke J, Xiang M, Ma Y, Zhang L, Yang M, Liu Y, Huang F. Identification and Verification of Potential Hub Genes in Amphetamine-Type Stimulant (ATS) and Opioid Dependence by Bioinformatic Analysis. Front Genet 2022; 13:837123. [PMID: 35432486 PMCID: PMC9006114 DOI: 10.3389/fgene.2022.837123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Amphetamine-type stimulant (ATS) and opioid dependencies are chronic inflammatory diseases with similar symptoms and common genomics. However, their coexpressive genes have not been thoroughly investigated. We aimed to identify and verify the coexpressive hub genes and pathway involved in the pathogenesis of ATS and opioid dependencies. Methods: The microarray of ATS- and opioid-treatment mouse models was obtained from the Gene Expression Omnibus database. GEO2R and Venn diagram were performed to identify differentially expressed genes (DEGs) and coexpressive DEGs (CDEGs). Functional annotation and protein–protein interaction network detected the potential functions. The hub genes were screened using the CytoHubba and MCODE plugin with different algorithms, and further validated by receiver operating characteristic analysis in the GSE15774 database. We also validated the hub genes mRNA levels in BV2 cells using qPCR. Result: Forty-four CDEGs were identified between ATS and opioid databases, which were prominently enriched in the PI3K/Akt signaling pathway. The top 10 hub genes were mainly enriched in apoptotic process (CD44, Dusp1, Sgk1, and Hspa1b), neuron differentiation, migration, and proliferation (Nr4a2 and Ddit4), response to external stimulation (Fos and Cdkn1a), and transcriptional regulation (Nr4a2 and Npas4). Receiver operating characteristic (ROC) analysis found that six hub genes (Fos, Dusp1, Sgk1, Ddit4, Cdkn1a, and Nr4a2) have an area under the curve (AUC) of more than 0.70 in GSE15774. The mRNA levels of Fos, Dusp1, Sgk1, Ddit4, Cdkn1a, PI3K, and Akt in BV2 cells and GSE15774 with METH and heroin treatments were higher than those of controls. However, the Nr4a2 mRNA levels increased in BV2 cells and decreased in the bioinformatic analysis. Conclusions: The identification of hub genes was associated with ATS and opioid dependencies, which were involved in apoptosis, neuron differentiation, migration, and proliferation. The PI3K/Akt signaling pathway might play a critical role in the pathogenesis of substance dependence.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Forensic Pathology, West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaodong Deng
- Department of Forensic Pathology, West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, China
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Huan Liu
- Department of Preventive Medicine, North Sichuan Medical College, Nanchong, China
| | - Jianlin Ke
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Mingliang Xiang
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Ying Ma
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lixia Zhang
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Ming Yang
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
- Department of Criminal Investigation, Nanchong Municipal Public Security Bureau, Nanchong, China
| | - Yun Liu
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China
- *Correspondence: Yun Liu, ; Feijun Huang,
| | - Feijun Huang
- Department of Forensic Pathology, West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Yun Liu, ; Feijun Huang,
| |
Collapse
|
15
|
Emam M, Caballero-Solares A, Xue X, Umasuthan N, Milligan B, Taylor RG, Balder R, Rise ML. Gill and Liver Transcript Expression Changes Associated With Gill Damage in Atlantic Salmon ( Salmo salar). Front Immunol 2022; 13:806484. [PMID: 35418993 PMCID: PMC8996064 DOI: 10.3389/fimmu.2022.806484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Gill damage represents a significant challenge in the teleost fish aquaculture industry globally, due to the gill's involvement in several vital functions and direct contact with the surrounding environment. To examine the local and systemic effects accompanying gill damage (which is likely to negatively affect gill function) of Atlantic salmon, we performed a field sampling to collect gill and liver tissue after several environmental insults (e.g., harmful algal blooms). Before sampling, gills were visually inspected and gill damage was scored; gill scores were assigned from pristine [gill score 0 (GS0)] to severely damaged gills (GS3). Using a 44K salmonid microarray platform, we aimed to compare the transcriptomes of pristine and moderately damaged (i.e., GS2) gill tissue. Rank Products analysis (5% percentage of false-positives) identified 254 and 34 upregulated and downregulated probes, respectively, in GS2 compared with GS0. Differentially expressed probes represented genes associated with functions including gill remodeling, wound healing, and stress and immune responses. We performed gill and liver qPCR for all four gill damage scores using microarray-identified and other damage-associated biomarker genes. Transcripts related to wound healing (e.g., neb and klhl41b) were significantly upregulated in GS2 compared with GS0 in the gills. Also, transcripts associated with immune and stress-relevant pathways were dysregulated (e.g., downregulation of snaclec 1-like and upregulation of igkv3) in GS2 compared with GS0 gills. The livers of salmon with moderate gill damage (i.e., GS2) showed significant upregulation of transcripts related to wound healing (i.e., chtop), apoptosis (e.g., bnip3l), blood coagulation (e.g., f2 and serpind1b), transcription regulation (i.e., pparg), and stress-responses (e.g., cyp3a27) compared with livers of GS0 fish. We performed principal component analysis (PCA) using transcript levels for gill and liver separately. The gill PCA showed that PC1 significantly separated GS2 from all other gill scores. The genes contributing most to this separation were pgam2, des, neb, tnnt2, and myom1. The liver PCA showed that PC1 significantly separated GS2 from GS0; levels of hsp70, cyp3a27, pparg, chtop, and serpind1b were the highest contributors to this separation. Also, hepatic acute phase biomarkers (e.g., serpind1b and f2) were positively correlated to each other and to gill damage. Gill damage-responsive biomarker genes and associated qPCR assays arising from this study will be valuable in future research aimed at developing therapeutic diets to improve farmed salmon welfare.
Collapse
Affiliation(s)
- Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | | | | | - Rachel Balder
- Cargill Animal Nutrition and Health, Elk River, MN, United States
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
16
|
Sun Y, Zhang J, Wang Y, Wang L, Song M, Khan A, Zhang L, Niu B, Zhao H, Li M, Luo T, He Q, Xie X, Liu Z, Xie J. miR-222-3p is involved in neural tube closure by directly targeting Ddit4 in RA induced NTDs mouse model. Cell Cycle 2021; 20:2372-2386. [PMID: 34779712 DOI: 10.1080/15384101.2021.1982506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Previously our results showed miR-222-3p was significantly downregulated in retinoic acid-induced neural tube defect (NTD) mouse model through transcriptome. Down-regulation of miR-222-3p may be a causative biomarker in NTDs. In this study, RNA was extracted from mouse embryos at E8.5, E9.5 and E10.5, and the expression level of miR-222-3p was measured by quantitative real-time PCR analysis. The preliminary mechanism of miR-222-3p in NTDs involved in cell proliferation, apoptosis and migration was investigated in mouse HT-22 cell line. The expression of miR-222-3p was significantly decreased at E8.5, E9.5 and E10.5 developed in mouse embryos which were consistent with our transcriptome sequencing. Suppression of miR-222-3p in HT-22 cells resulted in the inhibition of cell proliferation and migration, cell cycle and apoptosis. Moreover, DNA damage transcript 4 (Ddit4) was identified as a direct and functional target of miR-222-3p. miR-222-3p is negatively regulated by Ddit4. The mutation of binding site of Ddit4 3'UTR abrogated the responsiveness of luciferase reporters to miR-222-3p and showed that Ddit4 expression partially attenuated the function of miR-222-3p. We preliminatively confirmed that low expression of miR-222-3p has reduced the expression of β-catenin, TCF4 and other related genes in the Wnt/β-catenin signaling pathway.Collectively, these results demonstrated that miR-222-3p regulates the Wnt/β-catenin signaling pathway through Ddit4 inhibition in HT-22 cells, resulted in cell proliferation and apoptosis imbalance, and thus led to neural tube defects.
Collapse
Affiliation(s)
- Yuqing Sun
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yufei Wang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lei Wang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meiyan Song
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ajab Khan
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bo Niu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meining Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tiane Luo
- Department of Statistics, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qiwei He
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xianghui Xie
- Municipal Key Laboratory of Child Development and Nutriomic, Capital Institute of Pediatrics, Beijing, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth, Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
17
|
Tan X, Cai D, Chen N, Du S, Qiao D, Yue X, Wang T, Li J, Xie W, Wang H. Methamphetamine mediates apoptosis of vascular smooth muscle cells via the chop-related endoplasmic reticulum stress pathway. Toxicol Lett 2021; 350:98-110. [PMID: 34214594 DOI: 10.1016/j.toxlet.2021.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022]
Abstract
Methamphetamine (METH) is a highly addictive amphetamine-type drug that has caused persistent harm to society and human health in recent years. Most studies have shown that METH severely damages the central nervous system, and this drug has been found to be toxic to the cardiovascular system in recent years. Therefore, we hypothesized that METH may also damage vascular smooth muscle. We examined the expression of the apoptosis-related proteins Caspase 3 and PARP after METH treatment in vivo and in vitro and detected the expression of endoplasmic reticulum stress-related proteins. After treatment with the endoplasmic reticulum stress inhibitor 4-PBA, changes in the above indicators were examined. C/EBP homologous protein (Chop) expression was also detected, and the relationship between endoplasmic reticulum stress and apoptosis was further determined by siRNA silencing of Chop. The results indicated that METH can induce apoptosis of vascular smooth muscle cells (VSMCs) and upregulate the expression of Chop and endoplasmic reticulum stress-related proteins. Chop inhibits protein kinase B phosphorylation and further inhibits forkhead box class O3a (Foxo3a) dephosphorylation, resulting in increased p53 upregulated molecular of apoptosis (PUMA) transcription. Increased PUMA induces apoptosis through the mitochondrial pathway. These results indicate that Chop is involved in the METH-induced endoplasmic reticulum stress and apoptosis in VSMCs and may be a potential therapeutic target for METH-induced VSMC injury.
Collapse
Affiliation(s)
- Xiaohui Tan
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dunpeng Cai
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Na Chen
- Department of Pathology, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China
| | - Sihao Du
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dongfang Qiao
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xia Yue
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Tao Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jia Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Weibing Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China; Nanhai Hospital, Southern Medical University, Foshan, 528244, Guangdong, China.
| |
Collapse
|
18
|
Zhao J, Li B, Ren Y, Liang T, Wang J, Zhai S, Zhang X, Zhou P, Zhang X, Pan Y, Gao F, Zhang S, Li L, Yang Y, Deng X, Li X, Chen L, Yang D, Zheng Y. Histone demethylase KDM4A plays an oncogenic role in nasopharyngeal carcinoma by promoting cell migration and invasion. Exp Mol Med 2021; 53:1207-1217. [PMID: 34385569 PMCID: PMC8417295 DOI: 10.1038/s12276-021-00657-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Compelling evidence has indicated the vital role of lysine-specific demethylase 4 A (KDM4A), hypoxia-inducible factor-1α (HIF1α) and the mechanistic target of rapamycin (mTOR) signaling pathway in nasopharyngeal carcinoma (NPC). Therefore, we aimed to investigate whether KDM4A affects NPC progression by regulating the HIF1α/DDIT4/mTOR signaling pathway. First, NPC and adjacent tissue samples were collected, and KDM4A protein expression was examined by immunohistochemistry. Then, the interactions among KDM4A, HIF1α and DDIT4 were assessed. Gain- and loss-of-function approaches were used to alter KDM4A, HIF1α and DDIT4 expression in NPC cells. The mechanism of KDM4A in NPC was evaluated both in vivo and in vitro via RT-qPCR, Western blot analysis, MTT assay, Transwell assay, flow cytometry and tumor formation experiments. KDM4A, HIF1α, and DDIT4 were highly expressed in NPC tissues and cells. Mechanistically, KDM4A inhibited the enrichment of histone H3 lysine 9 trimethylation (H3K9me3) in the HIF1α promoter region and thus inhibited the methylation of HIF1α to promote HIF1α expression, thus upregulating DDIT4 and activating the mTOR signaling pathway. Overexpression of KDM4A, HIF1α, or DDIT4 or activation of the mTOR signaling pathway promoted SUNE1 cell proliferation, migration, and invasion but inhibited apoptosis. KDM4A silencing blocked the mTOR signaling pathway by inhibiting the HIF1α/DDIT4 axis to inhibit the growth of SUNE1 cells in vivo. Collectively, KDM4A silencing could inhibit NPC progression by blocking the activation of the HIF1α/DDIT4/mTOR signaling pathway by increasing H3K9me3, highlighting a promising therapeutic target for NPC.
Collapse
Affiliation(s)
- Jingyi Zhao
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Bingyan Li
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Yongxia Ren
- Radiotherapy Department, Huaihe Hospital of Henan University, Kaifeng, PR China
| | - Tiansong Liang
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Juan Wang
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Suna Zhai
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xiqian Zhang
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Pengcheng Zhou
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xiangxian Zhang
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Yuanyuan Pan
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Fangfang Gao
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Sulan Zhang
- Institute of Radiation Therapy and Tumor Critical Care of Zhengzhou University, Zhengzhou, PR China
| | - Liming Li
- Henan Key Laboratory of Molecular Radiotherapy, Zhengzhou, PR China
| | - Yongqiang Yang
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xiaoyu Deng
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xiaole Li
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Linhui Chen
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Daoke Yang
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| | - Yingjuan Zheng
- Radiotherapy Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
19
|
Li JH, Liu JL, Zhang KK, Chen LJ, Xu JT, Xie XL. The Adverse Effects of Prenatal METH Exposure on the Offspring: A Review. Front Pharmacol 2021; 12:715176. [PMID: 34335277 PMCID: PMC8317262 DOI: 10.3389/fphar.2021.715176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/01/2021] [Indexed: 01/12/2023] Open
Abstract
Abuse of methamphetamine (METH), an illicit psychostimulant, is a growing public health issue. METH abuse during pregnancy is on the rise due to its stimulant, anorectic, and hallucinogenic properties. METH can lead to multiple organ toxicity in adults, including neurotoxicity, cardiovascular toxicity, and hepatotoxicity. It can also cross the placental barrier and have long-lasting effects on the fetus. This review summarizes neurotoxicity, cardiovascular toxicity, hepatotoxicity, toxicity in other organs, and biomonitoring of prenatal METH exposure, as well as the possible emergence of sensitization associated with METH. We proposed the importance of gut microbiota in studying prenatal METH exposure. There is rising evidence of the adverse effects of METH exposure during pregnancy, which are of significant concern.
Collapse
Affiliation(s)
- Jia-Hao Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Li Liu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jing-Tao Xu
- Department of Forensic Clinical Medicine, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Endurance exercise-induced expression of autophagy-related protein coincides with anabolic expression and neurogenesis in the hippocampus of the mouse brain. Neuroreport 2021; 31:442-449. [PMID: 32168100 DOI: 10.1097/wnr.0000000000001431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autophagy and neurogenesis play a pivotal role in maintaining cellular homeostasis of neurons in the brain. Endurance exercise (EXE) serves as a potent regulator of both autophagy and neurogenesis in the hippocampus of the brain; however, the underlying molecular mechanisms of the dual expression remains unclear. Thus, we examined the signaling pathways of EXE-induced autophagy and neurogenesis-associated protein expression in the hippocampus. C57BL/6 male mice (10 weeks old) were randomly divided into two groups: control group (n = 10) and EXE group (EXE, n = 10). Our results showed that EXE increased expression of autophagy-related protein [LC3 II, BECLIN1, autophagy-related 7 (ATG7), p62, LAMP2, CATHEPSIN L and transcription factor EB] in the presence of anabolic signaling expression (AKT-mammalian target of rapamycin-ribosomal S6 kinase). Intriguingly, long-term EXE-mediated neurogenesis in the hippocampus was observed despite the downregulated expressions of canonical neurotrophic factors (e.g. brain-derived neurotrophic factor, glial cell line-derived neurotrophic factors and nerve growth factor); instead, upregulation of neuregulin-1 (NRG1)-mediated signaling cascades (e.g. NRG1-extracellular signal-regulated kinase-ribosomal s6 kinase-cyclic adenosine mono-phosphate response element-binding protein) were associated with EXE-induced hippocampal neurogenesis and synaptic plasticity. Our data, for the first time, show that EXE-mediated expression of autophagy-related protein coincides with anabolic expression and that NRG1 is involved in EXE-mediated neurogenesis and synaptic plasticity. Taken together, this study provides a novel mechanism of hippocampal autophagy and neurogenesis, which may provide potential insight into developing therapeutic neuroprotective strategies.
Collapse
|
21
|
Labazi H, Nilsen M, MacLean MR. Sex-dependent right ventricular hypertrophic gene changes after methamphetamine treatment in mice. Eur J Pharmacol 2021; 900:174066. [PMID: 33789156 PMCID: PMC8111419 DOI: 10.1016/j.ejphar.2021.174066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022]
Abstract
Methamphetamine (MA) abuse is associated with the development of pulmonary arterial hypertension (PAH) and subsequent right ventricular failure. A recent clinical study demonstrated that female sex is a major risk factor for MA-induced PAH. The mechanisms associated with increased prevalence and severity of MA-induced PAH in females are still unclear. We hypothesized that MA may promote changes in gene expression in the right ventricle contributing to the development and/or worsening of PAH in females. Male and female C57BL/6 mice were treated with either MA or vehicle. Right and left ventricular systolic pressures (RVSP and LVSP, respectively) were assessed and tissue samples were collected for gene expression and histology. LVSP and RVSP were not affected by MA in either males or females. Right ventricular hypertrophy was significantly increased by MA in females but it was not affected by MA in males. In the female mice, MA-induced right ventricular hypertrophy was associated with increased expression of brain natriuretic peptide gene and members of the TGF-β receptor signaling pathway such as TGF-β receptor-1, smad3 and smad7. In male mice, there were no changes in right ventricular gene expression. Our results suggest that MA caused right ventricular hypertrophy in female mice, but not in males and that this was associated with an increase in hypertrophic genes. The right ventricular hypertrophy was not dependent on increased RVSP suggesting a direct effect of MA on the right ventricle. If this translates to PAH patients, it might explain the poor outcome observed in MA-associated female PAH patients.
Collapse
Affiliation(s)
- Hicham Labazi
- Institute of Cardiovascular & Medical Sciences and College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | - Margaret Nilsen
- Institute of Cardiovascular & Medical Sciences and College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Margaret R MacLean
- Institute of Cardiovascular & Medical Sciences and College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
22
|
Xu Q, Guohui M, Li D, Bai F, Fang J, Zhang G, Xing Y, Zhou J, Guo Y, Kan Y. lncRNA C2dat2 facilitates autophagy and apoptosis via the miR-30d-5p/DDIT4/mTOR axis in cerebral ischemia-reperfusion injury. Aging (Albany NY) 2021; 13:11315-11335. [PMID: 33833132 PMCID: PMC8109078 DOI: 10.18632/aging.202824] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is an important pathophysiological process of ischemic stroke associated with various physiological and pathological processes, including autophagy and apoptosis. In this study, we examined the role and mechanism of long noncoding RNA CAMK2D-associated transcript 2 (C2dat2) in regulating CIRI in vivo and in vitro. C2dat2 up-regulation facilitated neuronal autophagy and apoptosis induced by CIRI. Mechanistically, C2dat2 acts as a competing endogenous RNA (ceRNA) to negatively regulate miR-30d-5p expression. More specifically, miR-30d-5p targeted the 3′-untranslated region of DNA damage-inducible transcript 4 (DDIT4) and silenced its target mRNA DDIT4. Additionally, C2dat2 binding with heat shock cognate 70/heat shock protein 90 blocked RNA-induced silencing complex assembly to abolish the miR-30d-5p targeting of DDIT4 and inhibited miR-30d-5p to silence its target mRNA DDIT4. Further analysis showed that C2dat2 knockdown conspicuously inhibited the up-regulation of DDIT4 and Beclin-1 levels and LC3B II/I ratio and the down-regulation of P62 and phosphorylated mammalian target of rapamycin (mTOR)/mTOR and phosphorylated-P70S6K/P70S6K ratio in Neuro-2a cells after oxygen-glucose deprivation/reoxygenation. This study first revealed that C2dat2/miR-30d-5p/DDIT4/mTOR forms a novel signaling pathway to facilitate autophagy and apoptosis induced by CIRI, contributing to the better understanding of the mechanisms of CIRI and enriching the ceRNA hypothesis in CIRI.
Collapse
Affiliation(s)
- Qian Xu
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China
| | - Ma Guohui
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China
| | - Dandan Li
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China
| | - Fanghui Bai
- Henan Provincial Nanyang Central Hospital, Nanyang 473000, China
| | - Jintao Fang
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China
| | - Gui Zhang
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China.,School of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473000, China
| | - Yuxin Xing
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China.,School of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473000, China
| | - Jiawei Zhou
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China.,School of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473000, China
| | - Yugang Guo
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang 473000, China
| |
Collapse
|
23
|
Shen Y, Dong C, Xiang H, Li C, Zhuang F, Chen Y, Lu Q, Chen Y, Huang B. Engineering Oxygen-Irrelevant Radical Nanogenerator for Hypoxia-Independent Magnetothermodynamic Tumor Nanotherapy. SMALL METHODS 2021; 5:e2001087. [PMID: 34927851 DOI: 10.1002/smtd.202001087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Indexed: 06/14/2023]
Abstract
Tumor hypoxia substantially lowers the treatment efficacy of oxygen-relevant therapeutic modalities because the production of reactive oxygen species in oxygen-relevant anticancer modalities is highly dependent on oxygen level in tumor tissues. Here a distinctive magnetothermodynamic anticancer strategy is developed that takes the advantage of oxygen-irrelevant free radicals produced from magnetothermal decomposable initiators for inducing cancer-cell apoptosis in vitro and tumor suppression in vivo. Free-radical nanogenerator is constructed through in situ engineering of a mesoporous silica coating on the surface of superparamagnetic Mn and Co-doped nanoparticles (MnFe2 O4 @CoFe2 O4 , denoted as Mag) toward multifunctionality, where mesoporous structure provides reservoirs for efficient loading of initiators and the Mag core serves as in situ heat source under alternating magnetic field (AMF) actuation. Upon exposure to an exogenous AMF, the magnetic hyperthermia effect of superparamagnetic core lead to the rapid decomposition of the loaded/delivered initiators (AIPH) to produce oxygen-irrelevant free radicals. Both the magnetothermal effect and generation of toxic free radicals under AMF actuation are synergistically effective in promoting cancer-cell death and tumor suppression in the hypoxic tumor microenvironment. The prominent therapeutic efficacy of this radical nanogenerator represents an intriguing paradigm of oxygen-irrelevant nanoplatform for AMF-initiated synergistic cancer treatment.
Collapse
Affiliation(s)
- Yujia Shen
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Caihong Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Huijing Xiang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Cuixian Li
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Fan Zhuang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Yixin Chen
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Qing Lu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Beijian Huang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| |
Collapse
|
24
|
Chen LJ, Zhi X, Zhang KK, Wang LB, Li JH, Liu JL, Xu LL, Yoshida JS, Xie XL, Wang Q. Escalating dose-multiple binge methamphetamine treatment elicits neurotoxicity, altering gut microbiota and fecal metabolites in mice. Food Chem Toxicol 2021; 148:111946. [PMID: 33359793 DOI: 10.1016/j.fct.2020.111946] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/30/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Methamphetamine (METH) is an addictive and illegal psychostimulant drug that can cause multiple organ dysfunction, especially in the central nervous system (CNS). Gut microbiota have been implicated in development of various CNS-related diseases, via the gut-brain axis (GBA). However, effect of METH in the alteration of gut microbiota and fecal metabolites is unclear, whereas the relationship with METH-induced neurotoxicity remains unknown. In the current study, we investigated effect of METH on neurotoxicity in striatum and colonic damage by exposing BALB/c mice to an escalating dose-multiple binge regimen, and then analyzed protein expression using Western blot analysis. We further detected and sequenced the 16 S rRNA gene in fecal samples, and performed ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS)-based metabolomics to analyze gut microbes and fecal metabolites. Exposure to METH significantly downregulated tyrosine hydroxylase (TH) proteins, but upregulated MAOA, Beclin1, Atg5, and LC3-Ⅱ. METH up-regulated inflammation-related factors, such as caspase1, TNF-α and IL-18, by activating the toll-like receptors 4 (TLR4)/myeloid differentiation factor 88 (Myd88)/nuclear factor κB (NF-κB) pathway and reduced occludin protein expression. In addition, METH exposure changed α and β diversities of gut microbiota. Specifically, METH exposure elevated relative abundances of pathogenic bacteria, but reduced those of probiotics. Metabolomics, combined with enrichment analyses revealed that METH exposure altered fecal metabolites. Our findings suggest that METH exposure induced autophagy in the CNS, elevated intestinal autophagy flora, leading to accumulation of fecal metabolites in the autophagy pathway, and causing enteritis. Moreover, METH promoted intestinal inflammation by increasing the relative abundance of the pathogenic bacteria in the intestinal tract, and reduced intestinal TJ protein expression.
Collapse
Affiliation(s)
- Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Bin Wang
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jia-Hao Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Li Liu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Ling-Ling Xu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | | | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China.
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
25
|
Usal M, Veyrenc S, Darracq-Ghitalla-Ciock M, Regnault C, Sroda S, Fini JB, Canlet C, Tremblay-Franco M, Raveton M, Reynaud S. Transgenerational metabolic disorders and reproduction defects induced by benzo[a]pyrene in Xenopus tropicalis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116109. [PMID: 33234375 DOI: 10.1016/j.envpol.2020.116109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Metabolic disorders induced by endocrine disruptors (ED) may contribute to amphibian population declines but no transgenerational studies have evaluated this hypothesis. Here we show that Xenopus tropicalis, exposed from the tadpole stage, to the ED benzo[a]pyrene (BaP, 50 ng.L-1) produced F2 progeny with delayed metamorphosis and sexual maturity. At the adult stage, F2-BaP females displayed fatty liver with inflammation, tissue disorganization and metabolomic and transcriptomic signatures typical of nonalcoholic steato-hepatitis (NASH). This phenotype, similar to that observed in F0 and F1 females, was accompanied by a pancreatic insulin secretory defect. Metabolic disrupted F2-BaP females laid eggs with metabolite contents significantly different from the control and these eggs did not produce viable progeny. This study demonstrated that an ED can induce transgenerational disruption of metabolism and population collapse in amphibians under laboratory conditions. These results show that ED benzo[a]pyrene can impact metabolism over multiple generations and support epidemiological studies implicating environmental EDs in metabolic diseases in humans.
Collapse
Affiliation(s)
- Marie Usal
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Sylvie Veyrenc
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | | | - Christophe Regnault
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Sophie Sroda
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Jean-Baptiste Fini
- Unité PhyMA Laboratory, Adaptation Du Vivant, Muséum National D'Histoire Naturelle, 7 Rue Cuvier, 75005, Paris, France.
| | - Cécile Canlet
- Toxalim-Research Centre in Food Toxicology, Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, F-31027, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics, MetaboHUB, Toxalim, INRAE UMR 1331, F-31027, Toulouse, France.
| | - Marie Tremblay-Franco
- Toxalim-Research Centre in Food Toxicology, Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, F-31027, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics, MetaboHUB, Toxalim, INRAE UMR 1331, F-31027, Toulouse, France.
| | - Muriel Raveton
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| |
Collapse
|
26
|
Muscle differentiation induced by p53 signaling pathway-related genes in myostatin-knockout quail myoblasts. Mol Biol Rep 2020; 47:9531-9540. [PMID: 33225386 DOI: 10.1007/s11033-020-05935-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022]
Abstract
The myostatin (MSTN) gene is of interest in the livestock industry because mutations in this gene are closely related to growth performance and muscle differentiation. Thus, in this study, we established MSTN knockout (KO) quail myoblasts (QM7) and investigated the regulatory pathway of the myogenic differentiation process. We used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 to generate MSTN KO QM7 cells and subsequently isolated a single cell-derived MSTN KO QM7 subline with 10- and 16-nucleotide deletions that induced translational frameshift mutations. The differentiation capacity and proliferation rate of MSTN KO QM7 cells were enhanced. We conducted next-generation-sequencing (NGS) analysis to compare the global gene expression profiles of wild-type (WT) QM7 and MSTN KO QM7 cells. Intriguingly, NGS expression profiles showed different expression patterns of p21 and p53 in MSTN KO QM7 cells. Moreover, we identified downregulated expression patterns of leukemia inhibitory factor and DNA Damage Inducible Transcript 4, which are genes in the p53 signaling pathway. Using quantitative RT-PCR (qRT-PCR) analysis and western blotting, we concluded that p53-related genes promote the cell cycle by upregulating p21 and enhancing muscle differentiation in MSTN KO QM7 cells. These results could be applied to improve economic traits in commercial poultry by regulating MSTN-related networks.
Collapse
|
27
|
Ho KH, Chen PH, Chou CM, Shih CM, Lee YT, Cheng CH, Chen KC. A Key Role of DNA Damage-Inducible Transcript 4 (DDIT4) Connects Autophagy and GLUT3-Mediated Stemness To Desensitize Temozolomide Efficacy in Glioblastomas. Neurotherapeutics 2020; 17:1212-1227. [PMID: 31916238 PMCID: PMC7609792 DOI: 10.1007/s13311-019-00826-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA damage-inducible transcript 4 (DDIT4) is known to participate in various cancers, including glioblastoma multiforme (GBM). However, contradictory roles of DDIT4 exist in inducing cell death and possessing anti-apoptotic functions against cancer progression. Herein, we investigated DDIT4 signaling in GBM and temozolomide (TMZ) drug resistance. We identified that TMZ induced DDIT4 upregulation, leading to desensitization against TMZ cytotoxicity in GBM cells. Higher DDIT4 levels were found in glioma cells and mesenchymal-type GBM patients, and these higher levels were positively correlated with mesenchymal markers. Furthermore, patients with lower DDIT4 levels, especially O-6-methylguanine-DNA methyltransferase (MGMT)-methylated patients, exhibited better TMZ therapeutic efficacy. We determined that higher levels of 5 DDIT4-associated downstream genes, including SLC2A3 (also known as glucose transporter 3 (GLUT3)), can be used to predict a poor prognosis. Among these 5 genes, only GLUT3 was upregulated in both TMZ-treated and DDIT4-overexpressing cells. DDIT4-mediated GLUT3 expression was also identified, and its expression decreased TMZ's cytotoxicity. A significant correlation existed between DDIT4 and GLUT3. DDIT4 signaling was found to be involved in both glycolytic and autophagic pathways. However, GLUT3 only participated in the exhibition of DDIT4-mediated stemness, resulting from glycolytic regulation, but not in DDIT4-mediated autophagic signaling. Finally, we identified TMZ-upregulated activating transcription factor 4 (ATF4) as an upstream regulator of DDIT4-mediated GLUT3/stemness signaling and autophagy. Consequently, ATF4/DDIT4 signaling was connected to both autophagy and GLUT3-regulated stemness, which are involved in TMZ drug resistance and the poor prognoses of GBM patients. Targeting DDIT4/GLUT3 signaling might be a new direction for glioma therapy.
Collapse
Affiliation(s)
- Kuo-Hao Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Peng-Hsu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Chih-Ming Chou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Chwen-Ming Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Yi-Ting Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Chia-Hsiung Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Ku-Chung Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan.
| |
Collapse
|
28
|
Huang P, Fu J, Chen L, Ju C, Wu K, Liu H, Liu Y, Qi B, Qi B, Liu L. Redd1 protects against post‑infarction cardiac dysfunction by targeting apoptosis and autophagy. Int J Mol Med 2019; 44:2065-2076. [PMID: 31638187 PMCID: PMC6844599 DOI: 10.3892/ijmm.2019.4366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022] Open
Abstract
Post-infarction remodeling is accompanied and influenced by perturbations in the mammalian target of rapamycin (mTOR) signaling. Regulated in development and DNA damage response-1 (Redd1) has been reported to be involved in DNA repair and modulation of mTOR activity. However, little is known about the role of Redd1 in the heart. In the present study the potential contribution of Redd1 overex-pression to the chronic phase of heart failure after myocardial infarction (MI) was explored and the mechanisms underlying Redd1 actions were determined. Redd1 was downregulated in the mouse heart subjected to MI surgery. To determine the role of Redd1 in the process of MI, adeno-associated virus 9 mediated overexpression of Redd1 was used to enhance Redd1 content in cardiomyocytes. Redd1 overexpression improved left ventricular dysfunction and reduced the expansion index. Additionally, Redd1 overexpression resulted in suppressed myocardial apoptosis and improved autophagy. Furthermore, the studies revealed that Redd1 overexpression could inhibit the phosphorylation of mTOR and its downstream effectors P70/S6 kinase and 4EBP1. In conclusion, this study demonstrated that Redd1 overexpression protects against the development and persistence of heart failure post MI by reducing apoptosis and enhancing autophagy via the mTOR signaling pathway. The present study clearly demonstrated that Redd1 is a therapeutic target in the development of heart failure after MI.
Collapse
Affiliation(s)
- Pianpian Huang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jun Fu
- Department of Radiology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Long Chen
- Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chenhui Ju
- Clinical Center for Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Kefei Wu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hongxia Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yun Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Benming Qi
- Department of Otorhinolaryngology, First People's Hospital of Yunnan Province, Kunming, Yunnan 650000, P.R. China
| | - Benling Qi
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lihua Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
29
|
Guo ML, Buch S. Neuroinflammation & pre-mature aging in the context of chronic HIV infection and drug abuse: Role of dysregulated autophagy. Brain Res 2019; 1724:146446. [PMID: 31521638 DOI: 10.1016/j.brainres.2019.146446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/29/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
In the era of combined antiretroviral therapy (cART), HIV-1 infection has transformed from adeath sentenceto a manageable, chronic disease. Although the lifeexpectancy of HIV+ individuals is comparable to that of the uninfectedsubjects paradoxically, there is increased prevalence ofage-associatedcomorbidities such asatherosclerosis, diabetes, osteoporosis & neurological deficits in the context of HIV infection. Drug abuse is a commoncomorbidityofHIV infection andis often associated withincreased neurological complications. Chronic neuroinflammation (abnormal microglial and astrocyte activation) and neuronal synaptodendritic injury are the features of CNS pathology observed inHIV (+) individualsthat are takingcART & that abuse drugs. Neuroinflammation is thedrivingforceunderlying prematureaging associated with HIV (+) infection, cART and drugs of abuse. Autophagy is a highly conserved process critical for maintaining cellular homeostasis. Dysregulated autophagyhas been shown to be linked with abnormal immune responses & aging. Recent emerging evidence implicatesthe role ofHIV/HIV proteins, cART, & abused drugsin disrupting theautophagy process in brain cells such as microglia, astrocytes, and neurons. It can thus be envisioned that co-exposure of CNS cells to HIV proteins, cART and/or abused drugs couldhavesynergistic effects on theautophagy process, thereby leading to exaggerated microglial/astrocyte activation, ultimately, promotingthe aging process. Restoration of autophagic functioncould thusprovide an alternative therapeuticstrategy formitigating neuroinflammation & ameliorating the premature aging process. The current review aims to unravel the role of dysregulated autophagy in the context of single or co-exposure of microglia, astrocytes, and neurons to HIV/HIV proteins, drugs of abuse &/or cART and will also discuss the pathways involved in dysregulated autophagy-mediated neuroinflammation.
Collapse
Affiliation(s)
- Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
30
|
Sun J, Yue F. Suppression of REDD1 attenuates oxygen glucose deprivation/reoxygenation-evoked ischemic injury in neuron by suppressing mTOR-mediated excessive autophagy. J Cell Biochem 2019; 120:14771-14779. [PMID: 31021470 DOI: 10.1002/jcb.28737] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/29/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) typically occurs after mechanical thrombectomy to treat ischemic stroke, generation of reactive oxygen species (ROS) after reperfusion may result in neuronal insult, ultimately leading to disability and death. Regulated in development and DNA damage responses 1 (REDD1) is a conserved stress response protein under various pathogenic conditions. Recent research confirms the controversial role of REDD1 in injury processes. Nevertheless, the role of REDD1 in cerebral I/R remains poorly defined. In the current study, increased expression of REDD1 was observed in neurons exposed to simulated I/R via oxygen glucose deprivation/reoxygenation (OGD/R) treatment. Knockdown of REDD1 enhanced OGD/R-inhibited cell viability, but suppressed lactate dehydrogenase (LDH) release in neurons upon OGD/R. Simultaneously, suppression of REDD1 also antagonized OGD/R-evoked cell apoptosis, Bax expression, and caspase-3 activity. Intriguingly, REDD1 depression abrogated neuronal oxidative stress under OGD/R condition by suppressing ROS, MDA generation, and increasing antioxidant SOD levels. Further mechanism analysis corroborated the excessive activation of autophagy in neurons upon OGD/R with increased expression of autophagy-related LC3 and Beclin-1, but decreased autophagy substrate p62 expression. Notably, REDD1 inhibition reversed OGD/R-triggered excessive neuronal autophagy. More importantly, depression of REDD1 also elevated the expression of p-mTOR. Preconditioning with mTOR inhibitor rapamycin engendered not only a reduction in mTOR activation, but also a reactivation of autophagy in REDD1 knockdown-neurons upon OGD/R. In addition, blocking the mTOR pathway muted the protective roles of REDD1 inhibition against OGD/R-induced neuron injury and oxidative stress. Together these data suggested that REDD1 may regulate I/R-induced oxidative stress injury in neurons by mediating mTOR-autophagy signaling, supporting a promising therapeutic strategy against brain ischemic diseases.
Collapse
Affiliation(s)
- Juguang Sun
- Department of Neurology, Xuzhou City Hospital of Traditional Chinese Medicine, Xuzhou, Jiangsu, China
| | - Fenglei Yue
- Department of Neurology, 521 Hospital of Norinco Group in Xi'an, Xi'an, Shaanxi, China
| |
Collapse
|
31
|
Chen Q, Xi X, Zeng Y, He Z, Zhao J, Li Y. Acteoside inhibits autophagic apoptosis of retinal ganglion cells to rescue glaucoma-induced optic atrophy. J Cell Biochem 2019; 120:13133-13140. [PMID: 31021425 PMCID: PMC6618276 DOI: 10.1002/jcb.28586] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/23/2018] [Accepted: 01/07/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Glaucoma is the world's second biggest cause of blindness, and patients progressively lose their eyesight. The current clinical treatment for glaucoma involves controlling intraocular pressure with drugs or surgery; however, some patients still progressively lose their eyesight. This treatment is also similar to the treatment of traumatic optic neuropathy. Thus, saving retinal ganglion cells (RGCs) from apoptosis is essential. METHODS The role of Acteoside on autophagy modulation in the 661 W cell line. RESULTS In this study, we first find that Acteoside inhibits autophagy, Rapamycin alleviates this inhibition and the PI3K inhibitor, 3-MA or LY294002, synergistically promotes it. In a mechanistic study, we find that Optineurin (OPTN) mediates Acteoside regulation of autophagy. OPTN overexpression or knockdown activates or inhibits autophagy, respectively. OPTN is inhibited by autophagy inhibitors, such as Acteoside and 3-MA and is promoted by the autophagy activator, Rapamycin. Meanwhile, PI3K and AKT are elevated by Acteoside and 3-MA and inhibited by Rapamycin. Finally, we find that Acteoside inhibits apoptosis in parallel to autophagy and that this inhibition is also mediated by OPTN. CONCLUSION In summary, we conclude that Acteoside inhibits autophagy-induced apoptosis in RGCs through the OPTN and PI3K/AKT/mTOR pathway, and glaucoma patients may benefit from Acteoside treatment alone or in combination with other autophagy inhibitors.
Collapse
Affiliation(s)
- Qianbo Chen
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoting Xi
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yong Zeng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhendan He
- Institute of Therapy, Shenzhen University, Shenzhen, China
| | - Jianfeng Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Li
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
32
|
Sun X, Wang Y, Xia B, Li Z, Dai J, Qiu P, Ma A, Lin Z, Huang J, Wang J, Xie WB, Wang J. Methamphetamine produces cardiac damage and apoptosis by decreasing melusin. Toxicol Appl Pharmacol 2019; 378:114543. [PMID: 30904475 DOI: 10.1016/j.taap.2019.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Methamphetamine (METH) is an amphetamine-type drug that is highly addictive and widely abused. Many studies have shown that METH exposure causes severe damage not only to the nervous system but also to the cardiovascular system. Melusin protein is a mechanotransducer that plays an important role in maintaining normal heart function. However, the role of melusin in METH-induced cardiotoxicity has not yet been reported. We hypothesized that methamphetamine can produce cardiac damage and apoptosis by decreasing the quantity of melusin. To test this hypothesis, we determined the protein expression of melusin and apoptosis markers in METH-treated rats and primary rat cardiomyocytes. We also established a melusin-overexpressing cell model to assess the importance of melusin in maintaining antiapoptotic pathways. To confirm our findings from the in vitro and animal models, we also evaluated the apoptotic index of cardiomyocytes and the protein expression of apoptotic markers in postmortem heart tissues from deceased METH abusers and age-matched control subjects. The results showed that the apoptosis of cardiomyocytes was increased significantly and that the protein expression of melusin was decreased after exposure to METH in primary rat cardiomyocytes, in rats and in humans. METH treatment also decreased the expression of the downstream proteins FAK, IQGAP1, p-AKT, p-GSK3β, and p-ERK in primary rat cardiomyocytes and in vivo. After overexpression of melusin, the above effects were partially reversed in primary rat cardiomyocytes. We conclude that METH can produce cardiac damage and apoptosis by decreasing melusin, while melusin-activated signaling by phosphorylated AKT, phosphorylated GSK3β, and ERK may be resistant to methamphetamine-induced myocardial apoptosis.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Yu Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Bing Xia
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Zhu Li
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Jialin Dai
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ande Ma
- Department of Hygiene Inspection & Quarantine Science, Guangdong Province Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine and Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Jiawen Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Wei-Bing Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Jie Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
33
|
Zhu LN, Qiao HH, Chen L, Sun LP, Hui JL, Lian YL, Xie WB, Ding JY, Meng YL, Zhu BF, Qiu PM. SUMOylation of Alpha-Synuclein Influences on Alpha-Synuclein Aggregation Induced by Methamphetamine. Front Cell Neurosci 2018; 12:262. [PMID: 30197588 PMCID: PMC6117395 DOI: 10.3389/fncel.2018.00262] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
Methamphetamine (METH) is an illegal and widely abused psychoactive stimulant. METH abusers are at high risk of neurodegenerative disorders, including Parkinson’s disease (PD). Previous studies have demonstrated that METH causes alpha-synuclein (α-syn) aggregation in the both laboratory animal and human. In this study, exposure to high METH doses increased the expression of α-syn and the small ubiquitin-related modifier 1 (SUMO-1). Therefore, we hypothesized that SUMOylation of α-syn is involved in high-dose METH-induced α-syn aggregation. We measured the levels of α-syn SUMOylation and these enzymes involved in the SUMOylation cycle in SH-SY5Y human neuroblastoma cells (SH-SY5Y cells), in cultures of C57 BL/6 primary mouse neurons and in brain tissues of mice exposure to METH. We also demonstrated the effect of α-syn SUMOylation on α-syn aggregation after METH exposure by overexpressing the key enzyme of the SUMOylation cycle or silencing SUMO-1 expression in vitro. Then, we make introduced mutations in the major SUMOylation acceptor sites of α-syn by transfecting a lentivirus containing the sequence of WT α-syn or K96/102R α-syn into SH-SY5Y cells and injecting an adenovirus containing the sequence of WT α-syn or K96/102R α-syn into the mouse striatum. Levels of the ubiquitin-proteasome system (UPS)-related makers ubiquitin (Ub) and UbE1, as well as the autophagy-lysosome pathway (ALP)-related markers LC3, P62 and lysosomal associated membrane protein 2A (LAMP2A), were also measured in SH-SY5Y cells transfected with lentivirus and mice injected with adenovirus. The results showed that METH exposure decreases the SUMOylation level of α-syn, although the expression of α-syn and SUMO-1 are increased. One possible cause is the reduction of UBC9 level. The increase in α-syn SUMOylation by UBC9 overexpression relieves METH-induced α-syn overexpression and aggregation, whereas the decrease in α-syn SUMOylation by SUMO-1 silencing exacerbates the same pathology. Furthermore, mutations in the major SUMOylation acceptor sites of α-syn also aggravate α-syn overexpression and aggregation by impairing degradation through the UPS and the ALP in vitro and in vivo. These results suggest that SUMOylation of α-syn plays a fundamental part in α-syn overexpression and aggregation induced by METH and could be a suitable target for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lin-Nan Zhu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Hong-Hua Qiao
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Ling Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Le-Ping Sun
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Liang Hui
- First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yong-Ling Lian
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Wei-Bing Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jiu-Yang Ding
- School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Department of Anatomy, Zunyi Medical College, Zunyi, China
| | - Yun-le Meng
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Bo-Feng Zhu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Ping-Ming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Du SH, Zhang W, Yue X, Luo XQ, Tan XH, Liu C, Qiao DF, Wang H. Role of CXCR1 and Interleukin-8 in Methamphetamine-Induced Neuronal Apoptosis. Front Cell Neurosci 2018; 12:230. [PMID: 30123110 PMCID: PMC6085841 DOI: 10.3389/fncel.2018.00230] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
Methamphetamine (METH), an extremely and widely abused illicit drug, can cause serious nervous system damage and social problems. Previous research has shown that METH use causes dopaminergic neuron apoptosis and astrocyte-related neuroinflammation. However, the relationship of astrocytes and neurons in METH-induced neurotoxicity remains unclear. We hypothesized that chemokine interleukin (IL) eight released by astrocytes and C-X-C motif chemokine receptor 1 (CXCR1) in neurons are involved in METH-induced neuronal apoptosis. We tested our hypothesis by examining the changes of CXCR1 in SH-SY5Y cells and in the brain of C57BL/6 mice exposed to METH by western blotting and immunolabeling. We also determined the effects of knocking down CXCR1 expression with small interfering ribonucleic acid (siRNA) on METH-exposed SH-SY5Y cells. Furthermore, we detected the expression levels of IL-8 and the nuclear factor-kappa B (NF-κB) pathway in U87MG cells and then co-cultured the two cell types to determine the role of CXCR1 and IL-8 in neuronal apoptosis. Our results indicated that METH exposure increased CXCR1 expression both in vitro and in vivo, with the effects obtained in vitro being dose-dependent. Silencing of CXCR1 expression with siRNAs reduced the expression of cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP), and other related proteins. In addition, IL-8 expression and release were increased in METH-exposed U87MG cells, which is regulated by NF-κB pathway. Neuronal apoptosis was attenuated by siCXCR1 after METH treatment in the co-cultured cells, which can be reversed after exposure to recombinant IL-8. These results demonstrate that CXCR1 plays an important role in neuronal apoptosis induced by METH and may be a potential target for METH-induced neurotoxicity therapy. Highlights -Methamphetamine exposure upregulated the expression of CXCR1.-Methamphetamine exposure increased the expression of interleukin-8 through nuclear factor-kappa B pathway.-Activation of CXCR1 by interleukin-8 induces an increase in methamphetamine-related neuronal apoptosis.
Collapse
Affiliation(s)
- Si-Hao Du
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Wei Zhang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xia Yue
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiao-Qing Luo
- School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Hui Tan
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou Public Security Bureau, Guangzhou, China
| | - Dong-Fang Qiao
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Xiao N, Zhang F, Zhu B, Liu C, Lin Z, Wang H, Xie WB. CDK5-mediated tau accumulation triggers methamphetamine-induced neuronal apoptosis via endoplasmic reticulum-associated degradation pathway. Toxicol Lett 2018; 292:97-107. [DOI: 10.1016/j.toxlet.2018.04.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 12/28/2022]
|
36
|
Zhao C, Mei Y, Chen X, Jiang L, Jiang Y, Song X, Xiao H, Zhang J, Wang J. Autophagy plays a pro-survival role against methamphetamine-induced apoptosis in H9C2 cells. Toxicol Lett 2018; 294:156-165. [PMID: 29763685 DOI: 10.1016/j.toxlet.2018.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/03/2018] [Accepted: 05/11/2018] [Indexed: 01/24/2023]
Abstract
Methamphetamine (METH) is a commonly abused psychostimulant that can induce severe neurotoxicity. Cardiovascular injury caused by METH has recently gained increasing attention; however, the underlying mechanisms remain unclear. As autophagy has been shown to be associated with cell injury, the association between autophagy and METH-mediated cell apoptosis was investigated in the present study. METH treatment significantly increased the expression of two key autophagy proteins, i.e., Beclin-1 and LC3-II, in the cardiomyocyte cell line H9C2. Furthermore, according to western blot and flow cytometry analyses, METH contributed to cell injury and markedly enhanced cleaved-caspase 3 and PARP expression. In addition, the corresponding AKT-mTOR survival pathway axis was appeared deactivated. The autophagic activity was closely associated with METH-mediated cell injury because rapamycin, which is an autophagy inducer, markedly attenuated METH-induced cell injury, while 3-Methyladenine (3-MA), which is an autophagy inhibitor, and bafilomycinA1 (Baf-A1), which is a blocker of autophagosome-lysosome fusion, markedly exacerbated METH-induced cell injury. Notably, defective autophagosome-lysosome fusion might be partially involved in the METH-induced enhancement of LC3-II expression and cell injury. However, the underlying mechanisms require further investigation.
Collapse
Affiliation(s)
- Chao Zhao
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Yong Mei
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Xufeng Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Lei Jiang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Yunfei Jiang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Xu Song
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing, Jiangsu, 211166, China
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing, Jiangsu, 211166, China
| | - Jingsong Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Jun Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
37
|
Tang Y, Tan B, Li G, Li J, Ji P, Yin Y. The Regulatory Role of MeAIB in Protein Metabolism and the mTOR Signaling Pathway in Porcine Enterocytes. Int J Mol Sci 2018; 19:ijms19030714. [PMID: 29498661 PMCID: PMC5877575 DOI: 10.3390/ijms19030714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/20/2018] [Accepted: 02/28/2018] [Indexed: 12/26/2022] Open
Abstract
Amino acid transporters play an important role in cell growth and metabolism. MeAIB, a transporter-selective substrate, often represses the adaptive regulation of sodium-coupled neutral amino acid transporter 2 (SNAT2), which may act as a receptor and regulate cellular amino acid contents, therefore modulating cellular downstream signaling. The aim of this study was to investigate the effects of MeAIB to SNAT2 on cell proliferation, protein turnover, and the mammalian target of rapamycin (mTOR) signaling pathway in porcine enterocytes. Intestinal porcine epithelial cells (IPEC)-J2 cells were cultured in a high-glucose Dulbecco’s modified Eagle’s (DMEM-H) medium with 0 or 5 mmoL/L System A amino acid analogue (MeAIB) for 48 h. Cells were collected for analysis of proliferation, cell cycle, protein synthesis and degradation, intracellular free amino acids, and the expression of key genes involved in the mTOR signaling pathway. The results showed that SNAT2 inhibition by MeAIB depleted intracellular concentrations of not only SNAT2 amino acid substrates but also of indispensable amino acids (methionine and leucine), and suppressed cell proliferation and impaired protein synthesis. MeAIB inhibited mTOR phosphorylation, which might be involved in three translation regulators, EIF4EBP1, IGFBP3, and DDIT4 from PCR array analysis of the 84 genes related to the mTOR signaling pathway. These results suggest that SNAT2 inhibition treated with MeAIB plays an important role in regulating protein synthesis and mTOR signaling, and provide some information to further clarify its roles in the absorption of amino acids and signal transduction in the porcine small intestine.
Collapse
Affiliation(s)
- Yulong Tang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
- Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha 410128, China.
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
- Department of Nutrition, University of California, Davis, CA 95616, USA.
| | - Guangran Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Jianjun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Peng Ji
- Department of Nutrition, University of California, Davis, CA 95616, USA.
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| |
Collapse
|
38
|
Yang J, Zhang Y, Tong J, Lv H, Zhang C, Chen ZJ. Dysfunction of DNA damage-inducible transcript 4 in the decidua is relevant to the pathogenesis of preeclampsia†. Biol Reprod 2018; 98:821-833. [PMID: 29447340 DOI: 10.1093/biolre/ioy038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/12/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Jieqiong Yang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yachao Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| | - Jing Tong
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Lv
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol 2017; 92:1453-1469. [PMID: 29275510 DOI: 10.1007/s00204-017-2150-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/14/2017] [Indexed: 12/24/2022]
Abstract
Experimental and/or epidemiological studies suggest that prenatal exposure to bisphenol A (BPA) may delay fetal lung development and maturation and increase the susceptibility to childhood respiratory disease. However, the underlying mechanisms remain to be elucidated. In our previous study with cultured human fetal lung fibroblasts (HFLF), we demonstrated that 24-h exposure to 1 and 100 µM BPA increased GPR30 protein in the nuclear fraction. Exposure to 100 μM BPA had no effects on cell viability, but increased cytoplasmic expression of ERβ and release of GDF-15, as well as decreased release of IL-6, ET-1, and IP-10 through suppression of NFκB phosphorylation. By performing global gene expression and pathway analysis in this study, we identified molecular pathways, gene networks, and key molecules that were affected by 100, but not 0.01 and 1 µM BPA in HFLF. Using multiple genomic and proteomic tools, we confirmed these changes at both gene and protein levels. Our data suggest that 100 μM BPA increased CYP1B1 and HSD17B14 gene and protein expression and release of endogenous estradiol, which was associated with increased ROS production and DNA double-strand breaks, upregulation of genes and/or proteins in steroid synthesis and metabolism, and activation of Nrf2-regulated stress response pathways. In addition, BPA activated ATM-p53 signaling pathway, resulting in increased cell cycle arrest at G1 phase, senescence and autophagy, and decreased cell proliferation in HFLF. The results suggest that prenatal exposure to BPA at certain concentrations may affect fetal lung development and maturation, and thereby affecting susceptibility to childhood respiratory diseases.
Collapse
|
40
|
Xu X, Huang E, Tai Y, Zhao X, Chen X, Chen C, Chen R, Liu C, Lin Z, Wang H, Xie WB. Nupr1 Modulates Methamphetamine-Induced Dopaminergic Neuronal Apoptosis and Autophagy through CHOP-Trib3-Mediated Endoplasmic Reticulum Stress Signaling Pathway. Front Mol Neurosci 2017; 10:203. [PMID: 28694771 PMCID: PMC5483452 DOI: 10.3389/fnmol.2017.00203] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022] Open
Abstract
Methamphetamine (METH) is an illegal and widely abused psychoactive stimulant. METH exposure causes detrimental effects on multiple organ systems, primarily the nervous system, especially dopaminergic pathways, in both laboratory animals and humans. In this study, we hypothesized that Nuclear protein 1 (Nupr1/com1/p8) is involved in METH-induced neuronal apoptosis and autophagy through endoplasmic reticulum (ER) stress signaling pathway. To test this hypothesis, we measured the expression levels of Nupr1, ER stress protein markers CHOP and Trib3, apoptosis-related protein markers cleaved-caspase3 and PARP, as well as autophagy-related protein markers LC3 and Beclin-1 in brain tissues of adult male Sprague-Dawley (SD) rats, rat primary cultured neurons and the rat adrenal pheochromocytoma cells (PC12 cells) after METH exposure. We also determined the effects of METH exposure on the expression of these proteins after silencing Nupr1, CHOP, or Trib3 expression with synthetic small hairpin RNA (shRNA) or siRNA in vitro, and after silencing Nupr1 in the striatum of rats by injecting lentivirus containing shRNA sequence targeting Nupr1 gene to rat striatum. The results showed that METH exposure increased Nupr1 expression that was accompanied with increased expression of ER stress protein markers CHOP and Trib3, and also led to apoptosis and autophagy in rat primary neurons and in PC12 cells after 24 h exposure (3.0 mM), and in the prefrontal cortex and striatum of rats after repeated intraperitoneal injections (15 mg/kg × 8 injections at 12 h intervals). Silencing of Nupr1 expression partly reduced METH-induced apoptosis and autophagy in vitro and in vivo. These results suggest that Nupr1 plays an essential role in METH-caused neuronal apoptosis and autophagy at relatively higher doses and may be a potential therapeutic target in high-dose METH-induced neurotoxicity.
Collapse
Affiliation(s)
- Xiang Xu
- School of Forensic Medicine, Southern Medical UniversityGuangzhou, China.,School of Forensic Medicine, Wannan Medical CollegeWuhu, China
| | - Enping Huang
- School of Forensic Medicine, Southern Medical UniversityGuangzhou, China
| | - Yunchun Tai
- School of Forensic Medicine, Southern Medical UniversityGuangzhou, China
| | - Xu Zhao
- School of Forensic Medicine, Southern Medical UniversityGuangzhou, China
| | - Xuebing Chen
- School of Forensic Medicine, Southern Medical UniversityGuangzhou, China
| | - Chuanxiang Chen
- School of Forensic Medicine, Southern Medical UniversityGuangzhou, China
| | - Rui Chen
- Department of Forensic Medicine, Guangdong Medical UniversityDongguan, China
| | - Chao Liu
- Guangzhou Forensic Science InstituteGuangzhou, China
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine and Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State UniversityManhattan, KS, United States
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical UniversityGuangzhou, China
| | - Wei-Bing Xie
- School of Forensic Medicine, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
41
|
Rorabaugh BR, Seeley SL, Stoops TS, D’Souza MS. Repeated exposure to methamphetamine induces sex-dependent hypersensitivity to ischemic injury in the adult rat heart. PLoS One 2017; 12:e0179129. [PMID: 28575091 PMCID: PMC5456396 DOI: 10.1371/journal.pone.0179129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/24/2017] [Indexed: 12/23/2022] Open
Abstract
Background We previously reported that adult female, but not male rats that were prenatally exposed to methamphetamine exhibit myocardial hypersensitivity to ischemic injury. However, it is unknown whether hypersensitivity to ischemic injury develops when rats are exposed to methamphetamine during adulthood. The goal of this study was to determine whether methamphetamine exposure during adulthood sensitizes the heart to ischemic injury. Methods Adult male and female rats received daily injections of methamphetamine (5 mg/kg) or saline for 10 days. Their hearts were isolated on day 11 and subjected to a 20 min ischemic insult on a Langendorff isolated heart apparatus. Cardiac contractile function was measured by an intraventricular balloon, and infarct size was measured by triphenyltetrazolium chloride staining. Results Hearts from methamphetamine-treated females exhibited significantly larger infarcts and suppressed postischemic recovery of contractile function compared to hearts from saline-treated females. In contrast, methamphetamine had no effect on infarct size or contractile recovery in male hearts. Subsequent experiments demonstrated that hypersensitivity to ischemic injury persisted in female hearts following a 1 month period of abstinence from methamphetamine. Myocardial protein kinase C-ε expression, Akt phosphorylation, and ERK phosphorylation were unaffected by adult exposure to methamphetamine. Conclusions Exposure of adult rats to methamphetamine sex-dependently increases the extent of myocardial injury following an ischemic insult. These data suggest that women who have a heart attack might be at risk of more extensive myocardial injury if they have a recent history of methamphetamine abuse.
Collapse
Affiliation(s)
- Boyd R. Rorabaugh
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, Ohio Northern University, Ada, Ohio, United States of America
- * E-mail:
| | - Sarah L. Seeley
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, Ohio Northern University, Ada, Ohio, United States of America
| | - Thorne S. Stoops
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, Ohio Northern University, Ada, Ohio, United States of America
| | - Manoranjan S. D’Souza
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, Ohio Northern University, Ada, Ohio, United States of America
| |
Collapse
|
42
|
VEGF-B gene therapy inhibits doxorubicin-induced cardiotoxicity by endothelial protection. Proc Natl Acad Sci U S A 2016; 113:13144-13149. [PMID: 27799559 DOI: 10.1073/pnas.1616168113] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Congestive heart failure is one of the leading causes of disability in long-term survivors of cancer. The anthracycline antibiotic doxorubicin (DOX) is used to treat a variety of cancers, but its utility is limited by its cumulative cardiotoxicity. As advances in cancer treatment have decreased cancer mortality, DOX-induced cardiomyopathy has become an increasing problem. However, the current means to alleviate the cardiotoxicity of DOX are limited. We considered that vascular endothelial growth factor-B (VEGF-B), which promotes coronary arteriogenesis, physiological cardiac hypertrophy, and ischemia resistance, could be an interesting candidate for prevention of DOX-induced cardiotoxicity and congestive heart failure. To study this, we administered an adeno-associated viral vector expressing VEGF-B or control vector to normal and tumor-bearing mice 1 wk before DOX treatment, using doses mimicking the concentrations used in the clinics. VEGF-B treatment completely inhibited the DOX-induced cardiac atrophy and whole-body wasting. VEGF-B also prevented capillary rarefaction in the heart and improved endothelial function in DOX-treated mice. VEGF-B also protected cultured endothelial cells from apoptosis and restored their tube formation. VEGF-B increased left ventricular volume without compromising cardiac function, reduced the expression of genes associated with pathological remodeling, and improved cardiac mitochondrial respiration. Importantly, VEGF-B did not affect serum or tissue concentrations of DOX or augment tumor growth. By inhibiting DOX-induced endothelial damage, VEGF-B could provide a novel therapeutic possibility for the prevention of chemotherapy-associated cardiotoxicity in cancer patients.
Collapse
|
43
|
Roohbakhsh A, Shirani K, Karimi G. Methamphetamine-induced toxicity: The role of autophagy? Chem Biol Interact 2016; 260:163-167. [PMID: 27746146 DOI: 10.1016/j.cbi.2016.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/04/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022]
Abstract
Methamphetamine (METH) is a highly potent and addictive drug with major medical, psychiatric, cognitive, socioeconomic, and legal consequences. It is well absorbed following different routes of administration and distributed throughout the body. METH is known as psychomotor stimulant with potent physiological outcomes on peripheral and central nervous systems, resulting in physical and psychological disorders. Autophagy is a highly conserved and regulated catabolic pathway which is critical for maintaining cellular energy homeostasis and regulating cell growth. The mechanism of autophagy has attracted considerable attention in the last few years because of its recognition as a vital arbiter of death/survival decisions in cells and as a critical defense mechanism in undesirable physiological conditions. The purpose of the current article was to review available evidence to find a relationship between METH toxicity and mechanisms associated with autophagy in different organs.
Collapse
Affiliation(s)
- Ali Roohbakhsh
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Neurocognitive Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kobra Shirani
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Neurocognitive Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
44
|
Park KM, Teoh JP, Wang Y, Broskova Z, Bayoumi AS, Tang Y, Su H, Weintraub NL, Kim IM. Carvedilol-responsive microRNAs, miR-199a-3p and -214 protect cardiomyocytes from simulated ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2016; 311:H371-83. [PMID: 27288437 PMCID: PMC5005281 DOI: 10.1152/ajpheart.00807.2015] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 06/01/2016] [Indexed: 12/24/2022]
Abstract
The nonselective β-adrenergic receptor antagonist (β-blocker) carvedilol has been shown to protect against myocardial injury, but the detailed underlying mechanisms are unclear. We recently reported that carvedilol stimulates the processing of microRNA (miR)-199a-3p and miR-214 in the heart via β-arrestin1-biased β1-adrenergic receptor (β1AR) cardioprotective signaling. Here, we investigate whether these β-arrestin1/β1AR-responsive miRs mediate the beneficial effects of carvedilol against simulated ischemia/reperfusion (sI/R). Using cultured cardiomyocyte cell lines and primary cardiomyocytes, we demonstrate that carvedilol upregulates miR-199a-3p and miR-214 in both ventricular and atrial cardiomyocytes subjected to sI/R. Overexpression of the two miRs in cardiomyocytes mimics the effects of carvedilol to activate p-AKT survival signaling and the expression of a downstream pluripotency marker Sox2 in response to sI/R. Moreover, carvedilol-mediated p-AKT activation is abolished by knockdown of either miR-199a-3p or miR-214. Along with previous studies to directly link the cardioprotective actions of carvedilol to upregulation of p-AKT/stem cell markers, our findings suggest that the protective roles of carvedilol during ischemic injury are in part attributed to activation of these two protective miRs. Loss of function of miR-199a-3p and miR-214 also increases cardiomyocyte apoptosis after sI/R. Mechanistically, we demonstrate that miR-199a-3p and miR-214 repress the predictive or known apoptotic target genes ddit4 and ing4, respectively, in cardiomyocytes. These findings suggest pivotal roles for miR-199a-3p and miR-214 as regulators of cardiomyocyte survival and contributors to the functional benefits of carvedilol therapy.
Collapse
Affiliation(s)
- Kyoung-Mi Park
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Jian-Peng Teoh
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Yongchao Wang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Zuzana Broskova
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Ahmed S Bayoumi
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Il-Man Kim
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
45
|
Nupr1/Chop signal axis is involved in mitochondrion-related endothelial cell apoptosis induced by methamphetamine. Cell Death Dis 2016; 7:e2161. [PMID: 27031958 PMCID: PMC4823965 DOI: 10.1038/cddis.2016.67] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/31/2016] [Accepted: 02/22/2016] [Indexed: 12/11/2022]
Abstract
Methamphetamine (METH) abuse has been a serious global public health problem for decades. Previous studies have shown that METH causes detrimental effects on the nervous and cardiovascular systems. METH-induced cardiovascular toxicity has been, in part, attributed to its destructive effect on vascular endothelial cells. However, the underlying mechanism of METH-caused endothelium disruption has not been investigated systematically. In this study, we identified a novel pathway involved in endothelial cell apoptosis induced by METH. We demonstrated that exposure to METH caused mitochondrial apoptosis in human umbilical vein endothelial cells and rat cardiac microvascular endothelial cells in vitro as well as in rat cardiac endothelial cells in vivo. We found that METH mediated endothelial cell apoptosis through Nupr1–Chop/P53–PUMA/Beclin1 signaling pathway. Specifically, METH exposure increased the expression of Nupr1, Chop, P53 and PUMA. Elevated p53 expression raised up PUMA expression, which initiated mitochondrial apoptosis by downregulating antiapoptotic Bcl-2, followed by upregulation of proapoptotic Bax, resulting in translocation of cytochrome c (cyto c), an apoptogenic factor, from the mitochondria to cytoplasm and activation of caspase-dependent pathways. Interestingly, increased Beclin1, upregulated by Chop, formed a ternary complex with Bcl-2, thereby decreasing the dissociative Bcl-2. As a result, the ratio of dissociative Bcl-2 to Bax was also significantly decreased, which led to translocation of cyto c and initiated more drastic apoptosis. These findings were supported by data showing METH-induced apoptosis was significantly inhibited by silencing Nupr1, Chop or P53, or by PUMA or Beclin1 knockdown. Based on the present data, a novel mechanistic model of METH-induced endothelial cell toxicity is proposed. Collectively, these results highlight that the Nupr1–Chop/P53–PUMA/Beclin1 pathway is essential for mitochondrion-related METH-induced endothelial cell apoptosis and may be a potential therapeutic target for METH-caused cardiovascular toxicity. Future studies using knockout animal models are warranted to substantiate the present findings.
Collapse
|