1
|
Hong T, Park J, Min N, Bae SM, An G, Lee H, Song G, Jeong W, Lim W. Propanil impairs organ development in zebrafish by inducing apoptosis and inhibiting mitochondrial respiration. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136364. [PMID: 39486319 DOI: 10.1016/j.jhazmat.2024.136364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Propanil, an anilide herbicide, has frequently been detected in surface waters in Europe and the United States, largely due to its use in paddy cultivation areas. Particularly in specific regions like Sri Lanka, propanil is considered a potential cause of certain diseases and toxicities due to its high environmental runoff; however, there has been little research on its developmental toxicity. In the present study, we confirmed the developmental toxicity of propanil in zebrafish embryos exposed to 0, 2, 5, and 6 mg/L based on the LC50 value. Propanil exposure in embryos induced morphological changes, including decreased body length and eye size, and increased the heart and yolk sac edema. It increased the number of apoptotic cells in the brains and eyes of zebrafish larvae by 214 % and 184 %, respectively. Propanil-treated embryos exhibited altered mitochondrial metabolism, reducing basal respiration by 28 %, maximal respiration by 24 %, and ATP production by 38 %. These alterations induced organ defects in transgenic zebrafish models (cmlc2:DsRed, flk1:EGFP, olig2:DsRed, lfabp:DsRed;elastase:EGFP, and insulin:EGFP). It induced cardiovascular toxicity, as confirmed by the reduced atrial area, cerebrovascular intensity, and intersegmental vessels. Additionally, propanil decreased the fluorescence intensity of neurons, liver, and pancreas. Collectively, this study indicates that propanil causes early developmental toxicity through apoptosis and mitochondrial dysfunction. It presents a new perspective on how mitochondrial dysfunction, previously unreported in toxicity studies of other anilide herbicides, may affect developmental toxicity.
Collapse
Affiliation(s)
- Taeyeon Hong
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Nayoung Min
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung-Min Bae
- Department of MetaBioHealth, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Wooyoung Jeong
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung 25601, Republic of Korea; Research Center for Marine Bio-Food and Medicine, Catholic Kwandong University, Gangneung 25601, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
2
|
He YJ, Liao H, Yang G, Qiu W, Xuan R, Zheng G, Xu B, Yang X, Magnuson JT, Schlenk D, Zheng C. Perfluorohexanesulfonic Acid (PFHxS) Impairs Lipid Homeostasis in Zebrafish Larvae through Activation of PPARα. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16258-16268. [PMID: 39146316 DOI: 10.1021/acs.est.4c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Perfluorohexanesulfonic acid (PFHxS), an emerging short-chain per- and polyfluoroalkyl substance, has been frequently detected in aquatic environments. Adverse outcome pathway studies have shown that perfluorinated compounds impair lipid homeostasis through peroxisome proliferator activated receptors (PPARs). However, many of these studies were performed at high concentrations and may thus be a result of overt toxicity. To better characterize the molecular and key events of PFHxS to biota, early life-stage zebrafish (Danio rerio) were exposed to concentrations detected in the environment (0.01, 0.1, 1, and 10 μg/L). Lipidomic and transcriptomic evaluations were integrated to predict potential molecular targets. PFHxS significantly impaired lipid homeostasis by the dysregulation of glycerophospholipids, fatty acyls, glycerolipids, sphingolipids, prenol lipids, and sterol lipids. Informatic analyses of the lipidome and transcriptome indicated alterations of the PPAR signaling pathway, with downstream changes to retinol, linoleic acid, and glycerophospholipid metabolism. To assess the role of PPARs, potential binding of PFHxS to PPARs was predicted and animals were coexposed to a PPAR antagonist (GW6471). Molecular simulation indicated PFHxS had a 27.1% better binding affinity than oleic acid, an endogenous agonist of PPARα. Antagonist coexposures rescued impaired glycerophosphocholine concentrations altered by PFHxS. These data indicate PPARα activation may be an important molecular initiating event for PFHxS.
Collapse
Affiliation(s)
- Ying-Jie He
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haolin Liao
- Guangdong-Hong Kong Joint Laboratory for Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ge Yang
- Guangdong-Hong Kong Joint Laboratory for Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rongrong Xuan
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Guomao Zheng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jason T Magnuson
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri 65201, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, China
| |
Collapse
|
3
|
van den Boom R, Vergauwen L, Knapen D. Effects of Metabolic Disruption on Lipid Metabolism and Yolk Retention in Zebrafish Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1880-1893. [PMID: 38860666 DOI: 10.1002/etc.5930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 06/12/2024]
Abstract
A subgroup of endocrine-disrupting chemicals have the ability to disrupt metabolism. These metabolism-disrupting chemicals (MDCs) can end up in aquatic environments and lead to adverse outcomes in fish. Although molecular and physiological effects of MDCs have been studied in adult fish, few studies have investigated the consequences of metabolic disruption in fish during the earliest life stages. To investigate the processes affected by metabolic disruption, zebrafish embryos were exposed to peroxisome proliferator-activated receptor gamma (PPARγ) agonist rosiglitazone, the PPARγ antagonist T0070907, and the well-known environmentally relevant MDC bisphenol A. Decreased apolipoprotein Ea transcript levels indicated disrupted lipid transport, which was likely related to the observed dose-dependent increases in yolk size across all compounds. Increased yolk size and decreased swimming activity indicate decreased energy usage, which could lead to adverse outcomes because the availability of energy reserves is essential for embryo survival and growth. Exposure to T0070907 resulted in a darkened yolk. This was likely related to reduced transcript levels of genes involved in lipid transport and fatty acid oxidation, a combination of responses that was specific to exposure to this compound, possibly leading to lipid accumulation and cell death in the yolk. Paraoxonase 1 (Pon1) transcript levels were increased by rosiglitazone and T0070907, but this was not reflected in PON1 enzyme activities. The present study shows how exposure to MDCs can influence biochemical and molecular processes involved in early lipid metabolism and may lead to adverse outcomes in the earliest life stages of fish. Environ Toxicol Chem 2024;43:1880-1893. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Rik van den Boom
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
4
|
Marin M, Annunziato KM, Tompach MC, Liang W, Zahn SM, Li S, Doherty J, Lee J, Clark JM, Park Y, Timme-Laragy AR. Maternal PFOS exposure affects offspring development in Nrf2-dependent and independent ways in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106923. [PMID: 38669778 PMCID: PMC11177596 DOI: 10.1016/j.aquatox.2024.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a ubiquitous legacy environmental contaminant detected broadly in human samples and water supplies. PFOS can cross the placenta and has been detected in cord blood and breastmilk samples, underscoring the importance of understanding the impacts of maternal PFOS exposure during early development. This study aimed to investigate the effects of a preconception exposure to PFOS on developmental endpoints in offspring, as well as examine the role of the transcription factor Nuclear factor erythroid-2-related factor (Nrf2a) in mediating these effects. This transcription factor regulates the expression of several genes that protect cells against oxidative stress including during embryonic development. Adult female zebrafish were exposed to 0.02, 0.08 or 0.14 mg/L PFOS for 1 week (duration of one cycle of oocyte maturation) and then paired with unexposed males from Nrf2a mutant or wildtype strains. Embryos were collected for two weeks or until completion of 5 breeding events. PFOS was maternally transferred to offspring independent of genotype throughout all breeding events in a dose-dependent manner, ranging from 2.77 to 23.72 ng/embryo in Nrf2a wildtype and 2.40 to 15.80 ng/embryo in Nrf2a mutants. Although embryo viability at collection was not impacted by maternal PFOS exposure, developmental effects related to nutrient uptake, growth and pancreatic β-cell morphology were observed and differed based on genotype. Triglyceride levels were increased in Nrf2a wildtype eggs from the highest PFOS group. In Nrf2a wildtype larvae there was a decrease in yolk sac uptake while in Nrf2a mutants there was an increase. Additionally, there was a significant decrease in pancreatic β-cell (islet) area in wildtype larvae from the 0.14 mg/L PFOS accompanied by an increase in the prevalence of abnormal islet morphologies compared to controls. Abnormal morphology was also observed in the 0.02 and 0.08 mg/L PFOS groups. Interestingly, in Nrf2a mutants there was a significant increase in the pancreatic β-cell area in the 0.02 and 0.08 mg/L PFOS groups and no changes in the prevalence of abnormal islet morphologies. These results suggest that the regulation of processes like nutrient consumption, growth and pancreatic β-cell development are at least partially modulated by the presence of a functional Nrf2a transcriptomic response. Overall, preconception exposure to environmental pollutants, such as PFOS, may impact the maturing oocyte and cause subtle changes that can ultimately impact offspring health and development.
Collapse
Affiliation(s)
- Marjorie Marin
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA
| | - Kate M Annunziato
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Madeline C Tompach
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Wenle Liang
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sarah M Zahn
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jeffery Doherty
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Jonghwa Lee
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - John M Clark
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
5
|
Kennedy VC, Lynch CS, Tanner AR, Winger QA, Gad A, Rozance PJ, Anthony RV. Fetal Hypoglycemia Induced by Placental SLC2A3-RNA Interference Alters Fetal Pancreas Development and Transcriptome at Mid-Gestation. Int J Mol Sci 2024; 25:4780. [PMID: 38731997 PMCID: PMC11084495 DOI: 10.3390/ijms25094780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Glucose, the primary energy substrate for fetal oxidative processes and growth, is transferred from maternal to fetal circulation down a concentration gradient by placental facilitative glucose transporters. In sheep, SLC2A1 and SLC2A3 are the primary transporters available in the placental epithelium, with SLC2A3 located on the maternal-facing apical trophoblast membrane and SLC2A1 located on the fetal-facing basolateral trophoblast membrane. We have previously reported that impaired placental SLC2A3 glucose transport resulted in smaller, hypoglycemic fetuses with reduced umbilical artery insulin and glucagon concentrations, in addition to diminished pancreas weights. These findings led us to subject RNA derived from SLC2A3-RNAi (RNA interference) and NTS-RNAi (non-targeting sequence) fetal pancreases to qPCR followed by transcriptomic analysis. We identified a total of 771 differentially expressed genes (DEGs). Upregulated pathways were associated with fat digestion and absorption, particularly fatty acid transport, lipid metabolism, and cholesterol biosynthesis, suggesting a potential switch in energetic substrates due to hypoglycemia. Pathways related to molecular transport and cell signaling in addition to pathways influencing growth and metabolism of the developing pancreas were also impacted. A few genes directly related to gluconeogenesis were also differentially expressed. Our results suggest that fetal hypoglycemia during the first half of gestation impacts fetal pancreas development and function that is not limited to β cell activity.
Collapse
Affiliation(s)
- Victoria C. Kennedy
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (C.S.L.); (A.R.T.); (Q.A.W.); (A.G.)
| | - Cameron S. Lynch
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (C.S.L.); (A.R.T.); (Q.A.W.); (A.G.)
| | - Amelia R. Tanner
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (C.S.L.); (A.R.T.); (Q.A.W.); (A.G.)
- University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Quinton A. Winger
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (C.S.L.); (A.R.T.); (Q.A.W.); (A.G.)
| | - Ahmed Gad
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (C.S.L.); (A.R.T.); (Q.A.W.); (A.G.)
| | - Paul J. Rozance
- University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Russell V. Anthony
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (C.S.L.); (A.R.T.); (Q.A.W.); (A.G.)
| |
Collapse
|
6
|
Thompson WA, Rajeswari JJ, Holloway AC, Vijayan MM. Excess feeding increases adipogenesis but lowers leptin transcript abundance in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109816. [PMID: 38061616 DOI: 10.1016/j.cbpc.2023.109816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Although fish exposed to municipal wastewater effluents (MWWE) show higher lipid accumulation, whether this is due to adipogenesis is unclear. The objective here was to identify molecular markers of adipogenesis in zebrafish (Danio rerio) larvae for use as high throughput screening tools for environmental contaminants, including obesogens in MWWE. Zebrafish larvae were fed a commercial diet at a maintenance level (5 % body mass) or in excess (25 or 50 % body mass) from day 6 to 30 days post-fertilization (dpf) to stimulate adipogenesis. We monitored fat accumulation and markers of lipid metabolism, including peroxisome proliferator-activated receptor γ (ppar γ), fatty acid synthase (fas), ELOVL fatty acid elongase 2 (elovl2), diacylglycerol O-acyltransferase 2 (dgat2), leptin (lepa and lepb), leptin receptor (lepr), and lipoprotein lipase (lpl). Excess feeding led to a higher growth rate, protein content and an increase in igf1 transcript abundance. Also, these larvae had higher triglyceride levels and accumulated lipids droplets in the abdominal cavity and viscera. The molecular markers of adipogenesis, including fas, elovl2, and dgat2, were upregulated, while the transcript abundance of lpl, a lipolytic gene, was transiently lower due to excess feeding. The increased adiposity seen at 30 dpf due to excess feeding coincided with a lower lep but not lepr transcript abundance in zebrafish. Our results demonstrate that excess feeding alters the developmental programming of key genes involved in lipid homeostasis, leading to excess lipid accumulation in zebrafish larvae. Overall, fas, elovl2, lpl, and dgat2, but not lep or ppar γ, have the potential to be biomarkers of adipogenesis in zebrafish larvae.
Collapse
Affiliation(s)
- William Andrew Thompson
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Jithine Jayakumar Rajeswari
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
7
|
Qiu SQ, Huang GY, Li XP, Lei DQ, Wang CS, Ying GG. Endocrine disruptor responses in the embryos of marine medaka (Oryzias melastigma) after exposure to aged plastic leachates. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106635. [PMID: 37478585 DOI: 10.1016/j.aquatox.2023.106635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/19/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
The issue of the additives leached from plastics has attracted widespread attention. More crucially, endocrine disruptor status for several leached additives has been established. However, little is known about the overall endocrine disrupting effects of aged plastic leachates. Therefore, the transcriptional responses of endocrine-related genes were assessed in the embryos of marine medaka (Oryzias melastigma), which were exposed to the leachates from aged plastics that were immersed into the simulated seawater (SW) or fish digest (FD). The results revealed that there was a great difference between the SW and FD leachates in the transcripts of endocrine-related genes. With the exception of cyp1a, all target genes had their transcripts potentially down-regulated by the FD leachates. Chgl (a biomarker for estrogens), pparβ (related to lipid metabolism), and cyp19a (related to sexual differentiation and reproduction) transcripts tended to be repressed by the SW leachates, while pparα, pparγ and cyp1a (mediating metabolism of xenobiotics) transcripts were stimulated. In addition, a redundancy analysis was carried out to determine the relationship between the leached additives and the transcriptional changes. However, the additives only partially explained the variation in the transcripts of endocrine-related genes (24.8%), indicating that other leached additives may have an impact on target gene transcription. This study provided molecular evidence of the aged plastic leachates' endocrine disrupting effects. Exploring the primary factors that affect the transcriptional alterations would require more research.
Collapse
Affiliation(s)
- Shu-Qing Qiu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China.
| | - Xiao-Pei Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China
| | - Dong-Qiao Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China
| | - Chen-Si Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
8
|
Nandanpawar P, Sahoo L, Sahoo B, Murmu K, Chaudhari A, Pavan kumar A, Das P. Identification of differentially expressed genes and SNPs linked to harvest body weight of genetically improved rohu carp, Labeo rohita. Front Genet 2023; 14:1153911. [PMID: 37359361 PMCID: PMC10285081 DOI: 10.3389/fgene.2023.1153911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
In most of the aquaculture selection programs, harvest body weight has been a preferred performance trait for improvement. Molecular interplay of genes linked to higher body weight is not elucidated in major carp species. The genetically improved rohu carp with 18% average genetic gain per generation with respect to harvest body weight is a promising candidate for studying genes' underlying performance traits. In the present study, muscle transcriptome sequencing of two groups of individuals, with significant difference in breeding value, belonging to the tenth generation of rohu carp was performed using the Illumina HiSeq 2000 platform. A total of 178 million paired-end raw reads were generated to give rise to 173 million reads after quality control and trimming. The genome-guided transcriptome assembly and differential gene expression produced 11,86,119 transcripts and 451 upregulated and 181 downregulated differentially expressed genes (DEGs) between high-breeding value and low-breeding value (HB & LB) groups, respectively. Similarly, 39,158 high-quality coding SNPs were identified with the Ts/Tv ratio of 1.23. Out of a total of 17 qPCR-validated transcripts, eight were associated with cellular growth and proliferation and harbored 13 SNPs. The gene expression pattern was observed to be positively correlated with RNA-seq data for genes such as myogenic factor 6, titin isoform X11, IGF-1 like, acetyl-CoA, and thyroid receptor hormone beta. A total of 26 miRNA target interactions were also identified to be associated with significant DETs (p-value < 0.05). Genes such as Myo6, IGF-1-like, and acetyl-CoA linked to higher harvest body weight may serve as candidate genes in marker-assisted breeding and SNP array construction for genome-wide association studies and genomic selection.
Collapse
Affiliation(s)
- P. Nandanpawar
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - L. Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - B. Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - K. Murmu
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - A. Chaudhari
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - A. Pavan kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - P. Das
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| |
Collapse
|
9
|
Miao M, Wang X, Liu T, Li YJ, Yu WQ, Yang TM, Guo SD. Targeting PPARs for therapy of atherosclerosis: A review. Int J Biol Macromol 2023:125008. [PMID: 37217063 DOI: 10.1016/j.ijbiomac.2023.125008] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Atherosclerosis, a chief pathogenic factor of cardiovascular disease, is associated with many factors including inflammation, dyslipidemia, and oxidative stress. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and are widely expressed with tissue- and cell-specificity. They control multiple genes that are involved in lipid metabolism, inflammatory response, and redox homeostasis. Given the diverse biological functions of PPARs, they have been extensively studied since their discovery in 1990s. Although controversies exist, accumulating evidence have demonstrated that PPAR activation attenuates atherosclerosis. Recent advances are valuable for understanding the mechanisms of action of PPAR activation. This article reviews the recent findings, mainly from the year of 2018 to present, including endogenous molecules in regulation of PPARs, roles of PPARs in atherosclerosis by focusing on lipid metabolism, inflammation, and oxidative stress, and synthesized PPAR modulators. This article provides information valuable for researchers in the field of basic cardiovascular research, for pharmacologists that are interested in developing novel PPAR agonists and antagonists with lower side effects as well as for clinicians.
Collapse
Affiliation(s)
- Miao Miao
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xue Wang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tian Liu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yan-Jie Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wen-Qian Yu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tong-Mei Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
10
|
Sun W, Zhang X, Qiao Y, Griffin N, Zhang H, Wang L, Liu H. Exposure to PFOA and its novel analogs disrupts lipid metabolism in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115020. [PMID: 37201426 DOI: 10.1016/j.ecoenv.2023.115020] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/24/2023] [Accepted: 05/14/2023] [Indexed: 05/20/2023]
Abstract
Perfluorooctanoic acid (PFOA), a typical perfluoroalkyl group compound, has received worldwide attention due to its significant environmental toxicity. Following regulatory bans on the production and emission of PFOA, concerns have been raised about the potential health risks and the safety of novel perfluoroalkyl analogues. HFPO-DA (trade name Gen-X) and HFPO-TA are two perfluoroalkyl analogues known to be bioaccumulative, whose level of toxicity and whether they are safe alternatives to PFOA remain unclear. In the following study, the physiological and metabolic effects of exposure to PFOA and its novel analogues were explored in zebrafish using 1/3 LC50 (PFOA 100 μM, Gen-X 200 μM, HFPO-TA 30 μM). At the same LC50 toxicological effect, exposure to PFOA and HFPO-TA resulted in abnormal phenotypes such as spinal curvature, pericardial edema and aberrant body length, while Gen-X was little changed. Metabolically, PFOA, HFPO-TA and Gen-X all significantly increased total cholesterol in exposed zebrafish with PFOA and HFPO-TA also increasing total triglyceride levels. Transcriptome analysis showed that the number of differentially expressed genes in PFOA, Gen-X, and HFPO-TA treated conditions compared to control groups were 527, 572, and 3, 933, respectively. KEGG and GO analysis of differentially expressed genes revealed pathways and functions related to lipid metabolism as well as significant activation of the peroxisome proliferators-activated receptor (PPARs) pathway. Furthermore, RT-qPCR analysis identified significant dysregulation in the downstream target genes of PPARα, which is responsible for lipid oxidative catabolism, and the SREBP pathway, which is responsible for lipid synthesis. In conclusion, both perfluoroalkyl analogues HFPO-TA and Gen-X exhibit significant physiological and metabolic toxicity to aquatic organisms and their environmental accumulation should be closely regulated.
Collapse
Affiliation(s)
- Weiqiang Sun
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, PR China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, PR China
| | - Xuemin Zhang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, PR China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, PR China
| | - Ying Qiao
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| | - Nathan Griffin
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Hongxia Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Wang
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China.
| | - Hui Liu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, PR China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, PR China.
| |
Collapse
|
11
|
James BD, Karchner SI, Walsh AN, Aluru N, Franks DG, Sullivan KR, Reddy CM, Ward CP, Hahn ME. Formulation Controls the Potential Neuromuscular Toxicity of Polyethylene Photoproducts in Developing Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7966-7977. [PMID: 37186871 DOI: 10.1021/acs.est.3c01932] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Sunlight transforms plastic into water-soluble products, the potential toxicity of which remains unresolved, particularly for vertebrate animals. We evaluated acute toxicity and gene expression in developing zebrafish larvae after 5 days of exposure to photoproduced (P) and dark (D) leachates from additive-free polyethylene (PE) film and consumer-grade, additive-containing, conventional, and recycled PE bags. Using a "worst-case" scenario, with plastic concentrations exceeding those found in natural waters, we observed no acute toxicity. However, at the molecular level, RNA sequencing revealed differences in the number of differentially expressed genes (DEGs) for each leachate treatment: thousands of genes (5442 P, 577 D) for the additive-free film, tens of genes for the additive-containing conventional bag (14 P, 7 D), and none for the additive-containing recycled bag. Gene ontology enrichment analyses suggested that the additive-free PE leachates disrupted neuromuscular processes via biophysical signaling; this was most pronounced for the photoproduced leachates. We suggest that the fewer DEGs elicited by the leachates from conventional PE bags (and none from recycled bags) could be due to differences in photoproduced leachate composition caused by titanium dioxide-catalyzed reactions not present in the additive-free PE. This work demonstrates that the potential toxicity of plastic photoproducts can be product formulation-specific.
Collapse
Affiliation(s)
- Bryan D James
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Anna N Walsh
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
- Civil and Environmental Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Diana G Franks
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Kallen R Sullivan
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Christopher M Reddy
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Collin P Ward
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
12
|
Rodrigues P, Guimarães L, Carvalho AP, Oliva-Teles L. Carbamazepine, venlafaxine, tramadol, and their main metabolites: Toxicological effects on zebrafish embryos and larvae. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130909. [PMID: 36860067 DOI: 10.1016/j.jhazmat.2023.130909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Pharmaceutical compounds and their metabolites are found in natural and wastewater. However, investigation of their toxic effects on aquatic animals has been neglected, especially for metabolites. This work investigated the effects of the main metabolites of carbamazepine, venlafaxine and tramadol. Zebrafish embryos were exposed (0.1-100 µg/L) for 168hpf exposures to each metabolite (carbamazepine-10,11-epoxide, 10,11-dihydrocarbamazepine, O-desmethylvenlafaxine, N-desmethylvenlafaxine, O-desmethyltramadol, N-desmethyltramadol) or the parental compound. A concentration-response relationship was found for the effects of some embryonic malformations. Carbamazepine-10,11-epoxide, O-desmethylvenlafaxine and tramadol elicited the highest malformation rates. All compounds significantly decreased larvae responses on a sensorimotor assay compared to controls. Altered expression was found for most of the 32 tested genes. In particular, abcc1, abcc2, abcg2a, nrf2, pparg and raraa were found to be affected by all three drug groups. For each group, the modelled expression patterns showed differences in expression between parental compounds and metabolites. Potential biomarkers of exposure were identified for the venlafaxine and carbamazepine groups. These results are worrying, indicating that such contamination in aquatic systems may put natural populations at significant risk. Furthermore, metabolites represent a real risk that needs more scrutinising by the scientific community.
Collapse
Affiliation(s)
- P Rodrigues
- Interdisciplinary Centre of Marine and Environmental Research - CIIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculty of Sciences - Biology Department, Rua do Campo Alegre s/n, University of Porto, 4169-007 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - L Guimarães
- Interdisciplinary Centre of Marine and Environmental Research - CIIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculty of Sciences - Biology Department, Rua do Campo Alegre s/n, University of Porto, 4169-007 Porto, Portugal.
| | - A P Carvalho
- Interdisciplinary Centre of Marine and Environmental Research - CIIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculty of Sciences - Biology Department, Rua do Campo Alegre s/n, University of Porto, 4169-007 Porto, Portugal
| | - L Oliva-Teles
- Interdisciplinary Centre of Marine and Environmental Research - CIIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculty of Sciences - Biology Department, Rua do Campo Alegre s/n, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
13
|
Wilson PW, Cho C, Allsing N, Khanum S, Bose P, Grubschmidt A, Sant KE. Tris(4-chlorophenyl)methane and tris(4-chlorophenyl)methanol disrupt pancreatic organogenesis and gene expression in zebrafish embryos. Birth Defects Res 2023; 115:458-473. [PMID: 36470842 DOI: 10.1002/bdr2.2132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Tris(4-chlorophenyl) methane (TCPM) and tris(4-chlorophenyl)methanol (TCPMOH) are anthropogenic environmental contaminants believed to be manufacturing byproducts of the organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) due to environmental co-occurrence. TCPM and TCPMOH are persistent, bioaccumulate in the environment, and are detected in human breast milk and adipose tissues. DDT exposures have been previously shown to disrupt insulin signaling and glucoregulation, increasing risk for diabetes. We have previously shown that embryonic exposures organochlorines such as polychlorinated biphenyls disrupted pancreatic development and early embryonic glucoregulatory networks. Here, we determined the impacts of the similar compounds TCPM and TCPMOH on zebrafish pancreatic growth and gene expression following developmental exposures. METHODS Zebrafish embryos were exposed to 50 nM TCPM or TCPMOH beginning at 24 hr postfertilization (hpf) and exposures were refreshed daily. At 96 hpf, pancreatic growth and islet area were directly visualized in Tg(ptf1a::GFP) and Tg(insulin::GFP) embryos, respectively, using microscopy. Gene expression was assessed at 100 hpf with RNA sequencing. RESULTS Islet and total pancreas area were reduced by 20.8% and 13% in embryos exposed to 50 nM TCPMOH compared to controls. TCPM did not induce significant morphological changes to the developing pancreas, indicating TCPMOH, but not TCPM, impairs pancreatic development despite similarity in molecular responses. Transcriptomic responses to TCPM and TCPMOH were correlated (R2 = .903), and pathway analysis found downregulation of processes including retinol metabolism, circadian rhythm, and steroid biosynthesis. CONCLUSION Overall, our data suggest that TCPM and TCPMOH may be hazardous to embryonic growth and development.
Collapse
Affiliation(s)
- Peyton W Wilson
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Christine Cho
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Nicholas Allsing
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Saleha Khanum
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Pria Bose
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Ava Grubschmidt
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Karilyn E Sant
- School of Public Health, San Diego State University, San Diego, California, USA
| |
Collapse
|
14
|
Li X, Liu S, Qi D, Qi H, Wang Y, Zhao K, Tian F. Genome-wide identification and expression of the peroxisome proliferator-activated receptor gene family in the Tibetan highland fish Gymnocypris przewalskii. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1685-1699. [PMID: 36469183 DOI: 10.1007/s10695-022-01152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR) plays an important role in the regulation of lipid metabolism and has been widely identified in diverse species. Gymnocypris przewalskii is a native fish of the Qinghai Tibetan Plateau that survives in a chronically cold environment. In the current study, we conducted genome-wide identification of PPAR genes, revealing the existence of seven PPARs in the G. przewalskii genome. Collinearity was observed between two copies of PPARαb and PPARγ in G. przewalskii, suggesting that the additional copy might be gained through whole genome duplication. Both phylogenetic and multiple sequence alignment analyses indicated that PPARs in G. przewalskii were conserved with teleosts. The cold treatment (10 °C and 4 °C) led to the developmental delay of G. przewalskii embryos. Continuous expression of PPARs was observed during the embryonic development of G. przewalskii under normal and cold conditions, with significantly different transcriptional patterns. These results indicated that PPARs participated in the embryonic development of G. przewalskii, and were involved in the cold response during development. The current study proposed a potential role of PPARs in the cold response in the embryonic development of G. przewalskii, which shed light on understanding cold adaptation in Tibetan highland fish.
Collapse
Affiliation(s)
- Xiaohuan Li
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810001, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sijia Liu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810001, Qinghai, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Hongfang Qi
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, Xining, Qinghai, China
| | - Yang Wang
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, Xining, Qinghai, China
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810001, Qinghai, China.
| | - Fei Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810001, Qinghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|