1
|
de Souza LF, Lana MAG, de Paiva CR, Fernandes WL, Nogueira R. Relative Matrix Effect in the Quantification of Nitroimidazoles and Dyes in Meat, Eggs, Shrimp, and Fish Using an Ethyl Acetate/Salting-Out Extraction and Isotope Dilution Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6500-6511. [PMID: 40052601 DOI: 10.1021/acs.jafc.4c10788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
This paper presents the validation of a multiresidue method for quantifying seven nitroimidazoles and four dyes in poultry, pork, beef, eggs, shrimp, and fish. The average matrix factors of standard normalized to IS (0.82-1.12) indicated no significant matrix effect, and the CV % values (2.26-12.10%) complied with the 20% limit of the Commission Implementing Regulation 2021/808. However, medium suppression (50-80%) or enhancement (120-150%) was observed in 4.29% and 2.14% of the individual matrix extracts, respectively. The linearity ranges (in μg kg-1) were 0.50-3.0 for nitroimidazoles and 0.25-1.5 for dyes, and the determination coefficients (R2) were at least 0.9688. The limits of quantitation were the lowest calibration levels. Analyte recovery and reproducibility were satisfactory (fREC: 77.95-115.0%; CV: 5.09-27.24%). The decision limits (CCα) (in μg kg-1) were 0.59-1.00 for nitroimidazoles and 0.29-0.46 for dyes and complied with the EURLs minimum method performance requirements (1.0 and 0.5 μg kg-1, respectively).
Collapse
Affiliation(s)
- Leonardo F de Souza
- Laboratory of Food Residues and Contaminants (RCA), National Agricultural Defense Laboratory of Minas Gerais (LFDA/MG), Brazilian Ministry of Agriculture, Livestock and Food Supply (MAPA), Avenida Rômulo Joviano s/n, 33250-220 Pedro Leopoldo, Minas Gerais, Brazil
| | - Mary Ane G Lana
- Laboratory of Food Residues and Contaminants (RCA), National Agricultural Defense Laboratory of Minas Gerais (LFDA/MG), Brazilian Ministry of Agriculture, Livestock and Food Supply (MAPA), Avenida Rômulo Joviano s/n, 33250-220 Pedro Leopoldo, Minas Gerais, Brazil
| | - Cristiana R de Paiva
- Laboratory of Food Residues and Contaminants (RCA), National Agricultural Defense Laboratory of Minas Gerais (LFDA/MG), Brazilian Ministry of Agriculture, Livestock and Food Supply (MAPA), Avenida Rômulo Joviano s/n, 33250-220 Pedro Leopoldo, Minas Gerais, Brazil
| | - Wagner L Fernandes
- Laboratory of Food Residues and Contaminants (RCA), National Agricultural Defense Laboratory of Minas Gerais (LFDA/MG), Brazilian Ministry of Agriculture, Livestock and Food Supply (MAPA), Avenida Rômulo Joviano s/n, 33250-220 Pedro Leopoldo, Minas Gerais, Brazil
| | - Raquel Nogueira
- Laboratory of Food Residues and Contaminants (RCA), National Agricultural Defense Laboratory of Minas Gerais (LFDA/MG), Brazilian Ministry of Agriculture, Livestock and Food Supply (MAPA), Avenida Rômulo Joviano s/n, 33250-220 Pedro Leopoldo, Minas Gerais, Brazil
| |
Collapse
|
2
|
Behner A, Palicova J, Tobolkova AH, Prusova N, Stranska M. Pulsed Electric Field Induces Significant Changes in the Metabolome of Fusarium Species and Decreases Their Viability and Toxigenicity. Toxins (Basel) 2025; 17:33. [PMID: 39852986 PMCID: PMC11769547 DOI: 10.3390/toxins17010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
Fusarium fungi are widespread pathogens of food crops, primarily associated with the formation of mycotoxins. Therefore, effective mitigation strategies for these toxicogenic microorganisms are required. In this study, the potential of pulsed electric field (PEF) as an advanced technology of increasing use in the food processing industry was investigated to minimize the viability of Fusarium pathogens and to characterize the PEF-induced changes at the metabolomic level. Spores of four Fusarium species (Fusarium culmorum, Fusarium graminearum, Fusarium poae, and Fusarium sporotrichioides) were treated with PEF and cultured on potato dextrose agar (PDA) plates. The viability of the Fusarium species was assessed by counting the colony-forming units, and changes in the mycotoxin content and metabolomic fingerprints were evaluated by using UHPLC-HRMS/MS instrumental analysis. For metabolomic data processing and compound identification, the MS-DIAL (v. 4.80)-MS-CleanR-MS-Finder (v. 3.52) software platform was used. As we found out, both fungal viability and the ability to produce mycotoxins significantly decreased after the PEF treatment for all of the species tested. The metabolomes of the treated and untreated fungi showed statistically significant differences, and PEF-associated biomarkers from the classes oxidized fatty acid derivatives, cyclic hexapeptides, macrolides, pyranocoumarins, carbazoles, and guanidines were identified.
Collapse
Affiliation(s)
- Adam Behner
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic; (A.B.); (A.-H.T.); (N.P.)
| | - Jana Palicova
- Crop Research Institute in Prague, Drnovska 507/73, 161 00 Prague, Czech Republic;
| | - Anna-Hirt Tobolkova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic; (A.B.); (A.-H.T.); (N.P.)
| | - Nela Prusova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic; (A.B.); (A.-H.T.); (N.P.)
| | - Milena Stranska
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic; (A.B.); (A.-H.T.); (N.P.)
| |
Collapse
|
3
|
Prusova N, Karabin M, Jelinek L, Chrpova J, Ovesna J, Svoboda P, Dolezalova T, Behner A, Hajslova J, Stranska M. Application of Pulsed Electric Field During Malting: Impact on Fusarium Species Growth and Mycotoxin Production. Toxins (Basel) 2024; 16:537. [PMID: 39728795 PMCID: PMC11679037 DOI: 10.3390/toxins16120537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Abstract
The increasing contamination of cereals by micromycetes and mycotoxins during malting still poses an unresolved food safety problem. This study characterises the potential of the novel, rapidly developing food production technology of Pulsed Electric Field (PEF) to reduce the viability of Fusarium fungi and the production of mycotoxins during malting. Barley, artificially inoculated with four Fusarium species, was treated by PEF with two different intensities and then malted using a standard Pilsner-type technology. Concentrations of fungi were quantified by RT-PCR, expression of fungal growth-related genes was assessed using mRNA sequencing, and mycotoxin levels were analysed by U-HPLC-HRMS/MS. Despite the different trends for micromycetes and mycotoxins after application of variously intense PEF conditions, significant reductions were generally observed. The greatest decrease was for F. sporotrichioides and F. poae, where up to six fold lower levels were achieved for malts produced from the PEF-treated barley when compared to the control. For F. culmorum and F. graminearum, up to a two-fold reduction in the PEF-generated malts was observed. These reductions mostly correlated with a decrease in relevant mycotoxins, specifically type A trichothecenes.
Collapse
Affiliation(s)
- Nela Prusova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic; (N.P.); (T.D.); (A.B.); (J.H.)
| | - Marcel Karabin
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technicka 5, 166 28 Prague, Czech Republic; (M.K.); (L.J.)
| | - Lukas Jelinek
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technicka 5, 166 28 Prague, Czech Republic; (M.K.); (L.J.)
| | - Jana Chrpova
- Crop Research Institute in Prague, Drnovska 507/73, 161 06 Prague, Czech Republic; (J.C.); (J.O.); (P.S.)
| | - Jaroslava Ovesna
- Crop Research Institute in Prague, Drnovska 507/73, 161 06 Prague, Czech Republic; (J.C.); (J.O.); (P.S.)
| | - Pavel Svoboda
- Crop Research Institute in Prague, Drnovska 507/73, 161 06 Prague, Czech Republic; (J.C.); (J.O.); (P.S.)
| | - Tereza Dolezalova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic; (N.P.); (T.D.); (A.B.); (J.H.)
| | - Adam Behner
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic; (N.P.); (T.D.); (A.B.); (J.H.)
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic; (N.P.); (T.D.); (A.B.); (J.H.)
| | - Milena Stranska
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic; (N.P.); (T.D.); (A.B.); (J.H.)
| |
Collapse
|
4
|
Dick F, Dietz A, Asam S, Rychlik M. Development of a high-throughput UHPLC-MS/MS method for the analysis of Fusarium and Alternaria toxins in cereals and cereal-based food. Anal Bioanal Chem 2024; 416:5619-5637. [PMID: 39222085 PMCID: PMC11493838 DOI: 10.1007/s00216-024-05486-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
A QuEChERS (quick, easy, cheap, effective, rugged, and safe)-based multi-mycotoxin method was developed, analyzing 24 (17 free and 7 modified) Alternaria and Fusarium toxins in cereals via ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). A modified QuEChERS approach was optimized for sample preparation. Quantification was conducted using a combination of stable isotope dilution analysis (SIDA) for nine toxins and matrix-matched calibration for ten toxins. Quantification via a structurally similar internal standard was conducted for four analytes. Alternariol-9-sulfate (AOH-9-S) was measured qualitatively. Limits of detection (LODs) were between 0.004 µg/kg for enniatin A1 (ENN A1) and 3.16 µg/kg for nivalenol (NIV), while the limits of quantification were between 0.013 and 11.8 µg/kg, respectively. The method was successfully applied to analyze 136 cereals and cereal-based foods, including 28 cereal-based infant food products. The analyzed samples were frequently contaminated with Alternaria toxins, proving their ubiquitous occurrence. Interestingly, in many of those samples, some modified Alternaria toxins occurred, mainly alternariol-3-sulfate (AOH-3-S) and alternariol monomethyl ether-3-sulfate (AME-3-S), thus highlighting the importance of including modified mycotoxins in the routine analysis as they may significantly add to the total exposure of their parent toxins. Over 95% of the analyzed samples were contaminated with at least one toxin. Despite the general contamination, no maximum or indicative levels were exceeded.
Collapse
Affiliation(s)
- Fabian Dick
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-Von-Imhof Forum 2, 85354, Freising, Germany
| | - Alena Dietz
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-Von-Imhof Forum 2, 85354, Freising, Germany
| | - Stefan Asam
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-Von-Imhof Forum 2, 85354, Freising, Germany.
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-Von-Imhof Forum 2, 85354, Freising, Germany
| |
Collapse
|
5
|
Novotna T, Sitarova B, Hoskova Z, Vaibarova V, Dzuman Z, Hajslova J, Skupien V, Svobodova Z. Tremorgenic mycotoxin poisoning in a dog: A case report. VET MED-CZECH 2023; 68:483-489. [PMID: 38303997 PMCID: PMC10828776 DOI: 10.17221/82/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/13/2023] [Indexed: 02/03/2024] Open
Abstract
An eleven-year-old Pit Bull Terrier was presented to the veterinary practice with an acute onset of whole-body seizures. The clinical signs developed in a garden where the dog was kept that morning. There was a suspicion of tremorgenic mycotoxin poisoning by compost as the dog had vomited parts of compost right before the onset of the seizures and there was a pile of compost located in the garden. The dog underwent immediate decontamination following supportive treatment and recovered fully within 24 h of intensive care. The samples of the vomit and parts of the compost were cultivated. In the sample of the vomit, Penicillium sp. was found. Subsequently, tremorgenic mycotoxins paxilline, penitrem A and roquefortine C were determined chromatographically at significant concentrations in the vomit and a growth medium with cultivated Penicillium sp. The aim of this work is to describe the complex therapeutic and diagnostic approach to the patient with a suspected tremorgenic mycotoxin poisoning where a combination of mycological and chromatographic analyses was used to confirm the diagnosis. To the best of our knowledge, this is the first confirmed case of canine tremorgenic mycotoxicosis in the Czech Republic and the first reported case of paxilline poisoning in a dog.
Collapse
Affiliation(s)
- Tereza Novotna
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
- DRAVET, Veterinary Clinic, Drásov, Czech Republic
| | | | - Zlata Hoskova
- Veterinary Clinic with Emergency Service MVDr. Lubomír Hošek, Brno, Czech Republic
| | - Vera Vaibarova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Zbynek Dzuman
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Czech Republic
| | - Vojtech Skupien
- Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| |
Collapse
|
6
|
Stranska M, Prusova N, Behner A, Dzuman Z, Lazarek M, Tobolkova A, Chrpova J, Hajslova J. Influence of pulsed electric field treatment on the fate of Fusarium and Alternaria mycotoxins present in malting barley. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Zhao X, Liu D, Yang X, Zhang L, Yang M. Detection of seven Alternaria toxins in edible and medicinal herbs using ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem X 2022; 13:100186. [PMID: 35499006 PMCID: PMC9039941 DOI: 10.1016/j.fochx.2021.100186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022] Open
Abstract
A modified QuEChERS-UPLC-MS/MS method was established to investigate alternaria mycotoxins. The method was applied to 260 edible and medicinal herb samples. 28.46% of samples were contaminated by at least one toxin. AME with a high occurrence in analyzed herbs.
Alternaria mycotoxins are ubiquitous mycotoxins that contaminate food and animal feed. Here, an UPLC-MS/MS was developed and used for the detection of seven Alternaria mycotoxins in 19 different edible and medicinal herbs. Extensive optimization resulted in a simple and convenient sample preparation procedure with satisfactory extraction and a lower matrix effect. LOQs ranged from 0.01 to 2.0 ng/mL. Recoveries varied between 71.44% and 112.65%, with RSD less than 12%. The method was successfully applied for use in the mycotoxin analysis of 260 samples. A high percentage (28.46%) of samples were contaminated by 1–5 mycotoxins. Alternariol mono methylether was the predominant mycotoxin with high percentage of positive samples (37.5%), followed by alternariol (22.5%), alternariol (17.5%), tentoxin (10.83%), altertoxin Ⅰ (7.5%), and altenusin (4.17%). Collectively, the natural incidence data obtained from this study will help with better, validated risk assessments and efforts towards more comprehensive, future regulation.
Collapse
Key Words
- AA, acetic acid
- ACN, acetonitrile
- Alternaria
- Alternaria toxins:alternariol, AOH, alternariol mono methylether, AME, altenuene, ALT, altenusin, ALS, altertoxin Ⅰ, ATX-Ⅰ, tenuazonic acid, TeA, tentoxin, TEN
- C18, octadecyl
- CEs, collision energies
- EFSA, European Food Safety Authority
- ESI, electrospray ionization
- FA, formic acid
- GCB, graphitized carbon black
- Herbs
- LOD, limit of detection
- LOQ, limit of quantification
- MCX, Mixed-mode cationic exchange
- ME, Matrix effect
- MRM, multiple reaction monitoring (MRM)
- MeOH, methanol
- Mycotoxin
- Occurrence
- PSA, primary secondary amines
- QuEChERS
- QuEChERS, quick, easy, cheap, effective, rugged, safe
- SPE, solid phase extraction
- TCMs, traditional Chinese medicines
- UPLC-MS/MS
- UPLC-MS/MS, ultra-high performance liquid chromatography-triple quadrupole mass spectrometry
- relative standard deviation, RSD
Collapse
Affiliation(s)
- Xiangsheng Zhao
- Key Laboratory of Resources Conservation and Development of Southern Medicine of Hainan Province & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
| | - Dan Liu
- Key Laboratory of Resources Conservation and Development of Southern Medicine of Hainan Province & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
| | - Xinquan Yang
- Key Laboratory of Resources Conservation and Development of Southern Medicine of Hainan Province & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
| | - Lei Zhang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Meihua Yang
- Key Laboratory of Resources Conservation and Development of Southern Medicine of Hainan Province & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
8
|
Study on Contamination with Some Mycotoxins in Maize and Maize-Derived Foods. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Crops can be contaminated by fungi which produce mycotoxins. Many fungal strains are responsible for producing varied mycotoxins. The research carried out so far has described over 400 different mycotoxins. They have chemical and physical properties that significantly differ, and they are produced by several different existing fungi. The intake of mycotoxins through food can be achieved directly, by feeding on contaminated food, or indirectly from foods of animal origin. The mycotoxin contamination of food and food products for certain animals is a phenomenon studied worldwide, in countries in Europe but also in Asia, Africa and America. The purpose of this study is to develop an evaluation of the mycotoxins prevalent in corn and corn-derived products produced in Romania. A total of 38 maize samples and 19 corn-derivative samples were investigated for the presence of mycotoxins specific to these products, such as deoxynivalenol, zearalenone and fumonisins. Fumonisins had the highest presence and zearalenone had the lowest. The limits determined for the three mycotoxins were always in accordance with legal regulations.
Collapse
|
9
|
Tsagkaris A, Hrbek V, Dzuman Z, Hajslova J. Critical comparison of direct analysis in real time orbitrap mass spectrometry (DART-Orbitrap MS) towards liquid chromatography mass spectrometry (LC-MS) for mycotoxin detection in cereal matrices. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Prusova N, Dzuman Z, Jelinek L, Karabin M, Hajslova J, Rychlik M, Stranska M. Free and conjugated Alternaria and Fusarium mycotoxins during Pilsner malt production and double-mash brewing. Food Chem 2022; 369:130926. [PMID: 34474284 DOI: 10.1016/j.foodchem.2021.130926] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 11/04/2022]
Abstract
Malting and brewing have previously been demonstrated to be risky procedures in terms of mycotoxins contamination. The goal of the study was to describe the fate of less investigated Fusarium and Alternaria mycotoxins, together with their conjugates, during these processes. The Pilsner malt producing process, together with double-mash brewing, were performed in a pilot-scale malting and brewery plants to simulate production of lager - the most popular type of central European beer. In addition, changes in temperature during barley germination were investigated to assess the influence of this critical step. QuEChERS-like extraction followed by UHPLC-HRMS/MS were utilized to quantify the mass balance of 13 mycotoxins and four of their conjugates. The results confirmed germination as the most determining malting step, followed by mashing of malt during brewing. Occurrence of type A trichothecenes, Alternaria mycotoxins and their conjugates in the final beer product indicates the need to take mitigation measures.
Collapse
Affiliation(s)
- Nela Prusova
- University of Chemistry and Technology, Department of Food Analysis and Nutrition, Prague, Czech Republic
| | - Zbynek Dzuman
- University of Chemistry and Technology, Department of Food Analysis and Nutrition, Prague, Czech Republic
| | - Lukas Jelinek
- University of Chemistry and Technology, Department of Biotechnology, Prague, Czech Republic
| | - Marcel Karabin
- University of Chemistry and Technology, Department of Biotechnology, Prague, Czech Republic
| | - Jana Hajslova
- University of Chemistry and Technology, Department of Food Analysis and Nutrition, Prague, Czech Republic
| | - Michael Rychlik
- Technical University of Munich, Analytical Food Chemistry, Freising, Germany
| | - Milena Stranska
- University of Chemistry and Technology, Department of Food Analysis and Nutrition, Prague, Czech Republic.
| |
Collapse
|
11
|
Goldman S, Bramante J, Vrdoljak G, Guo W, Wang Y, Marjanovic O, Orlowicz S, Di Lorenzo R, Noestheden M. The analytical landscape of cannabis compliance testing. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2021.1996390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Julia Bramante
- Cannabis Sciences Program, Colorado Department of Public Health and Environment, Denver, CO, USA
| | - Gordon Vrdoljak
- Department of Cannabis Control, Cannabis Testing Laboratory Branch, Richmond, CA, USA
| | - Weihong Guo
- Department of Cannabis Control, Cannabis Testing Laboratory Branch, Richmond, CA, USA
| | - Yun Wang
- Department of Cannabis Control, Cannabis Testing Laboratory Branch, Richmond, CA, USA
| | - Olivera Marjanovic
- Department of Cannabis Control, Cannabis Testing Laboratory Branch, Richmond, CA, USA
| | | | | | - Matthew Noestheden
- SCIEX, Concord, Canada
- Department of Chemistry, University of British Columbia Okanagan, Kelowna, Canada
| |
Collapse
|
12
|
Tsagkaris AS, Prusova N, Dzuman Z, Pulkrabova J, Hajslova J. Regulated and Non-Regulated Mycotoxin Detection in Cereal Matrices Using an Ultra-High-Performance Liquid Chromatography High-Resolution Mass Spectrometry (UHPLC-HRMS) Method. Toxins (Basel) 2021; 13:783. [PMID: 34822567 PMCID: PMC8625905 DOI: 10.3390/toxins13110783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
Cereals represent a widely consumed food commodity that might be contaminated by mycotoxins, resulting not only in potential consumer health risks upon dietary exposure but also significant financial losses due to contaminated batch disposal. Thus, continuous improvement of the performance characteristics of methods to enable an effective monitoring of such contaminants in food supply is highly needed. In this study, an ultra-high-performance liquid chromatography coupled to a hybrid quadrupole orbitrap mass analyzer (UHPLC-q-Orbitrap MS) method was optimized and validated in wheat, maize and rye flour matrices. Nineteen analytes were monitored, including both regulated mycotoxins, e.g., ochratoxin A (OTA) or deoxynivalenol (DON), and non-regulated mycotoxins, such as ergot alkaloids (EAs), which are analytes that are expected to be regulated soon in the EU. Low limits of quantification (LOQ) at the part per trillion level were achieved as well as wide linear ranges (four orders of magnitude) and recovery rates within the 68-104% range. Overall, the developed method attained fit-for-purpose results and it highlights the applicability of high-resolution mass spectrometry (HRMS) detection in mycotoxin food analysis.
Collapse
Affiliation(s)
- Aristeidis S. Tsagkaris
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (N.P.); (J.P.); (J.H.)
| | | | - Zbynek Dzuman
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (N.P.); (J.P.); (J.H.)
| | | | | |
Collapse
|
13
|
Poapolathep S, Klangkaew N, Zhang Z, Giorgi M, Logrieco AF, Poapolathep A. Simultaneous Determination of Ergot Alkaloids in Swine and Dairy Feeds Using Ultra High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Toxins (Basel) 2021; 13:724. [PMID: 34679017 PMCID: PMC8540808 DOI: 10.3390/toxins13100724] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/09/2021] [Indexed: 11/29/2022] Open
Abstract
Ergot alkaloids (EAs) are mycotoxins mainly produced by the fungus Claviceps purpurea. EAs are known to affect the nervous system and to be vasoconstrictors in humans and animals. This work presents recent advances in swine and dairy feeds regarding 11 major EAs, namely ergometrine, ergosine, ergotamine, ergocornine, ergocryptine, ergocristine, ergosinine, ergotaminine, ergocorninine, ergocryptinine, and ergocristinine. A reliable, sensitive, and accurate multiple mycotoxin method, based on extraction with a Mycosep 150 multifunctional column prior to analysis using UHPLC-MS/MS, was validated using samples of swine feed (100) and dairy feed (100) for the 11 targeted EAs. Based on the obtained validation results, this method showed good performance recovery and inter-day and intra-day precision that are in accordance with standard criteria to ensure reliable occurrence data on EA contaminants. More than 49% of the swine feed samples were contaminated with EAs, especially ergocryptine(-ine) (40%) and ergosine (-ine) and ergotamine (-ine) (37%). However, many of the 11 EAs were not detectable in any swine feed samples. In addition, there were contaminated (positive) dairy feed samples, especially for ergocryptine (-ine) (50%), ergosine (-ine) (48%), ergotamine (-ine), and ergocristine (-ine) (49%). The mycotoxin levels in the feed samples in this study almost complied with the European Union regulations.
Collapse
Affiliation(s)
- Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (S.P.); (N.K.)
| | - Narumol Klangkaew
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (S.P.); (N.K.)
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| | - Mario Giorgi
- Department of Veterinary Science, University of Pisa, 56122 Pisa, Italy;
| | | | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (S.P.); (N.K.)
- Center of Excellence on Agricultural Biotechnology (AG-BIO/MHESI), Bangkok 10900, Thailand
| |
Collapse
|
14
|
Chen A, Mao X, Sun Q, Wei Z, Li J, You Y, Zhao J, Jiang G, Wu Y, Wang L, Li Y. Alternaria Mycotoxins: An Overview of Toxicity, Metabolism, and Analysis in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7817-7830. [PMID: 34250809 DOI: 10.1021/acs.jafc.1c03007] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The genus Alternaria is widely distributed in the environment. Numerous species of the genus Alternaria can produce a variety of toxic secondary metabolites, called Alternaria mycotoxins. In this review, natural occurrence, toxicity, metabolism, and analytical methods are introduced. The contamination of these toxins in foodstuffs is ubiquitous, and most of these metabolites present genotoxic and cytotoxic effects. Moreover, Alternaria toxins are mainly hydroxylated to catechol metabolites and combined with sulfate and glucuronic acid in in vitro arrays. A more detailed summary of the metabolism of Alternaria toxins is presented in this work. To effectively detect and determine the mycotoxins in food, analytical methods with high sensitivity and good accuracy are also reviewed. This review will guide the formulation of maximum residue limit standards in the future, covering both toxicity and metabolic mechanism of Alternaria toxins.
Collapse
Affiliation(s)
- Anqi Chen
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Xin Mao
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Qinghui Sun
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Zixuan Wei
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Juan Li
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Yanli You
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Jiqiang Zhao
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100017, People's Republic of China
| | - Liping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| |
Collapse
|
15
|
Wang R, Dong S, Wang P, Li T, Huang Y, Zhao L, Su X. Development and validation of an ultra performance liquid chromatography-tandem mass spectrometry method for twelve bisphenol compounds in animal feed. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1178:122613. [PMID: 34153545 DOI: 10.1016/j.jchromb.2021.122613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/11/2021] [Accepted: 02/20/2021] [Indexed: 10/21/2022]
Abstract
Bisphenol compounds (BPs) are a group of environmental contaminants with endocrine-disrupting effects both for humans and animals. The present work developed a sensitive analytical method for the detection of multiple BPs in the animal feed based on ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with post-column ammonium hydroxide (NH4OH) infusion. A modified QuEChERS method was incorporated into the extraction and purification processes. The limit of detection (LODs) and quantification (LOQs) for the target BPs were in the ranges of 0.02-0.75 μg kg-1 and 0.04-0.95 μg kg-1, respectively. Average recoveries were ranged between 82.6% and 112%. The proposed method was successfully applied to determine the concentrations of BPs in 20 actual feed samples, and the preliminary profiles of BPs in products from local feed factories were obtained. Each sample was simultaneously contaminated with at least 2 to 4 BPs, and bisphenol A (BPA) was the dominant analog of BPs found in animal feed.
Collapse
Affiliation(s)
- Ruiguo Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Tong Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Yuan Huang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Lijuan Zhao
- Beijing University of Agriculture, Beijing 102206, China
| | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| |
Collapse
|
16
|
Jorquera-Pereira D, Pavón-Pérez J, Ríos-Gajardo G. Identification of type B trichothecenes and zearalenone in Chilean cereals by planar chromatography coupled to mass spectroscopy. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1778-1787. [PMID: 34254899 DOI: 10.1080/19440049.2021.1948618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
High-performance thin-layer chromatography (HPTLC) and HPTLC coupled with mass spectrometry (MS) methods were described for the simultaneous determination of zearalenone (ZEA); type B trichothecenes (TCT-B); nivalenol (NIV) and deoxynivalenol (DON) along with its acetylated derivatives: 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON). The extract samples were cleaned-up with Bond Elut Mycotoxin® solid-phase extraction cartridges. Then, separation was performed on HPTLC silica gel 60 F254 plates using toluene, ethyl acetate and formic acid (1:8:1 v/v/v) as mobile phase. Derivatisation was then performed with 10% aluminium trichloride in 50% methanol. Mycotoxin standards and spiked cereals grains were identified by UV spots at 366 nm, with retention factors (RF) of 0.20 (NIV), 0.39 (DON), 0.45 (15-ADON), 0.50 (3-ADON) and 0.60 (ZEA). Some parameters of validation were determined. Calibration data (n = 5) fitted a linear regression model with determination coefficients, R2 > 0.99. The recovery was determined in triplicate at two levels, ranging from 84.3 ± 2.2% to 114.2 ± 11.7%. Detection limits ranged from 80 to 120 μg kg-1 and quantification limits ranged from 120.0 to 200 μg kg-1. The analysis by HPTLC/electrospray (ESI)-MS in negative mode confirmed the presence of TCT-B and ZEA standards in Chilean cereals with mass signals at m/z 355, 371, 337, and 317 for DON, NIV, 3-ADON and 15-ADON, and ZEA, respectively.
Collapse
Affiliation(s)
- Diego Jorquera-Pereira
- Department of Food Science and Technology, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile.,Interdisciplinary Group of Marine Biotechnology (GIBMAR), Center for Biotechnology, University of Concepcion, Concepcion, Chile.,Interdisciplinary Research Laboratory in Mycotoxins, Department of Food Science and Technology, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Jessy Pavón-Pérez
- Interdisciplinary Group of Marine Biotechnology (GIBMAR), Center for Biotechnology, University of Concepcion, Concepcion, Chile
| | - Gisela Ríos-Gajardo
- Department of Food Science and Technology, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile.,Interdisciplinary Group of Marine Biotechnology (GIBMAR), Center for Biotechnology, University of Concepcion, Concepcion, Chile.,Interdisciplinary Research Laboratory in Mycotoxins, Department of Food Science and Technology, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| |
Collapse
|
17
|
Du G, Zhang G, Shi J, Zhang J, Ma Z, Liu X, Yuan C, Li X, Zhang B. Keystone Taxa Lactiplantibacillus and Lacticaseibacillus Directly Improve the Ensiling Performance and Microflora Profile in Co-Ensiling Cabbage Byproduct and Rice Straw. Microorganisms 2021; 9:1099. [PMID: 34065243 PMCID: PMC8161039 DOI: 10.3390/microorganisms9051099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 02/02/2023] Open
Abstract
Ensiling has been widely applied to cope with agricultural solid waste to achieve organic waste valorization and relieve environmental pressure and feedstuff shortage. In this study, co-ensiling of cabbage leaf byproduct and rice straw was performed with inoculation of Lactiplantibacillusplantarum (LP) to investigate the effects of inoculation on ensiling performance and microflora profiles. Compared to the control, LP inoculation preserved more dry matter (DM) content (283.4 versus 270.9 g·kg-1 fresh matter (FM) on day 30), increased lactic acid (LA) content (52.1 versus 35.8 g·kg-1 dry matter on day 15), decreased pH (3.55 versus 3.79 on day 15), and caused accumulation of acetic acid (AA), butyric acid (BA), and ammonia. The investigation showed that LP inoculation modified microflora composition, especially resisting potential pathogens and enriching more lactic acid bacteria (LAB) (p < 0.05). Moreover, Lactiplantibacillus and Lacticaseibacillus were identified as the keystone taxa that influenced physicochemical properties and interactions in microflora. They were also the main functional species that directly restrained undesirable microorganisms (p < 0.05), rather than indirectly working via metabolite inhibition and substrate competition (p > 0.05). The results of this present study improve the understanding of the underlying effect of LP inoculation on improving silage quality and facilitate the bio-transformation of cabbage byproduct and rice straw as animal feed.
Collapse
Affiliation(s)
- Guilin Du
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Guilong Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Jingxian Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Ma
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangcen Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyang Yuan
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Xiang Li
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoguo Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Development of a new generic extraction method for the analysis of pesticides, mycotoxins, and polycyclic aromatic hydrocarbons in representative animal feed and food samples. Food Chem 2021; 356:129653. [PMID: 33812188 DOI: 10.1016/j.foodchem.2021.129653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/11/2021] [Accepted: 03/16/2021] [Indexed: 11/23/2022]
Abstract
Various generic extraction methods have been used to determine pesticide residues, mycotoxins, and polycyclic aromatic hydrocarbons (PAHs) in food and animal feed to ensure consumer safety. However, these methods cannot extract all relevant compounds at an acceptable rate of recovery. This study presents a new extraction method. This new method facilitated the identification of 231 compounds, including 196 pesticides, 11 mycotoxins, and 24 PAHs over a broad range of polarities. These compounds were identified in various sample matrices, including those that are lipid-rich. The processed sample is first extracted with water, acetonitrile, formic acid, and heptane. The addition of ammonium formate results in separation into three phases and enables analysis of the aqueous phase. Solid-phase extraction clean-up procedures were performed as necessary followed by analysis by liquid or gas chromatography and mass spectrometry. Analyte recoveries were typically in the range of 70 - 120% with relative standard deviations below 20%.
Collapse
|
19
|
Du G, Shi J, Zhang J, Ma Z, Liu X, Yuan C, Zhang B, Zhang Z, Harrison MD. Exogenous Probiotics Improve Fermentation Quality, Microflora Phenotypes, and Trophic Modes of Fermented Vegetable Waste for Animal Feed. Microorganisms 2021; 9:microorganisms9030644. [PMID: 33808890 PMCID: PMC8003719 DOI: 10.3390/microorganisms9030644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/02/2023] Open
Abstract
The fermentation of leaf vegetable waste to produce animal feed reduces the environmental impact of vegetable production and transforms leaf vegetable waste into a commodity. We investigated the effect of exogenous probiotics and lignocellulose enzymes on the quality and microbial community of fermented feed (FF) produced from cabbage waste. The addition of exogenous probiotics resulted in increased crude protein (CP) content (p < 0.05), better odor (moderate organic acid and ethanol, with low ammonia-N, p < 0.05), and a lower relative abundance (RA) of pathogens (below 0.4%, p < 0.05) in FF, compared to without. With the addition of exogenous probiotics, only Pediococcus and Saccharomyces were enriched and symbiotic in FF; these were the keystone taxa to reduce the abundance of aerobic, form-biofilms, and pathogenic microorganisms, resulting in an efficient anaerobic fermentation system characterized by facultative anaerobic and Gram-positive bacterial communities, and undefined saprotroph fungal communities. Thus, inoculation of vegetable waste fermentation with exogenous probiotics is a promising strategy to enhance the biotransformation of vegetable waste into animal feed.
Collapse
Affiliation(s)
- Guilin Du
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jingxian Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Ma
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangcen Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyang Yuan
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Baoguo Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (G.D.); (J.S.); (J.Z.); (Z.M.); (X.L.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-(21)-2032-5161; Fax: +86-(21)-2032-5173
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia; (Z.Z.); (M.D.H.)
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Mark D. Harrison
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia; (Z.Z.); (M.D.H.)
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
20
|
Konak Ü, Yatmaz H, Nilüfer Ş, Erkaymaz T, Certel M. Multiresidue method for the simultaneous analysis of antibiotics and mycotoxins in feeds by ultra-high performance liquid chromatography coupled to tandem mass spectrometry. ACTA ALIMENTARIA 2021. [DOI: 10.1556/066.2020.00159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AbstractResidues in animal feeds and foods of animal origin have been important safety issue concerning both human and animal health. A multiresidue method for determination of eight mycotoxins and ten antibiotics was developed and validated in animal feeds by using QuEChERS (quick, easy, cheap, effective, rugged, and safe) extraction followed by UHPLC-MS/MS. Optimisation of UHPLC-MS/MS parameters was performed to achieve good separation and resolution. The method was validated according to the European Commission Decision 2002/657/EC. Matrix matched calibration curves showed good r2 (≥0.995) values, and limit of quantification (LOQ) values varied between 1.2 and 5.2 μg kg−1. Average recoveries ranged from 60 to 102% with relative standard deviations of 2.2 and 15.6% for all type of feed samples except for tetracyclines, lincomycin, tylosin, ochratoxin A, and fumonisin (B1 and B2).
Collapse
Affiliation(s)
- Ü.İ. Konak
- 1Department of Food Engineering, Faculty of Engineering and Architecture, Avrasya University, 61250, Trabzon, Turkey
| | - H.A. Yatmaz
- 2Food Safety and Agricultural Research Center, Akdeniz University, 07059, Antalya, Turkey
| | - Ş. Nilüfer
- 2Food Safety and Agricultural Research Center, Akdeniz University, 07059, Antalya, Turkey
| | - T. Erkaymaz
- 3Rose and Rose Products Research and Application Center, Süleyman Demirel University, 32260, Isparta, Turkey
| | - M. Certel
- 4Department of Food Engineering, Faculty of Engineering, Akdeniz University, 07059, Antalya, Turkey
| |
Collapse
|
21
|
Tittlemier S, Brunkhorst J, Cramer B, DeRosa M, Lattanzio V, Malone R, Maragos C, Stranska M, Sumarah M. Developments in mycotoxin analysis: an update for 2019-2020. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2664] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarises developments on the analysis of various matrices for mycotoxins published in the period from mid-2019 to mid-2020. Notable developments in all aspects of mycotoxin analysis, from sampling and quality assurance/quality control of analytical results, to the various detection and quantitation technologies ranging from single mycotoxin biosensors to comprehensive instrumental methods are presented and discussed. Aside from sampling and quality control, discussion of this past year’s developments is organised by detection and quantitation technology and covers chromatography with targeted or non-targeted high resolution mass spectrometry, tandem mass spectrometry, detection other than mass spectrometry, biosensors, as well as assays that use alternatives to antibodies. This critical review aims to briefly present the most important recent developments and trends in mycotoxin determination as well as to address limitations of the presented methodologies.
Collapse
Affiliation(s)
- S.A. Tittlemier
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main St, Winnipeg, MB, R3C 3G8, Canada
| | - J. Brunkhorst
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - B. Cramer
- University of Münster, Institute of Food Chemistry, Corrensstr. 45, 48149 Münster, Germany
| | - M.C. DeRosa
- Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - V.M.T. Lattanzio
- National Research Council of Italy, Institute of Sciences of Food Production, via Amendola 122/O, 70126 Bari, Italy
| | - R. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- United States Department of Agriculture, ARS National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - M. Stranska
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| | - M.W. Sumarah
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| |
Collapse
|
22
|
González-Jartín JM, Alfonso A, Sainz MJ, Vieytes MR, Botana LM. Multi-detection method for mycotoxins with a modified QuEChERS extraction in feed and development of a simple detoxification procedure. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Varga E, Ladányi M, Fodor P, Soros C. Comparison of QuEChERS and "dilute and shoot" extraction methods for multi-mycotoxin analysis of samples from button mushroom ( Agaricus bisporus) cultivation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 56:99-108. [PMID: 33571042 DOI: 10.1080/03601234.2020.1852046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Several components of mushroom compost (wheat straw, chicken manure) can be contaminated with mycotoxins posing food health risks to mushroom consumers. To assess the relevance of such contaminations high-throughput analytical methods are needed. In this study, two sample preparation approaches, dilute & shoot (D&S) and modified citrate buffered Quick, Easy, Cheap, Effective, Rugged, Safe (QuEChERS) were compared in terms of extraction efficiency and matrix effect in case of 13 mycotoxins in complex matrices-wheat straw, the growing media and button mushrooms (Agaricus bisporus)-of mushroom cultivation using high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). D&S method resulted in recoveries of LB medium, button mushroom and compost for ≥60% in case of all investigated mycotoxins except for DON-3G. However, using modified citrate buffered QuEChERS with 2% acidification of the extraction solvent showed the complete loss of strongly polar DON-3G and fumonisin B1 (FB1). The investigated matrices had suppressive effect on ionization in all target mycotoxins except for FB1. Regarding the use of isotopologues to compensate matrix effect, even U-[13C15]-DON and U-[13C24]-T-2 can also be used to quantify their related metabolites in the studied matrices, using internal standard method.
Collapse
Affiliation(s)
- Emese Varga
- Faculty of Food Science, Department of Applied Chemistry, Szent István University, Budapest, Hungary
| | - Márta Ladányi
- Faculty of Horticultural Science, Department of Biometrics and Agricultural Informatics, Szent István University, Budapest, Hungary
| | - Péter Fodor
- Faculty of Food Science, Department of Applied Chemistry, Szent István University, Budapest, Hungary
| | - Csilla Soros
- Faculty of Food Science, Department of Applied Chemistry, Szent István University, Budapest, Hungary
| |
Collapse
|
24
|
Lu Q, Qin JA, Fu YW, Luo JY, Lu JH, Logrieco AF, Yang MH. Modified mycotoxins in foodstuffs, animal feed, and herbal medicine: A systematic review on global occurrence, transformation mechanism and analysis methods. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Wu Y, Ye J, Xuan Z, Li L, Wang H, Wang S, Liu H, Wang S. Development and validation of a rapid and efficient method for simultaneous determination of mycotoxins in coix seed using one-step extraction and UHPLC-HRMS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 38:148-159. [PMID: 33166220 DOI: 10.1080/19440049.2020.1833089] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Coix seed is an important food and traditional Chinese medicine in China and other Asian countries. Notably, coix seed is currently being used as a traditional medicine for the treatment of COVID-19 in China. However, coix seeds are generally contaminated by mycotoxins, and this risk cannot be ignored. In this paper, we developed a method that involves direct extraction and UHPLC-HRMS analysis for the simultaneous detection of 24 mycotoxins in coix seeds. UHPLC-HRMS instrument and data acquisition parameters, and the sample pretreatment were optimised. One-step extraction showed several advantages compared to the three commercial solid-phase extraction clean-up methods, including ease of use, reduced time of sample preparation, low cost, good recovery, and acceptable matrix effect. The method validation results indicate that all mycotoxins have good linearity and sensitivity. Recoveries were between 74.2-101.1%, and RSD ranged from 0.1-5.8%. The LOQs for 24 mycotoxins were in the range of 0.5-100 µg/kg. To survey the contamination levels of these mycotoxins in commercial coix seeds, more than 70 samples were collected from Chinese markets and were analysed using the newly developed method. Zearalenone (positive ratio: 98.7%, range:1.1-1562 µg/kg), deoxynivalenol (positive ratio: 87%, range: 8.4-382.5 µg/kg), nivalenol (positive ratio: 85.7%, range: 26.8-828.2 µg/kg), fumonisin B1 (positive ratio: 84.4%, range:2.5-314.5 µg/kg), fumonisin B2 (positive ratio: 75.3%, range:1.6-72.8 µg/kg), fumonisin B3 (positive ratio: 48%, range:1.0-203.6 µg/kg), aflatoxin B1 (positive ratio: 29.9%, range: 0.39-14.7 µg/kg), sterigmatocystin (positive ratio: 29.9%, range: 1.4-51.6 µg/kg), and tenuazonic acid (positive ratio: 19.5%, range 36.1-105.7 µg/kg) were the most frequent mycotoxin contaminants. These results highlight the importance of routine monitoring and control of mycotoxins in coix seeds.
Collapse
Affiliation(s)
- Yu Wu
- Academy of National Food and Strategic Reserves Administration, Institute of Grain and Oil Quality and Safety , Beijing, China
| | - Jin Ye
- Academy of National Food and Strategic Reserves Administration, Institute of Grain and Oil Quality and Safety , Beijing, China
| | - Zhihong Xuan
- Academy of National Food and Strategic Reserves Administration, Institute of Grain and Oil Quality and Safety , Beijing, China
| | - Li Li
- Academy of National Food and Strategic Reserves Administration, Institute of Grain and Oil Quality and Safety , Beijing, China
| | - Haibo Wang
- Guangxi-ASEAN Food Inspection and Testing Center , Nanning, China
| | - Songshan Wang
- Academy of National Food and Strategic Reserves Administration, Institute of Grain and Oil Quality and Safety , Beijing, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, Institute of Grain and Oil Quality and Safety , Beijing, China
| | - Songxue Wang
- Academy of National Food and Strategic Reserves Administration, Institute of Grain and Oil Quality and Safety , Beijing, China
| |
Collapse
|
26
|
Development of a new LC-MS method for accurate and sensitive determination of 33 pyrrolizidine and 21 tropane alkaloids in plant-based food matrices. Anal Bioanal Chem 2020; 412:7155-7167. [PMID: 32803302 DOI: 10.1007/s00216-020-02848-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022]
Abstract
Setting of maximum limits for a number of plant alkaloids is under discussion in the EU. The novel method developed and optimized in this study enables simultaneous determination of 21 tropane alkaloids (TAs) and 33 pyrrolizidine (PAs) together with their N-oxides (PANOs). For analysis of aqueous-methanolic extract, reversed phase ultra-high-performance liquid chromatography and tandem mass spectrometry (RP-U-HPLC-MS/MS) was employed. The method was validated for frequently contaminated matrices (i) sorghum, (ii) oregano, and (iii) mixed herbal tea. The recoveries at two spiking levels were in the range of 82-115%, 80-106%, and 78-117%, respectively, and repeatabilities were less than 19% for all analyte/matrix combinations. As regards the achieved limits of quantification (LOQ), their values were in the range of 0.5-10 μg kg-1. The crucial problem encountered during method development, co-elution of multiple groups of isomeric alkaloids, was overcome by subsequent sample separation in the second chromatographic system, hydrophilic interaction liquid chromatography (HILIC), providing different separation selectivity. Lycopsamine, echinatine, and indicine (co-elution group 1) and N-oxides of indicine and intermedine (co-elution group 2), which could not be resolved on the commonly used RP column, were possible to separate fully by using the HILIC system.
Collapse
|
27
|
Li M, Tong Z, Gao X, Zhang L, Li S. Simultaneous detection of zearalenone, citrinin, and ochratoxin A in pepper by capillary zone electrophoresis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1388-1398. [PMID: 32546103 DOI: 10.1080/19440049.2020.1769197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the present study, a simple and fast method for simultaneous detection of zearalenone, citrinin, and ochratoxin A utilising capillary zone electrophoresis with an ultraviolet detector was developed. The optimised approach was validated and applied using pepper samples. The proposed method yielded satisfactory linearity between the signal and the mycotoxin concentration in the range of 1.5-150 μg/kg for zearalenone, 4.5-150 μg/kg for citrinin, and 0.8-150 μg/kg for ochratoxin A. The limits of detection for these mycotoxins ranged from 0.3 to 1.5 μg/kg. The corresponding intra- and inter-day precisions were less than 3.5 % and 4.1 %, respectively. Moreover, the matrix effect was also assessed and the result was compared using the capillary zone electrophoresis and high-performance liquid chromatography methods. The developed approach could be used for simultaneous detection of zearalenone, citrinin, and ochratoxin A in pepper.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University , Hangzhou, Zhejiang Province, P. R. China
| | - Zaikang Tong
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University , Hangzhou, Zhejiang Province, P. R. China
| | - Xingjun Gao
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University , Hangzhou, Zhejiang Province, P. R. China
| | - Lijun Zhang
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University , Hangzhou, Zhejiang Province, P. R. China
| | - Sha Li
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University , Hangzhou, Zhejiang Province, P. R. China
| |
Collapse
|
28
|
Simultaneous Determination of Deoxynivalenol, Its Modified Forms, Nivalenol and Fusarenone-X in Feedstuffs by the Liquid Hromatography-Tandem Mass Spectrometry Method. Toxins (Basel) 2020; 12:toxins12060362. [PMID: 32492900 PMCID: PMC7354445 DOI: 10.3390/toxins12060362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
A liquid chromatography-tandem mass spectrometry method was developed for simultaneous determination of deoxynivalenol (DON), 3-acetyldeoxynivalenol (3Ac-DON), 15-acetyldeoxynivalenol (15Ac-DON), DON-3-glucoside (DON-3Glc) nivalenol and fusarenone-X in feedstuffs. Different techniques of sample preparation were tested: solid-liquid-extraction, QuEChERS, solid phase extraction with OASIS HLB columns or immunoaffinity columns and a Mycosep 225 Trich column. None of the six immunoaffinity columns tested showed cross-reactivity to all of the mycotoxins. Surprisingly, the results show that if the immunoaffinity columns bound 3Ac-DON, then they did not bind 15Ac-DON. The most efficient sample preparation was achieved with a Mycosep 225 Trich column clean-up. The chromatography was optimised to obtain full separation of all analytes (including 3Ac-DON and 15Ac-DON isomeric form). The validation results show the relative standard deviations for repeatability and reproducibility varied from 4% to 24%. The apparent recovery ranged between 92% and 97%, and the limit of quantification described a 1.30 to 50 µg/kg range. The method trueness was satisfactory, as assessed by a proficiency test and analysis of reference material. A total of 99 feed samples were analysed by the developed method, revealing the presence of DON and DON-3Glc in 85% and 86% of examined animal feeds, respectively at concentrations between 1.70 and 1709 µg/kg. The ratios DON-3Glc to DON in the surveyed feedstuffs were from a low of 3% to high of 59%.
Collapse
|
29
|
De Colli L, Elliott C, Finnan J, Grant J, Arendt EK, McCormick SP, Danaher M. Determination of 42 mycotoxins in oats using a mechanically assisted QuEChERS sample preparation and UHPLC-MS/MS detection. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1150:122187. [PMID: 32473516 DOI: 10.1016/j.jchromb.2020.122187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 10/24/2022]
Abstract
A method was developed and validated for the simultaneous determination of 42 mycotoxins in oats. The method includes all the mycotoxins listed under Commission Regulation 1881/2006 and Commission Recommendation 165/2013, the emerging mycotoxins (beauvericin, alternariol, alternariol-methyl-ether and enniatins), and two masked metabolites, namely deoxynivalenol-3-glucoside and T-2-glucoside. The method also focuses on a wide range of analytes of toxicological interest. The sample preparation involved extraction with an aqueous acetic acid solution and acetonitrile, followed by QuEChERS with mechanically assisted vibrational shaking. No further clean-up steps were employed, and analysis was performed using ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). Trueness ranged between 78% and 158%, while precision ranged from 1.7% to 49.9% under within-laboratory reproducibility conditions. Beside the high degree of accuracy and sample throughput provided, the method can be applied to a large number of compounds currently not regulated, thus generating knowledge and for risk assessment purposes.
Collapse
Affiliation(s)
- Lorenzo De Colli
- Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom; Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Christopher Elliott
- Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | - John Finnan
- Teagasc Crops Research Division, Oak Park, Carlow, Ireland
| | - Jim Grant
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, National University of Ireland, University College Cork, College Road, Cork, Co., Cork, Ireland
| | - Susan P McCormick
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Centre for Agricultural Utilization Research, U.S. Department of Agriculture, Peoria, IL 61604, United States
| | - Martin Danaher
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
30
|
Nualkaw K, Poapolathep S, Zhang Z, Zhang Q, Giorgi M, Li P, Logrieco AF, Poapolathep A. Simultaneous Determination of Multiple Mycotoxins in Swine, Poultry and Dairy Feeds Using Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry. Toxins (Basel) 2020; 12:253. [PMID: 32294956 PMCID: PMC7232461 DOI: 10.3390/toxins12040253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/21/2022] Open
Abstract
A reliable, sensitive and accurate multiple mycotoxin method was developed for the simultaneous determination of 17 mycotoxins in swine, poultry and dairy feeds using stable isotope dilution (13C-ISTD) and (ultra)-high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). A simple QuEChERS-based method (quick, easy, cheap, effective, rugged and safe) was developed consisting of soaking with a solution of 1% formic acid followed by extraction with acetonitrile, clean-up with C18 sorbent and finally adding 13C-ISTD before the UHPLC-MS/MS analysis. The chromatographic condition was optimized for separation and detection of the 17 mycotoxins using gradient elution. The method's performance complied with the SANTE/11813/2017 standard and had mean recovery accuracies in the range 70%-120% and precision testing of % relative standard deviation (RSD) £ 20%. The limit of detection and limit of quantification values ranged from 0.25 to 40.0 ng/g and 0.5 to 100.0 ng/g, respectively. Finally, the method was applied to analyze feed samples, with the results showing that fumonisins, zearalenone, aflatoxin B1 and deoxynivalenol were the most prevalent mycotoxins contaminating the feed samples.
Collapse
Affiliation(s)
- Kraiwut Nualkaw
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (K.N.); (S.P.)
| | - Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (K.N.); (S.P.)
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (Z.Z.); (Q.Z.); (P.L.)
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (Z.Z.); (Q.Z.); (P.L.)
| | - Mario Giorgi
- Department of Veterinary Science, University of Pisa, 56124 Pisa, Italy;
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (Z.Z.); (Q.Z.); (P.L.)
| | | | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (K.N.); (S.P.)
| |
Collapse
|
31
|
Facorro R, Llompart M, Dagnac T. Combined (d)SPE-QuEChERS Extraction of Mycotoxins in Mixed Feed Rations and Analysis by High Performance Liquid Chromatography-High-Resolution Mass Spectrometry. Toxins (Basel) 2020; 12:E206. [PMID: 32210164 PMCID: PMC7150789 DOI: 10.3390/toxins12030206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/25/2022] Open
Abstract
The objective of this work was the development of a methodology capable of simultaneously determine 26 mycotoxins in mixed feed rations collected in 20 dairy farms. A sample preparation methodology based on a combination of (d)SPE and QuEChERS extractions was used. Liquid chromatography-high resolution mass spectrometry was employed for both identification and quantification purposes. To this respect, a powerful workflow based on data-independent acquisition, consisting of fragmenting all precursor ions entering the mass spectrometer in narrow m/z isolation windows (SWATH), was implemented. SWATH data file then contains all the information that would be acquired in a multitude of different experimental approaches in a single all-encompassing dataset. Analytical method performance was evaluated in terms of linearity, repeatability and matrix effect. Relative recoveries were also measured, giving values above 80% for most compounds. Matrix-matched calibration was carried out and enabled reaching the low ng mL-1 level for many mycotoxins. The observed matrix effect, in most cases suppressive, reached even values higher than 60%. The repeatability was also adequate, showing a relative standard deviation lower than 10%. All unified samples analyzed showed co-occurrence of two or more mycotoxins, recurrently zearalenone, fumonisin B1, and β-zearalenol, with an occurrence frequency ranging from 60% to 90%.
Collapse
Affiliation(s)
- Rocio Facorro
- Galician Agency for Food Quality—Agronomic and Agrarian Research Centre (AGACAL-CIAM), Unit of Organic Contaminants, Apartado 10, 15080 A Coruña, Spain;
- Laboratory of Research and Development of Analytical Solutions (LIDSA), Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, E-15782 Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Maria Llompart
- Laboratory of Research and Development of Analytical Solutions (LIDSA), Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, E-15782 Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Thierry Dagnac
- Galician Agency for Food Quality—Agronomic and Agrarian Research Centre (AGACAL-CIAM), Unit of Organic Contaminants, Apartado 10, 15080 A Coruña, Spain;
| |
Collapse
|
32
|
Al-Jaal B, Latiff A, Salama S, Barcaru A, Horvatovich P, Jaganjac M. Determination of multiple mycotoxins in Qatari population serum samples by LC-MS/MS. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human exposure to mycotoxins is almost inevitable as mycotoxins are naturally occurring contaminants of large portion of food and feed. Depending on the type of mycotoxins, inter-individual mycotoxin adsorption, bioaccumulation, distribution, metabolism and excretion, can cause serious adverse health effects. Therefore, continuous biomonitoring studies of population exposure to mycotoxins are needed. Here we describe a multi-analyte approach for the detection and quantification of 20 mycotoxins in human serum using ultra-performance liquid chromatography-electrospray/tandem mass spectrometry operated in targeted multiple reaction monitoring mode. The validated method was used to assess occurrence of mycotoxins in serum samples of 46 residents of Qatar. Mycotoxins that were detected with high incidence were HT-2 toxin (13.0%), sterigmatocystin (10.9%) and 3-acetyldeoxynivalenol (6.5%). Also, co-exposure to several mycotoxins was noticed in the analysed samples. Our results show that strict food quality control is needed to remove mycotoxin contaminated food from the market in order to minimise human exposure to mycotoxins.
Collapse
Affiliation(s)
- B.A. Al-Jaal
- Anti-Doping Lab Qatar, Sport city street, P.O. Box 27775, Doha, Qatar
| | - A. Latiff
- Anti-Doping Lab Qatar, Sport city street, P.O. Box 27775, Doha, Qatar
| | - S. Salama
- Anti-Doping Lab Qatar, Sport city street, P.O. Box 27775, Doha, Qatar
| | - A. Barcaru
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, the Netherlands
- Departments of Laboratory Medicine, University Medical Center Groningen, P.O. Box 30001, 9700 RB Groningen, the Netherlands
| | - P. Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, the Netherlands
| | - M. Jaganjac
- Anti-Doping Lab Qatar, Sport city street, P.O. Box 27775, Doha, Qatar
| |
Collapse
|
33
|
Lu Q, Tan S, Gu W, Li F, Hua W, Zhang S, Chen F, Tang L. Phytochemical composition, isolation and hepatoprotective activity of active fraction from Veronica ciliata against acetaminophen-induced acute liver injury via p62-Keap1-Nrf2 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112089. [PMID: 31310828 DOI: 10.1016/j.jep.2019.112089] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Veronica ciliata Fisch, a traditional Tibetan medicine, used to cure hepatitis and existed in lots of Tibetan medicine prescriptions owing to its hepatoprotective activity. AIMS OF THIS STUDY In this study, we are aimed to systematically analysis and isolate the chemical constituents of the ethyl acetate fraction from V. ciliata (EAFVC), and test the hepatoprotective effect and mechanism of EAFVC and its compounds on attenuating the liver injury induced by acetaminophen (APAP) in vivo and vitro. MATERIALS AND METHODS UPLC-PDA-ESI-MS method was established for the analysis of the components in EAFVC, which was further separated using multiple chromatographic techniques. The MS, 1H and 13C NMR were applied to elucidate their structures. UPLC-PDA method was applied for the simultaneous quantification of major compounds of EAFVC. Furthermore, the protective effect of the EAFVC was determined using APAP-induced acute hepatotoxicity in mice and BRL-3A cells model, respectively. In addition, the hepatoprotective activity of two main compounds in EAFVC on relieving APAP-induced liver injury was further evaluated. Finally, we have some concerns about the protective mechanism of EAFVC via enzyme-linked immunosorbent assay (ELISA), reactive oxygen species (ROS) detection, quantitative real-time PCR (qPCR), western blot analysis and molecular docking. RESULTS Thirteen compounds were successfully identified using UPLC-PDA-ESI-MS for the first time. Meanwhile, other twelve compounds were separated from EAFVC. Eventually, twenty-five compounds were successfully identified from the EAFVC. Among these compounds, fourteen compounds (3, 8, 10, 14-17, 19-25) were separated from V.ciliata for the first time. In addition, UPLC-PDA analysis method was first to establish for simultaneous determination of the main compounds (1, 2, 4, 5, 7, 9, 12). Further assay indicated that the liver injury in mice induced by APAP showed a significant reversal by EAFVC, as evidenced by reducing the activities of liver function enzymes, suppressing the lipid peroxidation as well as increasing the serum total antioxidant capacity (T-AOC) and the activities of antioxidant enzymes. Pathological sections showed that the liver in the high dose has significant improvement in mice. In vitro experiment also showed that EAFVC elevate the viability, inhibiting the activities of liver function enzymes as well as the generation of ROS of BRL-3A cells. In addition, Catalposide and verproside could reverse the low cell viability of BRL-3A cells induced by APAP. The mechanism research in vitro demonstrated that EAFVC could promote the mRNA and protein expression of heme oxygenase-1 (HO-1), NAD(P) H dehydrogenase quinone 1 (NQO-1) and catalytic or modify subunit of glutamate-cysteine ligase (GCLC/GCLCM) via enhancing nuclear factor-E2-related factor 2 (Nrf2) and p62/SQSTM1 (p62) expression in protein level. Molecular docking results demonstrated that catalposide and verproside have strong affinity to the kelch-like ECH-associated protein-1(Keap1) Kelch domain. CONCLUSION This research is the first to clarify the substance basis of the hepatoprotective activity of the EAFVC and provide the further scientific data for the traditional use of this Tibetan Medicine. EAFVC is valuable to be further investigated as active preparations for application in liver protection via activating p62- Keap1-Nrf2 pathway.
Collapse
Affiliation(s)
- Qiuxia Lu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Shancai Tan
- College of Pharmacy, Tongren Polytechnic College, Guizhou, 554300, China
| | - Wanqin Gu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Fosheng Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Wan Hua
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Shiyan Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Fang Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-oil Production and Application, Chengdu, 610065, Sichuan, China
| | - Lin Tang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-oil Production and Application, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
34
|
Jensen T, de Boevre M, Preußke N, de Saeger S, Birr T, Verreet JA, Sönnichsen FD. Evaluation of High-Resolution Mass Spectrometry for the Quantitative Analysis of Mycotoxins in Complex Feed Matrices. Toxins (Basel) 2019; 11:toxins11090531. [PMID: 31547434 PMCID: PMC6783880 DOI: 10.3390/toxins11090531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 02/03/2023] Open
Abstract
The selective and sensitive analysis of mycotoxins in highly complex feed matrices is a great challenge. In this study, the suitability of OrbitrapTM-based high-resolution mass spectrometry (HRMS) for routine mycotoxin analysis in complex feeds was demonstrated by the successful validation of a full MS/data-dependent MS/MS acquisition method for the quantitative determination of eight Fusarium mycotoxins in forage maize and maize silage according to the Commission Decision 2002/657/EC. The required resolving power for accurate mass assignments (<5 ppm) was determined as 35,000 full width at half maximum (FWHM) and 70,000 FWHM for forage maize and maize silage, respectively. The recovery (RA), intra-day precision (RSDr), and inter-day precision (RSDR) of measurements were in the range of 94 to 108%, 2 to 16%, and 2 to 12%, whereas the decision limit (CCα) and the detection capability (CCβ) varied from 11 to 88 µg/kg and 20 to 141 µg/kg, respectively. A set of naturally contaminated forage maize and maize silage samples collected in northern Germany in 2017 was analyzed to confirm the applicability of the HRMS method to real samples. At least four Fusarium mycotoxins were quantified in each sample, highlighting the frequent co-occurrence of mycotoxins in feed.
Collapse
Affiliation(s)
- Tolke Jensen
- Institute of Phytopathology, Christian-Albrechts-Universität Kiel, Hermann-Rodewald-Strasse 9, 24118 Kiel, Germany.
| | - Marthe de Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Nils Preußke
- Otto Diels Institute for Organic Chemistry, Christian-Albrechts-Universität Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany.
| | - Sarah de Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Tim Birr
- Institute of Phytopathology, Christian-Albrechts-Universität Kiel, Hermann-Rodewald-Strasse 9, 24118 Kiel, Germany.
| | - Joseph-Alexander Verreet
- Institute of Phytopathology, Christian-Albrechts-Universität Kiel, Hermann-Rodewald-Strasse 9, 24118 Kiel, Germany.
| | - Frank D Sönnichsen
- Otto Diels Institute for Organic Chemistry, Christian-Albrechts-Universität Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany.
| |
Collapse
|
35
|
Rodríguez-Blanco M, Ramos AJ, Sanchis V, Marín S. Mycotoxins occurrence and fungal populations in different types of silages for dairy cows in Spain. Fungal Biol 2019; 125:103-114. [PMID: 33518200 DOI: 10.1016/j.funbio.2019.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 11/18/2022]
Abstract
Silages constitute a major component of the feed ration for dairy cows, being a potential source of mycotoxins due to the possible contamination by filamentous fungi capable of producing these toxic compounds. In this study, samples of different kinds of silages collected from farms located in four regions of Spain, were analysed to evaluate the occurrence of aflatoxins (AFs) and Fusarium mycotoxins. Lactic acid bacteria and fungal populations as well as pH and water activity were also studied. Penicillium, Geotrichum and Monascus were the main fungi identified in all the silages examined. The incidence of AFs was low (10 % of positive samples). Fusarium mycotoxins were detected in 40 % of the samples and fumonisins (FBs) were the most commonly detected. Maize silage was the most heavily contaminated type of silage. Levels of mycotoxins detected in positive samples did not exceed the EU guidance values. The lack of relationship between Fusarium counts and its mycotoxin concentrations suggested that mycotoxin production possibly occurred pre-ensiling or immediately post-ensiling. Outcomes showed that mould growth and mycotoxin contamination in silages should be regularly monitored in order to minimize the exposure of dairy cows to contaminated feed.
Collapse
Affiliation(s)
- M Rodríguez-Blanco
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, Av. Rovira Roure 191, 25198, Lleida, Spain
| | - A J Ramos
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, Av. Rovira Roure 191, 25198, Lleida, Spain
| | - V Sanchis
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, Av. Rovira Roure 191, 25198, Lleida, Spain
| | - S Marín
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, Av. Rovira Roure 191, 25198, Lleida, Spain.
| |
Collapse
|
36
|
Prevalent Mycotoxins in Animal Feed: Occurrence and Analytical Methods. Toxins (Basel) 2019; 11:toxins11050290. [PMID: 31121952 PMCID: PMC6563184 DOI: 10.3390/toxins11050290] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
Today, we have been witnessing a steady tendency in the increase of global demand for maize, wheat, soybeans, and their products due to the steady growth and strengthening of the livestock industry. Thus, animal feed safety has gradually become more important, with mycotoxins representing one of the most significant hazards. Mycotoxins comprise different classes of secondary metabolites of molds. With regard to animal feed, aflatoxins, fumonisins, ochratoxins, trichothecenes, and zearalenone are the more prevalent ones. In this review, several constraints posed by these contaminants at economical and commercial levels will be discussed, along with the legislation established in the European Union to restrict mycotoxins levels in animal feed. In addition, the occurrence of legislated mycotoxins in raw materials and their by-products for the feeds of interest, as well as in the feeds, will be reviewed. Finally, an overview of the different sample pretreatment and detection techniques reported for mycotoxin analysis will be presented, the main weaknesses of current methods will be highlighted.
Collapse
|
37
|
Nie B, Henion J, Ryona I. The Role of Mass Spectrometry in the Cannabis Industry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:719-730. [PMID: 30993637 PMCID: PMC6502781 DOI: 10.1007/s13361-019-02164-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 05/10/2023]
Abstract
The focus of this critical insight article is a brief overview of analytical challenges the cannabis industry faces and how analytical chemists have new opportunities to demonstrate the merits of employing mass spectrometry for the chemical analysis of cannabis and its products. The current range of cannabis products extends from recreational use to medicines, edibles, beverages, and beyond. The standards employed to assure product quality, integrity, and safety are lacking compared to those currently used by the pharmaceutical, food, and beverage industries. This manuscript overviews some of the important analytical issues that exist for the growth and harvest of the cannabis plant to the production of a wide variety of its products. Currently, the topics of interest for safety in cannabis testing where mass spectrometry can play an important role include what are currently referred to as potency, pesticides, terpenes, heavy metals, and mycotoxins from bacteria. Since each state in the USA as well as several countries has their own regulations, the analytical opportunities and challenges vary depending upon which jurisdiction a laboratory is supporting. This Critical Insight report will suggest where mass spectrometry can play an important role and provide valuable input on these topics. Graphical Abstract.
Collapse
Affiliation(s)
- Ben Nie
- Advion, Inc., 61 Brown Rd., Ithaca, NY, 14850, USA
| | - Jack Henion
- Advion, Inc., 61 Brown Rd., Ithaca, NY, 14850, USA.
- Q2 Solutions, LLC, 19 Brown Rd., Ithaca, NY, 14850, USA.
| | - Imelda Ryona
- Q2 Solutions, LLC, 19 Brown Rd., Ithaca, NY, 14850, USA
| |
Collapse
|
38
|
Song JG, Cao C, Li J, Xu YJ, Liu Y. Development and Validation of a QuEChERS-LC-MS/MS Method for the Analysis of Phenolic Compounds in Rapeseed Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4105-4112. [PMID: 30907591 DOI: 10.1021/acs.jafc.9b00029] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In recent years, the determination of phenolic compounds in vegetable oil has aroused broad attention because these compounds have beneficial effects on health. In this work, a novel method based on the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method and LC-MS/MS was developed for the analysis of phenolic compounds. A total of 18 mL of acetonitrile, 3 mL of water, and 270 mg of C18 sorbent were utilized in the optimized QuEChERS procedure. The LC-MS/MS analysis was performed in a C18 column under gradient-elution conditions with eluent of acetonitrile and water with 0.1% acetic acid. The QuEChERS approach achieved decent extraction recoveries (75.32-103.93%) for most phenolic compounds. The QuEChERS-LC-MS/MS method was validated in terms of accuracy, precision, sensitivity, and linearity. The proposed method was further evaluated using different prepared rapeseed oils. The result demonstrated that QuEChERS-LC-MS/MS is a rapid and reliable method for determining phenolic compounds in rapeseed oils.
Collapse
Affiliation(s)
- Jun-Ge Song
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Chen Cao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , People's Republic of China
| |
Collapse
|
39
|
Jiru M, Stranska-Zachariasova M, Dzuman Z, Hurkova K, Tomaniova M, Stepan R, Cuhra P, Hajslova J. Analysis of phosphodiesterase type 5 inhibitors as possible adulterants of botanical-based dietary supplements: extensive survey of preparations available at the Czech market. J Pharm Biomed Anal 2019; 164:713-724. [DOI: 10.1016/j.jpba.2018.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 01/14/2023]
|
40
|
Panasiuk L, Jedziniak P, Pietruszka K, Piatkowska M, Bocian L. Frequency and levels of regulated and emerging mycotoxins in silage in Poland. Mycotoxin Res 2019; 35:17-25. [PMID: 30136099 PMCID: PMC6331501 DOI: 10.1007/s12550-018-0327-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 12/03/2022]
Abstract
In this study, 120 silage samples collected in 2015 from farms in Poland were analysed by a multimycotoxin method based on liquid chromatography coupled with tandem mass spectrometry. The study included toxins which are regulated within the European Union (aflatoxins, deoxynivalenol, fumonisins, T-2/HT-2 toxins, ochratoxin A and zearalenone) and non-regulated mycotoxins (enniatins, beauvericin, 8-ketotrichothecenes, sterigmatocystin, zearalenone derivatives). All silage samples were positive for at least one mycotoxin, and 61% of samples contained five or more mycotoxins simultaneously. The most frequently detected toxins were deoxynivalenol, nivalenol, zearalenone, enniatins and beauvericin, although the levels of these toxins were relatively low. The mean concentration of deoxynivalenol and zearalenon was 406 and 80.6 μg/kg, respectively, and two toxins were positive-correlated. This is the first study that provides information about emerging mycotoxins contaminating silage in Poland.
Collapse
Affiliation(s)
- L Panasiuk
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantow Avenue 57, 24-100, Pulawy, Poland.
| | - P Jedziniak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantow Avenue 57, 24-100, Pulawy, Poland
| | - K Pietruszka
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantow Avenue 57, 24-100, Pulawy, Poland
| | - M Piatkowska
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantow Avenue 57, 24-100, Pulawy, Poland
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - L Bocian
- Department of Epidemiology and Risk Assessment, National Veterinary Research Institute, Partyzantow Avenue 57, 24-100, Pulawy, Poland
| |
Collapse
|
41
|
Tolosa J, Barba FJ, Font G, Ferrer E. Mycotoxin Incidence in Some Fish Products: QuEChERS Methodology and Liquid Chromatography Linear Ion Trap Tandem Mass Spectrometry Approach. Molecules 2019; 24:molecules24030527. [PMID: 30717117 PMCID: PMC6384792 DOI: 10.3390/molecules24030527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 11/16/2022] Open
Abstract
The inclusion of vegetal raw materials in feed for fish farming has increased the risk of mycotoxin occurrence in feed, as well as in edible tissues from fish fed with contaminated feed, due to the carry-over to muscle portions. Therefore, the objective of this study was to evaluate the occurrence of 15 mycotoxins in processed fish products, which are commonly consumed, such as smoked salmon and trout, different types of sushi, and gula substitutes. A QuEChERS method was employed to perform the mycotoxin extraction from fish samples. For mycotoxin identification and quantitation, the selected technique was the liquid chromatography-tandem mass spectrometry linear ion trap (LC-MS/MS-LIT). Smoked fish and sushi samples results were negative regarding the presence of all 15 mycotoxins studied. In contrast, small amounts of fusarenon-X and enniatin B were found in gula substitute samples.
Collapse
Affiliation(s)
- Josefa Tolosa
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avenue Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.
| | - Francisco J Barba
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avenue Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avenue Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.
| | - Emilia Ferrer
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avenue Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.
| |
Collapse
|
42
|
Cortés-Herrera C, Artavia G, Leiva A, Granados-Chinchilla F. Liquid Chromatography Analysis of Common Nutritional Components, in Feed and Food. Foods 2018; 8:E1. [PMID: 30577557 PMCID: PMC6352167 DOI: 10.3390/foods8010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/28/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
Food and feed laboratories share several similarities when facing the implementation of liquid-chromatographic analysis. Using the experience acquired over the years, through application chemistry in food and feed research, selected analytes of relevance for both areas were discussed. This review focused on the common obstacles and peculiarities that each analyte offers (during the sample treatment or the chromatographic separation) throughout the implementation of said methods. A brief description of the techniques which we considered to be more pertinent, commonly used to assay such analytes is provided, including approaches using commonly available detectors (especially in starter labs) as well as mass detection. This manuscript consists of three sections: feed analysis (as the start of the food chain); food destined for human consumption determinations (the end of the food chain); and finally, assays shared by either matrices or laboratories. Analytes discussed consist of both those considered undesirable substances, contaminants, additives, and those related to nutritional quality. Our review is comprised of the examination of polyphenols, capsaicinoids, theobromine and caffeine, cholesterol, mycotoxins, antibiotics, amino acids, triphenylmethane dyes, nitrates/nitrites, ethanol soluble carbohydrates/sugars, organic acids, carotenoids, hydro and liposoluble vitamins. All analytes are currently assayed in our laboratories.
Collapse
Affiliation(s)
- Carolina Cortés-Herrera
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio 11501-2060, Costa Rica.
| | - Graciela Artavia
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio 11501-2060, Costa Rica.
| | - Astrid Leiva
- Centro de Investigación en Nutrición Animal, Universidad de Costa Rica, Ciudad Universitaria Rodrigo 11501-2060, Costa Rica.
| | - Fabio Granados-Chinchilla
- Centro de Investigación en Nutrición Animal, Universidad de Costa Rica, Ciudad Universitaria Rodrigo 11501-2060, Costa Rica.
| |
Collapse
|
43
|
Determination of multiple mycotoxins in feedstuffs by combined use of UPLC–MS/MS and UPLC–QTOF–MS. Food Chem 2018; 267:140-148. [DOI: 10.1016/j.foodchem.2017.11.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/21/2017] [Accepted: 11/10/2017] [Indexed: 11/18/2022]
|
44
|
Development and Application of a QuEChERS-Based Liquid Chromatography Tandem Mass Spectrometry Method to Quantitate Multi-Component Alternaria Toxins in Jujube. Toxins (Basel) 2018; 10:toxins10100382. [PMID: 30248926 PMCID: PMC6220753 DOI: 10.3390/toxins10100382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 01/25/2023] Open
Abstract
A simple, rapid and efficient methodology was developed and validated for the analysis of four Alternaria toxins in jujube: Tenuazonic acid, alternariol, alternariol monomethyl ether, and tentoxin. Under the optimized extraction procedure, chromatographic conditions, and instrumental parameters, the four toxins were effectively extracted via a quick, easy, cheap, effective, rugged, and safe (QuEChERS) method, and quantified by ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Matrix-matched calibrations ranging from 0.01 to 0.5 μg mL−1 were conducted for the quantification due to the matrix effect. A blank jujube sample was spiked at 40, 80 and 160 μg kg−1, obtaining recoveries in the range of 83.5–109.6%. Limits of detection and limits of quantification were in the range of 0.14–0.26 and 0.47–0.87 μg kg−1, respectively. Finally, the developed method was applied for the quantification of the four toxins in 14 jujube samples, including black spot-infected and uninfected samples. Results showed that the predominant toxin detected in all the samples was tenuazonic acid, the content of which was associated with the infection level; alternariol, alternariol monomethyl ether, and tentoxin were detected in all the infected samples and some of the uninfected samples with rather low contents.
Collapse
|
45
|
Rico-Yuste A, Gómez-Arribas LN, Pérez-Conde MC, Urraca JL, Moreno-Bondi MC. Rapid determination of Alternaria mycotoxins in tomato samples by pressurised liquid extraction coupled to liquid chromatography with fluorescence detection. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:2175-2182. [PMID: 30235069 DOI: 10.1080/19440049.2018.1512759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A sensitive and reliable method using pressurised liquid extraction (PLE) followed by molecularly imprinted solid phase extraction (MISPE) and high performance liquid chromatography with fluorescence detection (HPLC-FLD) has been developed for the analysis of alternariol (AOH) and alternariol monomethyl ether (AME) in tomato samples. Influence of several extraction parameters that affect PLE efficiency were evaluated for the simultaneous extraction of both mycotoxins in the selected samples. AOH and AME were optimally extracted using MeOH/water (25:75, v/v) at 70°C as solvent, a pressure of 1000 psi and a single extraction cycle. The resulting PLE extracts were pre-concentrated by molecularly imprinted solid phase extraction (MISPE) cartridges followed of analysis by HPLC with fluorescence detection (λexc = 258, λem = 440 nm). The proposed method was applied to the analysis of AOH and AME in fortified tomato samples (20-72 µg· kg-1) with recoveries of 84-97% (RSD < 8%, n = 6) for AOH and 67-91% (RSD < 13%, n = 6) for AME. The detection limit for AOH and AME were 7 and 15 µg· kg-1, respectively. The ensuing PLE-MISPE-HPLC-FLD method was validated for the analysis of both mycotoxins in tomato samples in accordance with European Commission Decision 2002/657/EC.
Collapse
Affiliation(s)
- Alberto Rico-Yuste
- a Department of Analytical Chemistry, Faculty of Chemistry , Universidad Complutense de Madrid , Madrid , Spain
| | - Lidia N Gómez-Arribas
- a Department of Analytical Chemistry, Faculty of Chemistry , Universidad Complutense de Madrid , Madrid , Spain
| | | | - Javier L Urraca
- a Department of Analytical Chemistry, Faculty of Chemistry , Universidad Complutense de Madrid , Madrid , Spain
| | - María Cruz Moreno-Bondi
- a Department of Analytical Chemistry, Faculty of Chemistry , Universidad Complutense de Madrid , Madrid , Spain
| |
Collapse
|
46
|
Yan Z, Wang L, Wang J, Tan Y, Yu D, Chang X, Fan Y, Zhao D, Wang C, De Boevre M, De Saeger S, Sun C, Wu A. A QuEChERS-Based Liquid Chromatography-Tandem Mass Spectrometry Method for the Simultaneous Determination of Nine Zearalenone-Like Mycotoxins in Pigs. Toxins (Basel) 2018; 10:E129. [PMID: 29558416 PMCID: PMC5869417 DOI: 10.3390/toxins10030129] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 11/17/2022] Open
Abstract
The determination of zearalenone (ZEN) and its derivatives as biomarkers in animal tissues or organs plays an important role in mycotoxin monitoring and can promote effective exposure assessment. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous quantification of nine ZEN-like mycotoxins, including three glucuronides in different pig tissues (heart, liver, spleen and muscle) was developed and validated in this study. Tissue samples were extracted using a quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction and clean-up procedure, and analyzed by LC-MS/MS in multiple reaction monitoring (MRM) mode. Dynamic linear ranges for each target analyte were determined with R² between 0.916 and 0.999. The LODs of the six ZENs were achieved in the range of 0.5-1 ng/g and the LOQs varied from 1 ng/g to 2 ng/g. The satisfying intra-day and inter-day reproducibility (both RSDr and RSDR < 20%) indicated a good stability of this method. The recoveries of the nine target analytes were in the range of 70-110%. The validation results showed that this LC-MS/MS method coupled with QuEChERS sample pretreatment is effective and suitable for the simultaneous quantitation of ZEN metabolites in pigs. It has been applied to analysis of the pig tissues in this research and can be also adapted for samples in the mycotoxin research field.
Collapse
Affiliation(s)
- Zheng Yan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200000, China.
| | - Lan Wang
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200000, China.
| | - Jun Wang
- Academy of State Administration of Grain P.R.C, No. 11 Baiwanzhuang Avenue, Xicheng District, Beijing 100037, China.
| | - Yanglan Tan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200000, China.
| | - Dianzhen Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200000, China.
| | - Xiaojiao Chang
- Academy of State Administration of Grain P.R.C, No. 11 Baiwanzhuang Avenue, Xicheng District, Beijing 100037, China.
| | - Yingying Fan
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture/Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Duoyong Zhao
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture/Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Cheng Wang
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture/Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Marthe De Boevre
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Sarah De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Changpo Sun
- Academy of State Administration of Grain P.R.C, No. 11 Baiwanzhuang Avenue, Xicheng District, Beijing 100037, China.
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200000, China.
| |
Collapse
|
47
|
Pan TT, Sun DW, Pu H, Wei Q. Simple Approach for the Rapid Detection of Alternariol in Pear Fruit by Surface-Enhanced Raman Scattering with Pyridine-Modified Silver Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2180-2187. [PMID: 29443523 DOI: 10.1021/acs.jafc.7b05664] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A simple method based on surface-enhanced Raman scattering (SERS) was developed for the rapid determination of alternariol (AOH) in pear fruits using an easily prepared silver-nanoparticle (AgNP) substrate. The AgNP substrate was modified by pyridine to circumvent the weak affinity of the AOH molecules to the silver surface and to improve the sensitivity of detection. Quantitative analysis was performed in AOH solutions at concentrations ranging from 3.16 to 316.0 μg/L, and the limit of detection was 1.30 μg/L. The novel method was also applied to the detection of AOH residues in pear fruits purchased from the market and in pear fruits that were artificially inoculated with Alternaria alternata. AOH was not found in any of the fresh fruit, whereas it resided in the rotten and inoculated fruits. Finally, the SERS method was cross validated against HPLC. It was revealed that the SERS method has great potential utility in the rapid detection of AOH in pear fruits and other agricultural products.
Collapse
Affiliation(s)
- Ting-Tiao Pan
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China
- Academy of Contemporary Food Engineering , South China University of Technology, Guangzhou Higher Education Mega Center , Guangzhou 510006 , China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center , Guangzhou 510006 , China
| | - Da-Wen Sun
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China
- Academy of Contemporary Food Engineering , South China University of Technology, Guangzhou Higher Education Mega Center , Guangzhou 510006 , China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center , Guangzhou 510006 , China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre , University College Dublin, National University of Ireland , Belfield , Dublin 4 , Ireland
| | - Hongbin Pu
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China
- Academy of Contemporary Food Engineering , South China University of Technology, Guangzhou Higher Education Mega Center , Guangzhou 510006 , China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center , Guangzhou 510006 , China
| | - Qingyi Wei
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China
- Academy of Contemporary Food Engineering , South China University of Technology, Guangzhou Higher Education Mega Center , Guangzhou 510006 , China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center , Guangzhou 510006 , China
| |
Collapse
|
48
|
Zhang L, Dou XW, Zhang C, Logrieco AF, Yang MH. A Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines. Toxins (Basel) 2018; 10:E65. [PMID: 29393905 PMCID: PMC5848166 DOI: 10.3390/toxins10020065] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/12/2022] Open
Abstract
The presence of mycotoxins in herbal medicines is an established problem throughout the entire world. The sensitive and accurate analysis of mycotoxin in complicated matrices (e.g., herbs) typically involves challenging sample pretreatment procedures and an efficient detection instrument. However, although numerous reviews have been published regarding the occurrence of mycotoxins in herbal medicines, few of them provided a detailed summary of related analytical methods for mycotoxin determination. This review focuses on analytical techniques including sampling, extraction, cleanup, and detection for mycotoxin determination in herbal medicines established within the past ten years. Dedicated sections of this article address the significant developments in sample preparation, and highlight the importance of this procedure in the analytical technology. This review also summarizes conventional chromatographic techniques for mycotoxin qualification or quantitation, as well as recent studies regarding the development and application of screening assays such as enzyme-linked immunosorbent assays, lateral flow immunoassays, aptamer-based lateral flow assays, and cytometric bead arrays. The present work provides a good insight regarding the advanced research that has been done and closes with an indication of future demand for the emerging technologies.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xiao-Wen Dou
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Cheng Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Antonio F Logrieco
- National Research Council of Italy, CNR-ISPA, Via G. Amendola, 122/O, I-70126 Bari, Italy.
| | - Mei-Hua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
49
|
Wei D, Wu X, Xu J, Dong F, Liu X, Zheng Y, Ji M. Determination of Ochratoxin A contamination in grapes, processed grape products and animal-derived products using ultra-performance liquid chromatography-tandem mass spectroscopy system. Sci Rep 2018; 8:2051. [PMID: 29391603 PMCID: PMC5794868 DOI: 10.1038/s41598-018-20534-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/18/2018] [Indexed: 11/08/2022] Open
Abstract
We developed a sensitive and rapid analytical method to determine the level of Ochratoxin A contamination in grapes, processed grape products and in foods of animal origin (a total of 11 different food matrices). A pretreatment that followed a "quick, easy, cheap, effective, rugged, and safe" protocol was optimized to extract Ochratoxin A from the matrices, and the extracted Ochratoxin A was then detected with the use of a highly sensitive ultra-performance liquid chromatography-tandem mass spectrometry system. Good linearities of Ochratoxin A were obtained in the range of 0.1-500 µg L-1 (correlation coefficient (R2) > 0.9994 in each case). Mean recovery from the 11 matrices ranged from 70.3 to 114.7%, with a relative standard deviation ≤19.2%. The method is easy to use and yields reliable results for routine determination of Ochratoxin A in food products of grape and animal origin. In store-purchased foods and foods obtained from the field and wholesale suppliers, the Ochratoxin A concentration ranged from undetectable to 10.14 µg kg-1, with the more contaminated samples being mainly those of processed grape products. Our results indicate that the necessity for regulation of and supervision during the processing of grape products.
Collapse
Affiliation(s)
- Dongmei Wei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
- Risk Assessment Laboratory for biological hazards of agricultural product quality and safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaohu Wu
- Risk Assessment Laboratory for biological hazards of agricultural product quality and safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jun Xu
- Risk Assessment Laboratory for biological hazards of agricultural product quality and safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fengshou Dong
- Risk Assessment Laboratory for biological hazards of agricultural product quality and safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xingang Liu
- Risk Assessment Laboratory for biological hazards of agricultural product quality and safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yongquan Zheng
- Risk Assessment Laboratory for biological hazards of agricultural product quality and safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Mingshan Ji
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China.
| |
Collapse
|
50
|
Pajewska M, Łojko M, Cendrowski K, Sawicki W, Kowalkowski T, Buszewski B, Gadzała-Kopciuch R. The determination of zearalenone and its major metabolites in endometrial cancer tissues. Anal Bioanal Chem 2018; 410:1571-1582. [PMID: 29368148 DOI: 10.1007/s00216-017-0807-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/07/2017] [Accepted: 12/06/2017] [Indexed: 01/04/2023]
Abstract
Endometrial cancer is one of the most commonly diagnosed cancers in women. The search for factors that contribute to the development of cancer cells in reproductive organs should involve the detection of xenoestrogens, in particular zearalenone (ZEA) and its metabolites. Xenoestrogens are endocrine disruptors-ZEA and its metabolites are structurally similar to estrogens (macrocyclic lactone ring) and show high affinity for estrogen receptors. This study proposes a new method for the preparation of samples of human tissues with endometrial cancer by the use of the QuEChERS technique. Analytical parameters such as centrifugation temperature, extraction solvent, and adsorbents were modified to obtain satisfactory recovery for ZEA (R = 82.6%, RSD = 2.9%) and one of its metabolites, α-zearalenol (R = 50.1%, RSD = 3.2%). High-performance liquid chromatography (HPLC) with fluorescence detection and tandem mass spectrometry (LC-QTOF-MS) were used for the identification and quantitative determination of the analyzed compounds. The developed procedure was applied for analyses of human tissues with endometrial cancer. The presence of α-zearalenol was detected in 47 out of the 61 examined tissue samples. Graphical Abstract Methodology for isolation and identification of zearalenone and its major metabolites.
Collapse
Affiliation(s)
- Martyna Pajewska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland.,Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland
| | - Mariusz Łojko
- Clinical Department of Obstetrics, Gynecology and Gynecologic Oncology, Ludwik Rydygier Regional Hospital, Św. Józefa 53-59, 87-100, Toruń, Poland
| | - Krzysztof Cendrowski
- Department and Clinic of Obstetrics, Gynecology and Oncology, II Faculty, Medical University of Warsaw, Kondratowicza 8, 02-242, Warsaw, Poland
| | - Włodzimierz Sawicki
- Department and Clinic of Obstetrics, Gynecology and Oncology, II Faculty, Medical University of Warsaw, Kondratowicza 8, 02-242, Warsaw, Poland
| | - Tomasz Kowalkowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland.,Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland.,Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland
| | - Renata Gadzała-Kopciuch
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland. .,Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland.
| |
Collapse
|