1
|
Gu Z, Chang H, Yang G, Xu B, Miao B, Li J. An integrated electronic tag-based vertical flow assay (e-VFA) with micro-sieve and AlGaN/GaN HEMT sensors for multi-target detection in actual saliva. Analyst 2024; 149:4267-4275. [PMID: 38904993 DOI: 10.1039/d4an00510d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Vertical flow assay (VFA) is an effective point-of-care (POC) diagnostic tool for widespread application. Nevertheless, the lack of multi-target detection and multi-signal readout capability still remains a challenge. Herein, a brand new VFA scheme for multi-target saliva detection based on electronic tags was proposed, where AlGaN/GaN HEMT sensors modified with different bio-receptors as electronic tags endowed the VFA with multi-target detection capability. In addition, the use of electronic tags instead of optical tags allowed the VFA to simultaneously carry out direct multi-target readouts, which ensure effective POC diagnostics for saliva analysis. Moreover, by integrating a hydrophilically optimized micro-sieve, impurities like sticky filaments, epidermal cells and other large-scale charged particles in saliva were effectively screened, which enabled the direct detection of saliva using AlGaN/GaN HEMT sensors. Glucose, urea, and cortisol were selected to verify the feasibility of the multi-target e-VFA scheme, and the results showed that the limit of detection (LOD) was as low as 100 aM. The linear response was demonstrated in the dynamic range of 100 aM to 100 μM, and the specificity, long-term stability and validity of the actual saliva test were also verified. These results demonstrated that the as-proposed e-VFA has potential for application in saliva detection for simultaneous multi-target detection, and it is expected to achieve the real-time detection of more biological targets in saliva.
Collapse
Affiliation(s)
- Zhiqi Gu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
| | - Hui Chang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Guo Yang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
- School of Electrical and Mechanical Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Boxuan Xu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
- The College of Materials Science and Engineering, Shanghai University, Shanghai, 200072, People's Republic of China
| | - Bin Miao
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
| | - Jiadong Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
| |
Collapse
|
2
|
Farka Z, Brandmeier JC, Mickert MJ, Pastucha M, Lacina K, Skládal P, Soukka T, Gorris HH. Nanoparticle-Based Bioaffinity Assays: From the Research Laboratory to the Market. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307653. [PMID: 38039956 DOI: 10.1002/adma.202307653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Advances in the development of new biorecognition elements, nanoparticle-based labels as well as instrumentation have inspired the design of new bioaffinity assays. This review critically discusses the potential of nanoparticles to replace current enzymatic or molecular labels in immunoassays and other bioaffinity assays. Successful implementations of nanoparticles in commercial assays and the need for rapid tests incorporating nanoparticles in different roles such as capture support, signal generation elements, and signal amplification systems are highlighted. The limited number of nanoparticles applied in current commercial assays can be explained by challenges associated with the analysis of real samples (e.g., blood, urine, or nasal swabs) that are difficult to resolve, particularly if the same performance can be achieved more easily by conventional labels. Lateral flow assays that are based on the visual detection of the red-colored line formed by colloidal gold are a notable exception, exemplified by SARS-CoV-2 rapid antigen tests that have moved from initial laboratory testing to widespread market adaption in less than two years.
Collapse
Affiliation(s)
- Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | | | - Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- TestLine Clinical Diagnostics, Křižíkova 188, Brno, 612 00, Czech Republic
| | - Karel Lacina
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| |
Collapse
|
3
|
Yadav SK, Verma D, Yadav U, Kalkal A, Priyadarshini N, Kumar A, Mahato K. Point-of-Care Devices for Viral Detection: COVID-19 Pandemic and Beyond. MICROMACHINES 2023; 14:1744. [PMID: 37763907 PMCID: PMC10535693 DOI: 10.3390/mi14091744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
The pandemic of COVID-19 and its widespread transmission have made us realize the importance of early, quick diagnostic tests for facilitating effective cure and management. The primary obstacles encountered were accurately distinguishing COVID-19 from other illnesses including the flu, common cold, etc. While the polymerase chain reaction technique is a robust technique for the determination of SARS-CoV-2 in patients of COVID-19, there arises a high demand for affordable, quick, user-friendly, and precise point-of-care (POC) diagnostic in therapeutic settings. The necessity for available tests with rapid outcomes spurred the advancement of POC tests that are characterized by speed, automation, and high precision and accuracy. Paper-based POC devices have gained increasing interest in recent years because of rapid, low-cost detection without requiring external instruments. At present, microfluidic paper-based analysis devices have garnered public attention and accelerated the development of such POCT for efficient multistep assays. In the current review, our focus will be on the fabrication of detection modules for SARS-CoV-2. Here, we have included a discussion on various strategies for the detection of viral moieties. The compilation of these strategies would offer comprehensive insight into the detection of the causative agent preparedness for future pandemics. We also provide a descriptive outline for paper-based diagnostic platforms, involving the determination mechanisms, as well as a commercial kit for COVID-19 as well as their outlook.
Collapse
Affiliation(s)
- Sumit K. Yadav
- Department of Biotechnology, Vinoba Bhave University, Hazaribagh 825301, Jharkhand, India
| | - Damini Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ujala Yadav
- Department of Life Sciences, Central University of Jharkhand, Ranchi 835205, Jharkhand, India
| | - Ashish Kalkal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Nivedita Priyadarshini
- Department of Zoology, DAV PG College Siwan, Jai Prakash University, Chhapra 841226, Bihar, India
| | - Ashutosh Kumar
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46637, USA
| | - Kuldeep Mahato
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, San Diego, CA 92093, USA
| |
Collapse
|
4
|
Kabiraz MP, Majumdar PR, Mahmud MC, Bhowmik S, Ali A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023; 9:e15482. [PMID: 37151686 PMCID: PMC10161726 DOI: 10.1016/j.heliyon.2023.e15482] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Foodborne pathogens are a major public health concern and have a significant economic impact globally. From harvesting to consumption stages, food is generally contaminated by viruses, parasites, and bacteria, which causes foodborne diseases such as hemorrhagic colitis, hemolytic uremic syndrome (HUS), typhoid, acute, gastroenteritis, diarrhea, and thrombotic thrombocytopenic purpura (TTP). Hence, early detection of foodborne pathogenic microbes is essential to ensure a safe food supply and to prevent foodborne diseases. The identification of foodborne pathogens is associated with conventional (e.g., culture-based, biochemical test-based, immunological-based, and nucleic acid-based methods) and advances (e.g., hybridization-based, array-based, spectroscopy-based, and biosensor-based process) techniques. For industrial food applications, detection methods could meet parameters such as accuracy level, efficiency, quickness, specificity, sensitivity, and non-labor intensive. This review provides an overview of conventional and advanced techniques used to detect foodborne pathogens over the years. Therefore, the scientific community, policymakers, and food and agriculture industries can choose an appropriate method for better results.
Collapse
Affiliation(s)
- Meera Probha Kabiraz
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Priyanka Rani Majumdar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - M.M. Chayan Mahmud
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, VIC, 3125, Australia
| | - Shuva Bhowmik
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author. Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand.
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author.
| |
Collapse
|
5
|
Ghasemi F, Fahimi-Kashani N, Bigdeli A, Alshatteri AH, Abbasi-Moayed S, Al-Jaf SH, Merry MY, Omer KM, Hormozi-Nezhad MR. Paper-based optical nanosensors – A review. Anal Chim Acta 2022; 1238:340640. [DOI: 10.1016/j.aca.2022.340640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
|
6
|
Jia Y, Sun H, Tian J, Song Q, Zhang W. Paper-Based Point-of-Care Testing of SARS-CoV-2. Front Bioeng Biotechnol 2021; 9:773304. [PMID: 34912791 PMCID: PMC8667078 DOI: 10.3389/fbioe.2021.773304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
The COVID-19 pandemic has resulted in significant global social and economic disruption. The highly transmissive nature of the disease makes rapid and reliable detection critically important. Point-of-care (POC) tests involve performing diagnostic tests outside of a laboratory that produce a rapid and reliable result. It therefore allows the diagnostics of diseases at or near the patient site. Paper-based POC tests have been gaining interest in recent years as they allow rapid, low-cost detection without the need for external instruments. In this review, we focus on the development of paper-based POC devices for the detection of SARS-CoV-2. The review first introduces the principles of detection methods that are available to paper-based devices. It then summarizes the state-of-the-art paper devices and their analytical performances. The advantages and drawbacks among methods are also discussed. Finally, limitations of the existing devices are discussed, and prospects are given with the hope to identify research opportunities and directions in the field. We hope this review will be helpful for researchers to develop a clinically useful and economically efficient paper-based platform that can be used for rapid, accurate on-site diagnosis to aid in identifying acute infections and eventually contain the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yuan Jia
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, China
| | - Hao Sun
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| | - Jinpeng Tian
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, China
| | - Qiuming Song
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, China
| | - Wenwei Zhang
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
7
|
Andryukov BG, Lyapun IN, Matosova EV, Somova LM. Biosensor Technologies in Medicine: from Detection of Biochemical Markers to Research into Molecular Targets (Review). Sovrem Tekhnologii Med 2021; 12:70-83. [PMID: 34796021 PMCID: PMC8596237 DOI: 10.17691/stm2020.12.6.09] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Indexed: 01/21/2023] Open
Abstract
Infections are a major cause of premature death. Fast and accurate laboratory diagnostics of infectious diseases is a key condition for the timely initiation and success of treatment. Potentially, it can reduce morbidity, as well as prevent the outbreak and spread of dangerous epidemics. The traditional methods of laboratory diagnostics of infectious diseases are quite time- and labour-consuming, require expensive equipment and trained personnel, which is crucial within limited resources. The fast biosensor-based methods that combine the diagnostic capabilities of biomedicine with modern technological advances in microelectronics, optoelectronics, and nanotechnology make an alternative. The modern achievements in the development of label-free biosensors make them promising diagnostic tools that combine rapid detection of specific molecular markers, simplicity, ease-of-use, efficiency, accuracy, and cost-effectiveness with the tendency to the development of portable platforms. These qualities exceed the generally accepted standards of microbiological and immunological diagnostics and open up broad prospects for using these analytical systems in clinical practice directly at the site of medical care provision (point-of-care, POC concept). A wide variety of modern biosensor designs are based on the use of diverse formats of analytical and technological strategies, identification of various regulatory and functional molecular markers associated with infectious pathogens. The solution to the existing problems in biosensing will open up great prospects for these rapidly developing diagnostic biotechnologies.
Collapse
Affiliation(s)
- B G Andryukov
- Leading Researcher, Laboratory of Molecular Microbiology; G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| | - I N Lyapun
- Researcher, Laboratory of Molecular Microbiology; G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| | - E V Matosova
- Junior Researcher, Laboratory of Molecular Microbiology; G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| | - L M Somova
- Professor, Chief Researcher, Laboratory of Molecular Microbiology G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| |
Collapse
|
8
|
Rudenko N, Fursova K, Shepelyakovskaya A, Karatovskaya A, Brovko F. Antibodies as Biosensors' Key Components: State-of-the-Art in Russia 2020-2021. SENSORS 2021; 21:s21227614. [PMID: 34833687 PMCID: PMC8624206 DOI: 10.3390/s21227614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
The recognition of biomolecules is crucial in key areas such as the timely diagnosis of somatic and infectious diseases, food quality control, and environmental monitoring. This determines the need to develop highly sensitive display devices based on the achievements of modern science and technology, characterized by high selectivity, high speed, low cost, availability, and small size. Such requirements are met by biosensor systems—devices for reagent-free analysis of compounds that consist of a biologically sensitive element (receptor), a transducer, and a working solution. The diversity of biological material and methods for its immobilization on the surface or in the volume of the transducer and the use of nanotechnologies have led to the appearance of an avalanche-like number of different biosensors, which, depending on the type of biologically sensitive element, can be divided into three groups: enzyme, affinity, and cellular/tissue. Affinity biosensors are one of the rapidly developing areas in immunoassay, where the key point is to register the formation of an antigen–antibody complex. This review analyzes the latest work by Russian researchers concerning the production of molecules used in various immunoassay formats as well as new fundamental scientific data obtained as a result of their use.
Collapse
|
9
|
Tu D, Holderby A, Dean J, Mabbott S, Coté GL. Paper Microfluidic Device with a Horizontal Motion Valve and a Localized Delay for Automatic Control of a Multistep Assay. Anal Chem 2021; 93:4497-4505. [PMID: 33660983 DOI: 10.1021/acs.analchem.0c04706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A microfluidic paper-based analytical device (μPAD) is a cost-effective platform to implement assays, especially for point-of-care testing. Developing μPADs with fluidic control is important to implement multistep assays and provide high sensitivities. However, current localized delays in μPADs made of sucrose have a limited ability to decrease the flow rate. In addition, existing μPADs for automatic multistep assays are limited by their need for auxiliary instruments, their false activation, or their unavoidable tradeoff between available fluid volumes and temporal differences between steps. Here, a novel μPAD composed of a localized dissolvable delay and a horizontal motion mechanical valve for use as an automatic multistep assay is reported. A mixture of fructose and sucrose was used in the localized dissolvable delay and it provided an effective decrease in the flow rate to ensure adequate sensitivity in an assay. The dissolvable delay effectively doubled the flow time. A mechanical valve using a horizontal movement was developed to automatically implement a multistep process. Two-step and four-step processes were enabled with the μPAD. Cardiac troponin I (cTnI), a gold-standard biomarker for myocardial infarction, was used as a model analyte to show the performance of the developed μPAD in an assay. The designed μPAD, with the simple-to-make localized dissolvable delay and the robust mechanical valve, provides the potential to automatically implement high-performance multistep assays toward a versatile platform for point-of-care diagnostics.
Collapse
Affiliation(s)
- Dandan Tu
- Department of Biomedical Engineering, Texas A&M University, 400 Bizzell St, College Station, Texas 77843, United States
| | - Allison Holderby
- Department of Chemistry, Texas A&M University, 400 Bizzell St, College Station, Texas 77843, United States
| | - John Dean
- Department of Biomedical Engineering, Texas A&M University, 400 Bizzell St, College Station, Texas 77843, United States
| | - Samuel Mabbott
- Department of Biomedical Engineering, Texas A&M University, 400 Bizzell St, College Station, Texas 77843, United States.,Center for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station, 600 Discovery Drive, College Station, Texas 77840-3006, United States
| | - Gerard L Coté
- Department of Biomedical Engineering, Texas A&M University, 400 Bizzell St, College Station, Texas 77843, United States.,Center for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station, 600 Discovery Drive, College Station, Texas 77840-3006, United States
| |
Collapse
|
10
|
Andryukov BG, Lyapun IN, Bynina MP, Matosova EV. Simplified formats of modern biosensors: 60 years of using immunochromatographic test systems in laboratory diagnostics. Klin Lab Diagn 2021; 65:611-618. [PMID: 33245650 DOI: 10.18821/0869-2084-2020-65-10-611-618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Immunochromatographic test systems known to foreign laboratory diagnostic experts as lateral flow immunoassay (LFIA) are simplified tape formats of modern biosensors. For 60 years, they have been widely used for the rapid detection of target molecules (ligands) in biosubstrates and the diagnosis of many diseases and conditions. The growing popularity of these test systems for providing medical care or diagnostics in developing countries, medical facilities, in emergency situations, as well as for individual home use by patients while monitoring their health are the main factors contributing to the continuous development and improvement of these methods, the emergence of a new generation of formats. The attractiveness and popularity of these fast, easy-to-use, inexpensive and portable diagnostic tools is associated primarily with their high analytical sensitivity and specificity, as well as the ease of interpretation of the results. These qualities have passed the test of time, and today LFIA test systems are fully consistent with the modern world concept of «point-of-care testing», finding wide application not only in medicine, but also in ecology, veterinary medicine, and agriculture. This review will highlight the modern principles of designing the most widely used formats of immunochromatographic test systems for clinical laboratory diagnostics, summarize the main advantages and disadvantages of the method, as well as current achievements and prospects of LFIA technology. Modern innovations aimed at improving the analytical characteristics of LFIA technology are interesting, promising and can bring additional benefits to immunochromatographic platforms that have gained popularity and attractiveness for six decades.
Collapse
Affiliation(s)
- Boris Georgievich Andryukov
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science.,Far Eastern Federal University of the Ministry of Education and Science of Russia
| | - I N Lyapun
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science
| | - M P Bynina
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science
| | - E V Matosova
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science
| |
Collapse
|
11
|
Hou S, Ma J, Cheng Y, Wang H, Sun J, Yan Y. Quantum dot nanobead-based fluorescent immunochromatographic assay for simultaneous quantitative detection of fumonisin B1, dexyonivalenol, and zearalenone in grains. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107331] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Abstract
The pervasive spread of infectious diseases and pandemics, such as the 2019 coronavirus disease (COVID-19), are becoming increasingly serious and urgent threats to human health. Preventing the spread of such diseases prioritizes the development of sensing devices that can rapidly, selectively, and reliably detect pathogens at minimal cost. Paper-based analytical devices (PADs) are promising tools that satisfy those criteria. Numerous paper-based biosensors have been established that rival conventional pathogen detection methods. Among them, colorimetric strategies are promising since results can be interpreted by eye, and are simple to operate, which is advantageous for point-of-care testing (POCT). Particularly, the application of nanomaterials on paper-based biosensors has become important as these materials are capable of converting signals from pathogens through unique mechanisms to yield an amplified colorimetric readout. To highlight the research progress on using nanomaterials in colorimetric paper-based biosensor for pathogen detection, we discuss the sensing mechanisms of how they work, structural and analytical characteristics of the devices, and representative recent applications. Current challenges and future directions of using PADs and nanomaterial-mediated strategies are also discussed.
Collapse
Affiliation(s)
- Quynh Huong Nguyen
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| |
Collapse
|
13
|
Andryukov BG. Six decades of lateral flow immunoassay: from determining metabolic markers to diagnosing COVID-19. AIMS Microbiol 2020; 6:280-304. [PMID: 33134745 PMCID: PMC7595842 DOI: 10.3934/microbiol.2020018] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/20/2020] [Indexed: 01/10/2023] Open
Abstract
Technologies based on lateral flow immunoassay (LFIA), known in some countries of the world as immunochromatographic tests, have been successfully used for the last six decades in diagnostics of many diseases and conditions as they allow rapid detection of molecular ligands in biosubstrates. The popularity of these diagnostic platforms is constantly increasing in healthcare facilities, particularly those facing limited budgets and time, as well as in household use for individual health monitoring. The advantages of these low-cost devices over modern laboratory-based analyzers come from their availability, opportunity of rapid detection, and ease of use. The attractiveness of these portable diagnostic tools is associated primarily with their high analytical sensitivity and specificity, as well as with the easy visual readout of results. These qualities explain the growing popularity of LFIA in developing countries, when applied at small hospitals, in emergency situations where screening and monitoring health condition is crucially important, and as well as for self-testing of patients. These tools have passed the test of time, and now LFIA test systems are fully consistent with the world's modern concept of ‘point-of-care testing’, finding a wide range of applications not only in human medicine, but also in ecology, veterinary medicine, and agriculture. The extensive opportunities provided by LFIA contribute to the continuous development and improvement of this technology and to the creation of new-generation formats. This review will highlight the modern principles of design of the most widely used formats of test-systems for clinical laboratory diagnostics, summarize the main advantages and disadvantages of the method, as well as the current achievements and prospects of the LFIA technology. The latest innovations are aimed at improving the analytical performance of LFIA platforms for the diagnosis of bacterial and viral infections, including COVID-19.
Collapse
Affiliation(s)
- Boris G Andryukov
- Somov Research Institute of Epidemiology and Microbiology, Vladivostok, Russian Federation.,Far Eastern Federal University (FEFU), Vladivostok, Russian Federation
| |
Collapse
|
14
|
Dual fluorescent immunochromatographic assay for simultaneous quantitative detection of citrinin and zearalenone in corn samples. Food Chem 2020; 336:127713. [PMID: 32768909 DOI: 10.1016/j.foodchem.2020.127713] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/30/2022]
Abstract
The presence of multiple mycotoxins in the agricultural products poses a serious threat to the health of humans and animals. Citrinin (CIT) causes slow growth in animals and damages the kidney function. Zearalenone (ZEN) causes chronic poisoning, abnormal functioning and even death in animals. Herein, a dual fluorescent immunochromatographic assay (DF-ICA) based on europium nanoparticles (EuNPs) was developed for the simultaneous detection of CIT and ZEN in the corn samples. After optimization, the limits of detection (LODs), IC50 and average recoveries for the simultaneous determination of CIT and ZEN were 0.06 and 0.11 ng/mL, 0.35 and 0.76 ng/mL, from 86.3% to 111.6% and from 86.6% to 114.4%, respectively. Moreover, the DF-ICA was validated by high performance liquid chromatography (HPLC) analyses, and a satisfactory consistency was obtained. In brief, this work demonstrates the feasibility of DF-ICA for simultaneous monitoring of CIT and ZEN in the corn samples.
Collapse
|
15
|
Nucleic acid lateral flow assay with recombinase polymerase amplification: Solutions for highly sensitive detection of RNA virus. Talanta 2020; 210:120616. [DOI: 10.1016/j.talanta.2019.120616] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022]
|
16
|
Label-Free Biosensors for Laboratory-Based Diagnostics of Infections: Current Achievements and New Trends. BIOSENSORS-BASEL 2020; 10:bios10020011. [PMID: 32059538 PMCID: PMC7169461 DOI: 10.3390/bios10020011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/30/2020] [Accepted: 02/08/2020] [Indexed: 01/16/2023]
Abstract
Infections pose a serious global public health problem and are a major cause of premature mortality worldwide. One of the most challenging objectives faced by modern medicine is timely and accurate laboratory-based diagnostics of infectious diseases. Being a key factor of timely initiation and success of treatment, it may potentially provide reduction in incidence of a disease, as well as prevent outbreak and spread of dangerous epidemics. The traditional methods of laboratory-based diagnostics of infectious diseases are quite time- and labor-consuming, require expensive equipment and qualified personnel, which restricts their use in case of limited resources. Over the past six decades, diagnostic technologies based on lateral flow immunoassay (LFIA) have been and remain true alternatives to modern laboratory analyzers and have been successfully used to quickly detect molecular ligands in biosubstrates to diagnose many infectious diseases and septic conditions. These devices are considered as simplified formats of modern biosensors. Recent advances in the development of label-free biosensor technologies have made them promising diagnostic tools that combine rapid pathogen indication, simplicity, user-friendliness, operational efficiency, accuracy, and cost effectiveness, with a trend towards creation of portable platforms. These qualities exceed the generally accepted standards of microbiological and immunological diagnostics and open up a broad range of applications of these analytical systems in clinical practice immediately at the site of medical care (point-of-care concept, POC). A great variety of modern nanoarchitectonics of biosensors are based on the use of a broad range of analytical and constructive strategies and identification of various regulatory and functional molecular markers associated with infectious bacterial pathogens. Resolution of the existing biosensing issues will provide rapid development of diagnostic biotechnologies.
Collapse
|
17
|
Xia J, Lu D, Liu Y, Ran M, Shang J, Bi L, Cao X. Prediction of premature rupture of membranes via simultaneous detection of procalcitonin and interleukin-6 by a SERS-based immunochromatographic assay. NEW J CHEM 2020. [DOI: 10.1039/d0nj03799k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The rapid and sensitive detection strip with two test lines was developed based on SERS for the early screening of PROM.
Collapse
Affiliation(s)
- Ji Xia
- The First Clinical College
- Dalian Medical University
- Dalian
- P. R. China
- Department of Obstetrics and Gynecology
| | - Dan Lu
- Institute of Translational Medicine
- Medical College
- Yangzhou University
- Yangzhou
- P. R. China
| | - Yifan Liu
- The First Clinical College
- Dalian Medical University
- Dalian
- P. R. China
- Department of Obstetrics and Gynecology
| | - Menglin Ran
- The First Clinical College
- Dalian Medical University
- Dalian
- P. R. China
- Department of Obstetrics and Gynecology
| | - Jiaowei Shang
- The First Clinical College
- Dalian Medical University
- Dalian
- P. R. China
| | - Liyan Bi
- Transformative Otology and Neuroscience Center
- College of Special Education
- Binzhou Medical University
- Yantai 264003
- P. R. China
| | - Xiaowei Cao
- Institute of Translational Medicine
- Medical College
- Yangzhou University
- Yangzhou
- P. R. China
| |
Collapse
|
18
|
Fu X, Wen J, Li J, Lin H, Liu Y, Zhuang X, Tian C, Chen L. Highly sensitive detection of prostate cancer specific PCA3 mimic DNA using SERS-based competitive lateral flow assay. NANOSCALE 2019; 11:15530-15536. [PMID: 31393497 DOI: 10.1039/c9nr04864b] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Accurate analysis of prostate cancer specific biomarkers plays an important role in the early diagnosis of prostate cancer. Traditional colorimetric lateral flow assay (LFA) has the limitations of low detection sensitivity and qualitative or semiquantitative detection. In this study, we developed a novel surface-enhanced Raman scattering (SERS)-based competitive LFA for the rapid and highly sensitive quantitative evaluation of prostate cancer antigen 3 (PCA3) mimic DNA. Herein, the competitive hybridization interaction with capture DNA between target PCA3 mimic DNA and reporter DNA-labeled SERS nanotags results in a change in the amount of SERS nanotags on the test line. The quantitative analysis of target PCA3 mimic DNA was realized by monitoring the Raman peak intensity of SERS nanotags on the test line. The limit of detection of PCA3 mimic DNA was estimated to be 3 fM, which is about three orders of magnitude more sensitive than that of a commercially available kit. By combining the outstanding characteristics of the well-established SERS-based competitive strategy and LFA platform, our design has strong potential for the early diagnosis of prostate cancer and other diseases.
Collapse
Affiliation(s)
- Xiuli Fu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Jiahui Wen
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Jingwen Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Hao Lin
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Yongming Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Xuming Zhuang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Chunyuan Tian
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|