1
|
Altalbawy FMA, Ali E, N Fenjan M, Fakri Mustafa Y, Mansouri S, D O B, Gulnikhol Idiyevna S, Misra N, Alawadi AH, Alsalamy A. Aptamer-Magnetic Nanoparticle Complexes for Powerful Biosensing: A Comprehensive Review. Crit Rev Anal Chem 2024:1-14. [PMID: 38165810 DOI: 10.1080/10408347.2023.2298328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The selective and sensitive diagnosis of diseases is a significant matter in the early stages of the cure of illnesses. To elaborate, although several types of probes have been broadly applied in clinics, magnetic nanomaterials-aptamers, as new-generation probes, are becoming more and more attractive. The presence of magnetic nanomaterials brings about quantification, purification, and quantitative analysis of biomedical, especially in complex samples. Elaborately, the superparamagnetic properties and numerous functionalized groups of magnetic nanomaterials are considered two main matters for providing separation ability and immobilization substrate, respectively. In addition, the selectivity and stability of aptamer can present a high potential recognition element. Importantly, the integration of aptamer and magnetic nanomaterials benefits can boost the performance of biosensors for biomedical analysis by introducing efficient and compact probes that need low patient samples and fast diagnosis, user-friendly application, and high repeatability in the quantification of biomolecules. The primary aim of this review is to suggest a summary of the effect of the employed other types of nanomaterials in the fabrication of novel aptasensors-based magnetic nanomaterials and to carefully explore various applications of these probes in the quantification of bioagents. Furthermore, the application of these versatile and high-potential probes in terms of the detection of cancer cells and biomarkers, proteins, drugs, bacteria, and nucleoside were discussed. Besides, research gaps and restrictions in the field of biomedical analysis by magnetic nanomaterials-aptamers will be discussed.
Collapse
Affiliation(s)
- Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza, Egypt
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Laboratory of Biophysics and Medical Technologies, Higher Institute of Medical Technologies of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Bokov D O
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | | | - Neeti Misra
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun, India
| | - Ahmed Hussien Alawadi
- Chemistry Department, The Islamic University, Najaf, Iraq
- Chemistry Department, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Chemistry Department, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- Chemistry Department, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
2
|
Basso CR, Crulhas BP, Castro GR, Pedrosa VA. Recent Advances in Functional Nanomaterials for Diagnostic and Sensing Using Self-Assembled Monolayers. Int J Mol Sci 2023; 24:10819. [PMID: 37445998 DOI: 10.3390/ijms241310819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 07/15/2023] Open
Abstract
Functional nanomaterials have attracted attention by producing different structures in any field. These materials have several potential applications, including medicine, electronics, and energy, which provide many unique properties. These nanostructures can be synthesized using various methods, including self-assembly, which can be used for the same applications. This unique nanomaterial is increasingly being used for biological detection due to its unique optical, electrical, and mechanical properties, which provide sensitive and specific sensors for detecting biomolecules such as DNA, RNA, and proteins. This review highlights recent advances in the field and discusses the fabrication and characterization of the corresponding materials, which can be further applied in optical, magnetic, electronic, and sensor fields.
Collapse
Affiliation(s)
| | - Bruno P Crulhas
- Institute of Bioscience, UNESP, Botucatu 18618-000, SP, Brazil
| | | | | |
Collapse
|
3
|
Kulabhusan PK, Pishva P, Çapkın E, Tambe P, Yüce M. Aptamer-based Emerging Tools for Viral Biomarker Detection: A Focus on SARS-CoV-2. Curr Med Chem 2023; 30:910-934. [PMID: 35156569 DOI: 10.2174/1568009622666220214101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/11/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
Viral infections can cause fatal illnesses to humans as well as animals. Early detection of viruses is therefore crucial to provide effective treatment to patients. Recently, the Covid-19 pandemic has undoubtedly given an alarming call to develop rapid and sensitive detection platforms. The viral diagnostic tools need to be fast, affordable, and easy to operate with high sensitivity and specificity equivalent or superior to the currently used diagnostic methods. The present detection methods include direct detection of viral antigens or measuring the response of antibodies to viral infections. However, the sensitivity and quantification of the virus are still a significant challenge. Detection tools employing synthetic binding molecules like aptamers may provide several advantages over the conventional methods that use antibodies in the assay format. Aptamers are highly stable and tailorable molecules and are therefore ideal for detection and chemical sensing applications. This review article discusses various advances made in aptamer-based viral detection platforms, including electrochemical, optical, and colorimetric methods to detect viruses, specifically SARS-Cov-2. Considering the several advantages, aptamers could be game-changing in designing high-throughput biosensors for viruses and other biomedical applications in the future.
Collapse
Affiliation(s)
- Prabir Kumar Kulabhusan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Parsa Pishva
- Sabanci University, Faculty of Engineering and Natural Sciences, Istanbul, 34956, Turkey
| | - Eda Çapkın
- Sabanci University, Faculty of Engineering and Natural Sciences, Istanbul, 34956, Turkey
| | - Prajakta Tambe
- Wellcome-- Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Meral Yüce
- Sabanci University, SUNUM Nanotechnology Research, and Application Centre, Istanbul, 34956, Turkey
| |
Collapse
|
4
|
Liu X, Chen X, Dong Y, Zhang C, Qu X, Lei Y, Jiang Z, Wei X. Multiple virus sorting based on aptamer-modified microspheres in a TSAW device. MICROSYSTEMS & NANOENGINEERING 2023; 9:64. [PMID: 37213822 PMCID: PMC10192341 DOI: 10.1038/s41378-023-00523-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/15/2023] [Accepted: 03/19/2023] [Indexed: 05/23/2023]
Abstract
Due to the overlapping epidemiology and clinical manifestations of flaviviruses, differential diagnosis of these viral diseases is complicated, and the results are unreliable. There is perpetual demand for a simplified, sensitive, rapid and inexpensive assay with less cross-reactivity. The ability to sort distinct virus particles from a mixture of biological samples is crucial for improving the sensitivity of diagnoses. Therefore, we developed a sorting system for the subsequent differential diagnosis of dengue and tick-borne encephalitis in the early stage. We employed aptamer-modified polystyrene (PS) microspheres with different diameters to specifically capture dengue virus (DENV) and tick-borne encephalitis virus (TBEV), and utilized a traveling surface acoustic wave (TSAW) device to accomplish microsphere sorting according to particle size. The captured viruses were then characterized by laser scanning confocal microscopy (LSCM), field emission scanning electron microscopy (FE-SEM) and reverse transcription-polymerase chain reaction (RT‒PCR). The characterization results indicated that the acoustic sorting process was effective and damage-free for subsequent analysis. Furthermore, the strategy can be utilized for sample pretreatment in the differential diagnosis of viral diseases.
Collapse
Affiliation(s)
- Xianglian Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xuan Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yangchao Dong
- Department of Microbiology, the Fourth Military Medical University, Xi’an, 710032 China
| | - Chuanyu Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xiaoli Qu
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yingfeng Lei
- Department of Microbiology, the Fourth Military Medical University, Xi’an, 710032 China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xueyong Wei
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| |
Collapse
|
5
|
Lou B, Liu Y, Shi M, Chen J, Li K, Tan Y, Chen L, Wu Y, Wang T, Liu X, Jiang T, Peng D, Liu Z. Aptamer-based biosensors for virus protein detection. Trends Analyt Chem 2022; 157:116738. [PMID: 35874498 PMCID: PMC9293409 DOI: 10.1016/j.trac.2022.116738] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023]
Abstract
Virus threatens life health seriously. The accurate early diagnosis of the virus is vital for clinical control and treatment of virus infection. Aptamers are small single-stranded oligonucleotides (DNAs or RNAs). In this review, we summarized aptasensors for virus detection in recent years according to the classification of the viral target protein, and illustrated common detection mechanisms in the aptasensors (colorimetry, fluorescence assay, surface plasmon resonance (SPR), surface-enhanced raman spectroscopy (SERS), electrochemical detection, and field-effect transistor (FET)). Furthermore, aptamers against different target proteins of viruses were summarized. The relationships between the different biomarkers of the viruses and the detection methods, and their performances were revealed. In addition, the challenges and future directions of aptasensors were discussed. This review will provide valuable references for constructing on-site aptasensors for detecting viruses, especially the SARS-CoV-2.
Collapse
Affiliation(s)
- Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Meilin Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Jun Chen
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Yuwei Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Xiaoqin Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Dongming Peng
- Department of Medicinal Chemistry, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China.,Molecular Imaging Research Center of Central South University, Changsha, 410008, Hunan, PR China
| |
Collapse
|
6
|
Liu Z, Tong Z, Wu Y, Liu B, Feng S, Mu X, Wang J, Du B, Xu J, Liu S. A New Method for Abrin Detection Based on the Interaction between Target Molecules and Fluorescently Labeled Aptamers on Magnetic Microspheres. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6977. [PMID: 36234322 PMCID: PMC9573059 DOI: 10.3390/ma15196977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
A quantitative structure-activity relationship (QSAR) model for the structure and affinity of abrin aptamers was established. A higher affinity abrin aptamer based on the established QSAR model was screened by site-directed mutagenesis. The fluorescence quenching effect between magnetic microspheres and fluorescent molecules was studied for the first time. A new method for abrin detection based on the interaction between target molecules and fluorescently labeled aptamers on magnetic microspheres was developed, with the detection limit of 5 ng mL-1. This method can overcome the influence of complex environmental interferents in abrin detection and can meet the analysis requirements for simulated samples such as water, soil, and food.
Collapse
|
7
|
Basso CR, Yamakawa AC, Cruz TF, Pedrosa VA, Magro M, Vianello F, Araújo Júnior JP. Colorimetric Kit for Rapid Porcine Circovirus 2 (PCV-2) Diagnosis. Pathogens 2022; 11:570. [PMID: 35631091 PMCID: PMC9147935 DOI: 10.3390/pathogens11050570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
The aim of the current study is to present a low-cost and easy-to-interpret colorimetric kit used to diagnose porcine circovirus 2 (PCV-2) to the naked eye, without any specific equipment. The aforementioned kit used as base hybrid nanoparticles resulting from the merge of surface active maghemite nanoparticles and gold nanoparticles, based on the deposition of specific PCV-2 antibodies on their surface through covalent bonds. In total, 10 negative and 40 positive samples (≥102 DNA copies/µL of serum) confirmed by qPCR technique were tested. PCV-1 virus, adenovirus, and parvovirus samples were tested as interferents to rule out likely false-positive results. Positive samples showed purple color when they were added to the complex, whereas negative samples showed red color; they were visible to the naked eye. The entire color-change process took place approximately 1 min after the analyzed samples were added to the complex. They were tested at different dilutions, namely pure, 1:10, 1:100, 1:1000, and 1:10,000. Localized surface plasmon resonance (LSPR) and transmission electron microscopy (TEM) images were generated to validate the experiment. This new real-time PCV-2 diagnostic methodology emerged as simple and economic alternative to traditional tests since the final price of the kit is USD 4.00.
Collapse
Affiliation(s)
- Caroline Rodrigues Basso
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (A.C.Y.); (T.F.C.); (J.P.A.J.)
| | - Ana Carolina Yamakawa
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (A.C.Y.); (T.F.C.); (J.P.A.J.)
| | - Taís Fukuta Cruz
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (A.C.Y.); (T.F.C.); (J.P.A.J.)
- Chemical and Biological Sciences Department, Bioscience Institute, São Paulo State University, Botucatu 18618-000, SP, Brazil;
| | - Valber Albuquerque Pedrosa
- Chemical and Biological Sciences Department, Bioscience Institute, São Paulo State University, Botucatu 18618-000, SP, Brazil;
| | - Massimiliano Magro
- Comparative Biomedicine and Food Science Department, University of Padua, 35020 Legnaro, Italy; (M.M.); (F.V.)
| | - Fabio Vianello
- Comparative Biomedicine and Food Science Department, University of Padua, 35020 Legnaro, Italy; (M.M.); (F.V.)
| | - João Pessoa Araújo Júnior
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (A.C.Y.); (T.F.C.); (J.P.A.J.)
- Chemical and Biological Sciences Department, Bioscience Institute, São Paulo State University, Botucatu 18618-000, SP, Brazil;
| |
Collapse
|
8
|
Aptamers-Diagnostic and Therapeutic Solution in SARS-CoV-2. Int J Mol Sci 2022; 23:ijms23031412. [PMID: 35163338 PMCID: PMC8836149 DOI: 10.3390/ijms23031412] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
The SARS-CoV-2 virus is currently the most serious challenge to global public health. Its emergence has severely disrupted the functioning of health services and the economic and social situation worldwide. Therefore, new diagnostic and therapeutic tools are urgently needed to allow for the early detection of the SARS-CoV-2 virus and appropriate treatment, which is crucial for the effective control of the COVID-19 disease. The ideal solution seems to be the use of aptamers—short fragments of nucleic acids, DNA or RNA—that can bind selected proteins with high specificity and affinity. They can be used in methods that base the reading of the test result on fluorescence phenomena, chemiluminescence, and electrochemical changes. Exploiting the properties of aptamers will enable the introduction of rapid, sensitive, specific, and low-cost tests for the routine diagnosis of SARS-CoV-2. Aptamers are excellent candidates for the development of point-of-care diagnostic devices and are potential therapeutic tools for the treatment of COVID-19. They can effectively block coronavirus activity in multiple fields by binding viral proteins and acting as carriers of therapeutic substances. In this review, we present recent developments in the design of various types of aptasensors to detect and treat the SARS-CoV-2 infection.
Collapse
|
9
|
Chen XF, Zhao X, Yang Z. Aptasensors for the detection of infectious pathogens: design strategies and point-of-care testing. Mikrochim Acta 2022; 189:443. [PMID: 36350388 PMCID: PMC9643942 DOI: 10.1007/s00604-022-05533-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
The epidemic of infectious diseases caused by contagious pathogens is a life-threatening hazard to the entire human population worldwide. A timely and accurate diagnosis is the critical link in the fight against infectious diseases. Aptamer-based biosensors, the so-called aptasensors, employ nucleic acid aptamers as bio-receptors for the recognition of target pathogens of interest. This review focuses on the design strategies as well as state-of-the-art technologies of aptasensor-based diagnostics for infectious pathogens (mainly bacteria and viruses), covering the utilization of three major signal transducers, the employment of aptamers as recognition moieties, the construction of versatile biosensing platforms (mostly micro and nanomaterial-based), innovated reporting mechanisms, and signal enhancement approaches. Advanced point-of-care testing (POCT) for infectious disease diagnostics are also discussed highlighting some representative ready-to-use devices to address the urgent needs of currently prevalent coronavirus disease 2019 (COVID-19). Pressing issues in aptamer-based technology and some future perspectives of aptasensors are provided for the implementation of aptasensor-based diagnostics into practical application.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China.
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China.
- Guangzhou Laboratory, Guangzhou, 510320, People's Republic of China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou, 510005, People's Republic of China.
| |
Collapse
|
10
|
|
11
|
Bukkitgar SD, Shetti NP, Aminabhavi TM. Electrochemical investigations for COVID-19 detection-A comparison with other viral detection methods. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 420:127575. [PMID: 33162783 PMCID: PMC7605744 DOI: 10.1016/j.cej.2020.127575] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/07/2020] [Accepted: 10/26/2020] [Indexed: 05/02/2023]
Abstract
Virus-induced infection such as SARS-CoV-2 is a serious threat to human health and the economic setback of the world. Continued advances in the development of technologies are required before the viruses undergo mutation. The low concentration of viruses in environmental samples makes the detection extremely challenging; simple, accurate and rapid detection methods are in urgent need. Of all the analytical techniques, electrochemical methods have the established capabilities to address the issues. Particularly, the integration of nanotechnology would allow miniature devices to be made available at the point-of-care. This review outlines the capabilities of electrochemical methods in conjunction with nanotechnology for the detection of SARS-CoV-2. Future directions and challenges of the electrochemical biosensors for pathogen detection are covered including wearable and conformal biosensors, detection of plant pathogens, multiplexed detection, and reusable biosensors for on-site monitoring, thereby providing low-cost and disposable biosensors.
Collapse
Key Words
- AIV H5N1, Avian influenza
- AIV, Avian influenza virus
- ASFV, African swine fever virus
- BVDV, Bovine viral diarrhea virus
- CGV, Chikungunya viruses
- CMV, Cucumber mosaic virus
- COVID-19
- CSFV, Classic swine fever virus
- CV, Cyclic voltammetry
- DAstV-1, Duck astrovirus 1
- DAstV-2, Duck astrovirus 2
- DENV, Dengue virus
- DEV, Duck enteritis virus
- DHAV-1, Duck hepatitis A virus 1
- DHAV-3, Duck hepatitis A virus 3
- DPV, Differential pulse voltammetry
- DRV-1, Duck reovirus 1
- DRV-2, Duck reovirus 2
- Detection
- EBV, Epstein-Barr virus
- EIS, Electric impedance spectroscopy
- EPC, External positive controls
- EV, Human enterovirus
- EV71, Human enterovirus 71
- Electrochemical sensor
- FMI SMOF, Fluorescence molecularly imprinted sensor based on a metal–organic framework
- GCE, Glassy carbon electrode
- GCFaV-1, Ginger chlorotic fleck associated virus 1
- GCFaV-2, Ginger chlorotic fleck-associated virus 2
- GEV VN-96, Gastroenteritis virus VN-96
- GPV, Goose parvovirus
- HHV, Human herpes virus 6
- HIAV, Human influenza A viruses
- HPB19, Human parvovirus B19
- HSV, Herpes simplex
- IAV, influenza A virus
- IEA, Interdigitated electrode array
- IMA, Interdigitated microelectrode array
- INAA, Isothermal nucleic acid amplification-based
- JEV, Japanese encephalitis virus
- LAMP, Loop-Mediated Isothermal Amplification
- LSV, Linear sweep voltammetry
- MERS, Middle East respiratory syndrome
- MIEC, Molecularly imprinted electrochemiluminescence
- MNV, Murine norovirus
- MeV, Measles virus
- NNV, Nervous necrosis virus
- Nanotechnology
- PBoV, Porcine bocavirus
- PCNAME, Pt-coated nanostructured alumina membrane electrode
- PCR
- PCRLFS, Polymerase Chain Reaction with a lateral flow strip with a lateral flow strip
- PCV, Porcine circovirus 3
- PEDV, Porcine epidemic diarrhoea virus
- PRRSV, porcine reproductive and respiratory syndrome virus
- PSV, Pseudorabies virus
- RCA, Rolling circle amplification
- RGO, Reduced graphene oxide
- RT-LAMP-VF, RT-LAMP and a vertical flow visualization strip
- RV, Rubella virus
- SARS, Severe acute respiratory syndrome
- SIVH1N1, Swine influenza virus
- SWV, Square wave voltammetry
- TGEV, transmissible gastroenteritis coronavirus
- TMUV, Tembusu virus
- USEGFET, Ultra-sensitive electrolyte-gated field-effect transistor
- VZV, Varicella-zoster virus
- VZV, varicella-Zoster virus
- Viruses
- ZV, Zika virus
Collapse
Affiliation(s)
- Shikandar D Bukkitgar
- Centre for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi 580030, Karnataka, India
| | - Nagaraj P Shetti
- Centre for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi 580030, Karnataka, India
| | - Tejraj M Aminabhavi
- Pharmaceutical Engineering, Soniya College of Pharmacy, Dharwad 580-007, India
| |
Collapse
|
12
|
Wan Q, Liu X, Zu Y. Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics 2021; 11:9133-9161. [PMID: 34522231 PMCID: PMC8419047 DOI: 10.7150/thno.61804] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
During an epidemic or pandemic, the primary task is to rapidly develop precise diagnostic approaches and effective therapeutics. Oligonucleotide aptamer-based pathogen detection assays and control therapeutics are promising, as aptamers that specifically recognize and block pathogens can be quickly developed and produced through simple chemical synthesis. This work reviews common aptamer-based diagnostic techniques for communicable diseases and summarizes currently available aptamers that target various pathogens, including the SARS-CoV-2 virus. Moreover, this review discusses how oligonucleotide aptamers might be leveraged to control pathogen propagation and improve host immune system responses. This review offers a comprehensive data source to the further develop aptamer-based diagnostics and therapeutics specific for infectious diseases.
Collapse
Affiliation(s)
| | | | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
13
|
Tian J, Liang Z, Hu O, He Q, Sun D, Chen Z. An electrochemical dual-aptamer biosensor based on metal-organic frameworks MIL-53 decorated with Au@Pt nanoparticles and enzymes for detection of COVID-19 nucleocapsid protein. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138553] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Navien TN, Yeoh TS, Anna A, Tang TH, Citartan M. Aptamers isolated against mosquito-borne pathogens. World J Microbiol Biotechnol 2021; 37:131. [PMID: 34240263 DOI: 10.1007/s11274-021-03097-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022]
Abstract
Mosquito-borne diseases are a major threat to public health. The shortcomings of diagnostic tools, especially those that are antibody-based, have been blamed in part for the rising annual morbidity and mortality caused by these diseases. Antibodies harbor a number of disadvantages that can be clearly addressed by aptamers as the more promising molecular recognition elements. Aptamers are defined as single-stranded DNA or RNA oligonucleotides generated by SELEX that exhibit high binding affinity and specificity against a wide variety of target molecules based on their unique structural conformations. A number of aptamers were developed against mosquito-borne pathogens such as Dengue virus, Zika virus, Chikungunya virus, Plasmodium parasite, Francisella tularensis, Japanese encephalitis virus, Venezuelan equine encephalitis virus, Rift Valley fever virus and Yellow fever virus. Intrigued by these achievements, we carry out a comprehensive overview of the aptamers developed against these mosquito-borne infectious agents. Characteristics of the aptamers and their roles in diagnostic, therapeutic as well as other applications are emphasized.
Collapse
Affiliation(s)
- Tholasi Nadhan Navien
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Tzi Shien Yeoh
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Andrew Anna
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | - Thean-Hock Tang
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
15
|
Hou Y, Zhu L, Hao H, Zhang Z, Ding C, Zhang G, Bi J, Yan S, Liu G, Hou H. A novel photoelectrochemical aptamer sensor based on rare-earth doped Bi2WO6 and Ag2S for the rapid detection of Vibrio parahaemolyticus. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Kim TH, Lee SW. Aptamers for Anti-Viral Therapeutics and Diagnostics. Int J Mol Sci 2021; 22:ijms22084168. [PMID: 33920628 PMCID: PMC8074132 DOI: 10.3390/ijms22084168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Viral infections cause a host of fatal diseases and seriously affect every form of life from bacteria to humans. Although most viral infections can receive appropriate treatment thereby limiting damage to life and livelihood with modern medicine and early diagnosis, new types of viral infections are continuously emerging that need to be properly and timely treated. As time is the most important factor in the progress of many deadly viral diseases, early detection becomes of paramount importance for effective treatment. Aptamers are small oligonucleotide molecules made by the systematic evolution of ligands by exponential enrichment (SELEX). Aptamers are characterized by being able to specifically bind to a target, much like antibodies. However, unlike antibodies, aptamers are easily synthesized, modified, and are able to target a wider range of substances, including proteins and carbohydrates. With these advantages in mind, many studies on aptamer-based viral diagnosis and treatments are currently in progress. The use of aptamers for viral diagnosis requires a system that recognizes the binding of viral molecules to aptamers in samples of blood, serum, plasma, or in virus-infected cells. From a therapeutic perspective, aptamers target viral particles or host cell receptors to prevent the interaction between the virus and host cells or target intracellular viral proteins to interrupt the life cycle of the virus within infected cells. In this paper, we review recent attempts to use aptamers for the diagnosis and treatment of various viral infections.
Collapse
Affiliation(s)
- Tae-Hyeong Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea;
| | - Seong-Wook Lee
- Department of Life Convergence, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Korea
- R&D Center, Rznomics Inc., Seongnam 13486, Korea
- Correspondence:
| |
Collapse
|
17
|
Colloidal Iron Oxide Formulation for Equine Hoof Disinfection. Animals (Basel) 2021; 11:ani11030766. [PMID: 33801981 PMCID: PMC8000413 DOI: 10.3390/ani11030766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 11/16/2022] Open
Abstract
The presence of bacteria of various origins on horse hoofs enables the onset of infections following trauma or even post-surgical wounds. Thus, the analysis of new antibacterial substances is of fundamental importance. In this study, the antibacterial efficacy of Iron Animals (IA), a stable colloidal suspension of iron oxide, organic acids, and detergents, was tested in vitro and in vivo. In vitro assays were performed to test the unspecific inhibitory effect of IA on both gram-positive and gram-negative bacteria monitoring the microorganism growth by spectrophotometry (optical density OD600) at 37 °C for 24 h. In vivo test consists on the quantification of the bacterial load in colony forming units per gram (CFU/g) of specimens collected from the frog region of the anterior hooves of 11 horses. Sampling followed the application of four disinfectant protocols consisting of two consecutive 3 min scrubs with 50 mL of 10% Povidone-iodine (PI) or 4% Chlorhexidine (CHx), with or without an additional application for 15 min of 10 mL of Iron Animals (PI+IA and CHx+IA). In vitro, IA completely suppressed the bacterial growth of all the tested microorganisms, resulting in effectiveness also against CHx-resistant bacteria, such as Staphylococcus aureus. In vivo, PI emerged as an ineffective protocol; CHx was effective in 18% of cases, but with the addition of IA (CHx + IA) its use emerged as the best disinfectant protocol for horse hoof, achieving the lowest bacterial load in 55% of cases. The addition of IA, after PI or CHx, improves the effectiveness of both disinfectants leading to the highest bactericidal activity in 82% of cases.
Collapse
|
18
|
Shrivastav AM, Cvelbar U, Abdulhalim I. A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun Biol 2021; 4:70. [PMID: 33452375 PMCID: PMC7810758 DOI: 10.1038/s42003-020-01615-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023] Open
Abstract
The proliferation and transmission of viruses has become a threat to worldwide biosecurity, as exemplified by the current COVID-19 pandemic. Early diagnosis of viral infection and disease control have always been critical. Virus detection can be achieved based on various plasmonic phenomena, including propagating surface plasmon resonance (SPR), localized SPR, surface-enhanced Raman scattering, surface-enhanced fluorescence and surface-enhanced infrared absorption spectroscopy. The present review covers all available information on plasmonic-based virus detection, and collected data on these sensors based on several parameters. These data will assist the audience in advancing research and development of a new generation of versatile virus biosensors.
Collapse
Affiliation(s)
- Anand M Shrivastav
- Department of Electrooptics and Photonics Engineering, School of Electrical and Computer Engineering, The Ilse-Katz Nanoscale and Technology Center, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Uroš Cvelbar
- Jožef Stefan Institute, Jamova cesta 30, SI-1000, Ljubljana, Slovenia.
| | - Ibrahim Abdulhalim
- Department of Electrooptics and Photonics Engineering, School of Electrical and Computer Engineering, The Ilse-Katz Nanoscale and Technology Center, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel.
| |
Collapse
|
19
|
Argondizzo APC, Silva D, Missailidis S. Application of Aptamer-Based Assays to the Diagnosis of Arboviruses Important for Public Health in Brazil. Int J Mol Sci 2020; 22:E159. [PMID: 33375234 PMCID: PMC7796157 DOI: 10.3390/ijms22010159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Arbovirus infections represent a global public health problem, and recent epidemics of yellow fever, dengue, and Zika have shown their critical importance in Brazil and worldwide. Whilst a major effort for vaccination programs has been in the spotlight, a number of aptamer approaches have been proposed in a complementary manner, offering the possibility of differential diagnosis between these arboviruses, which often present similar clinical symptoms, as well as the potential for a treatment option when no other alternative is available. In this review, we aim to provide a background on arbovirus, with a basic description of the main viral classes and the disease they cause, using the Brazilian context to build a comprehensive understanding of their role on a global scale. Subsequently, we offer an exhaustive revision of the diagnostic and therapeutic approaches offered by aptamers against arboviruses. We demonstrate how these promising reagents could help in the clinical diagnosis of this group of viruses, their use in a range of diagnostic formats, from biosensors to serological testing, and we give a short review on the potential approaches for novel aptamer-based antiviral treatment options against different arboviral diseases.
Collapse
Affiliation(s)
- Ana Paula Corrêa Argondizzo
- Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz, Av. Brasil, 4365-Rio de Janeiro/RJ CEP 21040-900, Brazil; (A.P.C.A.); (D.S.)
| | - Dilson Silva
- Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz, Av. Brasil, 4365-Rio de Janeiro/RJ CEP 21040-900, Brazil; (A.P.C.A.); (D.S.)
- Programa de Pós-Graduação em Ciências Médicas da Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 255-Rio de Janeiro/RJ-CEP 22783-127, Brazil
| | - Sotiris Missailidis
- Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz, Av. Brasil, 4365-Rio de Janeiro/RJ CEP 21040-900, Brazil; (A.P.C.A.); (D.S.)
| |
Collapse
|
20
|
Zhang L, Fang X, Liu X, Ou H, Zhang H, Wang J, Li Q, Cheng H, Zhang W, Luo Z. Discovery of sandwich type COVID-19 nucleocapsid protein DNA aptamers. Chem Commun (Camb) 2020; 56:10235-10238. [PMID: 32756614 DOI: 10.1039/d0cc03993d] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Here, we report for the first time DNA aptamers targeted toward the COVID-19 nucleocapsid protein (Np). Np is one of the most abundant structural proteins and it serves as a diagnostic marker for the accurate and sensitive detection of COVID-19. After five rounds of selection, we obtained four DNA sequences with an affinity below 5 nM. The best one displayed a superb binding performance toward Np with a Kd value of 0.49 nM. Interestingly, we found that the four pairs of aptamers could bind to Np successively, suggesting a sandwich-type interaction. Using these sandwiched aptamers in ELISA and colloidal gold immunochromatographic strips, we were able to detect Np at the tens of pM level. The results demonstrate that aptamers are powerful molecular tools for virus detection, diagnosis, and antiviral therapy.
Collapse
Affiliation(s)
- Liyun Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300350, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wu CC, Yen HY, Lai LT, Perng GC, Lee CR, Wu SJ. A Label-Free Impedimetric Genosensor for the Nucleic Acid Amplification-Free Detection of Extracted RNA of Dengue Virus. SENSORS 2020; 20:s20133728. [PMID: 32635293 PMCID: PMC7374514 DOI: 10.3390/s20133728] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/26/2022]
Abstract
Developing rapid and sensitive diagnostic methods for dengue virus (DENV) infection is of prime priority because DENV infection is the most prevalent mosquito-borne viral disease. This work proposes an electrochemical impedance spectroscopy (EIS)-based genosensor for the label-free and nucleic acid amplification-free detection of extracted DENV RNA intended for a sensitive diagnosis of DENV infection. A concentration ratio of 0.04 mM 6-mercaptohexanoic acid (MHA) to 1 mM 6-mercapto-1-hexanol (MCH) was selected to modify thin-film gold electrodes as a link to control the coverage of self-designed probe DNA (pDNA) at a density of 4.5 ± 0.4 × 1011 pDNA/cm2. The pDNA/MHA/MCH-modified genosensors are proven to improve the hybridization efficiency of a synthetic 160-mer target DNA (160mtDNA) with a 140-mer electrode side overhang as compared to other MHA/MCH ratio-modified genosensors. The MHA(0.04 mM)/MCH(1 mM)-modified genosensors also present good hybridization efficiency with the extracted DENV serotype 1 (DENV1) RNA samples, having the same electrode side overhangs with the 160mtDNA, showing a low detection limit of 20 plaque forming units (PFU)/mL, a linear range of 102–105 PFU/mL and good selectivity for DENV1. The pDNA density-controlled method has great promise to construct sensitive genosensors based on the hybridization of extracted DENV nucleic acids.
Collapse
Affiliation(s)
- Ching-Chou Wu
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (H.-Y.Y.); (L.-T.L.)
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan
- Correspondence: ; Tel.: +886-4-2285-1268
| | - Hao-Yu Yen
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (H.-Y.Y.); (L.-T.L.)
| | - Lu-Ting Lai
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (H.-Y.Y.); (L.-T.L.)
| | - Guey-Chuen Perng
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, No.1, University Rd., Tainan City 701, Taiwan;
| | - Cheng-Rei Lee
- Viral & Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA; (C.-R.L.); (S.-J.W.)
| | - Shuenn-Jue Wu
- Viral & Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA; (C.-R.L.); (S.-J.W.)
| |
Collapse
|
22
|
Detection of pathogenic bacteria via nanomaterials-modified aptasensors. Biosens Bioelectron 2019; 150:111933. [PMID: 31818764 DOI: 10.1016/j.bios.2019.111933] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/13/2019] [Accepted: 11/26/2019] [Indexed: 01/17/2023]
Abstract
Detection and identification of special cells via aptamer-based nano-conjugates sensors have been revolutionized over the past few years. These sensing platforms rely on selecting aptamers using systematic evolution of ligands by exponential enrichment (SELEX) in vitro, which allows for sensitive detection of cells. Integration of the aptamer-based sensors (aptasensors) with nanomaterials offers enhanced specificity and sensitivity, which in turn, offers great promise for numerous applications, spanning from bioanalysis to biomedical applications. Accordingly, the demand for using aptamer-conjugated nanomaterials for various applications has progressively increased over the past years. In light of this, this Review seeks to highlight the recent advances in the development of aptamer-conjugated nanomaterials and their utilization for the detection of various pathogens involved in infectious diseases and food contamination.
Collapse
|
23
|
Bare Iron Oxide Nanoparticles: Surface Tunability for Biomedical, Sensing and Environmental Applications. NANOMATERIALS 2019; 9:nano9111608. [PMID: 31726776 PMCID: PMC6915624 DOI: 10.3390/nano9111608] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022]
Abstract
Surface modification is widely assumed as a mandatory prerequisite for the real applicability of iron oxide nanoparticles. This is aimed to endow prolonged stability, electrolyte and pH tolerance as well as a desired specific surface chemistry for further functionalization to these materials. Nevertheless, coating processes have negative consequences on the sustainability of nanomaterial production contributing to high costs, heavy environmental impact and difficult scalability. In this view, bare iron oxide nanoparticles (BIONs) are arousing an increasing interest and the properties and advantages of pristine surface chemistry of iron oxide are becoming popular among the scientific community. In the authors’ knowledge, rare efforts were dedicated to the use of BIONs in biomedicine, biotechnology, food industry and environmental remediation. Furthermore, literature lacks examples highlighting the potential of BIONs as platforms for the creation of more complex nanostructured architectures, and emerging properties achievable by the direct manipulation of pristine iron oxide surfaces have been little studied. Based on authors’ background on BIONs, the present review is aimed at providing hints on the future expansion of these nanomaterials emphasizing the opportunities achievable by tuning their pristine surfaces.
Collapse
|