1
|
Xu G, Zhang Q, Cheng R, Qu J, Li W. Survival strategies of cancer cells: the role of macropinocytosis in nutrient acquisition, metabolic reprogramming, and therapeutic targeting. Autophagy 2025:1-26. [PMID: 39817564 DOI: 10.1080/15548627.2025.2452149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
Macropinocytosis is a nonselective form of endocytosis that allows cancer cells to largely take up the extracellular fluid and its contents, including nutrients, growth factors, etc. We first elaborate meticulously on the process of macropinocytosis. Only by thoroughly understanding this entire process can we devise targeted strategies against it. We then focus on the central role of the MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) in regulating macropinocytosis, highlighting its significance as a key signaling hub where various pathways converge to control nutrient uptake and metabolic processes. The article covers a comprehensive analysis of the literature on the molecular mechanisms governing macropinocytosis, including the initiation, maturation, and recycling of macropinosomes, with an emphasis on how these processes are hijacked by cancer cells to sustain their growth. Key discussions include the potential therapeutic strategies targeting macropinocytosis, such as enhancing drug delivery via this pathway, inhibiting macropinocytosis to starve cancer cells, blocking the degradation and recycling of macropinosomes, and inducing methuosis - a form of cell death triggered by excessive macropinocytosis. Targeting macropinocytosis represents a novel and innovative approach that could significantly advance the treatment of cancers that rely on this pathway for survival. Through continuous research and innovation, we look forward to developing more effective and safer anti-cancer therapies that will bring new hope to patients.Abbreviation: AMPK: AMP-activated protein kinase; ASOs: antisense oligonucleotides; CAD: carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase; DC: dendritic cell; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; ERBB2: erb-b2 receptor tyrosine kinase 2; ESCRT: endosomal sorting complex required for transport; GAP: GTPase-activating protein; GEF: guanine nucleotide exchange factor; GRB2: growth factor receptor bound protein 2; LPP: lipopolyplex; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; NSCLC: non-small cell lung cancer; PADC: pancreatic ductal adenocarcinoma; PDPK1: 3-phosphoinositide dependent protein kinase 1; PI3K: phosphoinositide 3-kinase; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns(3,4,5)P3: phosphatidylinositol-(3,4,5)-trisphosphate; PtdIns(4,5)P2: phosphatidylinositol-(4,5)-bisphosphate; PTT: photothermal therapies; RAC1: Rac family small GTPase 1; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; RTKs: receptor tyrosine kinases; SREBF: sterol regulatory element binding transcription factor; TFEB: transcription factor EB; TNBC: triple-negative breast cancer; TSC2: TSC complex subunit 2; ULK1: unc-51 like autophagy activating kinase 1; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Guoshuai Xu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Qinghong Zhang
- Emergency Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Renjia Cheng
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang, Liaoning, China
| | - Jun Qu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Wenqiang Li
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
2
|
Li DL, Wu WL, Liu HP. CqProfilin enhances WSSV infection by promoting viral intracellular transport through binding to both viral nucleocapsid and actin cytoskeleton. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105281. [PMID: 39427863 DOI: 10.1016/j.dci.2024.105281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
White spot syndrome virus (WSSV) is a large nuclear-replicating DNA virus of crustaceans such as shrimp and crayfish; however, the molecular mechanisms facilitating its transport from the invasion site to the cell nucleus have not yet been well elucidated. In this study, a CqProfilin (CqPFN) with a conserved PROF domain was identified from the red claw crayfish Cherax quadricarinatus. CqPFN was ubiquitously expressed in all examined tissues and hemocyte, with the highest levels in the hemocyte, followed by hematopoietic tissue (Hpt) from which the hemocyte were derived in crayfish. The transcript of WSSV genes such as IE1 and VP28 was obviously decreased both in vivo in hemocyte and Hpt, as well as in vitro in cultured Hpt cells, after CqPFN gene silencing; in contrast, the expression of viral genes was significantly increased by the introduction of a recombinant CqPFN protein in Hpt cells in vitro. Moreover, CqPFN was clearly colocalized with the main viral nucleocapsid protein VP664 and F-actin cytoskeleton, respectively, during the early stage of WSSV infection in Hpt cells. In addition, CqPFN was confirmed to interact with a truncated VP6642,405-2,535 and another viral nucleocapsid protein VP15 of WSSV and Cqβ-Actin from Hpt by co-immunoprecipitation assays. Further studies found that VP664 also colocalized with F-actin in the Hpt cell cytoplasm after WSSV infection, suggesting that the actin cytoskeleton was involved in the intracellular transport of incoming viral nucleocapsid. Taken together, CqPFN might combine with the actin cytoskeleton to promote WSSV infection through binding with viral nucleocapsid proteins VP664 and VP15, promoting intracellular transport of viral incoming nucleocapsid for further releasing genome into the nucleus for transcription. Collectively, these results provided an understanding of the WSSV pathogenesis, which will contribute to the development of an antiviral strategy against WSSV disease.
Collapse
Affiliation(s)
- Dong-Li Li
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Wen-Lin Wu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China.
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center Qingdao, China.
| |
Collapse
|
3
|
Zhang C, Huang Q, Ford NC, Limjunyawong N, Lin Q, Yang F, Cui X, Uniyal A, Liu J, Mahabole M, He H, Wang X, Duff I, Wang Y, Wan J, Zhu G, Raja SN, Jia H, Yang D, Dong X, Cao X, Tseng SC, He S, Guan Y. Human birth tissue products as a non-opioid medicine to inhibit post-surgical pain. eLife 2024; 13:RP101269. [PMID: 39671234 PMCID: PMC11643635 DOI: 10.7554/elife.101269] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
Pain after surgery causes significant suffering. Opioid analgesics cause severe side effects and accidental death. Therefore, there is an urgent need to develop non-opioid therapies for managing post-surgical pain. Local application of Clarix Flo (FLO), a human amniotic membrane (AM) product, attenuated established post-surgical pain hypersensitivity without exhibiting known side effects of opioid use in mice. This effect was achieved through direct inhibition of nociceptive dorsal root ganglion (DRG) neurons via CD44-dependent pathways. We further purified the major matrix component, the heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) from human AM that has greater purity and water solubility than FLO. HC-HA/PTX3 replicated FLO-induced neuronal and pain inhibition. Mechanistically, HC-HA/PTX3-induced cytoskeleton rearrangements to inhibit sodium current and high-voltage activated calcium current on nociceptive DRG neurons, suggesting it is a key bioactive component mediating pain relief. Collectively, our findings highlight the potential of naturally derived biologics from human birth tissues as an effective non-opioid treatment for post-surgical pain. Moreover, we unravel the underlying neuronal mechanisms of pain inhibition induced by FLO and HC-HA/PTX3.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Neil C Ford
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Nathachit Limjunyawong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Qing Lin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Fei Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Xiang Cui
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Ankit Uniyal
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Jing Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | | | - Hua He
- BioTissue, IncMiamiUnited States
| | - Xuewei Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Department of Orthopaedic Surgery, Johns Hopkins UniversityBaltimoreUnited States
| | - Irina Duff
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Yiru Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Guangwu Zhu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Srinivasa N Raja
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Hongpeng Jia
- Department of Surgery, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Dazhi Yang
- Acrogenic Technologies IncRockvilleUnited States
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins UniversityBaltimoreUnited States
| | | | - Shaoqiu He
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of MedicineBaltimoreUnited States
- Department of Neurological Surgery, Johns Hopkins University, School of MedicineBaltimoreUnited States
| |
Collapse
|
4
|
Shi T, Zhou Z, Xiang T, Suo Y, Shi X, Li Y, Zhang P, Dai J, Sheng L. Cytoskeleton dysfunction of motor neuron in spinal muscular atrophy. J Neurol 2024; 272:19. [PMID: 39666039 PMCID: PMC11638312 DOI: 10.1007/s00415-024-12724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deletions or mutations of survival of motor neuron 1 (SMN1) gene. To date, the mechanism of selective cell death of motor neurons as a hallmark of SMA is still unclear. The severity of SMA is dependent on the amount of survival motor neuron (SMN) protein, which is an essential and ubiquitously expressed protein involved in various cellular processes including regulation of cytoskeletal dynamics. In this review, we discuss the effect of SMN ablation on cytoskeleton organization including actin dynamics, growth cone formation, axonal stability, neurite outgrowth, microtubule stability, synaptic vesicle dynamics and neurofilament protein release in SMA. We also summarized a list of critical proteins such as profilin-2 (PFN2), plastin-3 (PLS3), stathmin-1 (STMN1), microtubule-associated protein 1B (MAP1B) and neurofilament which play an important role in modulating cytoskeleton in SMA. Our aim is to highlight how cytoskeletal defects contribute to motor neuron degeneration in SMA disease progression and concentrating on cytoskeleton dynamics may be a promising approach to develop new therapy or biomarker.
Collapse
Affiliation(s)
- Tianyu Shi
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Zijie Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Taiyang Xiang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Yinxuan Suo
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Xiaoyan Shi
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu, China
| | - Yaoyao Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Jun Dai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China.
| | - Lei Sheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
5
|
Pham TTD, Thai QM, Tuyen PNK, Phung HTT, Ngo ST. Computational discovery of tripeptide inhibitors targeting monkeypox virus A42R profilin-like protein. J Mol Graph Model 2024; 132:108837. [PMID: 39098150 DOI: 10.1016/j.jmgm.2024.108837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Monkeypox is an infectious disease caused by the monkeypox virus (MPXV), a member of the Orthopoxvirus genus closely related to smallpox. The structure of the A42R profilin-like protein is the first and only available structure among MPXV proteins. Biochemical studies of A42R were conducted in the 1990s and later work also analyzed the protein's function in viral replication in cells. This study aims to screen tripeptides for their potential inhibition of the A42R profilin-like protein using computational methods, with implications for MPXV therapy. A total of 8000 tripeptides underwent molecular docking simulations, resulting in the identification of 20 compounds exhibiting strong binding affinity to A42R. To validate the docking results, molecular dynamics simulations and free energy perturbation calculations were performed. These analyses revealed two tripeptides with sequences TRP-THR-TRP and TRP-TRP-TRP, which displayed robust binding affinity to A42R. Markedly, electrostatic interactions predominated over van der Waals interactions in the binding process between tripeptides and A42R. Three A42R residues, namely Glu9, Ser12, and Arg38, appear to be pivotal in mediating the interaction between A42R and the tripeptide ligands. Notably, tripeptides containing two or three tryptophan residues demonstrate a pronounced binding affinity, with the tripeptide comprising three tryptophan amino acids showing the highest level of affinity. These findings offer valuable insights for the selection of compounds sharing a similar structure and possessing a high affinity for A42R, potentially capable of inhibiting its enzyme activity. The study highlights a structural advantage and paves the way for the development of targeted therapies against MPXV infections.
Collapse
Affiliation(s)
- Thi-Thuy-Duong Pham
- Faculty of Environment, Saigon University, 273 An Duong Vuong, Ward 3, District 5, Ho Chi Minh City, 70000, Viet Nam
| | - Quynh Mai Thai
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Pham Nguyen Kim Tuyen
- Faculty of Environment, Saigon University, 273 An Duong Vuong, Ward 3, District 5, Ho Chi Minh City, 70000, Viet Nam
| | - Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Son Tung Ngo
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
6
|
Mahin A, Chikmagalur Ravindra S, Ramesh P, Naik P, Raju R, Keshava Prasad TS, Abhinand CS. Unveiling Actin Cytoskeleton Role in Mediating Chikungunya-Associated Arthritis: An Integrative Proteome-Metabolome Study. Vector Borne Zoonotic Dis 2024; 24:753-762. [PMID: 38717066 DOI: 10.1089/vbz.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Background: Chikungunya is a zoonotic disease caused by the Chikungunya virus (CHIKV), primarily transmitted to humans through infected Aedes mosquitoes. The infection is characterized by symptoms such as high fever, musculoskeletal pain, polyarthritis, and a rash, which can lead to severe complications such as encephalitis, meningitis, and even fatalities. While many disease manifestations resemble those of other viral infections, chronic arthritis caused by CHIKV is unique, and its molecular mechanisms remain ill-defined. Materials and Methods: Proteomics data from both cellular and patient levels of CHIKV infection were curated from PubMed and screened using inclusion and exclusion criteria. Patient serum proteomics data obtained from PRIDE underwent reanalysis using Proteome Discoverer 2.2. Enrichment and protein-protein interaction network analysis were conducted on differentially expressed proteins from both serum and cellular datasets. Metabolite data from CHIKV-infected patients were further retrieved, and their protein binding partners were identified using BindingDB. The protein-metabolite interaction pathway was further developed using MetaboAnalyst. Results: The proteomics data analysis revealed differential expression of proteins involved in critical host mechanisms, such as cholesterol metabolism and mRNA splicing, during CHIKV infection. Consistent upregulation of two actin cytoskeleton proteins, TAGLN2 and PFN1, was noted in both serum and cellular datasets, and their upregulations are associated with arthritis. Furthermore, alterations in purine metabolism were observed in the integrative proteome-metabolome analysis, correlating with cytoskeletal remodelling. Conclusion: Collectively, this integrative view sheds light on the involvement of actin cytoskeleton remodeling proteins and purine metabolic pathways in the development of arthritis during CHIKV infection.
Collapse
Affiliation(s)
- Althaf Mahin
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to Be University), Mangalore, India
| | - Sourav Chikmagalur Ravindra
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to Be University), Mangalore, India
- Department of Biosciences, Mangalore University, Mangalore, India
| | - Poornima Ramesh
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to Be University), Mangalore, India
| | - Prashantha Naik
- Department of Biosciences, Mangalore University, Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, India
| | | | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to Be University), Mangalore, India
| |
Collapse
|
7
|
Musso G, Bello L, Capece G, Bozzoni V, Caumo L, Sabbatini D, Zangaro V, Sogus E, Cosma C, Petrosino A, Sorarù G, Plebani M, Pegoraro E. Neurofilament light chain and profilin-1 dynamics in 30 spinal muscular atrophy type 3 patients treated with nusinersen. Eur J Neurol 2024; 31:e16393. [PMID: 38924263 DOI: 10.1111/ene.16393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND PURPOSE The aim was to investigate whether neurofilament light chain (NfL) and profilin-1 (PFN-1) might qualify as surrogate disease and treatment-response biomarkers by correlating their concentrations dynamic with clinical status in a cohort of 30 adult spinal muscular atrophy type 3 patients during nusinersen therapy up to 34 months. METHODS Neurofilament light chain was measured in cerebrospinal fluid at each drug administration with a commercial enzyme-linked immunosorbent assay (ELISA); PFN-1 concentrations were tested in serum sampled at the same time points with commercial ELISA assays. Functional motor scores were evaluated at baseline, at the end of the loading phase and at each maintenance dose and correlated to biomarker levels. The concurrent effect of age and clinical phenotype was studied. RESULTS Neurofilament light chain levels were included in the reference ranges at baseline; a significant increase was measured during loading phase until 1 month. PFN-1 was higher at baseline than in controls and then decreased during therapy until reaching control levels. Age had an effect on NfL but not on PFN-1. NfL was partially correlated to functional scores at baseline and at last time point, whilst no correlation was found for PFN-1. CONCLUSION Cerebrospinal fluid NfL levels did not qualify as an optimal surrogate treatment biomarker in adult spinal muscular atrophy patients with a long disease duration, whilst PFN-1 might to a greater extent represent lower motor neuron pathological processes. The observed biomarker level variation during the first 2 months of nusinersen treatment might suggest a limited effect on axonal remodeling or rearrangement.
Collapse
Affiliation(s)
- G Musso
- Department of Medicine, University of Padova, Padova, Italy
- Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - L Bello
- Department of Neurosciences, University of Padova, Padova, Italy
| | - G Capece
- Department of Neurosciences, University of Padova, Padova, Italy
| | - V Bozzoni
- Department of Neurosciences, University of Padova, Padova, Italy
| | - L Caumo
- Department of Neurosciences, University of Padova, Padova, Italy
| | - D Sabbatini
- Department of Neurosciences, University of Padova, Padova, Italy
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padova, Italy
| | - V Zangaro
- Department of Neurosciences, University of Padova, Padova, Italy
| | - E Sogus
- Department of Neurosciences, University of Padova, Padova, Italy
| | - C Cosma
- Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - A Petrosino
- Department of Neurosciences, University of Padova, Padova, Italy
| | - G Sorarù
- Department of Neurosciences, University of Padova, Padova, Italy
| | - M Plebani
- Department of Medicine, University of Padova, Padova, Italy
- Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - E Pegoraro
- Department of Neurosciences, University of Padova, Padova, Italy
| |
Collapse
|
8
|
Zhang C, Huang Q, Ford NC, Limjunyawong N, Lin Q, Yang F, Cui X, Uniyal A, Liu J, Mahabole M, He H, Wang XW, Duff I, Wang Y, Wan J, Zhu G, Raja SN, Jia H, Yang D, Dong X, Cao X, Tseng SC, He SQ, Guan Y. Human birth tissue products as a non-opioid medicine to inhibit post-surgical pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.19.594874. [PMID: 38826432 PMCID: PMC11142121 DOI: 10.1101/2024.05.19.594874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Pain after surgery causes significant suffering. Opioid analgesics cause severe side effects and accidental death. Therefore, there is an urgent need to develop non-opioid therapies for managing post-surgical pain. Local application of Clarix Flo (FLO), a human amniotic membrane (AM) product, attenuated established post-surgical pain hypersensitivity without exhibiting known side effects of opioid use in mice. This effect was achieved through direct inhibition of nociceptive dorsal root ganglion (DRG) neurons via CD44-dependent pathways. We further purified the major matrix component, the heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) from human AM that has greater purity and water solubility than FLO. HC-HA/PTX3 replicated FLO-induced neuronal and pain inhibition. Mechanistically, HC-HA/PTX3 induced cytoskeleton rearrangements to inhibit sodium current and high-voltage activated calcium current on nociceptive neurons, suggesting it is a key bioactive component mediating pain relief. Collectively, our findings highlight the potential of naturally derived biologics from human birth tissues as an effective non-opioid treatment for post-surgical pain. Moreover, we unravel the underlying mechanisms of pain inhibition induced by FLO and HC-HA/PTX3.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Neil C. Ford
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Nathachit Limjunyawong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Qing Lin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Fei Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Xiang Cui
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Ankit Uniyal
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Jing Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | | | - Hua He
- BioTissue, Inc., Miami, Florida, USA
| | - Xue-Wei Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Orthopaedic Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Irina Duff
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Yiru Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Guangwu Zhu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Srinivasa N Raja
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Hongpeng Jia
- Department of Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Dazhi Yang
- Acrogenic Technologies Inc., Rockville, Maryland, 20847, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | | | - Shao-Qiu He
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurological Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
9
|
Qin S, Gao K, Tian Z. Comprehensive characterization of differential glycation in hepatocellular carcinoma using tissue proteomics with stable isotopic labeling. Anal Bioanal Chem 2024; 416:4531-4541. [PMID: 38922433 DOI: 10.1007/s00216-024-05392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
Glycation is a non-enzymatic posttranslational modification coming from the reaction between reducing sugars and free amino groups in proteins, where early glycation products (fructosyl-lysine, FL) and advanced glycation end products (AGEs) are formed. The occurrence of glycation and accumulation of AGEs have been closely associated with hepatocellular carcinoma (HCC). Here, we reported the characterization of differential glycation in HCC using tissue proteomics with stable isotopic labeling; early glycation-modified peptides were enriched with boronate affinity chromatography (BAC), and AGEs-modified peptides were fractionated with basic reversed-phase separation. By this integrated approach, 3717 and 1137 early and advanced glycated peptides corresponding to 4007 sites on 1484 proteins were identified with a false discovery rate (FDR) of no more than 1%. One hundred fifty-five sites were modified with both early and advanced end glycation products. Five early and 7 advanced glycated peptides were quantified to be differentially expressed in HCC tissues relative to paired adjacent tissues. Most (8 out of 10) of the proteins corresponding to the differential glycated peptides have previously been reported with dysregulation in HCC. The results together may deepen our knowledge of glycation as well as provide insights for therapeutics.
Collapse
Affiliation(s)
- Shanshan Qin
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Ke Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
10
|
Yuan Z, Li P, Yang X, Cai X, Wu L, Zhao F, Wen W, Zhou M, Hou Y. FgPfn participates in vegetative growth, sexual reproduction, pathogenicity, and fungicides sensitivity via affecting both microtubules and actin in the filamentous fungus Fusarium graminearum. PLoS Pathog 2024; 20:e1012215. [PMID: 38701108 PMCID: PMC11095717 DOI: 10.1371/journal.ppat.1012215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/15/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum species complexes (FGSG), is an epidemic disease in wheat and poses a serious threat to wheat production and security worldwide. Profilins are a class of actin-binding proteins that participate in actin depolymerization. However, the roles of profilins in plant fungal pathogens remain largely unexplored. Here, we identified FgPfn, a homolog to profilins in F. graminearum, and the deletion of FgPfn resulted in severe defects in mycelial growth, conidia production, and pathogenicity, accompanied by marked disruptions in toxisomes formation and deoxynivalenol (DON) transport, while sexual development was aborted. Additionally, FgPfn interacted with Fgα1 and Fgβ2, the significant components of microtubules. The organization of microtubules in the ΔFgPfn was strongly inhibited under the treatment of 0.4 μg/mL carbendazim, a well-known group of tubulin interferers, resulting in increased sensitivity to carbendazim. Moreover, FgPfn interacted with both myosin-5 (FgMyo5) and actin (FgAct), the targets of the fungicide phenamacril, and these interactions were reduced after phenamacril treatment. The deletion of FgPfn disrupted the normal organization of FgMyo5 and FgAct cytoskeleton, weakened the interaction between FgMyo5 and FgAct, and resulting in increased sensitivity to phenamacril. The core region of the interaction between FgPfn and FgAct was investigated, revealing that the integrity of both proteins was necessary for their interaction. Furthermore, mutations in R72, R77, R86, G91, I101, A112, G113, and D124 caused the non-interaction between FgPfn and FgAct. The R86K, I101E, and D124E mutants in FgPfn resulted in severe defects in actin organization, development, and pathogenicity. Taken together, this study revealed the role of FgPfn-dependent cytoskeleton in development, DON production and transport, fungicides sensitivity in F. graminearum.
Collapse
Affiliation(s)
- Zhili Yuan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pengfei Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xin Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaowei Cai
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Luoyu Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Feifei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weidong Wen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Ugurel E, Narimanfar G, Cilek N, Kesim C, Altan C, Sahin A, Yalcin O. Platelet Proteome Reveals Novel Targets for Hypercoagulation in Pseudoexfoliation Syndrome. Int J Mol Sci 2024; 25:1403. [PMID: 38338682 PMCID: PMC10855978 DOI: 10.3390/ijms25031403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 02/12/2024] Open
Abstract
Pseudoexfoliation syndrome (PEX) is characterized by the accumulation of abnormal extracellular matrix material in ocular and non-ocular tissues, including blood vessel walls. Clot-forming dysfunction might be responsible for venous thrombosis in PEX. We investigated global coagulation, the proteome, and functions of platelets in PEX patients and aimed to determine prognostic biomarkers for thrombosis risk in PEX. Peripheral blood was collected from PEX and retinal vein occlusion (RVO) patients, and age-sex matched controls. Viscoelastic hemostasis was evaluated by rotational thromboelastometry (ROTEM). Platelet markers (CD41, CD42, CD61, and CD62p) and endothelial markers (P-selectin, E-selectin, and von Willebrand factor) were investigated by flow cytometry and ELISA, respectively. The platelet proteome was analyzed by 2D fluorescence difference gel electrophoresis followed by mass spectrometry. Clot formation time (CFT) is significantly reduced in PEX patients compared to the controls (p < 0.05). P-selectin levels were higher in PEX patients than in controls (p < 0.05); E-selectin and von Willebrand factor remained unchanged. The monitorization of CFT by ROTEM, and soluble P-selectin, may help assess thrombotic risk in PEX patients. Proteomic analysis revealed differential expression of Profilin-1 in platelets. Profilin-1 regulates the stability of actin-cytoskeleton and may contribute to impaired platelet hemostatic functions. Increased P-selectin levels together with impaired coagulation dynamics might be responsible for the thrombotic events in PEX disease.
Collapse
Affiliation(s)
- Elif Ugurel
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul 34450, Turkey; (E.U.); (G.N.); (N.C.)
- Department of Physiology, School of Medicine, Koc University, Istanbul 34450, Turkey
| | - Ghazal Narimanfar
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul 34450, Turkey; (E.U.); (G.N.); (N.C.)
| | - Neslihan Cilek
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul 34450, Turkey; (E.U.); (G.N.); (N.C.)
- Department of Physiology, School of Medicine, Koc University, Istanbul 34450, Turkey
| | - Cem Kesim
- Department of Ophthalmology, Koc University Medical School, Istanbul 34010, Turkey; (C.K.); (A.S.)
| | - Cigdem Altan
- Beyoglu Eye Training and Research Hospital, University of Health Sciences, Istanbul 34421, Turkey;
| | - Afsun Sahin
- Department of Ophthalmology, Koc University Medical School, Istanbul 34010, Turkey; (C.K.); (A.S.)
| | - Ozlem Yalcin
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul 34450, Turkey; (E.U.); (G.N.); (N.C.)
- Department of Physiology, School of Medicine, Koc University, Istanbul 34450, Turkey
| |
Collapse
|
12
|
Ying Y, Tao N, Zhang F, Wen X, Zhou M, Gao J. Thymosin β4 Regulates the Differentiation of Thymocytes by Controlling the Cytoskeletal Rearrangement and Mitochondrial Transfer of Thymus Epithelial Cells. Int J Mol Sci 2024; 25:1088. [PMID: 38256161 PMCID: PMC10816181 DOI: 10.3390/ijms25021088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
The thymus is one of the most crucial immunological organs, undergoing visible age-related shrinkage. Thymic epithelial cells (TECs) play a vital role in maintaining the normal function of the thymus, and their degeneration is the primary cause of age-induced thymic devolution. Thymosin β4 (Tβ4) serves as a significant important G-actin sequestering peptide. The objective of this study was to explore whether Tβ4 influences thymocyte differentiation by regulating the cytoskeletal rearrangement and mitochondrial transfer of TECs. A combination of H&E staining, immunofluorescence, transmission electron microscopy, RT-qPCR, flow cytometry, cytoskeletal immunolabeling, and mitochondrial immunolabeling were employed to observe the effects of Tβ4 on TECs' skeleton rearrangement, mitochondrial transfer, and thymocyte differentiation. The study revealed that the Tβ4 primarily regulates the formation of microfilaments and the mitochondrial transfer of TECs, along with the formation and maturation of double-negative cells (CD4-CD8-) and CD4 single-positive cells (CD3+TCRβ+CD4+CD8-) thymocytes. This study suggests that Tβ4 plays a crucial role in thymocyte differentiation by influencing the cytoskeletal rearrangement and mitochondrial transfer of TECs. These effects may be associated with Tβ4's impact on the aggregation of F-actin. This finding opens up new avenues for research in the field of immune aging.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.Y.); (N.T.); (F.Z.); (X.W.); (M.Z.)
| |
Collapse
|
13
|
Tian X, Pedigo CE, Li K, Ma X, Bunda P, Pell J, Lek A, Gu J, Zhang Y, Medina Rangel PX, Li W, Schwartze E, Nagata S, Lerner G, Perincheri S, Priyadarshini A, Zhao H, Lek M, Menon MC, Fu R, Ishibe S. Profilin1 is required for prevention of mitotic catastrophe in murine and human glomerular diseases. J Clin Invest 2023; 133:e171237. [PMID: 37847555 PMCID: PMC10721156 DOI: 10.1172/jci171237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
The progression of proteinuric kidney diseases is associated with podocyte loss, but the mechanisms underlying this process remain unclear. Podocytes reenter the cell cycle to repair double-stranded DNA breaks. However, unsuccessful repair can result in podocytes crossing the G1/S checkpoint and undergoing abortive cytokinesis. In this study, we identified Pfn1 as indispensable in maintaining glomerular integrity - its tissue-specific loss in mouse podocytes resulted in severe proteinuria and kidney failure. Our results suggest that this phenotype is due to podocyte mitotic catastrophe (MC), characterized histologically and ultrastructurally by abundant multinucleated cells, irregular nuclei, and mitotic spindles. Podocyte cell cycle reentry was identified using FUCCI2aR mice, and we observed altered expression of cell-cycle associated proteins, such as p21, p53, cyclin B1, and cyclin D1. Podocyte-specific translating ribosome affinity purification and RNA-Seq revealed the downregulation of ribosomal RNA-processing 8 (Rrp8). Overexpression of Rrp8 in Pfn1-KO podocytes partially rescued the phenotype in vitro. Clinical and ultrastructural tomographic analysis of patients with diverse proteinuric kidney diseases further validated the presence of MC podocytes and reduction in podocyte PFN1 expression within kidney tissues. These results suggest that profilin1 is essential in regulating the podocyte cell cycle and its disruption leads to MC and subsequent podocyte loss.
Collapse
Affiliation(s)
- Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christopher E. Pedigo
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ke Li
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaotao Ma
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Patricia Bunda
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - John Pell
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Jianlei Gu
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Yan Zhang
- Bioinformation Department, Suzhou SITRI Institute of Immunology Co. Ltd., Suzhou, Jiangsu, China
| | - Paulina X. Medina Rangel
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Wei Li
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eike Schwartze
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Soichiro Nagata
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gabriel Lerner
- Departments of Surgical Pathology and Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sudhir Perincheri
- Departments of Surgical Pathology and Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anupama Priyadarshini
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | | | - Madhav C. Menon
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Rongguo Fu
- Department of Nephrology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shuta Ishibe
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
14
|
Wollscheid HP, Ulrich HD. Chromatin meets the cytoskeleton: the importance of nuclear actin dynamics and associated motors for genome stability. DNA Repair (Amst) 2023; 131:103571. [PMID: 37738698 DOI: 10.1016/j.dnarep.2023.103571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
The actin cytoskeleton is of fundamental importance for numerous cellular processes, including intracellular transport, cell plasticity, and cell migration. However, functions of filamentous actin (F-actin) in the nucleus remain understudied due to the comparatively low abundance of nuclear actin and the resulting experimental limitations to its visualization. Owing to recent technological advances such as super-resolution microscopy and the development of nuclear-specific actin probes, essential roles of the actin cytoskeleton in the context of genome maintenance are now emerging. In addition to the contributions of monomeric actin as a component of multiple important nuclear protein complexes, nuclear actin has been found to undergo polymerization in response to DNA damage and DNA replication stress. Consequently, nuclear F-actin plays important roles in the regulation of intra-nuclear mobility of repair and replication foci as well as the maintenance of nuclear shape, two important aspects of efficient stress tolerance. Beyond actin itself, there is accumulating evidence for the participation of multiple actin-binding proteins (ABPs) in the surveillance of genome integrity, including nucleation factors and motor proteins of the myosin family. Here we summarize recent findings highlighting the importance of actin cytoskeletal factors within the nucleus in key genome maintenance pathways.
Collapse
Affiliation(s)
- Hans-Peter Wollscheid
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, Mainz D - 55128, Germany.
| | - Helle D Ulrich
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, Mainz D - 55128, Germany.
| |
Collapse
|
15
|
Nguyen MT, Dash R, Jeong K, Lee W. Role of Actin-Binding Proteins in Skeletal Myogenesis. Cells 2023; 12:2523. [PMID: 37947600 PMCID: PMC10650911 DOI: 10.3390/cells12212523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Maintenance of skeletal muscle quantity and quality is essential to ensure various vital functions of the body. Muscle homeostasis is regulated by multiple cytoskeletal proteins and myogenic transcriptional programs responding to endogenous and exogenous signals influencing cell structure and function. Since actin is an essential component in cytoskeleton dynamics, actin-binding proteins (ABPs) have been recognized as crucial players in skeletal muscle health and diseases. Hence, dysregulation of ABPs leads to muscle atrophy characterized by loss of mass, strength, quality, and capacity for regeneration. This comprehensive review summarizes the recent studies that have unveiled the role of ABPs in actin cytoskeletal dynamics, with a particular focus on skeletal myogenesis and diseases. This provides insight into the molecular mechanisms that regulate skeletal myogenesis via ABPs as well as research avenues to identify potential therapeutic targets. Moreover, this review explores the implications of non-coding RNAs (ncRNAs) targeting ABPs in skeletal myogenesis and disorders based on recent achievements in ncRNA research. The studies presented here will enhance our understanding of the functional significance of ABPs and mechanotransduction-derived myogenic regulatory mechanisms. Furthermore, revealing how ncRNAs regulate ABPs will allow diverse therapeutic approaches for skeletal muscle disorders to be developed.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea;
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
16
|
Allen-Gondringer A, Gau D, Varghese C, Boone D, Stolz D, Larregina A, Roy P. Vascular endothelial cell-specific disruption of the profilin1 gene leads to severe multiorgan pathology and inflammation causing mortality. PNAS NEXUS 2023; 2:pgad305. [PMID: 37781098 PMCID: PMC10541205 DOI: 10.1093/pnasnexus/pgad305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
Actin-binding protein Profilin1 is an important regulator of actin cytoskeletal dynamics in cells and critical for embryonic development in higher eukaryotes. The objective of the present study was to examine the consequence of loss-of-function of Pfn1 in vascular endothelial cells (ECs) in vivo. We utilized a mouse model engineered for tamoxifen-inducible biallelic inactivation of the Pfn1 gene selectively in EC (Pfn1EC-KO). Widespread deletion of EC Pfn1 in adult mice leads to severe health complications presenting overt pathologies (endothelial cell death, infarct, and fibrosis) in major organ systems and evidence for inflammatory infiltrates, ultimately compromising the survival of animals within 3 weeks of gene ablation. Mice deficient in endothelial Pfn1 exhibit selective bias toward the proinflammatory myeloid-derived population of immune cells, a finding further supported by systemic elevation of proinflammatory cytokines. We further show that triggering Pfn1 depletion not only directly upregulates proinflammatory cytokine/chemokine gene expression in EC but also potentiates the paracrine effect of EC on proinflammatory gene expression in macrophages. Consistent with these findings, we provide further evidence for increased activation of Interferon Regulatory Factor 7 (IRF7) and STAT1 in EC when depleted of Pfn1. Collectively, these findings for the first time demonstrate a prominent immunological consequence of loss of endothelial Pfn1 and an indispensable role of endothelial Pfn1 in mammalian survival unlike tolerable phenotypes of Pfn1 loss in other differentiated cell types.
Collapse
Affiliation(s)
| | - David Gau
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | - David Boone
- Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Donna Stolz
- Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Adriana Larregina
- Dermatology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Partha Roy
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
17
|
Cui S, Zhang T, Xiong X, Zhao J, Cao Q, Zhou H, Xia XG. Detergent-insoluble PFN1 inoculation expedites disease onset and progression in PFN1 transgenic rats. Front Neurosci 2023; 17:1279259. [PMID: 37817804 PMCID: PMC10560758 DOI: 10.3389/fnins.2023.1279259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Accumulating evidence suggests a gain of elusive toxicity in pathogenically mutated PFN1. The prominence of PFN1 aggregates as a pivotal pathological hallmark in PFN1 transgenic rats underscores the crucial involvement of protein aggregation in the initiation and progression of neurodegeneration. Detergent-insoluble materials were extracted from the spinal cords of paralyzed rats afflicted with ALS and were intramuscularly administered to asymptomatic recipient rats expressing mutant PFN1, resulting in an accelerated development of PFN1 inclusions and ALS-like phenotypes. This effect diminished when the extracts derived from wildtype PFN1 transgenic rats were employed, as detergent-insoluble PFN1 was detected exclusively in mutant PFN1 transgenic rats. Consequently, the factor influencing the progression of ALS pathology in recipient rats is likely associated with the presence of detergent-insoluble PFN1 within the extracted materials. Noteworthy is the absence of disease course modification upon administering detergent-insoluble extracts to rats that already displayed PFN1 inclusions, suggesting a seeding rather than augmenting role of such extracts in initiating neuropathological changes. Remarkably, pathogenic PFN1 exhibited an enhanced affinity for the molecular chaperone DNAJB6, leading to the sequestration of DNAJB6 within protein inclusions, thereby depleting its availability for cellular functions. These findings shed light on a novel mechanism that underscores the prion-like characteristics of pathogenic PFN1 in driving neurodegeneration in the context of PFN1-related ALS.
Collapse
Affiliation(s)
- Shiquan Cui
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Tingting Zhang
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Xinrui Xiong
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Jihe Zhao
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Qilin Cao
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Florida International University, Miami, FL, United States
| | - Hongxia Zhou
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Florida International University, Miami, FL, United States
| | - Xu-Gang Xia
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Florida International University, Miami, FL, United States
| |
Collapse
|
18
|
Toudji I, Toumi A, Chamberland É, Rossignol E. Interneuron odyssey: molecular mechanisms of tangential migration. Front Neural Circuits 2023; 17:1256455. [PMID: 37779671 PMCID: PMC10538647 DOI: 10.3389/fncir.2023.1256455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Cortical GABAergic interneurons are critical components of neural networks. They provide local and long-range inhibition and help coordinate network activities involved in various brain functions, including signal processing, learning, memory and adaptative responses. Disruption of cortical GABAergic interneuron migration thus induces profound deficits in neural network organization and function, and results in a variety of neurodevelopmental and neuropsychiatric disorders including epilepsy, intellectual disability, autism spectrum disorders and schizophrenia. It is thus of paramount importance to elucidate the specific mechanisms that govern the migration of interneurons to clarify some of the underlying disease mechanisms. GABAergic interneurons destined to populate the cortex arise from multipotent ventral progenitor cells located in the ganglionic eminences and pre-optic area. Post-mitotic interneurons exit their place of origin in the ventral forebrain and migrate dorsally using defined migratory streams to reach the cortical plate, which they enter through radial migration before dispersing to settle in their final laminar allocation. While migrating, cortical interneurons constantly change their morphology through the dynamic remodeling of actomyosin and microtubule cytoskeleton as they detect and integrate extracellular guidance cues generated by neuronal and non-neuronal sources distributed along their migratory routes. These processes ensure proper distribution of GABAergic interneurons across cortical areas and lamina, supporting the development of adequate network connectivity and brain function. This short review summarizes current knowledge on the cellular and molecular mechanisms controlling cortical GABAergic interneuron migration, with a focus on tangential migration, and addresses potential avenues for cell-based interneuron progenitor transplants in the treatment of neurodevelopmental disorders and epilepsy.
Collapse
Affiliation(s)
- Ikram Toudji
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Asmaa Toumi
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Émile Chamberland
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Elsa Rossignol
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
19
|
Siami H, Asghari A, Parsamanesh N. Monkeypox: Virology, laboratory diagnosis and therapeutic approach. J Gene Med 2023; 25:e3521. [PMID: 37132057 DOI: 10.1002/jgm.3521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/04/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023] Open
Abstract
Monkeypox infection outbreaks have been observed sporadically in Africa, usually as a result of interaction with wildlife reservoirs. The genomes of the new strain range in size from 184.7 to 198.0 kb and are identified with 143-214 open reading frames. Viral cores are rapidly carried on microtubules away from the cell's perimeter and deeper into the cytoplasm once the virus and cell membranes fuse. Depending on the kind of exposure, patients with monkeypox may experience a febrile prodrome 5-13 days after exposure, which frequently includes lymphadenopathy, malaise, headaches, and muscle aches. A different diagnostic approach is available for monkeypox, including histopathological analysis, electron microscopy, immunoassays, polymerase chain reaction, genome sequencing, microarrays, loop-mediated isothermal amplification technology and CRISPR (i.e., "clustered regularly interspaced short palindromic repeats"). There are currently no particular, clinically effective treatments available for the monkeypox virus. An initial treatment is cidofovir. As a monophosphate nucleotide analog, cidofovir is transformed into an inhibitor of viral DNA polymerase by cellular kinases, which is analogous to cidofovir's function in inhibiting viral DNA synthesis. The European Medicine Agency and the Food and Drug Administration have both granted permission for IMVAMUNE, a replication-deficient, attenuated third-generation modified vaccinia Ankara vaccine, to be used for the prevention of smallpox and monkeypox in adults.
Collapse
Affiliation(s)
- Haleh Siami
- School of Medicine, Islamic Azad University of Medical Science, Tehran, Iran
| | - Arghavan Asghari
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Parsamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Science, Zanjan, Iran
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
20
|
Wu Y, Wu S, Yang E, Zhang G, Shi Q, Liang J, Lian X, Xu J. Association of PFN1 Gene Polymorphisms with Bone Mineral Density, Bone Turnover Markers, and Osteoporotic Fractures in Chinese Population. Calcif Tissue Int 2023; 113:207-215. [PMID: 37401976 DOI: 10.1007/s00223-023-01102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/24/2023] [Indexed: 07/05/2023]
Abstract
Recent studies have discovered an association between the PFN1 gene and Paget's disease. However, it is currently unknown whether the PFN1 gene is related to osteoporosis. This study was performed to investigate the association of Single-Nucleotide Polymorphisms (SNPs) in the PFN1 gene with Bone Mineral Density (BMD) as well as bone turnover markers and osteoporotic fractures in Chinese subjects. A total of 2836 unrelated Chinese subjects comprising 1247 healthy subjects and 1589 osteoporotic fractures patients (Fracture group) were enrolled in this study. Seven tagSNPs (rs117337116, rs238243, rs6559, rs238242, rs78224458, rs4790714, and rs13204) of the PFN1 gene were genotyped. The BMD of the lumbar spine 1-4 (L1-4), femoral neck, and total hip as well as bone turnover markers, such as β-C-Terminal telopeptide of type 1 collagen (β-CTX) and Procollagen type 1 N-terminal Propeptide (P1NP), were measured. The association between 7 tagSNPs and BMD and bone turnover markers was analyzed in 1247 healthy subjects only. After age matching, we selected 1589 osteoporotic fracture patients (Fracture group) and 756 nonfracture controls (Control group, selected from 1247 healthy subjects) for a case-control study, respectively. For the case-control study, we used logistic regression to investigate the relationship between 7 tagSNPs and osteoporotic fractures risk. In the All group, the PFN1 haplotype GAT was associated with the β-CTX (P = 0.007). In the Female group, the PFN1 haplotype GAT was associated with the β-CTX (P = 0.005). In the Male group, the rs13204, the rs78224458, and the PFN1 haplotype GAC were associated with the BMD of the L1-4 (all P = 0.012); the rs13204, the rs78224458, and the PFN1 haplotype GAC were associated with the BMD of the femoral neck (all P = 0.012); the rs13204 and rs78224458 were associated with the BMD of the total hip (both P = 0.015); and the PFN1 haplotype GAT was associated with the β-CTX (P = 0.013). In the subsequent case-control study, the rs13204 and rs78224458 in the male group were associated with the risk of L1-4 fracture (P = 0.016 and 0.010, respectively) and total hip fracture (P = 0.013 and 0.016, respectively). Our study reveals that PFN1 gene polymorphisms are associated with BMD in Chinese males and β-CTX in Chinese people and confirmed the relationship between PFN1 gene polymorphisms and Chinese male osteoporotic fractures in a case-control study.
Collapse
Affiliation(s)
- Yinghao Wu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Shengting Wu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Erzhu Yang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Guowang Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Qiang Shi
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Jiaming Liang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - XiaoFeng Lian
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China.
| | - JianGuang Xu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
21
|
Ma S, Yu H, Wang M, Cui T, Zhao Y, Zhang X, Wang C, Li M, Zhang L, Dong J. Natural product drupacine acting on a novel herbicidal target shikimate dehydrogenase. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105480. [PMID: 37532346 DOI: 10.1016/j.pestbp.2023.105480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 08/04/2023]
Abstract
Natural products are one of the important sources for the creation of new pesticides. Drupacine ((1R,11S,12S,13R,15S)-13-methoxy-5,7,21-trioxa-19-azahexacyclo[11.7.1.02,10.04,8.011,15.015,19]henicosa-2,4(8),9-trien-12-ol), isolated from Cephalotaxus sinensis (Chinese plum-yew), is a potent herbicidal compound containing an oxo-bridged oxygen bond structure. However, its molecular target still remains unknown. In this study, the targets of drupacine in Amaranthus retroflexus were identified by combining drug affinity responsive target stability (DARTS), cellular thermal shift assay coupled with mass spectrometry (CETSA MS), RNA-seq transcriptomic, and TMT proteomic analyses. Fifty-one and sixty-eight main binding proteins were identified by DARTS and CETSA MS, respectively, including nine co-existing binding proteins. In drupacine-treated A. retroflexus seedlings we identified 1389 up-regulated genes and 442 down-regulated genes, 34 up-regulated proteins, and 194 down-regulated proteins, respectively. Combining the symptoms and the biochemical profiles, Profilin, Shikimate dehydrogenase (SkDH), and Zeta-carotene desaturase were predicted to be the drupacine potential target proteins. At the same time, drupacine was found to bind SkDH stronger by molecular docking, and its inhibition on ArSkDH increased with the treatment concentration increase. Our results suggest that the molecular target of drupacine is SkDH, a new herbicide target, which lay a foundation for the rational design of herbicides based on new targets from natural products and enrich the target resources for developing green herbicides.
Collapse
Affiliation(s)
- Shujie Ma
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.
| | - Hualong Yu
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Mingyu Wang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Tingru Cui
- Baoding Meteorological Bureau, Baoding 071000, China
| | - Yujing Zhao
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Xinxin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Caixia Wang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Mengmeng Li
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Lihui Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
22
|
Ismail NH, Mussa A, Al-Khreisat MJ, Mohamed Yusoff S, Husin A, Johan MF. Proteomic Alteration in the Progression of Multiple Myeloma: A Comprehensive Review. Diagnostics (Basel) 2023; 13:2328. [PMID: 37510072 PMCID: PMC10378430 DOI: 10.3390/diagnostics13142328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy. Most MM patients are diagnosed at a late stage because the early symptoms of the disease can be uncertain and nonspecific, often resembling other, more common conditions. Additionally, MM patients are commonly associated with rapid relapse and an inevitable refractory phase. MM is characterized by the abnormal proliferation of monoclonal plasma cells in the bone marrow. During the progression of MM, massive genomic alterations occur that target multiple signaling pathways and are accompanied by a multistep process involving differentiation, proliferation, and invasion. Moreover, the transformation of healthy plasma cell biology into genetically heterogeneous MM clones is driven by a variety of post-translational protein modifications (PTMs), which has complicated the discovery of effective treatments. PTMs have been identified as the most promising candidates for biomarker detection, and further research has been recommended to develop promising surrogate markers. Proteomics research has begun in MM, and a comprehensive literature review is available. However, proteomics applications in MM have yet to make significant progress. Exploration of proteomic alterations in MM is worthwhile to improve understanding of the pathophysiology of MM and to search for new treatment targets. Proteomics studies using mass spectrometry (MS) in conjunction with robust bioinformatics tools are an excellent way to learn more about protein changes and modifications during disease progression MM. This article addresses in depth the proteomic changes associated with MM disease transformation.
Collapse
Affiliation(s)
- Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| | - Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Shafini Mohamed Yusoff
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Azlan Husin
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
23
|
Li S, Du H, Gan D, Li X, Zao X, Ye Y. Integrated analysis of single-cell and bulk RNA-sequencing reveals tumor heterogeneity and a signature based on NK cell marker genes for predicting prognosis in hepatocellular carcinoma. Front Pharmacol 2023; 14:1200114. [PMID: 37397471 PMCID: PMC10307919 DOI: 10.3389/fphar.2023.1200114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Background: Natural killer (NK) cells are a type of innate immune cell that recognize and eliminate tumor cells and infected cells, without prior sensitization or activation. Herein, we aimed to construct a predictive model based on NK cell-related genes for hepatocellular carcinoma (HCC) patients and assess the feasibility of utilizing this model for prognosis prediction. Methods: Single-cell RNA-seq data were obtained from the Gene Expression Omnibus (GEO) database to identify marker genes of NK cells. Univariate Cox and lasso regression were performed to further establish a signature in the TCGA dataset. Subsequently, qPCR and immunohistochemistry (IHC) staining were employed to validate the expression levels of prognosis signature genes in HCC. The effectiveness of the model was further validated using two external cohorts from the GEO and ICGC datasets. Clinical characteristics, prognosis, tumor mutation burden, immune microenvironments, and biological function were compared for different genetic subtypes and risk groups. Finally, molecular docking was performed to evaluate the binding affinity between the hub gene and chemotherapeutic drugs. Results: A total of 161 HCC-related NK cell marker genes (NKMGs) were identified, 28 of which were significantly associated with overall survival in HCC patients. Based on differences in gene expression characteristics, HCC patients were classified into three subtypes. Ten prognosis genes (KLRB1, CD7, LDB2, FCER1G, PFN1, FYN, ACTG1, PABPC1, CALM1, and RPS8) were screened to develop a prognosis model. The model not only demonstrated excellent predictive performance on the training dataset, but also were successfully validated on two independent external datasets. The risk scores derived from the model were shown to be an independent prognosis factor for HCC and were correlated with pathological severity. Moreover, qPCR and IHC staining confirmed that the expression of the prognosis genes was generally consistent with the results of the bioinformatic analysis. Finally, molecular docking revealed favorable binding energies between the hub gene ACTG1 and chemotherapeutic drugs. Conclusion: In this study, we developed a model for predicting the prognosis of HCC based on NK cells. The utilization of NKMGs as innovative biomarkers showed promise in the prognosis assessment of HCC.
Collapse
Affiliation(s)
- Shuo Li
- Department of Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Hongbo Du
- Department of Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Da’nan Gan
- Department of Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoke Li
- Department of Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaobin Zao
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yong’an Ye
- Department of Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
24
|
Rajabli F, Tosto G, Hamilton-Nelson KL, Kunkle BW, Vardarajan BN, Naj A, Whitehead PG, Gardner OK, Bush WS, Sariya S, Mayeux RP, Farrer LA, Cuccaro ML, Vance JM, Griswold AJ, Schellenberg GD, Haines JL, Byrd GS, Reitz C, Beecham GW, Pericak-Vance MA, Martin ER. Admixture mapping identifies novel Alzheimer's disease risk regions in African Americans. Alzheimers Dement 2023; 19:2538-2548. [PMID: 36539198 PMCID: PMC10272044 DOI: 10.1002/alz.12865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND This study used admixture mapping to prioritize the genetic regions associated with Alzheimer's disease (AD) in African American (AA) individuals, followed by ancestry-aware regression analysis to fine-map the prioritized regions. METHODS We analyzed 10,271 individuals from 17 different AA datasets. We performed admixture mapping and meta-analyzed the results. We then used regression analysis, adjusting for local ancestry main effects and interactions with genotype, to refine the regions identified from admixture mapping. Finally, we leveraged in silico annotation and differential gene expression data to prioritize AD-related variants and genes. RESULTS Admixture mapping identified two genome-wide significant loci on chromosomes 17p13.2 (p = 2.2 × 10-5 ) and 18q21.33 (p = 1.2 × 10-5 ). Our fine mapping of the chromosome 17p13.2 and 18q21.33 regions revealed several interesting genes such as the MINK1, KIF1C, and BCL2. DISCUSSION Our ancestry-aware regression approach showed that AA individuals have a lower risk of AD if they inherited African ancestry admixture block at the 17p13.2 locus. HIGHLIGHTS We identified two genome-wide significant admixture mapping signals: on chromosomes 17p13.2 and 18q21.33, which are novel in African American (AA) populations. Our ancestry-aware regression approach showed that AA individuals have a lower risk of Alzheimer's disease (AD) if they inherited African ancestry admixture block at the 17p13.2 locus. We found that the overall proportion of African ancestry does not differ between the cases and controls that suggest African genetic ancestry alone is not likely to explain the AD prevalence difference between AA and non-Hispanic White populations.
Collapse
Affiliation(s)
- Farid Rajabli
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Giuseppe Tosto
- Gertrude H. Sergievsky Center, Taub Institute for Research on the Aging Brain, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kara L. Hamilton-Nelson
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Brian W. Kunkle
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Badri N. Vardarajan
- Gertrude H. Sergievsky Center, Taub Institute for Research on the Aging Brain, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Adam Naj
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PE, USA
| | - Patrice G. Whitehead
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Olivia K. Gardner
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - William S. Bush
- Department of Population & Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sanjeev Sariya
- Gertrude H. Sergievsky Center, Taub Institute for Research on the Aging Brain, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Richard P. Mayeux
- Gertrude H. Sergievsky Center, Taub Institute for Research on the Aging Brain, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Lindsay A. Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Epidemiology, and Biostatistics, Boston University Schools of Medicine and Public Health, Boston, MA, USA
| | - Michael L. Cuccaro
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- Dr. John T. MacDonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jeffrey M. Vance
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- Dr. John T. MacDonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Anthony J. Griswold
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- Dr. John T. MacDonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Gerard D. Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PE, USA
| | - Jonathan L. Haines
- Department of Population & Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Goldie S. Byrd
- Maya Angelou Center for Health Equity, Wake Forest University, Winston-Salem, NC, USA
| | - Christiane Reitz
- Gertrude H. Sergievsky Center, Taub Institute for Research on the Aging Brain, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gary W. Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- Dr. John T. MacDonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Margaret A. Pericak-Vance
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- Dr. John T. MacDonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Eden R. Martin
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- Dr. John T. MacDonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | |
Collapse
|
25
|
Dans MG, Piirainen H, Nguyen W, Khurana S, Mehra S, Razook Z, Geoghegan ND, Dawson AT, Das S, Parkyn Schneider M, Jonsdottir TK, Gabriela M, Gancheva MR, Tonkin CJ, Mollard V, Goodman CD, McFadden GI, Wilson DW, Rogers KL, Barry AE, Crabb BS, de Koning-Ward TF, Sleebs BE, Kursula I, Gilson PR. Sulfonylpiperazine compounds prevent Plasmodium falciparum invasion of red blood cells through interference with actin-1/profilin dynamics. PLoS Biol 2023; 21:e3002066. [PMID: 37053271 PMCID: PMC10128974 DOI: 10.1371/journal.pbio.3002066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/25/2023] [Accepted: 03/06/2023] [Indexed: 04/15/2023] Open
Abstract
With emerging resistance to frontline treatments, it is vital that new antimalarial drugs are identified to target Plasmodium falciparum. We have recently described a compound, MMV020291, as a specific inhibitor of red blood cell (RBC) invasion, and have generated analogues with improved potency. Here, we generated resistance to MMV020291 and performed whole genome sequencing of 3 MMV020291-resistant populations. This revealed 3 nonsynonymous single nucleotide polymorphisms in 2 genes; 2 in profilin (N154Y, K124N) and a third one in actin-1 (M356L). Using CRISPR-Cas9, we engineered these mutations into wild-type parasites, which rendered them resistant to MMV020291. We demonstrate that MMV020291 reduces actin polymerisation that is required by the merozoite stage parasites to invade RBCs. Additionally, the series inhibits the actin-1-dependent process of apicoplast segregation, leading to a delayed death phenotype. In vitro cosedimentation experiments using recombinant P. falciparum proteins indicate that potent MMV020291 analogues disrupt the formation of filamentous actin in the presence of profilin. Altogether, this study identifies the first compound series interfering with the actin-1/profilin interaction in P. falciparum and paves the way for future antimalarial development against the highly dynamic process of actin polymerisation.
Collapse
Affiliation(s)
- Madeline G. Dans
- Burnet Institute, Melbourne, Victoria, Australia
- School of Medicine and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Henni Piirainen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - William Nguyen
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Sachin Khurana
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Somya Mehra
- Burnet Institute, Melbourne, Victoria, Australia
| | - Zahra Razook
- Burnet Institute, Melbourne, Victoria, Australia
- School of Medicine and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
| | | | | | - Sujaan Das
- Ludwig Maximilian University, Faculty of Veterinary Medicine, Munich, Germany
| | | | - Thorey K. Jonsdottir
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Mikha Gabriela
- Burnet Institute, Melbourne, Victoria, Australia
- School of Medicine and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
| | - Maria R. Gancheva
- Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, Australia
| | | | - Vanessa Mollard
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Geoffrey I. McFadden
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Danny W. Wilson
- Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, Australia
| | - Kelly L. Rogers
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Alyssa E. Barry
- Burnet Institute, Melbourne, Victoria, Australia
- School of Medicine and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
| | - Brendan S. Crabb
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tania F. de Koning-Ward
- School of Medicine and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
| | - Brad E. Sleebs
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Inari Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Paul R. Gilson
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
26
|
Hennlein L, Ghanawi H, Gerstner F, Palominos García E, Yildirim E, Saal-Bauernschubert L, Moradi M, Deng C, Klein T, Appenzeller S, Sauer M, Briese M, Simon C, Sendtner M, Jablonka S. Plastin 3 rescues cell surface translocation and activation of TrkB in spinal muscular atrophy. J Cell Biol 2023; 222:e202204113. [PMID: 36607273 PMCID: PMC9827530 DOI: 10.1083/jcb.202204113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Plastin 3 (PLS3) is an F-actin-bundling protein that has gained attention as a modifier of spinal muscular atrophy (SMA) pathology. SMA is a lethal pediatric neuromuscular disease caused by loss of or mutations in the Survival Motor Neuron 1 (SMN1) gene. Pathophysiological hallmarks are cellular maturation defects of motoneurons prior to degeneration. Despite the observed beneficial modifying effect of PLS3, the mechanism of how it supports F-actin-mediated cellular processes in motoneurons is not yet well understood. Our data reveal disturbed F-actin-dependent translocation of the Tropomyosin receptor kinase B (TrkB) to the cell surface of Smn-deficient motor axon terminals, resulting in reduced TrkB activation by its ligand brain-derived neurotrophic factor (BDNF). Improved actin dynamics by overexpression of hPLS3 restores membrane recruitment and activation of TrkB and enhances spontaneous calcium transients by increasing Cav2.1/2 "cluster-like" formations in SMA axon terminals. Thus, our study provides a novel role for PLS3 in supporting correct alignment of transmembrane proteins, a key mechanism for (moto)-neuronal development.
Collapse
Affiliation(s)
- Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Hanaa Ghanawi
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Florian Gerstner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | | | - Ezgi Yildirim
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | | | - Mehri Moradi
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Chunchu Deng
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Teresa Klein
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Silke Appenzeller
- Comprehensive Cancer Center Mainfranken; Core Unit Bioinformatics, University Hospital Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Christian Simon
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Muneeswaran G, Lee JY. Mechanistic insights into the conformational switch in profilin-1 subject to collective effects of mutation and histidine tautomerism. Int J Biol Macromol 2023; 230:123403. [PMID: 36706877 DOI: 10.1016/j.ijbiomac.2023.123403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Mutations and histidine (His) tautomerism in profilin-1 (PFN1) are associated with amyotrophic lateral sclerosis (ALS). The conformational changes in PFN1 caused by the collective effects of G117V mutation and His tautomeric isomers εε, εδ, δε, and δδ were clarified using molecular dynamics (MD) simulations. The predominant structural variations were seen in α-helices, β-sheets, turns, and coils and the His tautomer's unique degree of disruption was seen in these conformations. The content of α-helices was 23.2 % in the εε and δδ isomers, but the observed α-helices in the isomers εδ and δε were 20.3 % and 21.7 % respectively. The percentage of β-sheet was found to be higher (34.1) in the εε isomer than in the εδ, δε, and δδ isomers, and the values were 30.4, 29.7, and 31.9, respectively. Intermolecular water dynamics analysis discloses that His 133 can form an intramolecular H-bond interaction (Nα-H---Nδ), confirming the experimental observations in the simulations of εε, δε, and δδ isomers of G117V PFN1 mutant. It was concluded that these solvent molecules are crucial for aggregation and must be considered in future research on the PFN1 associated with ALS. Overall, the study offers a thorough microscopic understanding of the pathogenic mechanisms behind conformational changes that cause aggregation illnesses like ALS.
Collapse
Affiliation(s)
- Gurusamy Muneeswaran
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
28
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
29
|
Upregulation of Profilin 2 on HDAC6 overexpression in mouse GC-1 cells and its putative role in germ cell migration in the testis. Cell Tissue Res 2023:10.1007/s00441-023-03755-9. [PMID: 36788143 DOI: 10.1007/s00441-023-03755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Previous reports from this laboratory have demonstrated the involvement of histone deacetylase 6 (HDAC6) in sperm motility. As the presence of HDAC6 has also been reported in the earlier stage germ cells, studies were undertaken to explore its role during these stages of spermatogenesis. HDAC6 was overexpressed in GC-1spg cells, which represent the stage between type B spermatogonia and primary spermatocyte, and its effect on germ cell transcriptome was investigated by microarray. Among the many transcripts that were differentially regulated, Profilin 2, reported previously as a neuronal specific isoform, was observed as one of the genes highly upregulated at the transcript level, which was further confirmed by real-time PCR, and the protein confirmed by indirect immunofluorescence (IIF). Profilin 2 colocalized with HDAC6, as seen both in GC-1 cells and sperm. On the sperm, the presence of Profilin 2 was detected throughout the flagella with its colocalization with HDAC6 seen conspicuously in the mid-piece region of the flagella. Co-immunoprecipitation studies confirmed Profilin 2 interaction with HDAC6. Docking studies using Z dock suggested the interaction of 8 residues of HDAC6 with 6 residues of Profilin 2. The novel observation of Profilin 2 in spermatogonial cells, its significant upregulation on HDAC6 overexpression and its interaction with HDAC6 suggests that HDAC6 in collaboration with Profilin 2 may play a role in regulating the movement of germ cells from one stage/compartment to the next.
Collapse
|
30
|
Scotto di Carlo F, Russo S, Muyas F, Mangini M, Garribba L, Pazzaglia L, Genesio R, Biamonte F, De Luca AC, Santaguida S, Scotlandi K, Cortés-Ciriano I, Gianfrancesco F. Profilin 1 deficiency drives mitotic defects and reduces genome stability. Commun Biol 2023; 6:9. [PMID: 36599901 PMCID: PMC9813376 DOI: 10.1038/s42003-022-04392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Profilin 1-encoded by PFN1-is a small actin-binding protein with a tumour suppressive role in various adenocarcinomas and pagetic osteosarcomas. However, its contribution to tumour development is not fully understood. Using fix and live cell imaging, we report that Profilin 1 inactivation results in multiple mitotic defects, manifested prominently by anaphase bridges, multipolar spindles, misaligned and lagging chromosomes, and cytokinesis failures. Accordingly, next-generation sequencing technologies highlighted that Profilin 1 knock-out cells display extensive copy-number alterations, which are associated with complex genome rearrangements and chromothripsis events in primary pagetic osteosarcomas with Profilin 1 inactivation. Mechanistically, we show that Profilin 1 is recruited to the spindle midzone at anaphase, and its deficiency reduces the supply of actin filaments to the cleavage furrow during cytokinesis. The mitotic defects are also observed in mouse embryonic fibroblasts and mesenchymal cells deriving from a newly generated knock-in mouse model harbouring a Pfn1 loss-of-function mutation. Furthermore, nuclear atypia is also detected in histological sections of mutant femurs. Thus, our results indicate that Profilin 1 has a role in regulating cell division, and its inactivation triggers mitotic defects, one of the major mechanisms through which tumour cells acquire chromosomal instability.
Collapse
Affiliation(s)
- Federica Scotto di Carlo
- grid.5326.20000 0001 1940 4177Institute of Genetics and Biophysics “Adriano Buzzati-Traverso” (IGB), National Research Council of Italy (CNR), Naples, Italy
| | - Sharon Russo
- grid.5326.20000 0001 1940 4177Institute of Genetics and Biophysics “Adriano Buzzati-Traverso” (IGB), National Research Council of Italy (CNR), Naples, Italy ,grid.9841.40000 0001 2200 8888Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Francesc Muyas
- grid.52788.300000 0004 0427 7672European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Maria Mangini
- grid.429047.c0000 0004 6477 0469Institute for Experimental Endocrinology and Oncology, “G. Salvatore” (IEOS), National Research Council of Italy (CNR), Naples, Italy
| | - Lorenza Garribba
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Laura Pazzaglia
- grid.419038.70000 0001 2154 6641IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Bologna, Italy
| | - Rita Genesio
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Flavia Biamonte
- grid.411489.10000 0001 2168 2547Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy ,grid.411489.10000 0001 2168 2547Center of Interdepartmental Services (CIS), Magna Graecia University, Catanzaro, Italy
| | - Anna Chiara De Luca
- grid.429047.c0000 0004 6477 0469Institute for Experimental Endocrinology and Oncology, “G. Salvatore” (IEOS), National Research Council of Italy (CNR), Naples, Italy
| | - Stefano Santaguida
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Katia Scotlandi
- grid.419038.70000 0001 2154 6641IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Bologna, Italy
| | - Isidro Cortés-Ciriano
- grid.52788.300000 0004 0427 7672European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Fernando Gianfrancesco
- grid.5326.20000 0001 1940 4177Institute of Genetics and Biophysics “Adriano Buzzati-Traverso” (IGB), National Research Council of Italy (CNR), Naples, Italy
| |
Collapse
|
31
|
Schneider F, Metz I, Rust MB. Regulation of actin filament assembly and disassembly in growth cone motility and axon guidance. Brain Res Bull 2023; 192:21-35. [PMID: 36336143 DOI: 10.1016/j.brainresbull.2022.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Directed outgrowth of axons is fundamental for the establishment of neuronal networks. Axon outgrowth is guided by growth cones, highly motile structures enriched in filamentous actin (F-actin) located at the axons' distal tips. Growth cones exploit F-actin-based protrusions to scan the environment for guidance cues, and they contain the sensory apparatus to translate guidance cue information into intracellular signaling cascades. These cascades act upstream of actin-binding proteins (ABP) and thereby control assembly and disassembly of F-actin. Spatiotemporally controlled F-actin dis-/assembly in growth cones steers the axon towards attractants and away from repellents, and it thereby navigates the axon through the developing nervous system. Hence, ABP that control F-actin dynamics emerged as critical regulators of neuronal network formation. In the present review article, we will summarize and discuss current knowledge of the mechanisms that control remodeling of the actin cytoskeleton in growth cones, focusing on recent progress in the field. Further, we will introduce tools and techniques that allow to study actin regulatory mechanism in growth cones.
Collapse
Affiliation(s)
- Felix Schneider
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany; Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Isabell Metz
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032 Marburg, Germany.
| |
Collapse
|
32
|
Kato M, Miyamoto M, Takayanagi F, Ando Y, Fujita Y, Nakayama M, Yoshihara S. Pollen Food Allergy Syndrome in Japanese Children and Adolescents: Risk Factors and Pollen Sensitisation. J Immunol Res 2023; 2023:4075264. [PMID: 36937005 PMCID: PMC10019972 DOI: 10.1155/2023/4075264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 03/12/2023] Open
Abstract
Pollen food allergy syndrome (PFAS) is caused by cross-reactivity with pollen; however, not all-pollen-sensitised individuals develop PFAS, and studies on the characteristics of PFAS development are limited in Japan. We investigated the prevalence and risk factors for the development of PFAS in Japanese children and adolescents sensitised to pollen and their association with pollen-specific IgE levels. The characteristics of PFAS were investigated in patients with allergies aged 3-18 years who visited Dokkyo Medical University Hospital between January 2016 and December 2019. Specific IgE levels for alder, Japanese cedar, ragweed, and orchard grass were measured in patients sensitised to any of the pollens. Patients were categorised into preschool (G1), elementary school (G2), and middle-high school (G3) groups. Overall, 600 patients were enrolled. The prevalence of PFAS was 8.5% in G1, 20% in G2, and 36.3% in G3. Multivariate logistic regression analysis demonstrated strong associations between the risk of developing PFAS and older age (odds ratio (OR), 1.12; 95% confidence interval (CI), 1.06-1.19; P < 0.001), seasonal allergy rhinitis (OR, 6.93; 95% CI, 1.59-30.34; P = 0.010), and alder sensitisation (OR, 6.20; 95% CI, 2.66-14.49; P < 0.001). Spearman's correlation revealed statistically significant positive correlation between each pollen-specific IgE level; high pollen-specific IgE levels were also a risk factor. The OR for being sensitised to all four species was 36.83 (95% CI, 8.93-151.83, P < 0.001) when compared with Japanese cedar alone. Alder was most relevant, with an alder-specific IgE level cutoff value of 2.54 UA/mL. The sensitivity was 78.9%, and the specificity was 70.9%. In conclusion, preschool children develop PFAS with alder sensitisation, and higher pollen-specific IgE levels and increased number of pollen sensitisations are risk factors for developing PFAS.
Collapse
Affiliation(s)
- Masaya Kato
- Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan
| | - Manabu Miyamoto
- Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan
| | | | - Yusuke Ando
- Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan
| | - Yuji Fujita
- Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan
| | - Motoko Nakayama
- Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan
| | | |
Collapse
|
33
|
Li Y, Wang D, Ge H, Güngör C, Gong X, Chen Y. Cytoskeletal and Cytoskeleton-Associated Proteins: Key Regulators of Cancer Stem Cell Properties. Pharmaceuticals (Basel) 2022; 15:1369. [PMID: 36355541 PMCID: PMC9698833 DOI: 10.3390/ph15111369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 08/08/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells possessing stemness characteristics that are closely associated with tumor proliferation, recurrence and resistance to therapy. Recent studies have shown that different cytoskeletal components and remodeling processes have a profound impact on the behavior of CSCs. In this review, we outline the different cytoskeletal components regulating the properties of CSCs and discuss current and ongoing therapeutic strategies targeting the cytoskeleton. Given the many challenges currently faced in targeted cancer therapy, a deeper comprehension of the molecular events involved in the interaction of the cytoskeleton and CSCs will help us identify more effective therapeutic strategies to eliminate CSCs and ultimately improve patient survival.
Collapse
Affiliation(s)
- Yuqiang Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dan Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Heming Ge
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Cenap Güngör
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Xuejun Gong
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yongheng Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
34
|
PFN1 Inhibits Myogenesis of Bovine Myoblast Cells via Cdc42-PAK/JNK. Cells 2022; 11:cells11203188. [PMID: 36291059 PMCID: PMC9600610 DOI: 10.3390/cells11203188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Myoblast differentiation is essential for the formation of skeletal muscle myofibers. Profilin1 (Pfn1) has been identified as an actin-associated protein, and has been shown to be critically important to cellular function. Our previous study found that PFN1 may inhibit the differentiation of bovine skeletal muscle satellite cells, but the underlying mechanism is not known. Here, we confirmed that PFN1 negatively regulated the myogenic differentiation of bovine skeletal muscle satellite cells. Immunoprecipitation assay combined with mass spectrometry showed that Cdc42 was a binding protein of PFN1. Cdc42 could be activated by PFN1 and could inhibit the myogenic differentiation like PFN1. Mechanistically, activated Cdc42 increased the phosphorylation level of p2l-activated kinase (PAK), which further activated the phosphorylation activity of c-Jun N-terminal kinase (JNK), whereas PAK and JNK are inhibitors of myogenic differentiation. Taken together, our results reveal that PFN1 is a repressor of bovine myogenic differentiation, and provide the regulatory mechanism.
Collapse
|
35
|
Minasov G, Inniss NL, Shuvalova L, Anderson WF, Satchell KJF. Structure of the Monkeypox virus profilin-like protein A42R reveals potential functional differences from cellular profilins. Acta Crystallogr F Struct Biol Commun 2022; 78:371-377. [PMID: 36189721 PMCID: PMC9527652 DOI: 10.1107/s2053230x22009128] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
The infectious disease human monkeypox is spreading rapidly in 2022, causing a global health crisis. The genomics of Monkeypox virus (MPXV) have been extensively analyzed and reported, although little is known about the virus-encoded proteome. In particular, there are no reported experimental MPXV protein structures other than computational models. Here, a 1.52 Å resolution X-ray structure of the MPXV protein A42R, the first MPXV-encoded protein with a known structure, is reported. A42R shows structural similarity to profilins, which are cellular proteins that are known to function in the regulation of actin cytoskeletal assembly. However, structural comparison of A42R with known members of the profilin family reveals critical differences that support prior biochemical findings that A42R only weakly binds actin and does not bind poly(L-proline). In addition, the analysis suggests that A42R may make distinct interactions with phosphatidylinositol lipids. Overall, the data suggest that the role of A42R in the replication of orthopoxviruses may not be readily determined by comparison to cellular profilins. Furthermore, these findings support the need for increased efforts to determine high-resolution structures of other MPXV proteins to inform physiological studies of the poxvirus infection cycle and to reveal potential new strategies to combat human monkeypox should this emerging infectious disease with pandemic potential become more common in the future.
Collapse
Affiliation(s)
- George Minasov
- Department of Microbiology–Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nicole L. Inniss
- Department of Microbiology–Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ludmilla Shuvalova
- Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Karla J. F. Satchell
- Department of Microbiology–Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
36
|
Sungur AÖ, Zeitouny C, Gabele L, Metz I, Wöhr M, Michaelsen-Preusse K, Rust MB. Transient reduction in dendritic spine density in brain-specific profilin1 mutant mice is associated with behavioral deficits. Front Mol Neurosci 2022; 15:952782. [PMID: 35992199 PMCID: PMC9381693 DOI: 10.3389/fnmol.2022.952782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/13/2022] [Indexed: 01/16/2023] Open
Abstract
Actin filaments form the backbone of dendritic spines, the postsynaptic compartment of most excitatory synapses in the brain. Spine density changes affect brain function, and postsynaptic actin defects have been implicated in various neuropathies. It is mandatory to identify the actin regulators that control spine density. Based on previous studies, we hypothesized a role for the actin regulator profilin1 in spine formation. We report reduced hippocampal spine density in juvenile profilin1 mutant mice together with impairments in memory formation and reduced ultrasonic communication during active social behavior. Our results, therefore, underline a previously suggested function of profilin1 in controlling spine formation and behavior in juvenile mice.
Collapse
Affiliation(s)
- A. Özge Sungur
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany
- Behavioral Neuroscience, Experimental and Biological Psychology, University of Marburg, Marburg, Germany
| | - Caroline Zeitouny
- Department of Cellular Neurobiology, Technical University (TU) Braunschweig, Braunschweig, Germany
| | - Lea Gabele
- Department of Cellular Neurobiology, Technical University (TU) Braunschweig, Braunschweig, Germany
| | - Isabell Metz
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany
- Deutsche Forschungsgemeinschaft (German Research Foundation) (DFG) Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, Graduiertenkolleg (Gradeschool) (GRK) 2213, University of Marburg, Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, University of Marburg, Marburg, Germany
- Social and Affective Neuroscience Research Group, Laboratory of Biological Psychology, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences, Katholeike Universiteit (KU) Leuven, Leuven, Belgium
- Leuven Brain Institute, Katholeike Universiteit (KU) Leuven, Leuven, Belgium
| | - Kristin Michaelsen-Preusse
- Department of Cellular Neurobiology, Technical University (TU) Braunschweig, Braunschweig, Germany
- Kristin Michaelsen-Preusse,
| | - Marco B. Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany
- Deutsche Forschungsgemeinschaft (German Research Foundation) (DFG) Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, Graduiertenkolleg (Gradeschool) (GRK) 2213, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Marburg, Germany
- *Correspondence: Marco B. Rust,
| |
Collapse
|
37
|
Chebib S, Meng C, Ludwig C, Bergmann KC, Becker S, Dierend W, Schwab W. Identification of allergenomic signatures in allergic and well-tolerated apple genotypes using LC-MS/MS. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100111. [PMID: 35592704 PMCID: PMC9110896 DOI: 10.1016/j.fochms.2022.100111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/12/2022] [Accepted: 05/02/2022] [Indexed: 04/12/2023]
Abstract
The apple fruit (Malus domestica L. Borkh) is one of the most popular fruits worldwide. Beyond their beneficial properties, apples contain proteins that trigger allergic reactions in susceptible consumers. Mal d1 to d4 are allergens present in a variety of different isoforms in apples. In this study, we used proteomics to quantify all four Mal d proteins in 52 apple genotypes with varying allergenic potentials. A total of 195, 17, 14, and 18 peptides were found to be related to Mal d1, d2, d3, and d4 proteins, respectively of which 25 different Mal d proteins could be unambiguously identified. The allergenic potential of the Mal d isoforms was characterized by comparing the isoform abundance with the allergenic score of genotypes from oral challenge tests. The detected Mal d peptides presumably have different IgE binding properties and could be used as potential molecular markers to discriminate between hypoallergenic and hyperallergenic cultivars.
Collapse
Affiliation(s)
- Soraya Chebib
- Biotechnology of Natural Products, Technical University Munich, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Karl-Christian Bergmann
- Allergy-Centre-Charité, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Sylvia Becker
- European Centre Allergy Research Foundation, Robert-Koch-Platz 7, 10115 Berlin, Germany
| | - Werner Dierend
- Faculty of Agricultural Science and Landscape Architecture, Fruit Science, University of Applied Sciences Osnabrück, Oldenburger Landstr. 24, 49090 Osnabrück, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technical University Munich, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
- Corresponding author.
| |
Collapse
|
38
|
Muneeswaran G, Lee JY. Histidine tautomerism dependent conformational transitions driven aggregation of profilin-1: Implications in amyotrophic lateral sclerosis. Int J Biol Macromol 2022; 214:241-251. [PMID: 35688275 DOI: 10.1016/j.ijbiomac.2022.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Aggregation of profilin-1 (PFN1) causes a fatal neurodegenerative disease, familial amyotrophic lateral sclerosis (fALS). Histidine (His) tautomerism has been linked to the formation of fibril aggregation causing neurodegenerative disease. Characterization of intermediate species that form during aggregation is crucial, however, this has proven very challenging for experimentalists due to their transient nature. Hence, molecular dynamics (MD) simulations have been performed on the His tautomeric isomers εε, εδ, δε, and δδ of PFN1 to explain the structural changes and to correlate them with its aggregation propensity. MD simulations show that His133 presumably plays a major role in the aggregation of PFN1 upon His tautomerism compared to His119. Further, the formation of a new 310-helix is observed in εε and δε but 310-helix is not observed in δδ and εδ isomers. In addition, our findings unveil that β-sheet dominating conformations are observed in His119(δ)-His133(δ) δδ isomer of PFN1 with significant antiparallel β-sheets between residues T15-G23, S29-A33, L63-L65, Q68-S76, F83-T89, T97-T105, and K107-K115, suggesting a novel aggregation mechanism possibly occur for the formation of PFN1 aggregates. Overall, these results propose that MD simulations of PFN1 His tautomers can provide a detailed microscopic understanding of the aggregation mechanisms which are hard to probe through experiments.
Collapse
Affiliation(s)
- Gurusamy Muneeswaran
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
39
|
Increased expression of Profilin potentiates chemotherapeutic agent-mediated tumour regression. Br J Cancer 2022; 126:1410-1420. [PMID: 35022526 PMCID: PMC9091232 DOI: 10.1038/s41416-021-01683-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Targeted cancer therapy is an alternative to standard chemotherapy for a better prognosis. Although its incompetency for triple-negative breast cancer (TNBC), treatment still relies on classical chemotherapy. Increasing evidence suggest that chemotherapeutic drug-induced toxic effect could be minimised by combinatorial therapy. Profilin's familiar anti-tumorigenic activity can be utilised in combination with the drug to improve efficacy, which could be promising therapeutics to treat TNBC. METHODS All-trans retinoic acid (ATRA) in combination with vinblastine was tested on human MDA MB-231 cell line (MB-231) (in vitro) and MB-231 borne breast cancer in nude mice (in vivo). Effects of combination treatment on tumour growth inhibition and apoptosis were examined by tumour volume, histology and PARP cleavage. ATRA-induced transcriptional regulation of profilin had been evaluated by gel-shift and reporter gene assays. Profilin's role in ATRA-induced vinblastine efficacy was validated in profilin-stable and profilin-silenced cells. RESULTS ATRA binds with RAR/RXR to increase the profilin expression that potentiated cell death by chemotherapeutics. ATRA priming led to vinblastine-mediated potentiation of G2-M phase cell cycle arrest in MB-231 cells and regression of breast cancer in xenograft mice at very low concentration without any adverse effects. Moreover, increased p53 and PTEN but downregulated p65 in the tumour tissues further supported the involvement of profilin for tumour regression. CONCLUSIONS Vinblastine at very low concentration (20 times lesser than the recommended dose for breast cancer therapeutic) significantly regress tumour growth in ATRA-primed mice without any toxic effects suggesting potential combinatorial therapeutics for TNBC.
Collapse
|
40
|
The Amyotrophic Lateral Sclerosis M114T PFN1 Mutation Deregulates Alternative Autophagy Pathways and Mitochondrial Homeostasis. Int J Mol Sci 2022; 23:ijms23105694. [PMID: 35628504 PMCID: PMC9143529 DOI: 10.3390/ijms23105694] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 12/10/2022] Open
Abstract
Mutations in profilin 1 (PFN1) have been identified in rare familial cases of Amyotrophic Lateral Sclerosis (ALS). PFN1 is involved in multiple pathways that could intervene in ALS pathology. However, the specific pathogenic role of PFN1 mutations in ALS is still not fully understood. We hypothesized that PFN1 could play a role in regulating autophagy pathways and that PFN1 mutations could disrupt this function. We used patient cells (lymphoblasts) or tissue (post-mortem) carrying PFN1 mutations (M114T and E117G), and designed experimental models expressing wild-type or mutant PFN1 (cell lines and novel PFN1 mice established by lentiviral transgenesis) to study the effects of PFN1 mutations on autophagic pathway markers. We observed no accumulation of PFN1 in the spinal cord of one E117G mutation carrier. Moreover, in patient lymphoblasts and transfected cell lines, the M114T mutant PFN1 protein was unstable and deregulated the RAB9-mediated alternative autophagy pathway involved in the clearance of damaged mitochondria. In vivo, motor neurons expressing M114T mutant PFN1 showed mitochondrial abnormalities. Our results demonstrate that the M114T PFN1 mutation is more deleterious than the E117G variant in patient cells and experimental models and suggest a role for the RAB9-dependent autophagic pathway in ALS.
Collapse
|
41
|
Fu Y, Pan F, Zhao L, Zhao S, Yi J, Cai S. Interfering effects on the bioactivities of several key proteins of COVID-19/variants in diabetes by compounds from Lianqiao leaves: In silico and in vitro analyses. Int J Biol Macromol 2022; 207:715-729. [PMID: 35346677 PMCID: PMC8957317 DOI: 10.1016/j.ijbiomac.2022.03.145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022]
Abstract
Diabetes is considered to be one of the diseases most associated with COVID-19. In this study, interfering effects and potential mechanisms of several compounds from Lianqiao (Forsythia suspensa (Thunb.) Vahl) leaves on the bioactivities of some key proteins of COVID-19 and its variants, as well as diabetic endothelial dysfunctions were illuminated through in vitro and in silico analyses. Results showed that, among the main ingredients in the leaves, forsythoside A showed the strongest docking affinities with the proteins SARS-CoV-2-RBD-hACE2 of COVID-19 and its variants (Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617)), as well as neuropilin-1 (NRP1), and SARS-CoV-2 main protease (MPro) to interfere coronavirus entering into the human body. Moreover, forsythoside A was the most stable in binding to receptors in Delta (B.1.617) system. It also has good antiviral activities and drug properties and has the strongest binding force to the RBD domain of COVID-19. In addition, forsythoside A reduced ROS production in AGEs-induced EA.hy926 cells, maintained endothelial integrity, and bound closely to protein profilin-1 (PFN1) receptor. This work may provide useful knowledge for further understanding the interfering effects and potential mechanisms of compounds, especially forsythoside A, from Lianqiao leaves on the bioactivities of key proteins of COVID-19/variants in diabetes.
Collapse
Affiliation(s)
- Yishan Fu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China
| | - Fei Pan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Shuai Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China.
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China.
| |
Collapse
|
42
|
Saurav S, Manna SK. Profilin upregulation induces autophagy through stabilization of AMP-activated protein kinase. FEBS Lett 2022; 596:1765-1777. [PMID: 35532157 DOI: 10.1002/1873-3468.14372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
Profilin regulates actin polymerization, and its balanced expression is required for cellular growth and development. Most tumors have compromised profilin expression, and its overexpression in MDA MB-231 breast cancer cells has been reported to activate AMP-activated protein kinase α (AMPKα), an energy-sensing molecule that affects various cellular processes including autophagy. The present study aims to explore the role of profilin in inducing autophagy. We employed all-trans retinoic acid (ATRA) as an inducer of profilin expression and showed that profilin induces autophagy through mTOR inhibition, autophagy-activating kinase ULK1 upregulation, and AMPK stabilization as well as its activation. Furthermore, evidence from our study indicates physical interaction between profilin and AMPK, which results in AMPK stabilization and induction of prolonged autophagy, thereby leading to apoptosis. This study uncovers a novel mechanism that induces autophagy in triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Shashank Saurav
- Laboratory of Immunology, Centre for DNA Fingerprinting & Diagnostics, Uppal, Hyderabad, 500 039, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sunil Kumar Manna
- Laboratory of Immunology, Centre for DNA Fingerprinting & Diagnostics, Uppal, Hyderabad, 500 039, Telangana, India
| |
Collapse
|
43
|
Bonilla-Quintana M, Rangamani P. Can biophysical models of dendritic spines be used to explore synaptic changes associated with addiction? Phys Biol 2022; 19. [PMID: 35508164 DOI: 10.1088/1478-3975/ac6cbe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/04/2022] [Indexed: 11/11/2022]
Abstract
Effective treatments that prevent or reduce drug relapse vulnerability should be developed to relieve the high burden of drug addiction on society. This will only be possible by enhancing the understanding of the molecular mechanisms underlying the neurobiology of addiction. Recent experimental data have shown that dendritic spines, small protrusions from the dendrites that receive excitatory input, of spiny neurons in the nucleus accumbens exhibit morphological changes during drug exposure and withdrawal. Moreover, these changes relate to the characteristic drug-seeking behavior of addiction. However, due to the complexity of the dendritic spines, we do not yet fully understand the processes underlying their structural changes in response to different inputs. We propose that biophysical models can enhance the current understanding of these processes by incorporating different, and sometimes, discrepant experimental data to identify the shared underlying mechanisms and generate experimentally testable hypotheses. This review aims to give an up-to-date report on biophysical models of dendritic spines, focusing on those models that describe their shape changes, which are well-known to relate to learning and memory. Moreover, it examines how these models can enhance our understanding of the effect of the drugs and the synaptic changes during withdrawal, as well as during neurodegenerative disease progression such as Alzheimer's disease.
Collapse
Affiliation(s)
- Mayte Bonilla-Quintana
- Mechanical Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0021, UNITED STATES
| | - Padmini Rangamani
- Mechanical Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0021, UNITED STATES
| |
Collapse
|
44
|
Yang YS, Xu ZQ, Zhu W, Zhu DX, Jiao YX, Zhang LS, Hou YB, Wei JF, Sun JL. Molecular and immunochemical characterization of profilin as major allergen from Platanus acerifolia pollen. Int Immunopharmacol 2022; 106:108601. [DOI: 10.1016/j.intimp.2022.108601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/10/2022] [Accepted: 01/30/2022] [Indexed: 01/03/2023]
|
45
|
Ye Z, Ni W, Zhang J, Zhang Y, Yu L, Huang X. Molecular characterization of a profilin gene from a parasitic ciliate Cryptocaryon irritans. Exp Parasitol 2022; 236-237:108248. [DOI: 10.1016/j.exppara.2022.108248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/22/2022] [Accepted: 03/16/2022] [Indexed: 11/04/2022]
|
46
|
Ambaru B, Gangadharan GM, Subramanya HS, Gupta CM. Profilin is involved in G1 to S phase progression and mitotic spindle orientation during Leishmania donovani cell division cycle. PLoS One 2022; 17:e0265692. [PMID: 35316283 PMCID: PMC8939790 DOI: 10.1371/journal.pone.0265692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/04/2022] [Indexed: 11/27/2022] Open
Abstract
Profilin is a multi-ligand binding protein, which is a key regulator of actin dynamics and involved in regulating several cellular functions. It is present in all eukaryotes, including trypanosomatids such as Leishmania. However, not much is known about its functions in these organisms. Our earlier studies have shown that Leishmania parasites express a single homologue of profilin (LdPfn) that binds actin, phosphoinositides and poly- L- proline motives, and depletion of its intracellular pool to 50%of normal levels affects the cell growth and intracellular trafficking. Here, we show, employing affinity pull-down and mass spectroscopy, that LdPfn interacted with a large number of proteins, including those involved in mRNA processing and protein translation initiation, such as eIF4A1. Further, we reveal, using mRNA Seq analysis, that depletion of LdPfn in Leishmania cells (LdPfn+/-) resulted in significantly reduced expression of genes which encode proteins involved in cell cycle regulation, mRNA translation initiation, nucleosides and amino acids transport. In addition, we show that in LdPfn+/- cells, cellular levels of eIF4A1 protein were significantly decreased, and during their cell division cycle, G1-to-S phase progression was delayed and orientation of mitotic spindle altered. These changes were, however, reversed to normal by episomal expression of GFP-LdPfn in LdPfn+/- cells. Taken together, our results indicate that profilin is involved in regulation of G1-to-S phase progression and mitotic spindle orientation in Leishmania cell cycle, perhaps through its interaction with elF4A1 protein.
Collapse
Affiliation(s)
- Bindu Ambaru
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | | | - Chhitar M. Gupta
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
- * E-mail:
| |
Collapse
|
47
|
Impact of miR-1/ miR-133 Clustered miRNAs: PFN2 Facilitates Malignant Phenotypes in Head and Neck Squamous Cell Carcinoma. Biomedicines 2022; 10:biomedicines10030663. [PMID: 35327465 PMCID: PMC8944972 DOI: 10.3390/biomedicines10030663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 12/14/2022] Open
Abstract
Based on our original RNA sequence-based microRNA (miRNA) signatures of head and neck squamous cell carcinoma (HNSCC), it was revealed that the expression levels of miR-1-3p, miR-206, miR-133a-3p, and miR-133b were significantly suppressed in cancer specimens. Seed sequences of miR-1-3p/miR-206 and miR-133a-3p/miR-133b are identical. Interestingly, miR-1-3p/miR-133a-3p and miR-206/miR-133b are clustered in the human genome. We hypothesized that the genes coordinately controlled by these miRNAs are closely involved in the malignant transformation of HNSCC. Our in silico analysis identified a total of 28 genes that had putative miR-1-3p/miR-133a-3p and miR-206/miR-133b binding sites. Moreover, their expression levels were upregulated in HNSCC tissues. Multivariate Cox regression analyses showed that expression of PFN2 and PSEN1 were independent prognostic factors for patients with HNSCC (p < 0.05). Notably, four miRNAs (i.e., miR-1-3p, miR-206, miR-133a-3p, and miR-133b) directly bound the 3′untranslated region of PFN2 and controlled expression of the gene in HNSCC cells. Overexpression of PFN2 was confirmed in clinical specimens, and its aberrant expression facilitated cancer cell migration and invasion abilities. Our miRNA-based strategy continues to uncover novel genes closely involved in the oncogenesis of HNSCC.
Collapse
|
48
|
Dietary Flavonoids Alleviate Inflammation and Vascular Endothelial Barrier Dysfunction Induced by Advanced Glycation End Products In Vitro. Nutrients 2022; 14:nu14051026. [PMID: 35268006 PMCID: PMC8912803 DOI: 10.3390/nu14051026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 01/04/2023] Open
Abstract
The aim of this study was to compare the protective effects of three dietary flavonoids (apigenin-7-O-glucoside (A7G), isorhamnetin-3-O-rutinoside (I3R), and cyanidin-3-O-glucoside (C3G)) on advanced glycation end products (AGEs)-induced inflammation and vascular endothelial dysfunction. Furthermore, the potential mechanisms of varied effects of those three dietary flavonoids were analyzed by molecular docking analysis. Results showed that C3G (40 μM) achieved the best inhibition on inflammatory cytokines (TNF-α, IL-1β, and IL-6) in AGEs-induced RAW264.7 cells, followed by I3R, and A7G was the weakest. The molecular docking results also showed that C3G exhibited the closest binding with the receptor for AGE. However, I3R (40 μM) demonstrated the best effect in improving endothelial dysfunction in AGEs-induced EA.hy926 cells, followed by C3G, and A7G was the weakest, as evidenced by the molecular docking results of flavonoids with profilin-1. This work may provide knowledge and helpful suggestions regarding the benefits of dietary flavonoids in diabetic vascular complications.
Collapse
|
49
|
De Marco G, Lomartire A, Manera U, Canosa A, Grassano M, Casale F, Fuda G, Salamone P, Rinaudo MT, Colombatto S, Moglia C, Chiò A, Calvo A. Effects of intracellular calcium accumulation on proteins encoded by the major genes underlying amyotrophic lateral sclerosis. Sci Rep 2022; 12:395. [PMID: 35013445 PMCID: PMC8748718 DOI: 10.1038/s41598-021-04267-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
The aetiology of Amyotrophic Lateral Sclerosis (ALS) is still poorly understood. The discovery of genetic forms of ALS pointed out the mechanisms underlying this pathology, but also showed how complex these mechanisms are. Excitotoxicity is strongly suspected to play a role in ALS pathogenesis. Excitotoxicity is defined as neuron damage due to excessive intake of calcium ions (Ca2+) by the cell. This study aims to find a relationship between the proteins coded by the most relevant genes associated with ALS and intracellular Ca2+ accumulation. In detail, the profile of eight proteins (TDP-43, C9orf72, p62/sequestosome-1, matrin-3, VCP, FUS, SOD1 and profilin-1), was analysed in three different cell types induced to raise their cytoplasmic amount of Ca2+. Intracellular Ca2+ accumulation causes a decrease in the levels of TDP-43, C9orf72, matrin3, VCP, FUS, SOD1 and profilin-1 and an increase in those of p62/sequestosome-1. These events are associated with the proteolytic action of two proteases, calpains and caspases, as well as with the activation of autophagy. Interestingly, Ca2+ appears to both favour and hinder autophagy. Understanding how and why calpain-mediated proteolysis and autophagy, which are physiological processes, become pathological may elucidate the mechanisms responsible for ALS and help discover new therapeutic targets.
Collapse
Affiliation(s)
- Giovanni De Marco
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy. .,Neurology Unit 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Via Cherasco 15, 10126, Turin, Italy.
| | - Annarosa Lomartire
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Umberto Manera
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Antonio Canosa
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy.,Neurology Unit 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Maurizio Grassano
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Federico Casale
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Giuseppe Fuda
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Paolina Salamone
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy.,Neurology Unit 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Maria Teresa Rinaudo
- Department of Oncology, University of Turin, via Michelangelo 27/b, 10126, Turin, Italy
| | - Sebastiano Colombatto
- Department of Oncology, University of Turin, via Michelangelo 27/b, 10126, Turin, Italy
| | - Cristina Moglia
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy.,Neurology Unit 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Adriano Chiò
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy.,Neurology Unit 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Via Cherasco 15, 10126, Turin, Italy.,Neuroscience Institute of Turin (NIT), Via Verdi, 8, 10124, Turin, Italy.,Institute of Cognitive Sciences and Technologies, C.N.R., Via S. Martino della Battaglia, 44, 00185, Rome, Italy
| | - Andrea Calvo
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy.,Neurology Unit 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Via Cherasco 15, 10126, Turin, Italy.,Neuroscience Institute of Turin (NIT), Via Verdi, 8, 10124, Turin, Italy
| |
Collapse
|
50
|
Zhao J, Liu L, Lv S, Wang C, Yue H, Zhang Z. PFN1 Gene Polymorphisms and the Bone Mineral Density Response to Alendronate Therapy in Postmenopausal Chinese Women with Low Bone Mass. Pharmgenomics Pers Med 2022; 14:1669-1678. [PMID: 34992429 PMCID: PMC8711734 DOI: 10.2147/pgpm.s344818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Alendronate is a widely used anti-osteoporotic drug. PFN1 gene is a newly identified early-onset Paget’s disease pathogenic gene. The purpose of this study is to study whether the genetic variations in this gene affect the clinical efficacy of alendronate in postmenopausal Chinese women with low bone mass. Patients and Methods Seven single nucleotide polymorphisms in PFN1 gene were genotyped. A total of 500 postmenopausal women with osteoporosis or osteopenia were included. All participants were treated with weekly alendronate 70 mg for 12 months. A total of 466 subjects completed the follow-up. Bone mineral density (BMD) of lumbar spine, femoral neck and total hip were measured at baseline and after treatment. Results After 12 months of treatment, the BMD of lumbar spine, femoral neck and total hip all increased significantly (all P < 0.001), with an average increase of 4.72 ± 5.31%, 2.08 ± 4.45%, and 2.42 ± 3.46%, respectively. At baseline, there were no significant differences in BMD at lumbar spine, femoral neck and total hip between different genotype groups (P > 0.05). We failed to identify any significant association between the genotypes or haplotypes of PFN1 and the BMD response to alendronate therapy. Conclusion Genetic polymorphisms of PFN1 may not be a major contributor to the therapeutic response to alendronate treatment in Chinese women with low bone mass.
Collapse
Affiliation(s)
- Jiao Zhao
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Li Liu
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Shanshan Lv
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Chun Wang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Hua Yue
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|