1
|
Hayashi S, Ohno N, Knott G, Molnár Z. Correlative light and volume electron microscopy to study brain development. Microscopy (Oxf) 2023; 72:279-286. [PMID: 36620906 DOI: 10.1093/jmicro/dfad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
Recent advances in volume electron microscopy (EM) have been driving our thorough understanding of the brain architecture. Volume EM becomes increasingly powerful when cells and their subcellular structures that are imaged in light microscopy are correlated to those in ultramicrographs obtained with EM. This correlative approach, called correlative light and volume electron microscopy (vCLEM), is used to link three-dimensional ultrastructural information with physiological data such as intracellular Ca2+ dynamics. Genetic tools to express fluorescent proteins and/or an engineered form of a soybean ascorbate peroxidase allow us to perform vCLEM using natural landmarks including blood vessels without immunohistochemical staining. This immunostaining-free vCLEM has been successfully employed in two-photon Ca2+ imaging in vivo as well as in studying complex synaptic connections in thalamic neurons that receive a variety of specialized inputs from the cerebral cortex. In this mini-review, we overview how volume EM and vCLEM have contributed to studying the developmental processes of the brain. We also discuss potential applications of genetic manipulation of target cells using clustered regularly interspaced short palindromic repeats-associated protein 9 and subsequent volume EM to the analysis of protein localization as well as to loss-of-function studies of genes regulating brain development. We give examples for the combinatorial usage of genetic tools with vCLEM that will further enhance our understanding of regulatory mechanisms underlying brain development.
Collapse
Affiliation(s)
- Shuichi Hayashi
- Department of Anatomy, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, 5-1 Higashiyama Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Graham Knott
- Biological Electron Microscopy Facility, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, Lausanne CH-1015, Switzerland
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
2
|
Tamada H. Three-dimensional ultrastructure analysis of organelles in injured motor neuron. Anat Sci Int 2023; 98:360-369. [PMID: 37071350 PMCID: PMC10256651 DOI: 10.1007/s12565-023-00720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 04/19/2023]
Abstract
Morphological analysis of organelles is one of the important clues for understanding the cellular conditions and mechanisms occurring in cells. In particular, nanoscale information within crowded intracellular organelles of tissues provide more direct implications when compared to analyses of cells in culture or isolation. However, there are some difficulties in detecting individual shape using light microscopy, including super-resolution microscopy. Transmission electron microscopy (TEM), wherein the ultrastructure can be imaged at the membrane level, cannot determine the whole structure, and analyze it quantitatively. Volume EM, such as focused ion beam/scanning electron microscopy (FIB/SEM), can be a powerful tool to explore the details of three-dimensional ultrastructures even within a certain volume, and to measure several parameters from them. In this review, the advantages of FIB/SEM analysis in organelle studies are highlighted along with the introduction of mitochondrial analysis in injured motor neurons. This would aid in understanding the morphological details of mitochondria, especially those distributed in the cell bodies as well as in the axon initial segment (AIS) in mouse tissues. These regions have not been explored thus far due to the difficulties encountered in accessing their images by conditional microscopies. Some mechanisms of nerve regeneration have also been discussed with reference to the obtained findings. Finally, future perspectives on FIB/SEM are introduced. The combination of biochemical and genetic understanding of organelle structures and a nanoscale understanding of their three-dimensional distribution and morphology will help to match achievements in genomics and structural biology.
Collapse
Affiliation(s)
- Hiromi Tamada
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan.
- Anatomy, Graduate School of Medicines, University of Fukui, Matsuokashimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan.
| |
Collapse
|
3
|
Sardella D, Kristensen AM, Bordoni L, Kidmose H, Shahrokhtash A, Sutherland DS, Frische S, Schiessl IM. Serial intravital 2-photon microscopy and analysis of the kidney using upright microscopes. Front Physiol 2023; 14:1176409. [PMID: 37168225 PMCID: PMC10164931 DOI: 10.3389/fphys.2023.1176409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
Serial intravital 2-photon microscopy of the kidney and other abdominal organs is a powerful technique to assess tissue function and structure simultaneously and over time. Thus, serial intravital microscopy can capture dynamic tissue changes during health and disease and holds great potential to characterize (patho-) physiological processes with subcellular resolution. However, successful image acquisition and analysis require significant expertise and impose multiple potential challenges. Abdominal organs are rhythmically displaced by breathing movements which hamper high-resolution imaging. Traditionally, kidney intravital imaging is performed on inverted microscopes where breathing movements are partly compensated by the weight of the animal pressing down. Here, we present a custom and easy-to-implement setup for intravital imaging of the kidney and other abdominal organs on upright microscopes. Furthermore, we provide image processing protocols and a new plugin for the free image analysis software FIJI to process multichannel fluorescence microscopy data. The proposed image processing pipelines cover multiple image denoising algorithms, sample drift correction using 2D registration, and alignment of serial imaging data collected over several weeks using landmark-based 3D registration. The provided tools aim to lower the barrier of entry to intravital microscopy of the kidney and are readily applicable by biomedical practitioners.
Collapse
Affiliation(s)
- Donato Sardella
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Luca Bordoni
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Hanne Kidmose
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ali Shahrokhtash
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | | | | | | |
Collapse
|
4
|
Integrated multimodality microscope for accurate and efficient target-guided cryo-lamellae preparation. Nat Methods 2023; 20:268-275. [PMID: 36646896 PMCID: PMC9911353 DOI: 10.1038/s41592-022-01749-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/06/2022] [Indexed: 01/18/2023]
Abstract
Cryo-electron tomography (cryo-ET) is a revolutionary technique for resolving the structure of subcellular organelles and macromolecular complexes in their cellular context. However, the application of the cryo-ET is hampered by the sample preparation step. Performing cryo-focused ion beam milling at an arbitrary position on the sample is inefficient, and the target of interest is not guaranteed to be preserved when thinning the cell from several micrometers to less than 300 nm thick. Here, we report a cryogenic correlated light, ion and electron microscopy (cryo-CLIEM) technique that is capable of preparing cryo-lamellae under the guidance of three-dimensional confocal imaging. Moreover, we demonstrate a workflow to preselect and preserve nanoscale target regions inside the finished cryo-lamellae. By successfully preparing cryo-lamellae that contain a single centriole or contact sites between subcellular organelles, we show that this approach is generally applicable, and shall help in innovating more applications of cryo-ET.
Collapse
|
5
|
Abstract
In this series of papers on light microscopy imaging, we have covered the fundamentals of microscopy, super-resolution microscopy, and lightsheet microscopy. This last review covers multi-photon microscopy with a brief reference to intravital imaging and Brainbow labeling. Multi-photon microscopy is often referred to as two-photon microscopy. Indeed, using two-photon microscopy is by far the most common way of imaging thick tissues; however, it is theoretically possible to use a higher number of photons, and three-photon microscopy is possible. Therefore, this review is titled "multi-photon microscopy." Another term for describing multi-photon microscopy is "non-linear" microscopy because fluorescence intensity at the focal spot depends upon the average squared intensity rather than the squared average intensity; hence, non-linear optics (NLO) is an alternative name for multi-photon microscopy. It is this non-linear relationship (or third exponential power in the case of three-photon excitation) that determines the axial optical sectioning capability of multi-photon imaging. In this paper, the necessity for two-photon or multi-photon imaging is explained, and the method of optical sectioning by multi-photon microscopy is described. Advice is also given on what fluorescent markers to use and other practical aspects of imaging thick tissues. The technique of Brainbow imaging is discussed. The review concludes with a description of intravital imaging of the mouse. © 2023 Wiley Periodicals LLC.
Collapse
|
6
|
Intravital microscopy for real-time monitoring of drug delivery and nanobiological processes. Adv Drug Deliv Rev 2022; 189:114528. [PMID: 36067968 DOI: 10.1016/j.addr.2022.114528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
Intravital microscopy (IVM) expands our understanding of cellular and molecular processes, with applications ranging from fundamental biology to (patho)physiology and immunology, as well as from drug delivery to drug processing and drug efficacy testing. In this review, we highlight modalities, methods and model organisms that make up today's IVM landscape, and we present how IVM - via its high spatiotemporal resolution - enables analysis of metabolites, small molecules, nanoparticles, immune cells, and the (tumor) tissue microenvironment. We furthermore present examples of how IVM facilitates the elucidation of nanomedicine kinetics and targeting mechanisms, as well as of biological processes such as immune cell death, host-pathogen interactions, metabolic states, and disease progression. We conclude by discussing the prospects of IVM clinical translation and examining the integration of machine learning in future IVM practice.
Collapse
|
7
|
Agarwala S, Kim KY, Phan S, Ju S, Kong YE, Castillon GA, Bushong EA, Ellisman MH, Tamplin OJ. Defining the ultrastructure of the hematopoietic stem cell niche by correlative light and electron microscopy. eLife 2022; 11:e64835. [PMID: 35943143 PMCID: PMC9391045 DOI: 10.7554/elife.64835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
The blood system is supported by hematopoietic stem and progenitor cells (HSPCs) found in a specialized microenvironment called the niche. Many different niche cell types support HSPCs, however how they interact and their ultrastructure has been difficult to define. Here, we show that single endogenous HSPCs can be tracked by light microscopy, then identified by serial block-face scanning electron microscopy (SBEM) at multiscale levels. Using the zebrafish larval kidney marrow (KM) niche as a model, we followed single fluorescently labeled HSPCs by light sheet microscopy, then confirmed their exact location in a 3D SBEM dataset. We found a variety of different configurations of HSPCs and surrounding niche cells, suggesting there could be functional heterogeneity in sites of HSPC lodgement. Our approach also allowed us to identify dopamine beta-hydroxylase (dbh) positive ganglion cells as a previously uncharacterized functional cell type in the HSPC niche. By integrating multiple imaging modalities, we could resolve the ultrastructure of single rare cells deep in live tissue and define all contacts between an HSPC and its surrounding niche cell types.
Collapse
Affiliation(s)
- Sobhika Agarwala
- Center for Stem Cell and Regenerative Medicine, Department of Pharmacology, College of Medicine, University of Illinois at ChicagoChicagoUnited States
| | - Keun-Young Kim
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California at San DiegoSan DiegoUnited States
| | - Sebastien Phan
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California at San DiegoSan DiegoUnited States
| | - Saeyeon Ju
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California at San DiegoSan DiegoUnited States
| | - Ye Eun Kong
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California at San DiegoSan DiegoUnited States
| | - Guillaume A Castillon
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California at San DiegoSan DiegoUnited States
| | - Eric A Bushong
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California at San DiegoSan DiegoUnited States
| | - Mark H Ellisman
- Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California at San DiegoSan DiegoUnited States
- Department of Neurosciences, University of California at San Diego School of MedicineSan DiegoUnited States
| | - Owen J Tamplin
- Center for Stem Cell and Regenerative Medicine, Department of Pharmacology, College of Medicine, University of Illinois at ChicagoChicagoUnited States
| |
Collapse
|
8
|
Dyer L, Parker A, Paphiti K, Sanderson J. Lightsheet Microscopy. Curr Protoc 2022; 2:e448. [PMID: 35838628 DOI: 10.1002/cpz1.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we review lightsheet (selective plane illumination) microscopy for mouse developmental biologists. There are different means of forming the illumination sheet, and we discuss these. We explain how we introduced the lightsheet microscope economically into our core facility and present our results on fixed and living samples. We also describe methods of clearing fixed samples for three-dimensional imaging and discuss the various means of preparing samples with particular reference to mouse cilia, adipose spheroids, and cochleae. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Laura Dyer
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Andrew Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Keanu Paphiti
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| |
Collapse
|
9
|
Heiligenstein X, Lucas MS. One for All, All for One: A Close Look at In-Resin Fluorescence Protocols for CLEM. Front Cell Dev Biol 2022; 10:866472. [PMID: 35846358 PMCID: PMC9280628 DOI: 10.3389/fcell.2022.866472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Sample preparation is the novel bottleneck for high throughput correlative light and electron microscopy (CLEM). Protocols suitable for both imaging methods must therefore balance the requirements of each technique. For fluorescence light microscopy, a structure of interest can be targeted using: 1) staining, which is often structure or tissue specific rather than protein specific, 2) dye-coupled proteins or antibodies, or 3) genetically encoded fluorescent proteins. Each of these three methods has its own advantages. For ultrastructural investigation by electron microscopy (EM) resin embedding remains a significant sample preparation approach, as it stabilizes the sample such that it withstands the vacuum conditions of the EM, and enables long-term storage. Traditionally, samples are treated with heavy metal salts prior to resin embedding, in order to increase imaging contrast for EM. This is particularly important for volume EM (vEM) techniques. Yet, commonly used contrasting agents (e.g., osmium tetroxide, uranyl acetate) tend to impair fluorescence. The discovery that fluorescence can be preserved in resin-embedded specimens after mild heavy metal staining was a game changer for CLEM. These so-called in-resin fluorescence protocols present a significant leap forward for CLEM approaches towards high precision localization of a fluorescent signal in (volume) EM data. Integrated microscopy approaches, combining LM and EM detection into a single instrument certainly require such an “all in one” sample preparation. Preserving, or adding, dedicated fluorescence prior to resin embedding requires a compromise, which often comes at the expense of EM imaging contrast and membrane visibility. Especially vEM can be strongly hampered by a lack of heavy metal contrasting. This review critically reflects upon the fundamental aspects of resin embedding with regard to 1) specimen fixation and the physics and chemistry underlying the preservation of protein structure with respect to fluorescence and antigenicity, 2) optimization of EM contrast for transmission or scanning EM, and 3) the choice of embedding resin. On this basis, various existing workflows employing in-resin fluorescence are described, highlighting their common features, discussing advantages and disadvantages of the respective approach, and finally concluding with promising future developments for in-resin CLEM.
Collapse
Affiliation(s)
| | - Miriam S. Lucas
- Scientific Center for Light and Electron Microscopy (ScopeM), ETH Zurich, Zurich, Switzerland
- *Correspondence: Miriam S. Lucas,
| |
Collapse
|
10
|
Landmark-based retrieval of inflamed skin vessels enabled by 3D correlative intravital light and volume electron microscopy. Histochem Cell Biol 2022; 158:127-136. [PMID: 35764846 PMCID: PMC9338004 DOI: 10.1007/s00418-022-02119-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/15/2022]
Abstract
The nanometer spatial resolution of electron microscopy imaging remains an advantage over light microscopy, but the restricted field of view that can be inspected and the inability to visualize dynamic cellular events are definitely drawbacks of standard transmission electron microscopy (TEM). Several methods have been developed to overcome these limitations, mainly by correlating the light microscopical image to the electron microscope with correlative light and electron microscopy (CLEM) techniques. Since there is more than one method to obtain the region of interest (ROI), the workflow must be adjusted according to the research question and biological material addressed. Here, we describe in detail the development of a three-dimensional CLEM workflow for mouse skin tissue exposed to an inflammation stimulus and imaged by intravital microscopy (IVM) before fixation. Our aim is to relocate a distinct vessel in the electron microscope, addressing a complex biological question: how do cells interact with each other and the surrounding environment at the ultrastructural level? Retracing the area over several preparation steps did not involve any specific automated instruments but was entirely led by anatomical and artificially introduced landmarks, including blood vessel architecture and carbon-coated grids. Successful retrieval of the ROI by electron microscopy depended on particularly high precision during sample manipulation and extensive documentation. Further modification of the TEM sample preparation protocol for mouse skin tissue even rendered the specimen suitable for serial block-face scanning electron microscopy (SBF-SEM).
Collapse
|
11
|
Zhang Q, Wang Y, Li Q, Tao X, Zhou X, Zhang Y, Liu G. An autofocus algorithm considering wavelength changes for large scale microscopic hyperspectral pathological imaging system. JOURNAL OF BIOPHOTONICS 2022; 15:e202100366. [PMID: 35020264 DOI: 10.1002/jbio.202100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Microscopic hyperspectral imaging technology has been widely used to acquire pathological information of tissue sections. Autofocus is one of the most important steps in microscopic hyperspectral imaging systems to capture large scale or even whole slide images of pathological slides with high quality and high speed. However, there are quite few autofocus algorithm put forward for the microscopic hyperspectral imaging system. Therefore, this article proposes a Laplace operator based autofocus algorithm for microscopic hyperspectral imaging system which takes the influence of wavelength changes into consideration. Through the proposed algorithm, the focal length for each wavelength can be adjusted automatically to ensure that each single band image can be autofocused precisely with adaptive image sharpness evaluation method. In addition, to increase the capture speed, the relationship of wavelength and focal length is derived and the focal offsets among different single band images are calculated for pre-focusing. We have employed the proposed method on our own datasets and the experimental results show that it can capture large-scale microscopic hyperspectral pathology images with high precise.
Collapse
Affiliation(s)
- Qing Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China
| | - Yan Wang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China
- Center of SHMEC for Space Information and GNSS, East China Normal University, Shanghai, China
| | - Qingli Li
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China
- Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, China
- Center of SHMEC for Space Information and GNSS, East China Normal University, Shanghai, China
| | - Xiang Tao
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| | | | - Yonghe Zhang
- Jiangsu Huachuang High-tech Medical Technology Co., Ltd., Suzhou, China
| | - Gang Liu
- Panovue Biological Technology (Beijing) Co., Ltd, Beijing, China
| |
Collapse
|
12
|
Yu W, Sharma S, Rao E, Rowat AC, Gimzewski JK, Han D, Rao J. Cancer cell mechanobiology: a new frontier for cancer research. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:10-17. [PMID: 39035217 PMCID: PMC11256617 DOI: 10.1016/j.jncc.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022] Open
Abstract
The study of physical and mechanical features of cancer cells, or cancer cell mechanobiology, is a new frontier in cancer research. Such studies may enhance our understanding of the disease process, especially mechanisms associated with cancer cell invasion and metastasis, and may help the effort of developing diagnostic biomarkers and therapeutic drug targets. Cancer cell mechanobiological changes are associated with the complex interplay of activation/inactivation of multiple signaling pathways, which can occur at both the genetic and epigenetic levels, and the interactions with the cancer microenvironment. It has been shown that metastatic tumor cells are more compliant than morphologically similar benign cells in actual human samples. Subsequent studies from us and others further demonstrated that cell mechanical properties are strongly associated with cancer cell invasive and metastatic potential, and thus may serve as a diagnostic marker of detecting cancer cells in human body fluid samples. In this review, we provide a brief narrative of the molecular mechanisms underlying cancer cell mechanobiology, the technological platforms utilized to study cancer cell mechanobiology, the status of cancer cell mechanobiological studies in various cancer types, and the potential clinical applications of cancer cell mechanobiological study in cancer early detection, diagnosis, and treatment.
Collapse
Affiliation(s)
- Weibo Yu
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| | - Shivani Sharma
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| | - Elizabeth Rao
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| | - Amy C. Rowat
- Department of Integrative Biology and Physiology, University of California at Los Angeles, California, USA
| | - James K. Gimzewski
- Department of Chemistry and Biochemistry, University of California at Los Angeles, California, USA
| | - Dong Han
- National Center for Nanoscience and Technology, Beijing, China
| | - Jianyu Rao
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| |
Collapse
|
13
|
Lane R, Wolters AHG, Giepmans BNG, Hoogenboom JP. Integrated Array Tomography for 3D Correlative Light and Electron Microscopy. Front Mol Biosci 2022; 8:822232. [PMID: 35127826 PMCID: PMC8809480 DOI: 10.3389/fmolb.2021.822232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
Volume electron microscopy (EM) of biological systems has grown exponentially in recent years due to innovative large-scale imaging approaches. As a standalone imaging method, however, large-scale EM typically has two major limitations: slow rates of acquisition and the difficulty to provide targeted biological information. We developed a 3D image acquisition and reconstruction pipeline that overcomes both of these limitations by using a widefield fluorescence microscope integrated inside of a scanning electron microscope. The workflow consists of acquiring large field of view fluorescence microscopy (FM) images, which guide to regions of interest for successive EM (integrated correlative light and electron microscopy). High precision EM-FM overlay is achieved using cathodoluminescent markers. We conduct a proof-of-concept of our integrated workflow on immunolabelled serial sections of tissues. Acquisitions are limited to regions containing biological targets, expediting total acquisition times and reducing the burden of excess data by tens or hundreds of GBs.
Collapse
Affiliation(s)
- Ryan Lane
- Imaging Physics, Delft University of Technology, Delft, Netherlands
| | - Anouk H. G. Wolters
- Department of Biomedical Sciences of Cells and Systems, University Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ben N. G. Giepmans
- Department of Biomedical Sciences of Cells and Systems, University Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
14
|
Intravital and high-content multiplex imaging of the immune system. Trends Cell Biol 2021; 32:406-420. [PMID: 34920936 PMCID: PMC9018524 DOI: 10.1016/j.tcb.2021.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
Highly motile and functionally diverse immune cells orchestrate effective immune responses through complex and dynamic cooperative behavior. Multiphoton intravital microscopy (MP-IVM) presents a unique and powerful tool to study the coordinated action of immune cell interactions in situ. Here, we review the current state of intravital microscopy in deepening our understanding of the immune system and discuss its fundamental limitations. In addition, we draw insights from recent technical advances in multiplex static tissue-imaging methods and propose an approach that could enable simultaneous visualization of cellular dynamics, deep phenotyping, and transcriptional states through a new type of correlative microscopy that combines these imaging technologies with advances in complex data analysis.
Collapse
|
15
|
Colin F, Gensbittel V, Goetz JG. Biomechanics: a driving force behind metastatic progression. C R Biol 2021; 344:249-262. [DOI: 10.5802/crbiol.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022]
|
16
|
Masthoff M, Freppon FN, Zondler L, Wilken E, Wachsmuth L, Niemann S, Schwarz C, Fredrich I, Havlas A, Block H, Gerwing M, Helfen A, Heindel W, Zarbock A, Wildgruber M, Faber C. Resolving immune cells with patrolling behaviour by magnetic resonance time-lapse single cell tracking. EBioMedicine 2021; 73:103670. [PMID: 34742131 PMCID: PMC8581510 DOI: 10.1016/j.ebiom.2021.103670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/10/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Immune cells show distinct motion patterns that change upon inflammatory stimuli. Monocytes patrol the vasculature to screen for pathogens, thereby exerting an early task of innate immunity. Here, we aimed to non-invasively analyse single patrolling monocyte behaviour upon inflammatory stimuli. METHODS We used time-lapse Magnetic Resonance Imaging (MRI) of the murine brain to dynamically track single patrolling monocytes within the circulation distant to the actual site of inflammation in different inflammatory conditions, ranging from a subcutaneous pellet model to severe peritonitis and bacteraemia. FINDINGS Single patrolling immune cells with a velocity of <1 µm/s could be detected and followed dynamically using time-lapse MRI. We show, that due to local and systemic stimuli the slowly patrolling behaviour of monocytes is altered systemically and differs with type, duration and strength of the underlying stimulus. INTERPRETATION Using time-lapse MRI, it is now possible to investigate the behaviour of single circulating monocytes over the course of the systemic immune response. Monocyte patrolling behaviour is altered systemically even before the onset of clinical symptoms distant to and depending on the underlying inflammatory stimulus. FUNDING This study was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - CRC 1009 - 194468054 to AZ, CF and - CRC 1450 - 431460824 to MM, SN, HB, AZ, CF, the Joachim Herz Foundation (Add-on Fellowship for Interdisciplinary Life Sciences to MM), the Interdisciplinary Centre for Clinical Research (IZKF, core unit PIX) and the Medical Faculty of the University of Muenster (MEDK fellowship to FF and IF).
Collapse
Affiliation(s)
- Max Masthoff
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany.
| | - Felix Noah Freppon
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Lisa Zondler
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Enrica Wilken
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Lydia Wachsmuth
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany
| | - Christian Schwarz
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Ina Fredrich
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Asli Havlas
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Helena Block
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Mirjam Gerwing
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Anne Helfen
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Walter Heindel
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Alexander Zarbock
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Moritz Wildgruber
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany; Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Cornelius Faber
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
17
|
Schifferer M, Snaidero N, Djannatian M, Kerschensteiner M, Misgeld T. Niwaki Instead of Random Forests: Targeted Serial Sectioning Scanning Electron Microscopy With Reimaging Capabilities for Exploring Central Nervous System Cell Biology and Pathology. Front Neuroanat 2021; 15:732506. [PMID: 34720890 PMCID: PMC8548362 DOI: 10.3389/fnana.2021.732506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Ultrastructural analysis of discrete neurobiological structures by volume scanning electron microscopy (SEM) often constitutes a "needle-in-the-haystack" problem and therefore relies on sophisticated search strategies. The appropriate SEM approach for a given relocation task not only depends on the desired final image quality but also on the complexity and required accuracy of the screening process. Block-face SEM techniques like Focused Ion Beam or serial block-face SEM are "one-shot" imaging runs by nature and, thus, require precise relocation prior to acquisition. In contrast, "multi-shot" approaches conserve the sectioned tissue through the collection of serial sections onto solid support and allow reimaging. These tissue libraries generated by Array Tomography or Automated Tape Collecting Ultramicrotomy can be screened at low resolution to target high resolution SEM. This is particularly useful if a structure of interest is rare or has been predetermined by correlated light microscopy, which can assign molecular, dynamic and functional information to an ultrastructure. As such approaches require bridging mm to nm scales, they rely on tissue trimming at different stages of sample processing. Relocation is facilitated by endogenous or exogenous landmarks that are visible by several imaging modalities, combined with appropriate registration strategies that allow overlaying images of various sources. Here, we discuss the opportunities of using multi-shot serial sectioning SEM approaches, as well as suitable trimming and registration techniques, to slim down the high-resolution imaging volume to the actual structure of interest and hence facilitate ambitious targeted volume SEM projects.
Collapse
Affiliation(s)
- Martina Schifferer
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Nicolas Snaidero
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Minou Djannatian
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Martin Kerschensteiner
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Misgeld
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| |
Collapse
|
18
|
Zebrafish as a preclinical model for Extracellular Vesicle-based therapeutic development. Adv Drug Deliv Rev 2021; 176:113815. [PMID: 34058284 DOI: 10.1016/j.addr.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022]
Abstract
Extracellular Vesicles (EVs) are released during various pathophysiological processes and reflect the state of their cell of origin. Once released, they can propagate through biological fluids, target cells, deliver their content and elicit functional responses. These specific features would allow their harnessing as biomarkers, drug nano-vehicles and therapeutic intrinsic modulators. However, the further development of their potential therapeutic application is hampered by the lack of knowledge about how EVs behave in vivo. Recent advances in the field of imaging EVs in vivo now allow live-tracking of endogenous and exogenous EV in various model organisms at high spatiotemporal resolution to define their distribution, half-life and fate. This review highlights current imaging tools available to image EVs in vivo and how live imaging especially in the zebrafish embryo can bring further insights into the characterization of EVs dynamics, biodistribution and functions to potentiate their development for therapeutic applications.
Collapse
|
19
|
Gemin O, Serna P, Zamith J, Assendorp N, Fossati M, Rostaing P, Triller A, Charrier C. Unique properties of dually innervated dendritic spines in pyramidal neurons of the somatosensory cortex uncovered by 3D correlative light and electron microscopy. PLoS Biol 2021; 19:e3001375. [PMID: 34428203 PMCID: PMC8415616 DOI: 10.1371/journal.pbio.3001375] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 09/03/2021] [Accepted: 07/29/2021] [Indexed: 01/04/2023] Open
Abstract
Pyramidal neurons (PNs) are covered by thousands of dendritic spines receiving excitatory synaptic inputs. The ultrastructure of dendritic spines shapes signal compartmentalization, but ultrastructural diversity is rarely taken into account in computational models of synaptic integration. Here, we developed a 3D correlative light-electron microscopy (3D-CLEM) approach allowing the analysis of specific populations of synapses in genetically defined neuronal types in intact brain circuits. We used it to reconstruct segments of basal dendrites of layer 2/3 PNs of adult mouse somatosensory cortex and quantify spine ultrastructural diversity. We found that 10% of spines were dually innervated and 38% of inhibitory synapses localized to spines. Using our morphometric data to constrain a model of synaptic signal compartmentalization, we assessed the impact of spinous versus dendritic shaft inhibition. Our results indicate that spinous inhibition is locally more efficient than shaft inhibition and that it can decouple voltage and calcium signaling, potentially impacting synaptic plasticity.
Collapse
Affiliation(s)
- Olivier Gemin
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Pablo Serna
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
- Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, PSL Research University, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Joseph Zamith
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Nora Assendorp
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Matteo Fossati
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Philippe Rostaing
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Antoine Triller
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Cécile Charrier
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|
20
|
Local blood coagulation drives cancer cell arrest and brain metastasis in a mouse model. Blood 2021; 137:1219-1232. [PMID: 33270819 DOI: 10.1182/blood.2020005710] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022] Open
Abstract
Clinically relevant brain metastases (BMs) frequently form in cancer patients, with limited options for effective treatment. Circulating cancer cells must first permanently arrest in brain microvessels to colonize the brain, but the critical factors in this process are not well understood. Here, in vivo multiphoton laser-scanning microscopy of the entire brain metastatic cascade allowed unprecedented insights into how blood clot formation and von Willebrand factor (VWF) deposition determine the arrest of circulating cancer cells and subsequent brain colonization in mice. Clot formation in brain microvessels occurred frequently (>95%) and specifically at intravascularly arrested cancer cells, allowing their long-term arrest. An extensive clot embedded ∼20% of brain-arrested cancer cells, and those were more likely to successfully extravasate and form a macrometastasis. Mechanistically, the generation of tissue factor-mediated thrombin by cancer cells accounted for local activation of plasmatic coagulation in the brain. Thrombin inhibition by treatment with low molecular weight heparin or dabigatran and an anti-VWF antibody prevented clot formation, cancer cell arrest, extravasation, and the formation of brain macrometastases. In contrast, tumor cells were not able to directly activate platelets, and antiplatelet treatments did reduce platelet dispositions at intravascular cancer cells but did not reduce overall formation of BMs. In conclusion, our data show that plasmatic coagulation is activated early by intravascular tumor cells in the brain with subsequent clot formation, which led us to discover a novel and specific mechanism that is crucial for brain colonization. Direct or indirect thrombin and VWF inhibitors emerge as promising drug candidates for trials on prevention of BMs.
Collapse
|
21
|
Abstract
Microengineering advances have enabled the development of perfusable, endothelialized models of the microvasculature that recapitulate the unique biological and biophysical conditions of the microcirculation in vivo. Indeed, at that size scale (<100 μm)-where blood no longer behaves as a simple continuum fluid; blood cells approximate the size of the vessels themselves; and complex interactions among blood cells, plasma molecules, and the endothelium constantly ensue-vascularized microfluidics are ideal tools to investigate these microvascular phenomena. Moreover, perfusable, endothelialized microfluidics offer unique opportunities for investigating microvascular diseases by enabling systematic dissection of both the blood and vascular components of the pathophysiology at hand. We review (a) the state of the art in microvascular devices and (b) the myriad of microvascular diseases and pressing challenges. The engineering community has unique opportunities to innovate with new microvascular devices and to partner with biomedical researchers to usher in a new era of understanding and discovery of microvascular diseases.
Collapse
Affiliation(s)
- David R Myers
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA; ,
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Wilbur A Lam
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA; ,
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
22
|
Kubota R, Tanaka W, Hamachi I. Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chem Rev 2021; 121:14281-14347. [DOI: 10.1021/acs.chemrev.0c01334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
23
|
Dawson CA, Mueller SN, Lindeman GJ, Rios AC, Visvader JE. Intravital microscopy of dynamic single-cell behavior in mouse mammary tissue. Nat Protoc 2021; 16:1907-1935. [PMID: 33627843 DOI: 10.1038/s41596-020-00473-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/24/2020] [Indexed: 01/31/2023]
Abstract
Multiphoton intravital imaging is essential for understanding cellular behavior and function in vivo. The adipose-rich environment of the mammary gland poses a unique challenge to in vivo microscopy due to light scattering that impedes high-resolution imaging. Here we provide a protocol for high-quality, six-color 3D intravital imaging of regions across the entire mouse mammary gland and associated tissues for several hours while maintaining tissue access for microdissection and labeling. An incision at the ventral midline and along the right hind leg creates a skin flap that is then secured to a raised platform skin side down. This allows for fluorescence-guided microdissection of connective tissue to provide unimpeded imaging of mammary ducts. A sealed imaging chamber over the skin flap creates a stable environment while maintaining access to large tissue regions for imaging with an upright microscope. We provide a strategy for imaging single cells and the tissue microenvironment utilizing multicolor Confetti lineage-tracing and additional dyes using custom-designed filters and sequential excitation with dual multiphoton lasers. Furthermore, we describe a strategy for simultaneous imaging and photomanipulation of single cells using the Olympus SIM scanner and provide steps for 3D video processing, visualization and high-dimensional analysis of single-cell behavior. We then provide steps for multiplexing intravital imaging with fixation, immunostaining, tissue clearing and 3D confocal imaging to associate cell behavior with protein expression. The skin-flap surgery and chamber preparation take 1.5 h, followed by up to 12 h of imaging. Applications range from basic filming in 1 d to 5 d for multiplexing and complex analysis.
Collapse
Affiliation(s)
- Caleb A Dawson
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Melbourne, Victoria, Australia
| | - Geoffrey J Lindeman
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
- Parkville Familial Cancer Centre and Department of Medical Oncology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Anne C Rios
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jane E Visvader
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
24
|
Epigenetics and Communication Mechanisms in Microglia Activation with a View on Technological Approaches. Biomolecules 2021; 11:biom11020306. [PMID: 33670563 PMCID: PMC7923060 DOI: 10.3390/biom11020306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Microglial cells, the immune cells of the central nervous system (CNS), play a crucial role for the proper brain development and function and in CNS homeostasis. While in physiological conditions, microglia continuously check the state of brain parenchyma, in pathological conditions, microglia can show different activated phenotypes: In the early phases, microglia acquire the M2 phenotype, increasing phagocytosis and releasing neurotrophic and neuroprotective factors. In advanced phases, they acquire the M1 phenotype, becoming neurotoxic and contributing to neurodegeneration. Underlying this phenotypic change, there is a switch in the expression of specific microglial genes, in turn modulated by epigenetic changes, such as DNA methylation, histones post-translational modifications and activity of miRNAs. New roles are attributed to microglial cells, including specific communication with neurons, both through direct cell–cell contact and by release of many different molecules, either directly or indirectly, through extracellular vesicles. In this review, recent findings on the bidirectional interaction between neurons and microglia, in both physiological and pathological conditions, are highlighted, with a focus on the complex field of microglia immunomodulation through epigenetic mechanisms and/or released factors. In addition, advanced technologies used to study these mechanisms, such as microfluidic, 3D culture and in vivo imaging, are presented.
Collapse
|
25
|
Thomas CI, Ryan MA, Scholl B, Guerrero-Given D, Fitzpatrick D, Kamasawa N. Targeting Functionally Characterized Synaptic Architecture Using Inherent Fiducials and 3D Correlative Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:156-169. [PMID: 33303051 DOI: 10.1017/s1431927620024757] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Brain circuits are highly interconnected three-dimensional structures fabricated from components ranging vastly in size; from cell bodies to individual synapses. While neuronal activity can be visualized with advanced light microscopy (LM) techniques, the resolution of electron microscopy (EM) is critical for identifying synaptic connections between neurons. Here, we combine these two techniques, affording the advantage of each and allowing for measurements to be made of the same neural features across imaging platforms. We established an EM-label-free workflow utilizing inherent structural features to correlate in vivo two-photon LM and volumetric scanning EM (SEM) in the ferret visual cortex. By optimizing the volume SEM sample preparation protocol, imaging with the OnPoint detector, and utilizing the focal charge compensation device during serial block-face imaging, we achieved sufficient resolution and signal-to-noise ratio to analyze synaptic ultrastructure for hundreds of synapses within sample volumes. Our novel workflow provides a reliable method for quantitatively characterizing synaptic ultrastructure in functionally imaged neurons, providing new insights into neuronal circuit organization.
Collapse
Affiliation(s)
- Connon I Thomas
- Electron Microscopy Core Facility, Imaging Center, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL33458, USA
| | - Melissa A Ryan
- Electron Microscopy Core Facility, Imaging Center, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL33458, USA
| | - Benjamin Scholl
- Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL33458, USA
| | - Debbie Guerrero-Given
- Electron Microscopy Core Facility, Imaging Center, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL33458, USA
| | - David Fitzpatrick
- Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL33458, USA
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Imaging Center, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL33458, USA
| |
Collapse
|
26
|
Gensbittel V, Kräter M, Harlepp S, Busnelli I, Guck J, Goetz JG. Mechanical Adaptability of Tumor Cells in Metastasis. Dev Cell 2020; 56:164-179. [PMID: 33238151 DOI: 10.1016/j.devcel.2020.10.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/18/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
The most dangerous aspect of cancer lies in metastatic progression. Tumor cells will successfully form life-threatening metastases when they undergo sequential steps along a journey from the primary tumor to distant organs. From a biomechanics standpoint, growth, invasion, intravasation, circulation, arrest/adhesion, and extravasation of tumor cells demand particular cell-mechanical properties in order to survive and complete the metastatic cascade. With metastatic cells usually being softer than their non-malignant counterparts, high deformability for both the cell and its nucleus is thought to offer a significant advantage for metastatic potential. However, it is still unclear whether there is a finely tuned but fixed mechanical state that accommodates all mechanical features required for survival throughout the cascade or whether tumor cells need to dynamically refine their properties and intracellular components at each new step encountered. Here, we review the various mechanical requirements successful cancer cells might need to fulfill along their journey and speculate on the possibility that they dynamically adapt their properties accordingly. The mechanical signature of a successful cancer cell might actually be its ability to adapt to the successive microenvironmental constraints along the different steps of the journey.
Collapse
Affiliation(s)
- Valentin Gensbittel
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Martin Kräter
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Sébastien Harlepp
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Ignacio Busnelli
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
27
|
Sinha D, Saha P, Samanta A, Bishayee A. Emerging Concepts of Hybrid Epithelial-to-Mesenchymal Transition in Cancer Progression. Biomolecules 2020; 10:E1561. [PMID: 33207810 PMCID: PMC7697085 DOI: 10.3390/biom10111561] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a complex process through which epithelial (E) cells lose their adherens junctions, transform into mesenchymal (M) cells and attain motility, leading to metastasis at distant organs. Nowadays, the concept of EMT has shifted from a binary phase of interconversion of pure E to M cells and vice versa to a spectrum of E/M transition states preferably coined as hybrid/partial/intermediate EMT. Hybrid EMT, being a plastic transient state, harbours cells which co-express both E and M markers and exhibit high tumourigenic properties, leading to stemness, metastasis, and therapy resistance. Several preclinical and clinical studies provided the evidence of co-existence of E/M phenotypes. Regulators including transcription factors, epigenetic regulators and phenotypic stability factors (PSFs) help in maintaining the hybrid state. Computational and bioinformatics approaches may be excellent for identifying new factors or combinations of regulatory elements that govern the different EMT transition states. Therapeutic intervention against hybrid E/M cells, though few, may evolve as a rational strategy against metastasis and drug resistance. This review has attempted to present the recent advancements on the concept and regulation of the process of hybrid EMT which generates hybrid E/M phenotypes, evidence of intermediate EMT in both preclinical and clinical setup, impact of partial EMT on promoting tumourigenesis, and future strategies which might be adapted to tackle this phenomenon.
Collapse
Affiliation(s)
- Dona Sinha
- Department of Receptor Biology and Tumour Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India; (P.S.); (A.S.)
| | - Priyanka Saha
- Department of Receptor Biology and Tumour Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India; (P.S.); (A.S.)
| | - Anurima Samanta
- Department of Receptor Biology and Tumour Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India; (P.S.); (A.S.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
28
|
Margarido AS, Bornes L, Vennin C, van Rheenen J. Cellular Plasticity during Metastasis: New Insights Provided by Intravital Microscopy. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037267. [PMID: 31615867 DOI: 10.1101/cshperspect.a037267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metastasis is a highly dynamic process during which cancer and microenvironmental cells undergo a cascade of events required for efficient dissemination throughout the body. During the metastatic cascade, tumor cells can change their state and behavior, a phenomenon commonly defined as cellular plasticity. To monitor cellular plasticity during metastasis, high-resolution intravital microscopy (IVM) techniques have been developed and allow us to visualize individual cells by repeated imaging in animal models. In this review, we summarize the latest technological advancements in the field of IVM and how they have been applied to monitor metastatic events. In particular, we highlight how longitudinal imaging in native tissues can provide new insights into the plastic physiological and developmental processes that are hijacked by cancer cells during metastasis.
Collapse
Affiliation(s)
- Andreia S Margarido
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Laura Bornes
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Claire Vennin
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Jacco van Rheenen
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
29
|
Gaudin R, Goetz JG. Tracking Mechanisms of Viral Dissemination In Vivo. Trends Cell Biol 2020; 31:17-23. [PMID: 33023793 PMCID: PMC7532808 DOI: 10.1016/j.tcb.2020.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022]
Abstract
Dissemination and replication of viruses into hosts is a multistep process where viral particles infect, navigate, and indoctrinate various cell types. Viruses can reach tissues that are distant from their infection site by subverting subcellular mechanisms in ways that are, sometimes, disruptive. Modeling these steps, at appropriate resolution and within animal models, is cumbersome. Yet, mimicking these strategies in vitro fails to recapitulate the complexity of the cellular ecosystem. Here, we will discuss relevant in vivo platforms to dissect the cellular and molecular programs governing viral dissemination and briefly discuss organoid and ex vivo alternatives. We will focus on the zebrafish model and will describe how it provides a transparent window to unravel new cellular mechanisms of viral dissemination in vivo. The zebrafish model allows in vivo investigations of virus-induced molecular processes at subcellular resolution. Viruses have evolved multiple strategies for disseminating over long distance, including by indoctrinating host cell types with high migration potential. Organoids derived from stem cells emerge as powerful alternatives to unravel new molecular mechanisms of viral dissemination.
Collapse
Affiliation(s)
- Raphael Gaudin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France; Université de Montpellier, 34090 Montpellier, France.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
30
|
Lercher A, Baazim H, Bergthaler A. Systemic Immunometabolism: Challenges and Opportunities. Immunity 2020; 53:496-509. [PMID: 32937151 PMCID: PMC7491485 DOI: 10.1016/j.immuni.2020.08.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Abstract
Over the past 10 years, the field of immunometabolism made great strides to unveil the crucial role of intracellular metabolism in regulating immune cell function. Emerging insights into how systemic inflammation and metabolism influence each other provide a critical additional dimension on the organismal level. Here, we discuss the concept of systemic immunometabolism and review the current understanding of the communication circuits that underlie the reciprocal impact of systemic inflammation and metabolism across organs in inflammatory and infectious diseases, as well as how these mechanisms apply to homeostasis. We present current challenges of systemic immunometabolic research, and in this context, highlight opportunities and put forward ideas to effectively explore organismal physiological complexity in both health and disease.
Collapse
Affiliation(s)
- Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Hatoon Baazim
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria.
| |
Collapse
|
31
|
Ganeva I, Kukulski W. Membrane Architecture in the Spotlight of Correlative Microscopy. Trends Cell Biol 2020; 30:577-587. [DOI: 10.1016/j.tcb.2020.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
|
32
|
Multiscale ATUM-FIB Microscopy Enables Targeted Ultrastructural Analysis at Isotropic Resolution. iScience 2020; 23:101290. [PMID: 32622266 PMCID: PMC7334410 DOI: 10.1016/j.isci.2020.101290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/11/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
Volume electron microscopy enables the ultrastructural analysis of biological tissue. Currently, the techniques involving ultramicrotomy (ATUM, ssTEM) allow large fields of view but afford only limited z-resolution, whereas ion beam-milling approaches (FIB-SEM) yield isotropic voxels but are restricted in volume size. Now we present a hybrid method, named ATUM-FIB, which combines the advantages of both approaches. ATUM-FIB is based on serial sectioning of tissue into “semithick” (2–10 μm) sections collected onto tape. Serial light and electron microscopy allows the identification of regions of interest that are then directly accessible for targeted FIB-SEM. The set of semithick sections thus represents a tissue “library” which provides three-dimensional context information that can be probed “on demand” by local high-resolution analysis. We demonstrate the potential of this technique to reveal the ultrastructure of rare but pathologically important events by identifying microglia contact sites with amyloid plaques in a mouse model of familial Alzheimer's disease. Fast nanometer-resolution relocation and 3D imaging of preselected structures Transparent tape-based multiscale light and volume electron microscopy Heated ultramicrotomy at 2–10 μm with precured epoxy resin
Collapse
|
33
|
Subcellular Chemical Imaging: New Avenues in Cell Biology. Trends Cell Biol 2020; 30:173-188. [DOI: 10.1016/j.tcb.2019.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/31/2022]
|
34
|
Guggenheim EJ, Rappoport JZ, Lynch I. Mechanisms for cellular uptake of nanosized clinical MRI contrast agents. Nanotoxicology 2020; 14:504-532. [PMID: 32037933 DOI: 10.1080/17435390.2019.1698779] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Engineered Nanomaterials (NMs), such as Superparamagnetic Iron Oxide Nanoparticles (SPIONs), offer significant benefits in a wide range of applications, including cancer diagnostic and therapeutic strategies. However, the use of NMs in biomedicine raises safety concerns due to lack of knowledge on possible biological interactions and effects. The initial basis for using SPIONs as biomedical MRI contrast enhancement agents was the idea that they are selectively taken up by macrophage cells, and not by the surrounding cancer cells. To investigate this claim, we analyzed the uptake of SPIONs into well-established cancer cell models and benchmarked this against a common macrophage cell model. In combination with fluorescent labeling of compartments and siRNA silencing of various proteins involved in common endocytic pathways, the mechanisms of internalization of SPIONs in these cell types has been ascertained utilizing reflectance confocal microscopy. Caveolar mediated endocytosis and macropinocytosis are both implicated in SPION uptake into cancer cells, whereas in macrophage cells, a clathrin-dependant route appears to predominate. Colocalization studies confirmed the eventual fate of SPIONs as accumulation in the degradative lysosomes. Dissolution of the SPIONs within the lysosomal environment has also been determined, allowing a fuller understanding of the cellular interactions, uptake, trafficking and effects of SPIONs within a variety of cancer cells and macrophages. Overall, the behavior of SPIONS in non-phagocytotic cell lines is broadly similar to that in the specialist macrophage cells, although some differences in the uptake patterns are apparent.
Collapse
Affiliation(s)
- Emily J Guggenheim
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Joshua Z Rappoport
- Center for Advanced Microscopy, and Nikon Imaging Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Core Technologies for Life Sciences, Boston College, MA, USA
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
35
|
Perrin L, Bayarmagnai B, Gligorijevic B. Frontiers in Intravital Multiphoton Microscopy of Cancer. Cancer Rep (Hoboken) 2020; 3:e1192. [PMID: 32368722 PMCID: PMC7197974 DOI: 10.1002/cnr2.1192] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 12/23/2022] Open
Abstract
Background Cancer is a highly complex disease which involves the co-operation of tumor cells with multiple types of host cells and the extracellular matrix. Cancer studies which rely solely on static measurements of individual cell types are insufficient to dissect this complexity. In the last two decades, intravital microscopy has established itself as a powerful technique that can significantly improve our understanding of cancer by revealing the dynamic interactions governing cancer initiation, progression and treatment effects, in living animals. This review focuses on intravital multiphoton microscopy (IV-MPM) applications in mouse models of cancer. Recent Findings IV-MPM studies have already enabled a deeper understanding of the complex events occurring in cancer, at the molecular, cellular and tissue levels. Multiple cells types, present in different tissues, influence cancer cell behavior via activation of distinct signaling pathways. As a result, the boundaries in the field of IV-MPM are continuously being pushed to provide an integrated comprehension of cancer. We propose that optics, informatics and cancer (cell) biology are co-evolving as a new field. We have identified four emerging themes in this new field. First, new microscopy systems and image processing algorithms are enabling the simultaneous identification of multiple interactions between the tumor cells and the components of the tumor microenvironment. Second, techniques from molecular biology are being exploited to visualize subcellular structures and protein activities within individual cells of interest, and relate those to phenotypic decisions, opening the door for "in vivo cell biology". Third, combining IV-MPM with additional imaging modalities, or omics studies, holds promise for linking the cell phenotype to its genotype, metabolic state or tissue location. Finally, the clinical use of IV-MPM for analyzing efficacy of anti-cancer treatments is steadily growing, suggesting a future role of IV-MPM for personalized medicine. Conclusion IV-MPM has revolutionized visualization of tumor-microenvironment interactions in real time. Moving forward, incorporation of novel optics, automated image processing, and omics technologies, in the study of cancer biology, will not only advance our understanding of the underlying complexities but will also leverage the unique aspects of IV-MPM for clinical use.
Collapse
Affiliation(s)
- Louisiane Perrin
- Department of BioengineeringTemple UniversityPhiladelphiaPennsylvania
| | | | - Bojana Gligorijevic
- Department of BioengineeringTemple UniversityPhiladelphiaPennsylvania
- Fox Chase Cancer CenterCancer Biology ProgramPhiladelphiaPennsylvania
| |
Collapse
|
36
|
Scandola C, Erhardt M, Rinckel JY, Proamer F, Gachet C, Eckly A. Use of electron microscopy to study megakaryocytes. Platelets 2020; 31:589-598. [PMID: 31903825 DOI: 10.1080/09537104.2019.1708885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electron microscopy (EM) has a long history in megakaryocyte (MK) cellular biology. This chapter shows how the electron microscope, since its first appearance almost 90 years ago, has occupied center stage in the studies of MK morphology and function. It describes some of the more productive EM techniques that have shaped our understanding of the physiology of thrombopoiesis. These include the standard transmission and scanning EM techniques as well as the new imaging methods, correlative microscopy and volume EM which provide information on the 3D organization of MKs on different scales: single organelles, whole cells and tissues. For each technique, we list the advantages and limitations, the resolution that can be achieved, the technical difficulties and the applications in MK biology.
Collapse
Affiliation(s)
- Cyril Scandola
- INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Université de Strasbourg , Strasbourg, France
| | | | - Jean-Yves Rinckel
- INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Université de Strasbourg , Strasbourg, France
| | - Fabienne Proamer
- INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Université de Strasbourg , Strasbourg, France
| | - Christian Gachet
- INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Université de Strasbourg , Strasbourg, France
| | - Anita Eckly
- INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Université de Strasbourg , Strasbourg, France
| |
Collapse
|
37
|
Parton RG. Twenty years of traffic: A 2020 vision of cellular electron microscopy. Traffic 2019; 21:156-161. [DOI: 10.1111/tra.12684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Robert G. Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
38
|
Taraska JW. A primer on resolving the nanoscale structure of the plasma membrane with light and electron microscopy. J Gen Physiol 2019; 151:974-985. [PMID: 31253697 PMCID: PMC6683668 DOI: 10.1085/jgp.201812227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022] Open
Abstract
Taraska reviews the imaging methods that are being used to understand the structure of the plasma membrane at the molecular level. The plasma membrane separates a cell from its external environment. All materials and signals that enter or leave the cell must cross this hydrophobic barrier. Understanding the architecture and dynamics of the plasma membrane has been a central focus of general cellular physiology. Both light and electron microscopy have been fundamental in this endeavor and have been used to reveal the dense, complex, and dynamic nanoscale landscape of the plasma membrane. Here, I review classic and recent developments in the methods used to image and study the structure of the plasma membrane, particularly light, electron, and correlative microscopies. I will discuss their history and use for mapping the plasma membrane and focus on how these tools have provided a structural framework for understanding the membrane at the scale of molecules. Finally, I will describe how these studies provide a roadmap for determining the nanoscale architecture of other organelles and entire cells in order to bridge the gap between cellular form and function.
Collapse
Affiliation(s)
- Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
39
|
Jia D, Li X, Bocci F, Tripathi S, Deng Y, Jolly MK, Onuchic JN, Levine H. Quantifying Cancer Epithelial-Mesenchymal Plasticity and its Association with Stemness and Immune Response. J Clin Med 2019; 8:E725. [PMID: 31121840 PMCID: PMC6572429 DOI: 10.3390/jcm8050725] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer cells can acquire a spectrum of stable hybrid epithelial/mesenchymal (E/M) states during epithelial-mesenchymal transition (EMT). Cells in these hybrid E/M phenotypes often combine epithelial and mesenchymal features and tend to migrate collectively commonly as small clusters. Such collectively migrating cancer cells play a pivotal role in seeding metastases and their presence in cancer patients indicates an adverse prognostic factor. Moreover, cancer cells in hybrid E/M phenotypes tend to be more associated with stemness which endows them with tumor-initiation ability and therapy resistance. Most recently, cells undergoing EMT have been shown to promote immune suppression for better survival. A systematic understanding of the emergence of hybrid E/M phenotypes and the connection of EMT with stemness and immune suppression would contribute to more effective therapeutic strategies. In this review, we first discuss recent efforts combining theoretical and experimental approaches to elucidate mechanisms underlying EMT multi-stability (i.e., the existence of multiple stable phenotypes during EMT) and the properties of hybrid E/M phenotypes. Following we discuss non-cell-autonomous regulation of EMT by cell cooperation and extracellular matrix. Afterwards, we discuss various metrics that can be used to quantify EMT spectrum. We further describe possible mechanisms underlying the formation of clusters of circulating tumor cells. Last but not least, we summarize recent systems biology analysis of the role of EMT in the acquisition of stemness and immune suppression.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
| | - Xuefei Li
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
| | - Shubham Tripathi
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX 77005, USA.
| | - Youyuan Deng
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Applied Physics Graduate Program, Rice University, Houston, TX 77005, USA.
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
- Department of Biosciences, Rice University, Houston, TX 77005, USA.
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
- Department of Physics, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Shibata S, Iseda T, Mitsuhashi T, Oka A, Shindo T, Moritoki N, Nagai T, Otsubo S, Inoue T, Sasaki E, Akazawa C, Takahashi T, Schalek R, Lichtman JW, Okano H. Large-Area Fluorescence and Electron Microscopic Correlative Imaging With Multibeam Scanning Electron Microscopy. Front Neural Circuits 2019; 13:29. [PMID: 31133819 PMCID: PMC6517476 DOI: 10.3389/fncir.2019.00029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/08/2019] [Indexed: 01/21/2023] Open
Abstract
Recent improvements in correlative light and electron microscopy (CLEM) technology have led to dramatic improvements in the ability to observe tissues and cells. Fluorescence labeling has been used to visualize the localization of molecules of interest through immunostaining or genetic modification strategies for the identification of the molecular signatures of biological specimens. Newer technologies such as tissue clearing have expanded the field of observation available for fluorescence labeling; however, the area of correlative observation available for electron microscopy (EM) remains restricted. In this study, we developed a large-area CLEM imaging procedure to show specific molecular localization in large-scale EM sections of mouse and marmoset brain. Target molecules were labeled with antibodies and sequentially visualized in cryostat sections using fluorescence and gold particles. Fluorescence images were obtained by light microscopy immediately after antibody staining. Immunostained sections were postfixed for EM, and silver-enhanced sections were dehydrated in a graded ethanol series and embedded in resin. Ultrathin sections for EM were prepared from fully polymerized resin blocks, collected on silicon wafers, and observed by multibeam scanning electron microscopy (SEM). Multibeam SEM has made rapid, large-area observation at high resolution possible, paving the way for the analysis of detailed structures using the CLEM approach. Here, we describe detailed methods for large-area CLEM in various tissues of both rodents and primates.
Collapse
Affiliation(s)
- Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Taro Iseda
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | | | - Atsushi Oka
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Shindo
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Nobuko Moritoki
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Toshihiro Nagai
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Shinya Otsubo
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Inoue
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Chihiro Akazawa
- Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takao Takahashi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Richard Schalek
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Jeff W Lichtman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Hideyuki Okano
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wakō, Japan
| |
Collapse
|
41
|
Patel S, Kim J, Herrera M, Mukherjee A, Kabanov AV, Sahay G. Brief update on endocytosis of nanomedicines. Adv Drug Deliv Rev 2019; 144:90-111. [PMID: 31419450 PMCID: PMC6986687 DOI: 10.1016/j.addr.2019.08.004] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022]
Abstract
The complexity of nanoscale interactions between biomaterials and cells has limited the realization of the ultimate vision of nanotechnology in diagnostics and therapeutics. As such, significant effort has been devoted to advancing our understanding of the biophysical interactions of the myriad nanoparticles. Endocytosis of nanomedicine has drawn tremendous interest in the last decade. Here, we highlight the ever-present barriers to efficient intracellular delivery of nanoparticles as well as the current advances and strategies deployed to breach these barriers. We also introduce new barriers that have been largely overlooked such as the glycocalyx and macromolecular crowding. Additionally, we draw attention to the potential complications arising from the disruption of the newly discovered functions of the lysosomes. Novel strategies of exploiting the inherent intracellular defects in disease states to enhance delivery and the use of exosomes for bioanalytics and drug delivery are explored. Furthermore, we discuss the advances in imaging techniques like electron microscopy, super resolution fluorescence microscopy, and single particle tracking which have been instrumental in our growing understanding of intracellular pathways and nanoparticle trafficking. Finally, we advocate for the push towards more intravital analysis of nanoparticle transport phenomena using the multitude of techniques available to us. Unraveling the underlying mechanisms governing the cellular barriers to delivery and biological interactions of nanoparticles will guide the innovations capable of breaching these barriers.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Marco Herrera
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Anindit Mukherjee
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA; Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA; Department of Biomedical Engineering, Oregon Health and Science University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA.
| |
Collapse
|
42
|
Selenko P. Quo Vadis Biomolecular NMR Spectroscopy? Int J Mol Sci 2019; 20:ijms20061278. [PMID: 30875725 PMCID: PMC6472163 DOI: 10.3390/ijms20061278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
In-cell nuclear magnetic resonance (NMR) spectroscopy offers the possibility to study proteins and other biomolecules at atomic resolution directly in cells. As such, it provides compelling means to complement existing tools in cellular structural biology. Given the dominance of electron microscopy (EM)-based methods in current structure determination routines, I share my personal view about the role of biomolecular NMR spectroscopy in the aftermath of the revolution in resolution. Specifically, I focus on spin-off applications that in-cell NMR has helped to develop and how they may provide broader and more generally applicable routes for future NMR investigations. I discuss the use of ‘static’ and time-resolved solution NMR spectroscopy to detect post-translational protein modifications (PTMs) and to investigate structural consequences that occur in their response. I argue that available examples vindicate the need for collective and systematic efforts to determine post-translationally modified protein structures in the future. Furthermore, I explain my reasoning behind a Quinary Structure Assessment (QSA) initiative to interrogate cellular effects on protein dynamics and transient interactions present in physiological environments.
Collapse
Affiliation(s)
- Philipp Selenko
- Weizmann Institute of Science, Department of Biological Regulation, 234 Herzl Street, Rehovot 76100, Israel.
| |
Collapse
|
43
|
Studying the Fate of Tumor Extracellular Vesicles at High Spatiotemporal Resolution Using the Zebrafish Embryo. Dev Cell 2019; 48:554-572.e7. [PMID: 30745140 DOI: 10.1016/j.devcel.2019.01.014] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/19/2018] [Accepted: 01/10/2019] [Indexed: 01/08/2023]
Abstract
Tumor extracellular vesicles (EVs) mediate the communication between tumor and stromal cells mostly to the benefit of tumor progression. Notably, tumor EVs travel in the bloodstream, reach distant organs, and locally modify the microenvironment. However, visualizing these events in vivo still faces major hurdles. Here, we describe an approach for tracking circulating tumor EVs in a living organism: we combine chemical and genetically encoded probes with the zebrafish embryo as an animal model. We provide a first description of tumor EVs' hemodynamic behavior and document their intravascular arrest. We show that circulating tumor EVs are rapidly taken up by endothelial cells and blood patrolling macrophages and subsequently stored in degradative compartments. Finally, we demonstrate that tumor EVs activate macrophages and promote metastatic outgrowth. Overall, our study proves the usefulness and prospects of zebrafish embryo to track tumor EVs and dissect their role in metastatic niches formation in vivo.
Collapse
|
44
|
Luckner M, Wanner G. From Light Microscopy to Analytical Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB)/SEM in Biology: Fixed Coordinates, Flat Embedding, Absolute References. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2018; 24:526-544. [PMID: 30246679 PMCID: PMC6378657 DOI: 10.1017/s1431927618015015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/05/2018] [Accepted: 07/16/2018] [Indexed: 05/07/2023]
Abstract
Correlative light and electron microscopy (CLEM) has been in use for several years, however it has remained a costly method with difficult sample preparation. Here, we report a series of technical improvements developed for precise and cost-effective correlative light and scanning electron microscopy (SEM) and focused ion beam (FIB)/SEM microscopy of single cells, as well as large tissue sections. Customized coordinate systems for both slides and coverslips were established for thin and ultra-thin embedding of a wide range of biological specimens. Immobilization of biological samples was examined with a variety of adhesives. For histological sections, a filter system for flat embedding was developed. We validated ultra-thin embedding on laser marked slides for efficient, high-resolution CLEM. Target cells can be re-located within minutes in SEM without protracted searching and correlative investigations were reduced to a minimum of preparation steps, while still reaching highest resolution. The FIB/SEM milling procedure is facilitated and significantly accelerated as: (i) milling a ramp becomes needless, (ii) significant re-deposition of milled material does not occur; and (iii) charging effects are markedly reduced. By optimizing all technical parameters FIB/SEM stacks with 2 nm iso-voxels were achieved over thousands of sections, in a wide range of biological samples.
Collapse
Affiliation(s)
- Manja Luckner
- Department Biology I, Ultrastructural Research, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Gerhard Wanner
- Department Biology I, Ultrastructural Research, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
45
|
Goetz JG. Exploiting Anatomical Landmarks for Efficient In Vivo CLEM. Trends Biochem Sci 2018; 43:744-747. [DOI: 10.1016/j.tibs.2018.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022]
|
46
|
Luckner M, Burgold S, Filser S, Scheungrab M, Niyaz Y, Hummel E, Wanner G, Herms J. Label-free 3D-CLEM Using Endogenous Tissue Landmarks. iScience 2018; 6:92-101. [PMID: 30240628 PMCID: PMC6137285 DOI: 10.1016/j.isci.2018.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/20/2018] [Accepted: 07/16/2018] [Indexed: 01/09/2023] Open
Abstract
Emerging 3D correlative light and electron microscopy approaches enable studying neuronal structure-function relations at unprecedented depth and precision. However, established protocols for the correlation of light and electron micrographs rely on the introduction of artificial fiducial markers, such as polymer beads or near-infrared brandings, which might obscure or even damage the structure under investigation. Here, we report a general applicable "flat embedding" preparation, enabling high-precision overlay of light and scanning electron micrographs, using exclusively endogenous landmarks in the brain: blood vessels, nuclei, and myelinated axons. Furthermore, we demonstrate feasibility of the workflow by combining in vivo 2-photon microscopy and focused ion beam scanning electron microscopy to dissect the role of astrocytic coverage in the persistence of dendritic spines.
Collapse
Affiliation(s)
- Manja Luckner
- Department of Biology I, Biocenter Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany; German Center for Neurodegenerative Diseases (DZNE), Translational Brain Research, Munich 81377, Germany
| | - Steffen Burgold
- German Center for Neurodegenerative Diseases (DZNE), Translational Brain Research, Munich 81377, Germany; Center for Neuropathology, Ludwig-Maximilians-University Munich, Munich 81377, Germany; Carl Zeiss Microscopy, Oberkochen 73447, Germany
| | - Severin Filser
- German Center for Neurodegenerative Diseases (DZNE), Translational Brain Research, Munich 81377, Germany
| | - Maximilian Scheungrab
- Department of Biology I, Biocenter Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Yilmaz Niyaz
- Carl Zeiss Microscopy, Oberkochen 73447, Germany
| | - Eric Hummel
- Carl Zeiss Microscopy, Oberkochen 73447, Germany
| | - Gerhard Wanner
- Department of Biology I, Biocenter Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Jochen Herms
- Department of Biology I, Biocenter Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany; German Center for Neurodegenerative Diseases (DZNE), Translational Brain Research, Munich 81377, Germany; Center for Neuropathology, Ludwig-Maximilians-University Munich, Munich 81377, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich 81377, Germany.
| |
Collapse
|
47
|
Fuest M, Nocera GM, Modena MM, Riedel D, Mejia YX, Burg TP. Cryofixation during live-imaging enables millisecond time-correlated light and electron microscopy. J Microsc 2018; 272:87-95. [PMID: 30088278 DOI: 10.1111/jmi.12747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 01/13/2023]
Abstract
Correlating live-cell imaging with electron microscopy is among the most promising approaches to relate dynamic functions of cells or small organisms to their underlying ultrastructure. The time correlation between light and electron micrographs, however, is limited by the sample handling and fixation required for electron microscopy. Current cryofixation methods require a sample transfer step from the light microscope to a dedicated instrument for cryofixation. This transfer step introduces a time lapse of one second or more between live imaging and the fixed state, which is studied by electron microscopy. In this work, we cryofix Caenorhabditis elegans directly within the light microscope field of view, enabling millisecond time-correlated live imaging and electron microscopy. With our approach, the time-correlation is limited only by the sample cooling rate. C. elegans was used as a model system to establish compatibility of in situ cryofixation and subsequent transmission electron microscopy (TEM). TEM images of in situ cryofixed C. elegans show that the ultrastructure of the sample was well preserved with this method. We expect that the ability to correlate live imaging and electron microscopy at the millisecond scale will enable new paradigms to study biological processes across length scales based on real-time selection and arrest of a desired state. LAY DESCRIPTION Researchers seek to link cellular functions to their smallest structural components. Currently this requires correlation of two imaging techniques, live imaging and electron microscopy. Current correlative methods, however, have limited time resolution due to the sample preparation procedures for electron microscopy. Following live imaging, samples are transferred from the light microscope to a cryofixation, or ultra-fast freezing, instrument. The biological process progresses until the sample freezes, 1 second or more after the last live image. In this work, samples are cryofixed directly within the light microscope field of view. By eliminating the transfer step, time correlation between light and electron microscopy images of our samples is limited only by the freezing rate to the order of milliseconds rather than seconds.
Collapse
Affiliation(s)
- M Fuest
- Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - G M Nocera
- Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - M M Modena
- Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - D Riedel
- Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Y X Mejia
- Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - T P Burg
- Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| |
Collapse
|
48
|
Glueckert R, Johnson Chacko L, Schmidbauer D, Potrusil T, Pechriggl EJ, Hoermann R, Brenner E, Reka A, Schrott-Fischer A, Handschuh S. Visualization of the Membranous Labyrinth and Nerve Fiber Pathways in Human and Animal Inner Ears Using MicroCT Imaging. Front Neurosci 2018; 12:501. [PMID: 30108474 PMCID: PMC6079228 DOI: 10.3389/fnins.2018.00501] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/03/2018] [Indexed: 12/18/2022] Open
Abstract
Design and implantation of bionic implants for restoring impaired hair cell function relies on accurate knowledge about the microanatomy and nerve fiber pathways of the human inner ear and its variation. Non-destructive isotropic imaging of soft tissues of the inner ear with lab-based microscopic X-ray computed tomography (microCT) offers high resolution but requires contrast enhancement using compounds with high X-ray attenuation. We evaluated different contrast enhancement techniques in mice, cat, and human temporal bones to differentially visualize the membranous labyrinth, sensory epithelia, and their innervating nerves together with the facial nerve and middle ear. Lugol’s iodine potassium iodine (I2KI) gave high soft tissue contrast in ossified specimens but failed to provide unambiguous identification of smaller nerve fiber bundles inside small bony canals. Fixation or post-fixation with osmium tetroxide followed by decalcification in EDTA provided superior contrast for nerve fibers and membranous structures. We processed 50 human temporal bones and acquired microCT scans with 15 μm voxel size. Subsequently we segmented sensorineural structures and the endolymphatic compartment for 3D representations to serve for morphometric variation analysis. We tested higher resolution image acquisition down to 3.0 μm voxel size in human and 0.5 μm in mice, which provided a unique level of detail and enabled us to visualize single neurons and hair cells in the mouse inner ear, which could offer an alternative quantitative analysis of cell numbers in smaller animals. Bigger ossified human temporal bones comprising the middle ear and mastoid bone can be contrasted with I2KI and imaged in toto at 25 μm voxel size. These data are suitable for surgical planning for electrode prototype placements. A preliminary assessment of geometric changes through tissue processing resulted in 1.6% volume increase caused during decalcification by EDTA and 0.5% volume increase caused by partial dehydration to 70% ethanol, which proved to be the best mounting medium for microCT image acquisition.
Collapse
Affiliation(s)
- Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria.,University Clinics Innsbruck, Tirol Kliniken, University Clinic for Ear, Nose and Throat Medicine Innsbruck, Innsbruck, Austria
| | - Lejo Johnson Chacko
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Schmidbauer
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria.,Department of Biotechnology and Food Engineering, Management Center Innsbruck (MCI), Innsbruck, Austria
| | - Thomas Potrusil
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elisabeth J Pechriggl
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Romed Hoermann
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Erich Brenner
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Alen Reka
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Stephan Handschuh
- VetImaging, VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
49
|
Masthoff M, Gran S, Zhang X, Wachsmuth L, Bietenbeck M, Helfen A, Heindel W, Sorokin L, Roth J, Eisenblätter M, Wildgruber M, Faber C. Temporal window for detection of inflammatory disease using dynamic cell tracking with time-lapse MRI. Sci Rep 2018; 8:9563. [PMID: 29934611 PMCID: PMC6015069 DOI: 10.1038/s41598-018-27879-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Time-lapse MRI was implemented for dynamic non-invasive cell tracking of individual slowly moving intravascular immune cells. Repetitive MRI acquisition enabled dynamic observation of iron oxide nanoparticle (ION) labelled cells. Simulations of MRI contrast indicated that only cells moving slower than 1 µm/s were detectable. Time-lapse MRI of the brain was performed after either IONs or ION-labelled monocytes were injected intravenously into naïve and experimental autoimmune encephalomyelitis (EAE) bearing mice at a presymptomatic or symptomatic stage. EAE mice showed a reduced number of slow moving, i.e. patrolling cells before and after onset of symptoms as compared to naïve controls. This observation is consistent with the notion of altered cell dynamics, i.e. higher velocities of immune cells rolling along the endothelium in the inflamed condition. Thus, time-lapse MRI enables for assessing immune cell dynamics non-invasively in deep tissue and may serve as a tool for detection or monitoring of an inflammatory response.
Collapse
Affiliation(s)
- Max Masthoff
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Sandra Gran
- Institute for Immunology, University of Muenster, Roentgenstraße 21, 48149, Muenster, Germany
| | - Xueli Zhang
- Institute for Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstraße 15, 48149, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Waldeyerstraße 15, 48149, Muenster, Germany
| | - Lydia Wachsmuth
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Michael Bietenbeck
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Anne Helfen
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Walter Heindel
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Lydia Sorokin
- Institute for Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstraße 15, 48149, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Waldeyerstraße 15, 48149, Muenster, Germany
| | - Johannes Roth
- Institute for Immunology, University of Muenster, Roentgenstraße 21, 48149, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Waldeyerstraße 15, 48149, Muenster, Germany
| | - Michel Eisenblätter
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.,Division of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - Moritz Wildgruber
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Waldeyerstraße 15, 48149, Muenster, Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany. .,Cells-in-Motion Cluster of Excellence, University of Muenster, Waldeyerstraße 15, 48149, Muenster, Germany.
| |
Collapse
|
50
|
Burel A, Lavault MT, Chevalier C, Gnaegi H, Prigent S, Mucciolo A, Dutertre S, Humbel BM, Guillaudeux T, Kolotuev I. A targeted 3D EM and correlative microscopy method using SEM array tomography. Development 2018; 145:dev.160879. [PMID: 29802150 DOI: 10.1242/dev.160879] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
Abstract
Using electron microscopy to localize rare cellular events or structures in complex tissue is challenging. Correlative light and electron microscopy procedures have been developed to link fluorescent protein expression with ultrastructural resolution. Here, we present an optimized scanning electron microscopy (SEM) workflow for volumetric array tomography for asymmetric samples and model organisms (Caenorhabditis elegans, Drosophila melanogaster, Danio rerio). We modified a diamond knife to simplify serial section array acquisition with minimal artifacts. After array acquisition, the arrays were transferred to a glass coverslip or silicon wafer support. Using light microscopy, the arrays were screened rapidly for initial recognition of global anatomical features (organs or body traits). Then, using SEM, an in-depth study of the cells and/or organs of interest was performed. Our manual and automatic data acquisition strategies make 3D data acquisition and correlation simpler and more precise than alternative methods. This method can be used to address questions in cell and developmental biology that require the efficient identification of a labeled cell or organelle.
Collapse
Affiliation(s)
- Agnes Burel
- University of Rennes 1, UMS Biosit, MRic, 35043 Rennes, France
| | | | | | | | - Sylvain Prigent
- University of Rennes 1, UMS Biosit, MRic, 35043 Rennes, France
| | - Antonio Mucciolo
- University of Lausanne, Faculté de biologie et de médecine, Electron Microscopy Facility, CH-1015 Lausanne, Switzerland
| | | | - Bruno M Humbel
- University of Lausanne, Faculté de biologie et de médecine, Electron Microscopy Facility, CH-1015 Lausanne, Switzerland
| | | | - Irina Kolotuev
- University of Rennes 1, UMS Biosit, MRic, 35043 Rennes, France .,University of Lausanne, Faculté de biologie et de médecine, Electron Microscopy Facility, CH-1015 Lausanne, Switzerland
| |
Collapse
|