1
|
Chen Q, Zhang C, Meng T, Yang K, Hu Q, Tong Z, Wang X. Prediction of clinical prognosis and drug sensitivity in hepatocellular carcinoma through the combination of multiple cell death pathways. Cell Biol Int 2024; 48:1816-1835. [PMID: 39192561 DOI: 10.1002/cbin.12235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignant tumor, highlighting a significant need for reliable predictive models to assess clinical prognosis, disease progression, and drug sensitivity. Recent studies have highlighted the critical role of various programmed cell death pathways, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, entotic cell death, NETotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis, oxeiptosis, and disulfidptosis, in tumor development. Therefore, by investigating these pathways, we aimed to develop a predictive model for HCC prognosis and drug sensitivity. We analyzed transcriptome, single-cell transcriptome, genomic, and clinical information using data from the TCGA-LIHC, GSE14520, GSE45436, and GSE166635 datasets. Machine learning algorithms were used to establish a cell death index (CDI) with seven gene signatures, which was validated across three independent datasets, showing that high CDI correlates with poorer prognosis. Unsupervised clustering revealed three molecular subtypes of HCC with distinct biological processes. Furthermore, a nomogram integrating CDI and clinical information demonstrated good predictive performance. CDI was associated with immune checkpoint genes and tumor microenvironment components using single-cell transcriptome analysis. Drug sensitivity analysis indicated that patients with high CDI may be resistant to oxaliplatin and cisplatin but sensitive to axitinib and sorafenib. In summary, our model offers a precise prediction of clinical outcomes and drug sensitivity for patients with HCC, providing valuable insights for personalized treatment strategies.
Collapse
Affiliation(s)
- QingKun Chen
- Department of Graduate School, Bengbu Medical University, Bengbu, China
- Department of Hepatobiliary Surgery, The First People's Hospital of Hefei, Hefei, China
| | - ChenGuang Zhang
- Department of Graduate School, Bengbu Medical University, Bengbu, China
- Department of Hepatobiliary Surgery, The First People's Hospital of Hefei, Hefei, China
| | - Tao Meng
- Department of Hepatobiliary Surgery, The First People's Hospital of Hefei, Hefei, China
| | - Ke Yang
- Department of Hepatobiliary Surgery, The First People's Hospital of Hefei, Hefei, China
| | - QiLi Hu
- Department of Hepatobiliary Surgery, The First People's Hospital of Hefei, Hefei, China
| | - Zhong Tong
- Department of Hepatobiliary Surgery, The First People's Hospital of Hefei, Hefei, China
| | - XiaoGang Wang
- Department of Hepatobiliary Surgery, The First People's Hospital of Hefei, Hefei, China
| |
Collapse
|
2
|
Yuan Z, Wang X, Qin B, Hu R, Miao R, Zhou Y, Wang L, Liu T. Targeting NQO1 induces ferroptosis and triggers anti-tumor immunity in immunotherapy-resistant KEAP1-deficient cancers. Drug Resist Updat 2024; 77:101160. [PMID: 39490240 DOI: 10.1016/j.drup.2024.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
Immunotherapy has revolutionized cancer treatment, yet the efficacy of immunotherapeutic approaches remains limited. Resistance to ferroptosis is one of the reasons for the poor therapeutic outcomes in tumors with Kelch-like ECH-associated protein 1 (KEAP1) mutations. However, the specific mechanisms by which KEAP1-mutant tumors resist immunotherapy are not fully understood. In this study, we showed that the loss of function in KEAP1 results in resistance to ferroptosis. We identified NAD(P)H Quinone Dehydrogenase 1 (NQO1) as a transcriptional target of nuclear factor erythroid 2-related factor 2 (NRF2) and revealed that inducing NQO1-mediated ferroptosis in KEAP1-deficient tumors triggers an antitumor immune cascade. Additionally, it was found that NQO1 protein levels could serve as a candidate biomarker for predicting sensitivity to immunotherapy in clinical tumor patients. We validated these findings in several preclinical tumor models. Overall, KEAP1 mutations define a unique disease phenotype, and targeting its key downstream molecule NQO1 offers new hope for patients with resistance to immunotherapy.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
| | - Boyu Qin
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rulong Hu
- Department of Otolaryngology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rui Miao
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
| | - Yang Zhou
- Department of Respiratory Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Wang
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tong Liu
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China; NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China.
| |
Collapse
|
3
|
Abida, Altamimi ASA, Ghaboura N, Balaraman AK, Rajput P, Bansal P, Rawat S, Alanazi FJ, Alruwaili AN, Aldhafeeri NA, Ali H, Deb PK. Therapeutic Potential of lncRNAs in Regulating Disulfidptosis for Cancer Treatment. Pathol Res Pract 2024; 263:155657. [PMID: 39437641 DOI: 10.1016/j.prp.2024.155657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Non-coding RNAs (lncRNAs) play critical roles in various cellular processes, including a novel form of regulated cell death known as disulfidptosis, characterized by accumulating protein disulfide bonds and severe endoplasmic reticulum stress. This review highlights the therapeutic potential of lncRNAs in regulating disulfidptosis for cancer treatment, emphasizing their influence on key pathway components such as GPX4, SLC7A11, and PDIA family members. Recent studies have demonstrated that targeting specific lncRNAs can sensitize cancer cells to disulfidptosis, offering a promising approach to cancer therapy. The regulation of disulfidptosis by lncRNAs involves various signaling pathways, including oxidative stress, ER stress, and calcium signaling. This review also discusses the molecular mechanisms underlying lncRNA regulation of disulfidptosis, the challenges of developing lncRNA-based therapies, and the future potential of this rapidly advancing field in cancer research.
Collapse
Affiliation(s)
- Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, PO Box 6231, Jeddah 21442, Saudi Arabia
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Pranchal Rajput
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India.
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Fadiyah Jadid Alanazi
- Public Health Nursing Department, College of Nursing, Northern Border University, Arar, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abeer Nuwayfi Alruwaili
- Department of Nursing Administration and Education, College of Nursing, Jouf University, Al Jouf 72388, Saudi Arabia
| | - Nouf Afit Aldhafeeri
- College of Nursing, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Haider Ali
- Center for Global health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institue of Technology (BIT), Mesra, Ranchi, Jharkhand 835215, India
| |
Collapse
|
4
|
Pan X, Qian H, Sun Z, Yi Q, Liu Y, Lan G, Chen J, Wang G. Investigating the role of disulfidptosis related genes in radiotherapy resistance of lung adenocarcinoma. Front Med (Lausanne) 2024; 11:1473080. [PMID: 39507711 PMCID: PMC11539857 DOI: 10.3389/fmed.2024.1473080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Background Radiotherapy resistance is an important reason for high mortality in lung cancer patients, but the mechanism is still unclear. Dysregulation of cell proliferation and death plays a crucial role in the onset and progression of lung adenocarcinoma (LUAD). In recent times, a novel form of cellular demise called disulfidptosis, has attracted increasing attention. However, it is unclear whether the radiation-related disulfidptosis genes have prognostic role in LUAD. Methods A complete suite of bioinformatics tools was used to analyze the expression and prognostic significance of radiation-related disulfidptosis genes. Afterward, we investigated the predictive significance of the risk signature in tumor microenvironments (TME), somatic mutations, and immunotherapies. In addition, we conducted a series of experiments to verify the expression of differentially expressed radiotherapy related disulfidptosis genes (DERRDGs) in vitro. Results A total of 88 DERRDGs were found. We constructed and validated a novel prognostic model based on PRELP, FGFBP1, CIITA and COL5A1. The enrichment analysis showed the DERRDG affected tumor prognosis by influencing tumor microenvironments (TME) and immunotherapy. And we constructed nomogram to promote clinical application. In addition, q-PCR confirmed the significant differences in the expression of prognostic genes between A549 irradiation-resistance cell and A549. Finally, western-blot, IHC staining, and small interference experiment suggested that PRELP may be a potential biomarker for radiotherapy resistance, whose low expression was associated with poor outcomes in LUAD patients. Conclusion This study reveals the signature and possible underlying mechanisms of DERRDGs in LUAD and discovered the key gene PRELP, which helps to identify new prognostic biomarkers and provides a basis for future research.
Collapse
Affiliation(s)
- Xiaoxia Pan
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University and Medical School of Nantong University, Nantong, China
| | - Hongyan Qian
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University and Medical School of Nantong University, Nantong, China
| | - Zhouna Sun
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University and Medical School of Nantong University, Nantong, China
| | - Qiong Yi
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Ying Liu
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University and Medical School of Nantong University, Nantong, China
| | - Gangzhi Lan
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University and Medical School of Nantong University, Nantong, China
| | - Jia Chen
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University and Medical School of Nantong University, Nantong, China
- Department of Oncology Internal Medicine, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Gaoren Wang
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University and Medical School of Nantong University, Nantong, China
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| |
Collapse
|
5
|
Wang L, Sun S, Liu H, Zhang Q, Meng Y, Sun F, Zhang J, Liu H, Xu W, Ye Z, Zhang J, Sun B, Xu J. Thioredoxin reductase inhibition and glutathione depletion mediated by glaucocalyxin A promote intracellular disulfide stress in gastric cancer cells. FEBS J 2024. [PMID: 39434427 DOI: 10.1111/febs.17301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/25/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
Thioredoxin reductase 1 (TXNRD1) has been identified as one of the promising chemotherapeutic targets in cancer cells. Therefore, a novel TXNRD1 inhibitor could accelerate chemotherapy in clinical anticancer research. In this study, glaucocalyxin A (GlauA), a natural diterpene extracted from Rabdosia japonica var. glaucocalyx, was identified as a novel inhibitor of TXNRD1. We found that GlauA effectively inhibited recombinant TXNRD1 and reduced its activity in gastric cancer cells without affecting the enzyme's expression level. Mechanistically, the selenocysteine residue (U498) of TXNRD1 was irreversibly modified by GlauA through a Michael addition. Additionally, GlauA formed a covalent adduct with glutathione (GSH) and disrupted cellular redox balance by depleting cellular GSH. The inhibition of TXNRD1 and depletion of GSH by GlauA conferred its cytotoxic effects in spheroid culture and Transwell assays in AGS cells. The disulfide stress induced cytotoxicity of GlauA could be mitigated by adding reducing agents, such as DTT and β-ME. Furthermore, the FDA-approval drug auranofin, a TXNRD1 inhibitor, triggered oligomerization of the cytoskeletal protein Talin-1 in AGS cells, indicating that inhibiting TXNRD1 triggered disulfide stress. In conclusion, this study uncovered GlauA as an efficient inhibitor of TXNRD1 and demonstrated the potential of TXNRD1 inhibition as an effective anticancer strategy by disrupting redox homeostasis and inducing disulfide stress.
Collapse
Affiliation(s)
- Ling Wang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| | - Shibo Sun
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| | - Haowen Liu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| | - Qiuyu Zhang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| | - Yao Meng
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| | - Fan Sun
- Department of Gastric Cancer, Liaoning Cancer Hospital and Institute, Dalian University of Technology, Shenyang, China
| | - Jianjun Zhang
- Department of Gastric Cancer, Liaoning Cancer Hospital and Institute, Dalian University of Technology, Shenyang, China
| | - Haiyan Liu
- College of Chemistry and Environmental Engineering, Yingkou Institute of Technology, China
| | - Weiping Xu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| | - Zhiwei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| | - Jianqiang Xu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| |
Collapse
|
6
|
Li T, Song Y, Wei L, Song X, Duan R. Disulfidptosis: a novel cell death modality induced by actin cytoskeleton collapse and a promising target for cancer therapeutics. Cell Commun Signal 2024; 22:491. [PMID: 39394612 PMCID: PMC11470700 DOI: 10.1186/s12964-024-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Disulfidptosis is a novel discovered form of programmed cell death (PCD) that diverges from apoptosis, necroptosis, ferroptosis, and cuproptosis, stemming from disulfide stress-induced cytoskeletal collapse. In cancer cells exhibiting heightened expression of the solute carrier family 7 member 11 (SLC7A11), excessive cystine importation and reduction will deplete nicotinamide adenine dinucleotide phosphate (NADPH) under glucose deprivation, followed by an increase in intracellular disulfide stress and aberrant disulfide bond formation within actin networks, ultimately culminating in cytoskeletal collapse and disulfidptosis. Disulfidptosis involves crucial physiological processes in eukaryotic cells, such as cystine and glucose uptake, NADPH metabolism, and actin dynamics. The Rac1-WRC pathway-mediated actin polymerization is also implicated in this cell death due to its contribution to disulfide bond formation. However, the precise mechanisms underlying disulfidptosis and its role in tumors are not well understood. This is probably due to the multifaceted functionalities of SLC7A11 within cells and the complexities of the downstream pathways driving disulfidptosis. This review describes the critical roles of SLC7A11 in cells and summarizes recent research advancements in the potential pathways of disulfidptosis. Moreover, the less-studied aspects of this newly discovered cell death process are highlighted to stimulate further investigations in this field.
Collapse
Affiliation(s)
- Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Lijuan Wei
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Xiangyi Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Ruifeng Duan
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China.
| |
Collapse
|
7
|
Su W, Shi X, Wen X, Li X, Zhou J, Zhou Y, Ren F, Kang K. Integrative analysis of multiple cell death model for precise prognosis and drug response prediction in gastric cancer. Discov Oncol 2024; 15:532. [PMID: 39377861 PMCID: PMC11461726 DOI: 10.1007/s12672-024-01411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common upper gastrointestinal tumor. However, the evaluation of prognosis and treatment response in patients with gastric cancer remains a challenge. Programmed cell death (PCD) is one of the important terminal paths for the cells of metazoans, and is involved in a variety of biological events that include morphogenesis, maintenance of tissue homeostasis, and elimination of harmful cells. The objective of this project is to investigate the predictive significance of cell death pathways and create prognostic signatures associated to cell death, with the purpose of forecasting prognosis and providing guidance for the treatment of gastric cancer. METHODS Gene transcription profiles and corresponding clinical data of gastric cancer patients were collected from The Cancer Genome Atlas (TCGA-STAD, n = 448) and the Gene Expression Comprehensive Database (GSE84437, n = 483). Thirteen types of cell death-related genes, including apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy, cuprotosis, parthanatos, entotic cell death, netotic cell death, lysosome-dependent cell death, alkaliptosis, oxeiptosis, and disulfidptosis, were analysed. Cell death-related genes associated with prognosis were identified in the TCGA-STAD training cohort using Lasso-Cox regression to generate a risk score. Patients were categorized into high and low-risk groups based on the median risk score for survival difference analysis. Cell death-related genes associated with prognosis were identified in the TCGA-STAD training cohort using Lasso-Cox regression to generate a risk score. Additionally, the response to immunotherapy in the high-risk and low-risk groups was calculated using the oncoPredict algorithm. Futhermore, the model genes were validated in the GEO validation set. RESULTS A total of 324 differential programmed cell death (PCD)-related genes were identified, and 65 were selected through single-factor Cox analysis. Six PCD-related genes were ultimately identified by Lasso regression to construct a prognostic risk score model. The log-rank test revealed that patients in the high-risk group had inferior survival time compared with those in the low-risk group. The area under the ROC curve (AUC) for the training group at years 1, 3, and 5 were 0.684, 0.713, 0.743, respectively, while the AUC for the validation cohort at years 1, 3, and 5 were 0.695, 0.704, and 0.707, respectively. Unsupervised clustering identified potential subtypes included in the model, and a survival difference was also observed between the two subgroups. Multifactor Cox results, combined with clinical information, demonstrated that the prognostic risk score can serve as an independent prognostic factor, irrespective of other clinical features. CONCLUSION By comprehensively analyzing multiple cell death patterns, we have established a novel model that accurately forecasts the clinical prognosis and drug sensitivity of gastric cancer. It was found that all 12 representative drugs may not be suitable for patients in high-risk groups.
Collapse
Affiliation(s)
- Weiping Su
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xunyang Shi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinhua Wen
- Department of General Surgery, The Third People's Hospital of Hengyang City (Hengyang Public Health Clinical Center), Hengyang, 417600, Hunan, China
| | - Xuanxuan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jingyu Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Feng Ren
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Kuo Kang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
8
|
Zhu Y, Wang X, Feng L, Zhao R, Yu C, Liu Y, Xie Y, Liu B, Zhou Y, Yang P. Intermetallics triggering pyroptosis and disulfidptosis in cancer cells promote anti-tumor immunity. Nat Commun 2024; 15:8696. [PMID: 39379392 PMCID: PMC11461493 DOI: 10.1038/s41467-024-53135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024] Open
Abstract
Pyroptosis, an immunogenic programmed cell death, could efficiently activate tumor immunogenicity and reprogram immunosuppressive microenvironment for boosting cancer immunotherapy. However, the overexpression of SLC7A11 promotes glutathione biosynthesis for maintaining redox balance and countering pyroptosis. Herein, we develop intermetallics modified with glucose oxidase (GOx) and soybean phospholipid (SP) as pyroptosis promoters (Pd2Sn@GOx-SP), that not only induce pyroptosis by cascade biocatalysis for remodeling tumor microenvironment and facilitating tumor cell immunogenicity, but also trigger disulfidptosis mediated by cystine accumulation to further promote tumor pyroptosis in female mice. Experiments and density functional theory calculations show that Pd2Sn nanorods with an intermediate size exhibit stronger photothermal and enzyme catalytic activity compared with the other three morphologies investigated. The peroxidase-mimic and oxidase-mimic activities of Pd2Sn cause potent reactive oxygen species (ROS) storms for triggering pyroptosis, which could be self-reinforced by photothermal effect, hydrogen peroxide supply accompanied by glycometabolism, and oxygen production from catalase-mimic activity of Pd2Sn. Moreover, the increase of NADP+/NADPH ratio induced by glucose starvation could pose excessive cystine accumulation and inhibit glutathione synthesis, which could cause disulfidptosis and further augment ROS-mediated pyroptosis, respectively. This two-pronged treatment strategy could represent an alternative therapeutic approach to expand anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Yanlin Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China
| | - Xinxin Wang
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, PR China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China.
| | - Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China
| | - Can Yu
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, PR China
| | - Yuanli Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, PR China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China
| | - Yang Zhou
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, PR China.
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China.
| |
Collapse
|
9
|
Zheng H, Cheng J, Zhuang Z, Li D, Yang J, Yuan F, Fan X, Liu X. A disulfidptosis-related lncRNA signature for analyzing tumor microenvironment and clinical prognosis in hepatocellular carcinoma. Front Immunol 2024; 15:1412277. [PMID: 39434887 PMCID: PMC11491388 DOI: 10.3389/fimmu.2024.1412277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Disulfidptosis is a recently identified form of non-apoptotic programmed cell death which distinguishes itself from classical cell death pathways. However, the prognostic implications of disulfidptosis-related long non-coding RNAs (DRLs) and their underlying mechanisms in hepatocellular carcinoma (HCC) remain largely unexplored. Methods In this study, we leveraged RNA-sequencing data and clinical information of HCC patients from the TCGA database. Through expression correlation and prognostic correlation analyses, we identified a set of top-performing long non-coding RNAs. Subsequently, a 5-DRLs predictive signature was established by conducting a Lasso regression analysis. Results This signature effectively stratified patients into high- and low-risk groups, revealing notable differences in survival outcomes. Further validation through univariate and multivariate Cox regression analyses confirmed that the risk score derived from our signature independently predicted the prognosis of HCC patients. Moreover, we observed significant disparities in immune cell infiltration and tumor mutation burden (TMB) between the two risk groups, shedding light on the potential connection between immune-related mechanisms and disulfidptosis. Notably, the signature also exhibited predictive value in the context of chemotherapeutic drug sensitivity and immunotherapy efficacy for HCC patients. Finally, we performed experimental validation at both cellular and patient levels and successfully induced a disulfidptosis phenotype in HCC cells. Discussion In general, this multifaceted approach provides a comprehensive overview of DRLs profiles in HCC, culminating in the establishment of a novel risk signature that holds promise for predicting prognosis and therapy outcomes of HCC patients.
Collapse
Affiliation(s)
- Haishui Zheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jigan Cheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ziyun Zhuang
- Shantou University Medical College, Shantou, China
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital.Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Yuan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaolong Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Li C, Fan X, Wang X, Yao Y, Huang B, Chen L, Cao L, Peng T, Lin Y, Cai R. Development of a disulfidptosis-related prognostic model for endometrial cancer with potential therapeutic target. Discov Oncol 2024; 15:521. [PMID: 39365390 PMCID: PMC11452582 DOI: 10.1007/s12672-024-01384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Prognosis biomarkers for endometrial cancer (EC) are in need. Recent evidence demonstrated the critical role of disulfidptosis, a novel cell death modality, in cancer. However, limited studies have developed a disulfidptosis-related gene model for EC. Disulfidptosis prognosis score of EC (disulfidptosis-PSEC) were constructed using disulfidptosis-related differently expression genes with the RNA data of 544 EC patients from The Cancer Genome Atlas (TCGA) dataset. Model was evaluated using time-dependent receiver operating characteristic curve analysis for overall survival (OS) and disease-free survival (DFS), along with the hazard ratio (HR) between risk groups. Then, the cellular and molecular profile for different risk groups were performed, along with drug target inference. Disulfidptosis-PSEC demonstrated outstanding prognostic value for OS and DFS, with 5-year area under curve of 0.71 (95% CI, 0.58-0.75) and 0.69 (95% CI, 0.62-0.76), respectively. Low risk group demonstrated better survival with an HR of 0.38 (95% CI, 0.24-0.59) and 0.46 (95% CI, 0.32-0.66) for OS and DFS, respectively. The model was independent of TCGA subtype. Low risk group were featured with more immune cell infiltration and less gene mutation. Serval drug targets, and the therapeutic value of serotonin receptor among copy number (CN)-low subpopulation, were identified. Disulfidptosis-PSEC was a potential prognosis biomarker for EC with targetable biological process.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Radiation Therapy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefei Fan
- School of Chemical and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Xue Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulan Yao
- Department of Nursing, Shanghai Mental Health Center, Shanghai, China
| | - Bing Huang
- Department of Thoracic Surgery II, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Linlin Chen
- Department of Radiation Therapy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Cao
- Department of Radiation Therapy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Peng
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Lin
- Shanghai Key Laboratory of Proton-Therapy, Shanghai, China
| | - Rong Cai
- Department of Radiation Therapy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Li Y, Zhang H, Yang F, Zhu D, Chen S, Wang Z, Wei Z, Yang Z, Jia J, Zhang Y, Wang D, Ma M, Kang X. Mechanisms and therapeutic potential of disulphidptosis in cancer. Cell Prolif 2024:e13752. [PMID: 39354653 DOI: 10.1111/cpr.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/30/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
SLC7A11 plays a pivotal role in tumour development by facilitating cystine import to enhance glutathione synthesis and counteract oxidative stress. Disulphidptosis, an emerging form of cell death observed in cells with high expression of SLC7A11 under glucose deprivation, is regulated through reduction-oxidation reactions and disulphide bond formation. This process leads to contraction and collapse of the F-actin cytoskeleton from the plasma membrane, ultimately resulting in cellular demise. Compared to other forms of cell death, disulphidptosis exhibits distinctive characteristics and regulatory mechanisms. This mechanism provides novel insights and innovative strategies for cancer treatment while also inspiring potential therapeutic approaches for other diseases. Our review focuses on elucidating the molecular mechanism underlying disulphidptosis and its connection with the actin cytoskeleton, identifying alternative metabolic forms of cell death, as well as offering insights into disulphidptosis-based cancer therapy. A comprehensive understanding of disulphidptosis will contribute to our knowledge about fundamental cellular homeostasis and facilitate the development of groundbreaking therapies for disease treatment.
Collapse
Affiliation(s)
- Yanhu Li
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Haijun Zhang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
- The Second People's Hospital of Gansu Province, Lanzhou, PR China
| | - Fengguang Yang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Daxue Zhu
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Shijie Chen
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Zhaoheng Wang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Ziyan Wei
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Zhili Yang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Jingwen Jia
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Yizhi Zhang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Dongxin Wang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Mingdong Ma
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Xuewen Kang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| |
Collapse
|
12
|
Xiao F, Li HL, Yang B, Che H, Xu F, Li G, Zhou CH, Wang S. Disulfidptosis: A new type of cell death. Apoptosis 2024; 29:1309-1329. [PMID: 38886311 PMCID: PMC11416406 DOI: 10.1007/s10495-024-01989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
Disulfidptosis is a novel form of cell death that is distinguishable from established programmed cell death pathways such as apoptosis, pyroptosis, autophagy, ferroptosis, and oxeiptosis. This process is characterized by the rapid depletion of nicotinamide adenine dinucleotide phosphate (NADPH) in cells and high expression of solute carrier family 7 member 11 (SLC7A11) during glucose starvation, resulting in abnormal cystine accumulation, which subsequently induces andabnormal disulfide bond formation in actin cytoskeleton proteins, culminating in actin network collapse and disulfidptosis. This review aimed to summarize the underlying mechanisms, influencing factors, comparisons with traditional cell death pathways, associations with related diseases, application prospects, and future research directions related to disulfidptosis.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hui-Li Li
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Emergency, The State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Bei Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hao Che
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fei Xu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Gang Li
- Pediatric Cardiac Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Cheng-Hui Zhou
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Sheng Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Linzhi People's Hospital, Linzhi, Tibet, China.
| |
Collapse
|
13
|
Guo D, Liu Z, Zhou J, Ke C, Li D. Significance of Programmed Cell Death Pathways in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9947. [PMID: 39337436 PMCID: PMC11432010 DOI: 10.3390/ijms25189947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Programmed cell death (PCD) is a form of cell death distinct from accidental cell death (ACD) and is also referred to as regulated cell death (RCD). Typically, PCD signaling events are precisely regulated by various biomolecules in both spatial and temporal contexts to promote neuronal development, establish neural architecture, and shape the central nervous system (CNS), although the role of PCD extends beyond the CNS. Abnormalities in PCD signaling cascades contribute to the irreversible loss of neuronal cells and function, leading to the onset and progression of neurodegenerative diseases. In this review, we summarize the molecular processes and features of different modalities of PCD, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, and other novel forms of PCD, and their effects on the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. Additionally, we examine the key factors involved in these PCD signaling pathways and discuss the potential for their development as therapeutic targets and strategies. Therefore, therapeutic strategies targeting the inhibition or facilitation of PCD signaling pathways offer a promising approach for clinical applications in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Guo
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhihao Liu
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Jinglin Zhou
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Chongrong Ke
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Daliang Li
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
14
|
Zhen W, Fan Y, Germanas T, Tillman L, Li J, Blenko AL, Weichselbaum RR, Lin W. Digitonin-Loaded Nanoscale Metal-Organic Framework for Mitochondria-Targeted Radiotherapy-Radiodynamic Therapy and Disulfidptosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2405494. [PMID: 39252688 DOI: 10.1002/adma.202405494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/18/2024] [Indexed: 09/11/2024]
Abstract
The efficacy of radiotherapy (RT) is limited by inefficient X-ray absorption and reactive oxygen species generation, upregulation of immunosuppressive factors, and a reducing tumor microenvironment (TME). Here, the design of a mitochondria-targeted and digitonin (Dig)-loaded nanoscale metal-organic framework, Th-Ir-DBB/Dig, is reported to overcome these limitations and elicit strong antitumor effects upon low-dose X-ray irradiation. Built from Th6O4(OH)4 secondary building units (SBUs) and photosensitizing Ir(DBB)(ppy)2 2+ (Ir-DBB, DBB = 4,4'-di(4-benzoato)-2,2'-bipyridine; ppy = 2-phenylpyridine) ligands, Th-Ir-DBB exhibits strong RT-radiodynamic therapy (RDT) effects via potent radiosensitization with high-Z SBUs for hydroxyl radical generation and efficient excitation of Ir-DBB ligands for singlet oxygen production. Th-Ir-DBB/Dig releases digitonin in acidic TMEs to trigger disulfidptosis of cancer cells and sensitize cancer cells to RT-RDT through glucose and glutathione depletion. The released digitonin simultaneously downregulates multiple immune checkpoints in cancer cells and T cells through cholesterol depletion. As a result, Th-Ir-DBB/dig plus X-ray irradiation induces strong antitumor immunity to effectively inhibit tumor growth in mouse models of colon and breast cancer.
Collapse
Affiliation(s)
- Wenyao Zhen
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Yingjie Fan
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Tomas Germanas
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Langston Tillman
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Jinhong Li
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Abigail L Blenko
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
15
|
Qian S, Chen G, Li R, Ma Y, Pan L, Wang X, Wang X. Disulfide stress and its role in cardiovascular diseases. Redox Biol 2024; 75:103297. [PMID: 39127015 PMCID: PMC11364009 DOI: 10.1016/j.redox.2024.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of mortality in humans, and oxidative stress plays a pivotal role in disease progression. This phenomenon typically arises from weakening of the cellular antioxidant system or excessive accumulation of peroxides. This review focuses on a specialized form of oxidative stress-disulfide stress-which is triggered by an imbalance in the glutaredoxin and thioredoxin antioxidant systems within the cell, leading to the accumulation of disulfide bonds. The genesis of disulfide stress is usually induced by extrinsic pathological factors that disrupt the thiol-dependent antioxidant system, manifesting as sustained glutathionylation of proteins, formation of abnormal intermolecular disulfide bonds between cysteine-rich proteins, or irreversible oxidation of thiol groups to sulfenic and sulfonic acids. Disulfide stress not only precipitates the collapse of the antioxidant system and the accumulation of reactive oxygen species, exacerbating oxidative stress, but may also initiate cellular inflammation, autophagy, and apoptosis through a cascade of signaling pathways. Furthermore, this review explores the detrimental effects of disulfide stress on the progression of various CVDs including atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, diabetic cardiomyopathy, cardiac hypertrophy, and heart failure. This review also proposes several potential therapeutic avenues to improve the future treatment of CVDs.
Collapse
Affiliation(s)
- Shaoju Qian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan, 453003, China
| | - Guanyu Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ruixue Li
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Yinghua Ma
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lin Pan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xiaoping Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; Department of Human Anatomy and Histoembryology, Xinxiang Medical University, Xinxiang, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; Department of Human Anatomy and Histoembryology, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
16
|
Mao C, Wang M, Zhuang L, Gan B. Metabolic cell death in cancer: ferroptosis, cuproptosis, disulfidptosis, and beyond. Protein Cell 2024; 15:642-660. [PMID: 38428031 PMCID: PMC11365558 DOI: 10.1093/procel/pwae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
Cell death resistance represents a hallmark of cancer. Recent studies have identified metabolic cell death as unique forms of regulated cell death resulting from an imbalance in the cellular metabolism. This review discusses the mechanisms of metabolic cell death-ferroptosis, cuproptosis, disulfidptosis, lysozincrosis, and alkaliptosis-and explores their potential in cancer therapy. Our review underscores the complexity of the metabolic cell death pathways and offers insights into innovative therapeutic avenues for cancer treatment.
Collapse
Affiliation(s)
- Chao Mao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Min Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
17
|
Tona R, Inagaki S, Ishibashi Y, Faridi R, Yousaf R, Roux I, Wilson E, Fenollar-Ferrer C, Chien WW, Belyantseva IA, Friedman TB. Interaction between the TBC1D24 TLDc domain and the KIBRA C2 domain is disrupted by two epilepsy-associated TBC1D24 missense variants. J Biol Chem 2024; 300:107725. [PMID: 39214300 PMCID: PMC11465063 DOI: 10.1016/j.jbc.2024.107725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Mutations of human TBC1D24 are associated with deafness, epilepsy, or DOORS syndrome (deafness, onychodystrophy, osteodystrophy, cognitive disability, and seizures). The causal relationships between TBC1D24 variants and the different clinical phenotypes are not understood. Our hypothesis is that phenotypic heterogeneity of missense mutations of TBC1D24 results, in part, from perturbed binding of different protein partners. To discover novel protein partners of TBC1D24, we conducted yeast two-hybrid (Y2H) screen using mouse full-length TBC1D24 as bait. Kidney and brain protein (KIBRA), a scaffold protein encoded by Wwc1, was identified as a partner of TBC1D24. KIBRA functions in the Hippo signaling pathway and is important for human cognition and memory. The TBC1D24 TLDc domain binds to KIBRA full-length and to its C2 domain, confirmed by Y2H assays. No interaction was detected with Y2H assays between the KIBRA C2 domain and TLDc domains of NCOA7, MEAK7, and OXR1. Moreover, the C2 domains of other WWC family proteins do not interact with the TLDc domain of TBC1D24, demonstrating specificity. The mRNAs encoding TBC1D24 and KIBRA proteins in mouse are coexpressed at least in a subset of hippocampal cells indicating availability to interact in vivo. As two epilepsy-associated recessive variants (Gly511Arg and Ala515Val) in the TLDc domain of human TBC1D24 disrupt the interaction with the human KIBRA C2 domain, this study reveals a pathogenic mechanism of TBC1D24-associated epilepsy, linking the TBC1D24 and KIBRA pathways. The interaction of TBC1D24-KIBRA is physiologically meaningful and necessary to reduce the risk of epilepsy.
Collapse
Affiliation(s)
- Risa Tona
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Sayaka Inagaki
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA.
| | - Yasuko Ishibashi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Rizwan Yousaf
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Isabelle Roux
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Elizabeth Wilson
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Wade W Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine, Maryland, USA
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA.
| |
Collapse
|
18
|
Gu X, Wei Y, Shen D, Mao Y. Construction of a prognostic model for disulfidptosis-related long noncoding RNAs in R0 resected hepatocellular carcinoma and analysis of their impact on malignant behavior. BMC Cancer 2024; 24:1068. [PMID: 39210306 PMCID: PMC11363604 DOI: 10.1186/s12885-024-12816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Disulfidptosis is an emerging form of cellular death resulting from the binding of intracellular disulfide bonds to actin cytoskeleton proteins. This study aimed to investigate the expression and prognostic significance of hub disulfidptosis-related lncRNAs (DRLRs) in R0 resected hepatocellular carcinoma (HCC) as well as their impact on the malignant behaviour of HCC cells. METHODS A robust signature for R0 resected HCC was constructed using least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression and was validated in an independent internal validation cohort to predict the prognosis of R0 HCC patients. Comprehensive bioinformatics analysis was performed on the hub DRLRs (KDM4A-AS1, MKLN1-AS, and TMCC1-AS1), followed by experimental validation using quantitative real-time polymerase chain reaction (qRT‒PCR) and cellular functional assays. RESULTS The signature served as an independent prognostic factor applicable to R0 HCC patients across different age groups, tumour stages, and pathological characteristics. Gene Ontology (GO) and gene set enrichment analysis (GSEA) revealed hub pathways associated with this signature. The high-risk group presented an increased abundance of M0 macrophages and activated memory CD4 T cells as well as elevated macrophage and major histocompatibility complex (MHC) class I expression. High-risk R0 HCC patients also presented increased tumour immune dysfunction and exclusion scores (TIDEs), mutation frequencies, and tumour mutational burdens (TMBs). Drug sensitivity analysis revealed that high-risk patients were more responsive to drugs, including GDC0810 and osimertinib. High expression levels of the three hub DRLRs were detected in R0 HCC tissues and HCC cell lines. Functional assays revealed that the three hub DRLRs enhanced HCC cell proliferation, migration, and invasion. CONCLUSIONS A signature was constructed on the basis of three DRLRs, providing novel insights for personalized precision therapy in R0 HCC patients.
Collapse
Affiliation(s)
- Xuefeng Gu
- Department of Infectious Diseases, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yanyan Wei
- Department of Infectious Diseases, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Duo Shen
- Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 188 Gehu Road, Wujin District, Changzhou, Jiangsu, China.
| | - Yuan Mao
- Department of Oncology, The Fourth Affiliated Hospital of Nanjing Medical University, 298 Nanpu Road, Jiangbei New District, Nanjing, China.
| |
Collapse
|
19
|
Zhang A, Wang X, Lin W, Zhu H, Pan J. Identification and verification of disulfidptosis-related genes in sepsis-induced acute lung injury. Front Med (Lausanne) 2024; 11:1430252. [PMID: 39262873 PMCID: PMC11389619 DOI: 10.3389/fmed.2024.1430252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Background Sepsis-induced acute lung injury (ALI) is a common and serious complication of sepsis that eventually progresses to life-threatening hypoxemia. Disulfidptosis is a newly discovered type of cell death associated with the pathogenesis of different diseases. This study investigated the potential association between sepsis-induced acute lung injury and disulfidptosis by bioinformatics analysis. Methods In order to identify differentially expressed genes (DEGs) linked to sepsis, we screened appropriate data sets from the GEO database and carried out differential analysis. The key genes shared by DEGs and 39 disulfidptosis-related genes were identified: ACSL4 and MYL6 mRNA levels of key genes were detected in different datasets. We then used a series of bioinformatics analysis techniques, such as immune cell infiltration analysis, protein-protein interaction (PPI) network, genetic regulatory network, and receiver operating characteristic (ROC), to investigate the possible relationship between key genes and sepsis. Then, experimental verification was obtained for changes in key genes in sepsis-induced acute lung injury. Finally, to investigate the relationship between genetic variants of MYL6 or ACSL4 and sepsis, Mendelian randomization (MR) analysis was applied. Results Two key genes were found in this investigation: myosin light chain 6 (MYL6) and Acyl-CoA synthetase long-chain family member 4 (ACSL4). We verified increased mRNA levels of key genes in training datasets. Immune cell infiltration analysis showed that key genes were associated with multiple immune cell levels. Building the PPI network between MYL6 and ACSL4 allowed us to determine that their related genes had distinct biological functions. The co-expression genes of key genes were involved in different genetic regulatory networks. In addition, both the training and validation datasets confirmed the diagnostic capabilities of key genes by using ROC curves. Additionally, both in vivo and in vitro experiments confirmed that the mRNA levels of ACSL4 and MYL6 in sepsis-induced acute lung injury were consistent with the results of bioinformatics analysis. Finally, MR analysis revealed a causal relationship between MYL6 and sepsis. Conclusion We have discovered and confirmed that the key genes ACSL4 and MYL6, which are linked to disulfidptosis in sepsis-induced acute lung injury, may be useful in the diagnosis and management of septic acute lung injury.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyang Wang
- Department of Anesthesiology, Fujian Province Second People's Hospital, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wen Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haoqi Zhu
- Department of Gastroenterology, Wenzhou Central Hospital, Wenzhou, China
| | - Jingyi Pan
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
20
|
Wang M, Dai B, Liu Q, Zhang X. Prognostic and immunological implications of heterogeneous cell death patterns in prostate cancer. Cancer Cell Int 2024; 24:297. [PMID: 39182081 PMCID: PMC11344416 DOI: 10.1186/s12935-024-03462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/28/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Prostate cancer is one of the most common cancers in men with a significant proportion of patients developing biochemical recurrence (BCR) after treatment. Programmed cell death (PCD) mechanisms are known to play critical roles in tumor progression and can potentially serve as prognostic and therapeutic biomarkers in PCa. This study aimed to develop a prognostic signature for BCR in PCa using PCD-related genes. MATERIALS AND METHODS We conducted an analysis of 19 different modes of PCD to develop a comprehensive model. Bulk transcriptomic, single-cell transcriptomic, genomic, and clinical data were collected from multiple cohorts, including TCGA-PRAD, GSE58812, METABRIC, GSE21653, and GSE193337. We analyzed the expression and mutations of the 19 PCD modes and constructed, evaluated, and validated the model. RESULTS Ten PCD modes were found to be associated with BCR in PCa, with specific PCD patterns exhibited by various cell components within the tumor microenvironment. Through Lasso Cox regression analysis, we established a Programmed Cell Death Index (PCDI) utilizing an 11-gene signature. High PCDI values were validated in five independent datasets and were found to be associated with an increased risk of BCR in PCa patients. Notably, older age and advanced T and N staging were associated with higher PCDI values. By combining PCDI with T staging, we constructed a nomogram with enhanced predictive performance. Additionally, high PCDI values were significantly correlated with decreased drug sensitivity, including drugs such as Docetaxel and Methotrexate. Patients with lower PCDI values demonstrated higher immunophenoscores (IPS), suggesting a potentially higher response rate to immune therapy. Furthermore, PCDI was associated with immune checkpoint genes and key components of the tumor microenvironment, including macrophages, T cells, and NK cells. Finally, clinical specimens validated the differential expression of PCDI-related PCDRGs at both the gene and protein levels. CONCLUSION In conclusion, we developed a novel PCD-based prognostic feature that successfully predicted BCR in PCa patients and provided insights into drug sensitivity and potential response to immune therapy. These findings have significant clinical implications for the treatment of PCa.
Collapse
Affiliation(s)
- Ming Wang
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, China
| | - Bangshun Dai
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, China
| | - Qiushi Liu
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, China
| | - Xiansheng Zhang
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, China.
| |
Collapse
|
21
|
Li Q, Shi G, Li Y, Lu R, Liu Z. Integrated analysis of disulfidoptosis-related genes identifies NRP1 as a novel biomarker promoting proliferation of gastric cancer via glutamine mediated energy metabolism. Discov Oncol 2024; 15:337. [PMID: 39110136 PMCID: PMC11306494 DOI: 10.1007/s12672-024-01217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The incidence and mortality of gastric cancer rank fifth and fourth worldwide among all malignancies, respectively. Additionally, disulfidoptosis, a recently identified form of cellular demise, is closely linked to the initiation and advancement of malignancies. This study aims to create a novel signature of disulfidptosis-related genes (DRGs) and to further explore its association with the tumor immune microenvironment. Based on our comprehensive study, a prognostic signature consisting of 31 DRGs in stomach adenocarcinoma (STAD) was identified and characterized. Through the integrative analyses involving gene expression profiling, machine learning algorithms, and Cox regression models, the prognostic significance of these DRGs was demonstrated. Our findings highlight their strong predictive power in assessing overall survival across diverse patient datasets, and their better performance than traditional clinicopathological factors. Moreover, the DRGs signature showed association with the characteristics of the tumor microenvironment, which has implications for the immune modulation and therapeutic strategies in STAD. Specifically, NRP1 emerged as a key DRG with elevated expression in STAD, showing correlation with the advanced stages of diseases and poorer outcomes. Functional studies further revealed the role of NRP1 in promoting STAD cell proliferation through the modulation of glutamine metabolism. Overall, our study underscores the clinical relevance of DRGs as biomarker and potential therapeutic targets in STAD management, providing insights into disease biology and personalized treatments.
Collapse
Affiliation(s)
- Qiuhua Li
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Shenyang, 110033, Liaoning, People's Republic of China
- Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518000, Guangdong, People's Republic of China
| | - Guofeng Shi
- Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518000, Guangdong, People's Republic of China
| | - Yuebo Li
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Shenyang, 110033, Liaoning, People's Republic of China
| | - Ren Lu
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Shenyang, 110033, Liaoning, People's Republic of China.
| | - Zhaozhe Liu
- Department of Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China.
| |
Collapse
|
22
|
Wu H, Fu M, Wu M, Cao Z, Zhang Q, Liu Z. Emerging mechanisms and promising approaches in pancreatic cancer metabolism. Cell Death Dis 2024; 15:553. [PMID: 39090116 PMCID: PMC11294586 DOI: 10.1038/s41419-024-06930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Pancreatic cancer is an aggressive cancer with a poor prognosis. Metabolic abnormalities are one of the hallmarks of pancreatic cancer, and pancreatic cancer cells can adapt to biosynthesis, energy intake, and redox needs through metabolic reprogramming to tolerate nutrient deficiency and hypoxic microenvironments. Pancreatic cancer cells can use glucose, amino acids, and lipids as energy to maintain malignant growth. Moreover, they also metabolically interact with cells in the tumour microenvironment to change cell fate, promote tumour progression, and even affect immune responses. Importantly, metabolic changes at the body level deserve more attention. Basic research and clinical trials based on targeted metabolic therapy or in combination with other treatments are in full swing. A more comprehensive and in-depth understanding of the metabolic regulation of pancreatic cancer cells will not only enrich the understanding of the mechanisms of disease progression but also provide inspiration for new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hao Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengdi Fu
- Department of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhen Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qiyao Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
23
|
Zhang K, Li G, Wang Q, Liu X, Chen H, Li F, Li S, Song X, Li Y. A disulfidptosis-related glucose metabolism and immune response prognostic model revealing the immune microenvironment in lung adenocarcinoma. Front Immunol 2024; 15:1398802. [PMID: 39091494 PMCID: PMC11291233 DOI: 10.3389/fimmu.2024.1398802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Background Lung adenocarcinoma accounts for the majority of lung cancer cases and impact survival rate of patients severely. Immunotherapy is an effective treatment for lung adenocarcinoma but is restricted by many factors including immune checkpoint expression and the inhibitory immune microenvironment. This study aimed to explore the immune microenvironment in lung adenocarcinoma via disulfidptosis. Methods Public datasets of lung adenocarcinoma from the TCGA and GEO was adopted as the training and validation cohort. Based on the differences in the expression of disulfidptosis -related genes, a glucose metabolism and immune response prognostic model was constructed. The prognostic value and clinical relationship of the model were further explored. Immune-related analyses were performed according to CIBERSORT, ssGSEA, TIDE, IPS. Results We verified that the model could accurately predict the survival expectancy of lung adenocarcinoma patients. Patients with lung adenocarcinoma and a low-risk score had better survival outcomes according to the model. Moreover, the high-risk group tended to have an immunosuppressive effect, as reflected by the immune cell components, phenotypes and functions. We also found that the clinically relevant immune checkpoint CTLA-4 was significantly higher in low-risk group (P<0.05), indicating that the high-risk group may suffer worse tumor immunotherapy efficacy. Finally, we found that this model has accurate predictive value for the efficacy of immune checkpoint blockade in non-small cell lung cancer (P<0.05). Conclusion The prognostic model demonstrated the feasibility of predicting survival and immunotherapy efficacy via disulfidptosis-related genes and will facilitate the development of personalized anticancer therapy.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Gang Li
- Graduate School, Kunming Medical University, Kunming, China
| | - Qin Wang
- Graduate School, Kunming Medical University, Kunming, China
| | - Xin Liu
- Department of Thoracic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hong Chen
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Fuqiang Li
- Department of Traditional Chinese Medicine, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Shuangyan Li
- Graduate School, Kunming Medical University, Kunming, China
| | - Xinmao Song
- Department of Radiation Oncology, Ear, Nose & Throat Hospital of Fudan University, Shanghai, China
| | - Yi Li
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, China
| |
Collapse
|
24
|
Yang Z, Feng R, Zhao H. Cuproptosis and Cu: a new paradigm in cellular death and their role in non-cancerous diseases. Apoptosis 2024:10.1007/s10495-024-01993-y. [PMID: 39014119 DOI: 10.1007/s10495-024-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Cuproptosis, a newly characterized form of regulated cell death driven by copper accumulation, has emerged as a significant mechanism underlying various non-cancerous diseases. This review delves into the complex interplay between copper metabolism and the pathogenesis of conditions such as Wilson's disease (WD), neurodegenerative disorders, and cardiovascular pathologies. We examine the molecular mechanisms by which copper dysregulation induces cuproptosis, highlighting the pivotal roles of key copper transporters and enzymes. Additionally, we evaluate the therapeutic potential of copper chelation strategies, which have shown promise in experimental models by mitigating copper-induced cellular damage and restoring physiological homeostasis. Through a comprehensive synthesis of recent advancements and current knowledge, this review underscores the necessity of further research to translate these findings into clinical applications. The ultimate goal is to harness the therapeutic potential of targeting cuproptosis, thereby improving disease management and patient outcomes in non-cancerous conditions associated with copper dysregulation.
Collapse
Affiliation(s)
- Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, China
| | - Ridong Feng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine (FAHZU), 79 Qingchun Rd., Shangcheng District, Hangzhou, 330100, Zhejiang, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China.
| |
Collapse
|
25
|
Wei J, Wang M, Wu Y. A disulfidptosis-related lncRNAs cluster to forecast the prognosis and immune landscapes of ovarian cancer. Front Genet 2024; 15:1397011. [PMID: 39045330 PMCID: PMC11263023 DOI: 10.3389/fgene.2024.1397011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
Objective Disulfidptosis is a newly recognized form of regulated cell death that has been linked to cancer progression and prognosis. Despite this association, the prognostic significance, immunological characteristics and treatment response of disulfidptosis-related lncRNAs (DRLs) in ovarian cancer have not yet been elucidated. Methods The lncRNA data and clinical information for ovarian cancer and normal samples were obtained from the UCSC XENA. Differential expression analysis and Pearson analysis were utilized to identify core DRLs, followed by LASSO algorithm. Random Survival Forest was used to construct a prognostic model. The relationships between risk scores, RNA methylation, immune cell infiltration, mutation, responses to immunotherapy and drug sensitivity analysis were further examined. Additionally, qRT-PCR experiments were conducted to validate the expression of the core DRLs in human ovarian cancer cells and normal ovarian cells and the scRNA-seq data of the core DRLs were obtained from the GEO dataset, available in the TISCH database. Results A total of 8 core DRLs were obtained to construct a prognostic model for ovarian cancer, categorizing all patients into low-risk and high-risk groups using an optimal cutoff value. The AUC values for 1-year, 3-year and 5-year OS in the TCGA cohort were 0.785, 0.810 and 0.863 respectively, proving a strong predictive capability of the model. The model revealed the high-risk group patients exhibited lower overall survival rates, higher TIDE scores and lower TMB levels compared to the low-risk group. Variations in immune cell infiltration and responses to therapeutic drugs were observed between the high-risk and low-risk groups. Besides, our study verified the correlations between the DRLs and RNA methylation. Additionally, qRT-PCR experiments and single-cell RNA sequencing data analysis were conducted to confirm the significance of the core DRLs at both cellular and scRNA-seq levels. Conclusion We constructed a reliable and novel prognostic model with a DRLs cluster for ovarian cancer, providing a foundation for further researches in the management of this disease.
Collapse
|
26
|
Wang G, Zhao J, Zhou M, Lu H, Mao F. Unveiling diabetic nephropathy: a novel diagnostic model through single-cell sequencing and co-expression analysis. Aging (Albany NY) 2024; 16:10972-10984. [PMID: 38968594 PMCID: PMC11272118 DOI: 10.18632/aging.205982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a severe complication of diabetes that affects the kidneys. Disulfidptosis, a newly defined type of programmed cell death, has emerged as a potential area of interest, yet its significance in DN remains unexplored. METHODS This study utilized single-cell sequencing data GSE131882 from GEO database combined with bulk transcriptome sequencing data GSE30122, GSE30528 and GSE30529 to investigate disulfidptosis in DN. Single-cell sequencing analysis was performed on samples from DN patients and healthy controls, focusing on cell heterogeneity and communication. Weighted gene co-expression network analysis (WGCNA) and gene set enrichment analysis (GSEA) were employed to identify disulfidptosis-related gene sets and pathways. A diagnostic model was constructed using machine learning techniques based on identified genes, and immunocorrelation analysis was conducted to explore the relationship between key genes and immune cells. PCR validation was performed on blood samples from DN patients and healthy controls. RESULTS The study revealed significant disulfidptosis heterogeneity and cell communication differences in DN. Specific targets related to disulfidptosis were identified, providing insights into the pathogenesis of DN. The diagnostic model demonstrated high accuracy in distinguishing DN from healthy samples across multiple datasets. Immunocorrelation analysis highlighted the complex interactions between immune cells and key disulfidptosis-related genes. PCR validation supported the differential expression of model genes VEGFA, MAGI2, THSD7A and ANKRD28 in DN. CONCLUSION This research advances our understanding of DN by highlighting the role of disulfidptosis and identifying potential biomarkers for early detection and personalized treatment.
Collapse
Affiliation(s)
- Guoyi Wang
- Department of Nephrology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, People's Republic of China
| | - Jinwen Zhao
- Department of Nephrology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, People's Republic of China
| | - Min Zhou
- Department of Nephrology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, People's Republic of China
| | - Haiyuan Lu
- Department of Nephrology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, People's Republic of China
| | - Fei Mao
- Department of Urology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, People's Republic of China
| |
Collapse
|
27
|
Lin Y, Ke S, Ye W, Xie B, Huang Z. Non-Apoptotic Programmed Cell Death as Targets for Diabetic Retinal Neurodegeneration. Pharmaceuticals (Basel) 2024; 17:837. [PMID: 39065688 PMCID: PMC11279440 DOI: 10.3390/ph17070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic retinopathy (DR) remains the leading cause of blindness among the global working-age population. Emerging evidence underscores the significance of diabetic retinal neurodegeneration (DRN) as a pivotal biomarker in the progression of vasculopathy. Inflammation, oxidative stress, neural cell death, and the reduction in neurotrophic factors are the key determinants in the pathophysiology of DRN. Non-apoptotic programmed cell death (PCD) plays a crucial role in regulating stress response, inflammation, and disease management. Therapeutic modalities targeting PCD have shown promising potential for mitigating DRN. In this review, we highlight recent advances in identifying the role of various PCD types in DRN, with specific emphasis on necroptosis, pyroptosis, ferroptosis, parthanatos, and the more recently characterized PANoptosis. In addition, the therapeutic agents aimed at the regulation of PCD for addressing DRN are discussed.
Collapse
Affiliation(s)
- Yingjia Lin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Shuping Ke
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Weiqing Ye
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Biyao Xie
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Zijing Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
| |
Collapse
|
28
|
Yang F, Niu X, Zhou M, Li W. Development and validation of a novel disulfidptosis-related lncRNAs signature in patients with HPV-negative oral squamous cell carcinoma. Sci Rep 2024; 14:14436. [PMID: 38910181 PMCID: PMC11194273 DOI: 10.1038/s41598-024-65194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024] Open
Abstract
Disulfidptosis is a recently identified mode of regulated cell death. Regulating disulfidptosis in carcinoma is a promising therapeutic approach. Long non-coding RNAs (lncRNAs) have been reported to be related to the occurrence and development of many cancers. Disulfidptosis-related lncRNAs (DRLs) in HPV-negative oral squamous cell carcinoma (OSCC) have not been studied. Based on The Cancer Genome Atlas (TCGA) database, least absolute shrinkage selection operator (LASSO) analysis and Cox regression analysis were used to identify overall survival related DRLs and construct the signature. Kaplan-Meier, time-dependent receiver operating characteristics (ROC) and principal component analyses (PCA) were explored to demonstrate the prediction potential of the signature. Subgroup analysis stratified by different clinicopathological characteristics were conducted. Nomogram was established by DRLs signature and independent clinicopathological characteristics. The calibration plots were performed to reveal the accuracy of nomogram. Immune cell subset infiltration, immunotherapy response, drug sensitivity analysis, and tumor mutation burden (TMB) were conducted. Underlying functions and pathways were explored by Gene Set Enrichment Analysis (GSEA) analysis. Previous lncRNA signatures of OSCC were retrieved from PubMed for further validation. Gene expression omnibus (GEO) datasets (GSE41613 and GSE85446) were merged as an external validation for DRLs signature. Consensus clustering analysis of DRLs signature and experimental validation of DRLs were also explored. This research sheds light on the robust performance of DRLs signature in survival prediction, immune cell infiltration, immune escape, and immunotherapy of HPV-negative OSCC.
Collapse
Affiliation(s)
- Fan Yang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinyu Niu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mingzhu Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Li
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
29
|
Pan Y, Jin X, Xu H, Hong J, Li F, Luo T, Zeng J. Developing a prognostic model using machine learning for disulfidptosis related lncRNA in lung adenocarcinoma. Sci Rep 2024; 14:13113. [PMID: 38849442 PMCID: PMC11161591 DOI: 10.1038/s41598-024-63949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Disulfidptosis represents a novel cell death mechanism triggered by disulfide stress, with potential implications for advancements in cancer treatments. Although emerging evidence highlights the critical regulatory roles of long non-coding RNAs (lncRNAs) in the pathobiology of lung adenocarcinoma (LUAD), research into lncRNAs specifically associated with disulfidptosis in LUAD, termed disulfidptosis-related lncRNAs (DRLs), remains insufficiently explored. Using The Cancer Genome Atlas (TCGA)-LUAD dataset, we implemented ten machine learning techniques, resulting in 101 distinct model configurations. To assess the predictive accuracy of our model, we employed both the concordance index (C-index) and receiver operating characteristic (ROC) curve analyses. For a deeper understanding of the underlying biological pathways, we referred to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) for functional enrichment analysis. Moreover, we explored differences in the tumor microenvironment between high-risk and low-risk patient cohorts. Additionally, we thoroughly assessed the prognostic value of the DRLs signatures in predicting treatment outcomes. The Kaplan-Meier (KM) survival analysis demonstrated a significant difference in overall survival (OS) between the high-risk and low-risk cohorts (p < 0.001). The prognostic model showed robust performance, with an area under the ROC curve exceeding 0.75 at one year and maintaining a value above 0.72 in the two and three-year follow-ups. Further research identified variations in tumor mutational burden (TMB) and differential responses to immunotherapies and chemotherapies. Our validation, using three GEO datasets (GSE31210, GSE30219, and GSE50081), revealed that the C-index exceeded 0.67 for GSE31210 and GSE30219. Significant differences in disease-free survival (DFS) and OS were observed across all validation cohorts among different risk groups. The prognostic model offers potential as a molecular biomarker for LUAD prognosis.
Collapse
Affiliation(s)
- Yang Pan
- Department of Pulmonary Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, China
| | - Xuanhong Jin
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haoting Xu
- Department of Pulmonary Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, China
| | - Jiandong Hong
- Department of Pulmonary Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Feng Li
- Department of Pulmonary Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| | - Taobo Luo
- Department of Pulmonary Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| | - Jian Zeng
- Department of Pulmonary Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
30
|
Chen R, Jiang L. A disulfidptosis-related classification and risk signature identifies immunotherapy biomarkers and predicts prognosis in gastric cancer: An observational study. Medicine (Baltimore) 2024; 103:e38398. [PMID: 39259065 PMCID: PMC11142777 DOI: 10.1097/md.0000000000038398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 09/12/2024] Open
Abstract
Gastric cancer (GC) is one of the most prevalent types of cancer globally, often detected at advanced stages. However, its prognosis remains poor, necessitating the exploration of new biomarkers. Disulfidptosis, a recently identified form of programmed cell death, has not yet been investigated in relation to GC and its associated mechanisms. We analyzed and identified potential associations between disulfidptosis genes and GC clinical risk using TCGA (The Cancer Genome Atlas)-STAD (stomach adenocarcinoma) as the training set and GSE84433 as the validation set. In addition, we explored the prognostic value and potential biological mechanisms of disulfide genes in GC by consensus clustering, enrichment analysis, mutation histology analysis and immune infiltration analysis. Finally, we constructed a disulfidptosis-related risk signature (DRRS) to assess the association between risk class, survival prognosis, and immune infiltration. By utilizing data from 19 disulfidptosis-related genes, we successfully identified subgroups of C1 and C2 patients through consensus clustering. Notably, the 2 groups exhibited significant variations in terms of survival rates, immune scores, and immune cell infiltration. Subsequently, we developed a DRRS via LASSO (least absolute shrinkage and selection operator) regression analysis, incorporating PRICKLE1, NRP1, APOD, MISP3, and SERPINE1. This scoring system effectively distinguished individuals with high and low risks, as verified with a validation set. These findings strongly indicate a close association between disulfidptosis and the immune microenvironment of GC tumors. Moreover, the DRRS demonstrated commendable predictive capabilities for the survival outcomes of GC patients. In this study, we have identified the association between different subtypes of disulfidptosis and alterations in the GC immunotumour microenvironment. Furthermore, we have developed and verified the accuracy of the DRRS, a valuable tool for predicting survival, biological function, and immune infiltration in patients with GC. These findings contribute to a better comprehension of disulfidptosis and offer potential opportunities for innovative approaches in GC treatment.
Collapse
Affiliation(s)
- Ruyue Chen
- Qingdao University, Qingdao, Shandong Province, China
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, China
| | - Lixin Jiang
- Qingdao University, Qingdao, Shandong Province, China
- Department of General Surgery, Yantai Yeda Hospital, Yantai, Shandong Province, China
| |
Collapse
|
31
|
Tian Z, Song J, She J, He W, Guo S, Dong B. Constructing a disulfidptosis-related prognostic signature of hepatocellular carcinoma based on single-cell sequencing and weighted co-expression network analysis. Apoptosis 2024:10.1007/s10495-024-01968-z. [PMID: 38760515 DOI: 10.1007/s10495-024-01968-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 05/19/2024]
Abstract
Hepatocellular carcinoma (HCC) ranks as the second leading cause of cancer-related deaths globally. Disulfidptosis is a newly identified form of regulated cell death that is induced by glucose starvation. However, the clinical prognostic characteristics of disulfidptosis-associated genes in HCC remain poorly understood. We conducted an analysis of the single-cell datasets GSE149614 and performed weighted co-expression network analysis (WGCNA) on the Cancer Genome Atlas (TCGA) datasets to identify the genes related to disulfidptosis. A prognostic model was constructed using univariate COX and Lasso regression. Survival analysis, immune microenvironment analysis, and mutation analysis were performed. Additionally, a nomogram associated with disulfidptosis-related signature was constructed to identify the prognosis of HCC patients. Patients with HCC in the TCGA and GSE14520 datasets were categorized using a disulfidptosis-related model, revealing significant differences in survival times between the high- and low-disulfidptosis groups. High-disulfidptosis patients exhibited increased expression of immune checkpoint-related genes, implying that immunotherapy and certain chemotherapies may be beneficial for them. Meanwhile, the ROC and decision curves analysis (DCA) indicated that the nomogram has satisfying prognostic efficacy. Moreover, the experimental results of GATM in this prognostic model indicated that GATM is low expressed in HCC tissues, and GATM knockdown promotes the proliferation and migration of HCC cells. By analyzing single-cell and bulk multi-omics sequencing data, we developed a prognostic signature related to disulfidptosis and explored the relationship between high- and low-disulfidptosis groups in HCC. This study offers a novel reference for gaining a deeper understanding of the role of disulfidptosis in HCC.
Collapse
Affiliation(s)
- Zelin Tian
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Junbo Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jiang She
- Department of Orthopedics, Ninth Hospital of Xi'an, Xi'an, 710000, Shaanxi, China
| | - Weixiang He
- Department of Urology, Air Force Medical University, Xi'an, China
| | - Shanshan Guo
- Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China
| | - Bingchen Dong
- Department of Orthopedics, Ninth Hospital of Xi'an, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
32
|
Arimoto KI, Miyauchi S, Liu M, Zhang DE. Emerging role of immunogenic cell death in cancer immunotherapy. Front Immunol 2024; 15:1390263. [PMID: 38799433 PMCID: PMC11116615 DOI: 10.3389/fimmu.2024.1390263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Cancer immunotherapy, such as immune checkpoint blockade (ICB), has emerged as a groundbreaking approach for effective cancer treatment. Despite its considerable potential, clinical studies have indicated that the current response rate to cancer immunotherapy is suboptimal, primarily attributed to low immunogenicity in certain types of malignant tumors. Immunogenic cell death (ICD) represents a form of regulated cell death (RCD) capable of enhancing tumor immunogenicity and activating tumor-specific innate and adaptive immune responses in immunocompetent hosts. Therefore, gaining a deeper understanding of ICD and its evolution is crucial for developing more effective cancer therapeutic strategies. This review focuses exclusively on both historical and recent discoveries related to ICD modes and their mechanistic insights, particularly within the context of cancer immunotherapy. Our recent findings are also highlighted, revealing a mode of ICD induction facilitated by atypical interferon (IFN)-stimulated genes (ISGs), including polo-like kinase 2 (PLK2), during hyperactive type I IFN signaling. The review concludes by discussing the therapeutic potential of ICD, with special attention to its relevance in both preclinical and clinical settings within the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Kei-ichiro Arimoto
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Sayuri Miyauchi
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Mengdan Liu
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
- School of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Dong-Er Zhang
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
- School of Biological Sciences, University of California San Diego, La Jolla, CA, United States
- Department of Pathology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
33
|
Li J, Xia C, Song Y, Zhang L, Shang W, Xu N, Lu Q, Liang D. Disulfidptosis-related lncRNA signature reveals immune microenvironment and novel molecular subtyping of stomach adenocarcinoma. Heliyon 2024; 10:e29005. [PMID: 38628708 PMCID: PMC11019176 DOI: 10.1016/j.heliyon.2024.e29005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
The main challenge in treating stomach adenocarcinoma (STAD) is chemotherapy resistance, which is characterized by changes in the immune microenvironment. Disulfidptosis, a novel form of programmed cell death, is involved in STAD but its mechanism is not fully understood. Long non-coding RNAs (LncRNAs) may play a role in regulating disulfidptosis and influencing the immune microenvironment and chemotherapy resistance in STAD. This study aims to establish disulfidptosis-related lncRNA (DRL) features and explore their significance in the immune microenvironment and chemotherapy resistance in STAD patients. By analyzing RNA sequencing and clinical data from STAD patients and extracting disulfidptosis-related genes, we identified DRLs through co-expression, single-factor and multi-factor Cox regression, and Lasso regression analyses. We also investigated differences in the immune microenvironment, immune function, immune checkpoint gene expression, and chemotherapy resistance between different risk groups using various algorithms. A prognostic risk model consisting of 2 DRLs was constructed, with a strong predictive value for patient survival, outperforming other clinical-pathological factors in predicting 3-year and 5-year survival. Immune-related analysis revealed a strong positive correlation between T cell CD4+ cells and risk score across all algorithms, and higher expression of immune checkpoint genes in the high-risk group. In addition, high-risk patients showed better sensitivity to Erlotinib, Oxaliplatin, and Gefitinib. Furthermore, three novel molecular subtypes of STAD were identified based on the 2-DRLs features, with evaluation of the immune microenvironment and chemotherapy drug sensitivity for each subgroup, which holds significant implications for achieving precise treatment in STAD. Overall, our 2-DRLs prognostic model demonstrates high predictive value for patient survival in STAD, potentially providing new targets for individualized immune and chemical therapy.
Collapse
Affiliation(s)
- Jinze Li
- Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650106, PR China
- Department of Gastrointestinal surgery, The Third People's Hospital of Hubei Province, Wuhan, 430071, PR China
| | - Chuqi Xia
- Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650106, PR China
| | - Yilin Song
- Shantou university medical college, 22 xinling Road, Shantou, Guangdong Province, 515041, PR China
| | - Lu Zhang
- Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650106, PR China
| | - Wei Shang
- Shiyan People's Hospital of Hubei Medical College, Shi Yan, Hubei Province, 442000, PR China
| | - Ning Xu
- Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650106, PR China
| | - Qiyu Lu
- Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650106, PR China
| | - Daoming Liang
- Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650106, PR China
| |
Collapse
|
34
|
Zhou S, Liu J, Wan A, Zhang Y, Qi X. Epigenetic regulation of diverse cell death modalities in cancer: a focus on pyroptosis, ferroptosis, cuproptosis, and disulfidptosis. J Hematol Oncol 2024; 17:22. [PMID: 38654314 PMCID: PMC11040947 DOI: 10.1186/s13045-024-01545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Tumor is a local tissue hyperplasia resulted from cancerous transformation of normal cells under the action of various physical, chemical and biological factors. The exploration of tumorigenesis mechanism is crucial for early prevention and treatment of tumors. Epigenetic modification is a common and important modification in cells, including DNA methylation, histone modification, non-coding RNA modification and m6A modification. The normal mode of cell death is programmed by cell death-related genes; however, recent researches have revealed some new modes of cell death, including pyroptosis, ferroptosis, cuproptosis and disulfidptosis. Epigenetic regulation of various cell deaths is mainly involved in the regulation of key cell death proteins and affects cell death by up-regulating or down-regulating the expression levels of key proteins. This study aims to investigate the mechanism of epigenetic modifications regulating pyroptosis, ferroptosis, cuproptosis and disulfidptosis of tumor cells, explore possible triggering factors in tumor development from a microscopic point of view, and provide potential targets for tumor therapy and new perspective for the development of antitumor drugs or combination therapies.
Collapse
Affiliation(s)
- Shimeng Zhou
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China
| | - Junlan Liu
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China
| | - Andi Wan
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China.
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China.
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China.
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China.
| |
Collapse
|
35
|
Zhang G, Wang Q, Jiang B, Yao L, Wu W, Zhang X, Wan D, Gu Y. Progress of medicinal plants and their active metabolites in ischemia-reperfusion injury of stroke: a novel therapeutic strategy based on regulation of crosstalk between mitophagy and ferroptosis. Front Pharmacol 2024; 15:1374445. [PMID: 38650626 PMCID: PMC11033413 DOI: 10.3389/fphar.2024.1374445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The death of cells can occur through various pathways, including apoptosis, necroptosis, mitophagy, pyroptosis, endoplasmic reticulum stress, oxidative stress, ferroptosis, cuproptosis, and disulfide-driven necrosis. Increasing evidence suggests that mitophagy and ferroptosis play crucial regulatory roles in the development of stroke. In recent years, the incidence of stroke has been gradually increasing, posing a significant threat to human health. Hemorrhagic stroke accounts for only 15% of all strokes, while ischemic stroke is the predominant type, representing 85% of all stroke cases. Ischemic stroke refers to a clinical syndrome characterized by local ischemic-hypoxic necrosis of brain tissue due to various cerebrovascular disorders, leading to rapid onset of corresponding neurological deficits. Currently, specific therapeutic approaches targeting the pathophysiological mechanisms of ischemic brain tissue injury mainly include intravenous thrombolysis and endovascular intervention. Despite some clinical efficacy, these approaches inevitably lead to ischemia-reperfusion injury. Therefore, exploration of treatment options for ischemic stroke remains a challenging task. In light of this background, advancements in targeted therapy for cerebrovascular diseases through mitophagy and ferroptosis offer a new direction for the treatment of such diseases. In this review, we summarize the progress of mitophagy and ferroptosis in regulating ischemia-reperfusion injury in stroke and emphasize their potential molecular mechanisms in the pathogenesis. Importantly, we systematically elucidate the role of medicinal plants and their active metabolites in targeting mitophagy and ferroptosis in ischemia-reperfusion injury in stroke, providing new insights and perspectives for the clinical development of therapeutic drugs for these diseases.
Collapse
Affiliation(s)
- Guozhen Zhang
- College of the First Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Department of Neurology, People’s Liberation Army Joint Logistics Support Force 940th Hospital, Lanzhou, Gansu, China
| | - Qiang Wang
- Department of Neurology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Lihe Yao
- Department of Neurology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenjuan Wu
- Department of Neurology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoyan Zhang
- Department of Neurology, People’s Liberation Army Joint Logistics Support Force 940th Hospital, Lanzhou, Gansu, China
| | - Dongjun Wan
- Department of Neurology, People’s Liberation Army Joint Logistics Support Force 940th Hospital, Lanzhou, Gansu, China
| | - Youquan Gu
- College of the First Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Department of Neurology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
36
|
Duan H, Gao L, Asikaer A, Liu L, Huang K, Shen Y. Prognostic Model Construction of Disulfidptosis-Related Genes and Targeted Anticancer Drug Research in Pancreatic Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01131-8. [PMID: 38575817 DOI: 10.1007/s12033-024-01131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024]
Abstract
Pancreatic cancer stands as one of the most lethal malignancies, characterized by delayed diagnosis, high mortality rates, limited treatment efficacy, and poor prognosis. Disulfidptosis, a recently unveiled modality of cell demise induced by disulfide stress, has emerged as a critical player intricately associated with the onset and progression of various cancer types. It has emerged as a promising candidate biomarker for cancer diagnosis, prognosis assessment, and treatment strategies. In this study, we have effectively established a prognostic risk model for pancreatic cancer by incorporating multiple differentially expressed long non-coding RNAs (DElncRNAs) closely linked to disulfide-driven cell death. Our investigation delved into the nuanced relationship between the DElncRNA-based predictive model for disulfide-driven cell death and the therapeutic responses to anticancer agents. Our findings illuminate that the high-risk subgroup exhibits heightened susceptibility to the small molecule compound AZD1208, positioning it as a prospective therapeutic agent for pancreatic cancer. Finally, we have elucidated the underlying mechanistic potential of AZD1208 in ameliorating pancreatic cancer through its targeted inhibition of the peroxisome proliferator-activated receptor-γ (PPARG) protein, employing an array of comprehensive analytical methods, including molecular docking and molecular dynamics (MD) simulations. This study explores disulfidptosis-related genes, paving the way for the development of targeted therapies for pancreatic cancer and emphasizing their significance in the field of oncology. Furthermore, through computational biology approaches, the drug AZD1208 was identified as a potential treatment targeting the PPARG protein for pancreatic cancer. This discovery opens new avenues for exploring targets and screening drugs for pancreatic cancer.
Collapse
Affiliation(s)
- Hongtao Duan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Li Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Aiminuer Asikaer
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Lingzhi Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Kuilong Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China.
| |
Collapse
|
37
|
Liu Y, Zhu T, Wang J, Cheng Y, Zeng Q, You Z, Dai G. Analysis of network expression and immune infiltration of disulfidptosis-related genes in chronic obstructive pulmonary disease. Immun Inflamm Dis 2024; 12:e1231. [PMID: 38578019 PMCID: PMC10996381 DOI: 10.1002/iid3.1231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a globally prevalent respiratory disease, and programmed cell death plays a pivotal role in the development of COPD. Disulfidptosis is a newly discovered type of cell death that may be associated with the progression of COPD. However, the expression and role of disulfidptosis-related genes (DRGs) in COPD remain unclear. METHODS The expression of DRGs was identified by analyzing RNA sequencing (RNA-seq) data in COPD. Further, COPD patients were classified into two subtypes by unsupervised cluster analysis to reveal their differences in gene expression and immune infiltration. Meanwhile, hub genes associated with disulfidptosis were screened by weighted gene co-expression network analysis. Subsequently, the hub genes were validated experimentally in cells and animals. In addition, we screened potential therapeutic drugs through the hub genes. RESULTS We identified two distinct molecular clusters and observed significant differences in immune cell populations between them. In addition, we screened nine hub genes, and experimental validation showed that CDC71, DOHH, PDAP1, and SLC25A39 were significantly upregulated in cigarette smoke-induced COPD mouse lung tissues and bronchial epithelial cells (BEAS-2B) treated with cigarette smoke extract. Finally, we predicted 10 potential small molecule drugs such as Atovaquone, Taurocholic acid, Latamoxef, and Methotrexate. CONCLUSION We highlighted the strong association between COPD and disulfidptosis, with DRGs demonstrating a discriminative capacity for COPD. Additionally, the expression of certain novel genes, including CDC71, DOHH, PDAP1, and SLC25A39, is linked to COPD and may aid in the diagnosis and assessment of this condition.
Collapse
Affiliation(s)
- Yanqun Liu
- The No. 1 Department of GerontologyThe Third Hospital of Mianyang, Sichuan Mental Health Center/The Third Hospital of Mianyang (Sichuan Mental Health Center)MianyangChina
| | - Tao Zhu
- Respiratory Medicine and Critical Care MedicineSuining Central HospitalSuiningChina
| | - Juan Wang
- The No. 1 Department of GerontologyThe Third Hospital of Mianyang, Sichuan Mental Health Center/The Third Hospital of Mianyang (Sichuan Mental Health Center)MianyangChina
| | - Yan Cheng
- The No. 1 Department of GerontologyThe Third Hospital of Mianyang, Sichuan Mental Health Center/The Third Hospital of Mianyang (Sichuan Mental Health Center)MianyangChina
| | - Qiang Zeng
- The No. 1 Department of GerontologyThe Third Hospital of Mianyang, Sichuan Mental Health Center/The Third Hospital of Mianyang (Sichuan Mental Health Center)MianyangChina
| | - Zhangqiang You
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangChina
| | - Guangming Dai
- Department of GeriatricsFirst People's Hospital of Suining CitySuiningChina
| |
Collapse
|
38
|
Shen LP, Jiang HT. Pan-cancer and single-cell analysis of actin cytoskeleton genes related to disulfidptosis. Open Med (Wars) 2024; 19:20240929. [PMID: 38584831 PMCID: PMC10997004 DOI: 10.1515/med-2024-0929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Disulfidptosis was recently reported to be caused by abnormal disulfide accumulation in cells with high SLC7A11 levels subjected to glucose starvation, suggesting that targeting disulfidptosis was a potential strategy for cancer treatment. We analyzed the relationships between gene expression and mutations and prognoses of patients. In addition, the correlation between gene expression and immune cell infiltration was explored. The potential regulatory mechanisms of these genes were assessed by investigating their related signaling pathways involved in cancer, their expression patterns, and their cellular localization. Most cancer types showed a negative correlation between the gene-set variation analysis (GSVA) scores and infiltration of B cells and neutrophils, and a positive correlation between GSVA scores and infiltration of natural killer T and induced regulatory T cells. Single-cell analysis revealed that ACTB, DSTN, and MYL6 were highly expressed in different bladder urothelial carcinoma subtypes, but MYH10 showed a low expression. Immunofluorescence staining showed that actin cytoskeleton proteins were mainly localized in the actin filaments and plasma membrane. Notably, IQGAP1 was localized in the cell junctions. In conclusion, this study provided an overview of disulfidptosis-related actin cytoskeleton genes in pan-cancer. These genes were associated with the survival of patients and might be involved in cancer-related pathways.
Collapse
Affiliation(s)
- Li-ping Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, 318000, Zhejiang Province, China
| | - Han-tao Jiang
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, 318000, Zhejiang Province, China
| |
Collapse
|
39
|
Wang Q, Xiao Z, Hou Z, Li D. Effect of disulfidptosis-related genes SLC3A2, SLC7A11 and FLNB polymorphisms on risk of autoimmune thyroiditis in a Chinese population. Int Immunopharmacol 2024; 129:111605. [PMID: 38316082 DOI: 10.1016/j.intimp.2024.111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
PURPOSE This study aimed to evaluate the associations between disulfidptosis related genes-SLC3A2, SLC7A11 and FLNB polymorphisms and risk of autoimmune thyroiditis (AIT). METHODS Six SNPs in the SLC3A2, SLC7A11 and FLNB were genotyped in 650 AIT cases and 650 controls using a MassARRAY platform. RESULTS Minor alleles of SLC3A2-rs12794763, rs1059292 and FLNB-rs839240 might lead to a higher risk of AIT (p < 0.001), while SLC7A11-rs969319-C allele tends to decrease the risk of the disease (p = 0.006). Genetic model analysis showed that SLC3A2-rs12794763, SLC3A2-rs1059292 and FLNB-rs839240 polymorphisms were risk factors for AIT (p < 0.001); while SLC7A11-rs969319 showed a protective role for the disease in all genetic models (p < 0.005). Stratification analysis showed that SLC3A2-rs1059292 and rs12794763 were correlated with higher risk of AIT regardless of sex (p < 0.05). Moreover, FLNB-rs839240 exhibited higher risk of disease only in females (p < 0.05). By contrast, SLC7A11-rs969319 showed a protective role only in females (p < 0.05). CONCLUSION Our results shed new light on the association between disulfidptosis-related genes and AIT risk.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Thyroid Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Zhifu Xiao
- Department of Thyroid Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Zebin Hou
- Department of Thyroid Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Dewei Li
- Department of Thyroid Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China.
| |
Collapse
|
40
|
Yamaguchi I, Katoh H. Merlin/NF2 regulates SLC7A11/xCT expression and cell viability under glucose deprivation at high cell density in glioblastoma cells. J Biochem 2024; 175:313-322. [PMID: 38102738 DOI: 10.1093/jb/mvad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
The cystine/glutamate transporter SLC7A11/xCT is highly expressed in many cancer cells and plays an important role in antioxidant activity by supplying cysteine for glutathione synthesis. Under glucose-depleted conditions, however, SLC7A11-mediated cystine uptake causes oxidative stress and cell death called disulfidptosis, a new form of cell death. We previously reported that high cell density (HD) promotes lysosomal degradation of SLC7A11 in glioblastoma cells, allowing them to survive under glucose-depleted conditions. In this study, we found that the neurofibromatosis type 2 gene, Merlin/NF2 is a key regulator of SLC7A11 in glioblastoma cells at HD. Deletion of Merlin increased SLC7A11 protein level and cystine uptake at HD, leading to promotion of cell death under glucose deprivation. Furthermore, HD significantly decreased SLC7A11 mRNA level, which was restored by Merlin deletion. This study suggests that Merlin suppresses glucose deprivation-induced cell death by downregulating SLC7A11 expression in glioblastoma cells at HD.
Collapse
Affiliation(s)
- Itsuki Yamaguchi
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hironori Katoh
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
41
|
Mengzhen Z, Xinwei H, Zeheng T, Nan L, Yang Y, Huirong Y, Kaisi F, Xiaoting D, Liucheng Y, Kai W. Integrated machine learning-driven disulfidptosis profiling: CYFIP1 and EMILIN1 as therapeutic nodes in neuroblastoma. J Cancer Res Clin Oncol 2024; 150:109. [PMID: 38427078 PMCID: PMC10907485 DOI: 10.1007/s00432-024-05630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Neuroblastoma (NB), a prevalent pediatric solid tumor, presents formidable challenges due to its high malignancy and intricate pathogenesis. The role of disulfidptosis, a novel form of programmed cell death, remains poorly understood in the context of NB. METHODS Gaussian mixture model (GMM)-identified disulfidptosis-related molecular subtypes in NB, differential gene analysis, survival analysis, and gene set variation analysis were conducted subsequently. Weighted gene co-expression network analysis (WGCNA) selected modular genes most relevant to the disulfidptosis core pathways. Integration of machine learning approaches revealed the combination of the Least absolute shrinkage and selection operator (LASSO) and Random Survival Forest (RSF) provided optimal dimensionality reduction of the modular genes. The resulting model was validated, and a nomogram assessed disulfidptosis characteristics in NB. Core genes were filtered and subjected to tumor phenotype and disulfidptosis-related experiments. RESULTS GMM clustering revealed three distinct subtypes with diverse prognoses, showing significant variations in glucose metabolism, cytoskeletal structure, and tumor-related pathways. WGCNA highlighted the red module of genes highly correlated with disulfide isomerase activity, cytoskeleton formation, and glucose metabolism. The LASSO and RSF combination yielded the most accurate and stable prognostic model, with a significantly worse prognosis for high-scoring patients. Cytological experiments targeting core genes (CYFIP1, EMILIN1) revealed decreased cell proliferation, migration, invasion abilities, and evident cytoskeletal deformation upon core gene knockdown. CONCLUSIONS This study showcases the utility of disulfidptosis-related gene scores for predicting prognosis and molecular subtypes of NB. The identified core genes, CYFIP1 and EMILIN1, hold promise as potential therapeutic targets and diagnostic markers for NB.
Collapse
Affiliation(s)
- Zhang Mengzhen
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Hou Xinwei
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Tan Zeheng
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Li Nan
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yang Yang
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yang Huirong
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Fan Kaisi
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ding Xiaoting
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yang Liucheng
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Wu Kai
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
42
|
Ge M, Papagiannakopoulos T, Bar-Peled L. Reductive stress in cancer: coming out of the shadows. Trends Cancer 2024; 10:103-112. [PMID: 37925319 DOI: 10.1016/j.trecan.2023.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/06/2023]
Abstract
Redox imbalance is defined by disruption in oxidative and reductive pathways and has a central role in cancer initiation, development, and treatment. Although redox imbalance has traditionally been characterized by high levels of oxidative stress, emerging evidence suggests that an overly reductive environment is just as detrimental to cancer proliferation. Reductive stress is defined by heightened levels of antioxidants, including glutathione and elevated NADH, compared with oxidized NAD, which disrupts central biochemical pathways required for proliferation. With the advent of new technologies that measure and manipulate reductive stress, the sensors and drivers of this overlooked metabolic stress are beginning to be revealed. In certain genetically defined cancers, targeting reductive stress pathways may be an effective strategy. Redox-based pathways are gaining recognition as essential 'regulatory hubs,' and a broader understanding of reductive stress signaling promises not only to reveal new insights into metabolic homeostasis but also potentially to transform therapeutic options in cancer.
Collapse
Affiliation(s)
- Maolin Ge
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| | - Liron Bar-Peled
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
43
|
Wang N, Hu Y, Wang S, Xu Q, Jiao X, Wang Y, Yan L, Cao H, Shao F. Development of a novel disulfidptosis-related lncRNA signature for prognostic and immune response prediction in clear cell renal cell carcinoma. Sci Rep 2024; 14:624. [PMID: 38182642 PMCID: PMC10770353 DOI: 10.1038/s41598-024-51197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Disulfidptosis, a novel form of regulated cell death, occurs due to the aberrant accumulation of intracellular cystine and other disulfides. Moreover, targeting disulfidptosis could identify promising approaches for cancer treatment. Long non-coding RNAs (lncRNAs) are known to be critically implicated in clear cell renal cell carcinoma (ccRCC) development. Currently, the involvement of disulfidptosis-related lncRNAs in ccRCC is yet to be elucidated. This study primarily dealt with identifying and validating a disulfidptosis-related lncRNAs-based signature for predicting the prognosis and immune landscape of individuals with ccRCC. Clinical and RNA sequencing data of ccRCC samples were accessed from The Cancer Genome Atlas (TCGA) database. Pearson correlation analysis was conducted for the identification of the disulfidptosis-related lncRNAs. Additionally, univariate Cox regression analysis, Least Absolute Shrinkage and Selection Operator Cox regression, and stepwise multivariate Cox analysis were executed to develop a novel risk prognostic model. The prognosis-predictive capacity of the model was then assessed using an integrated method. Variation in biological function was noted using GO, KEGG, and GSEA. Additionally, immune cell infiltration, the tumor mutational burden (TMB), and tumor immune dysfunction and exclusion (TIDE) scores were calculated to investigate differences in the immune landscape. Finally, the expression of hub disulfidptosis-related lncRNAs was validated using qPCR. We established a novel signature comprised of eight lncRNAs that were associated with disulfidptosis (SPINT1-AS1, AL121944.1, AC131009.3, AC104088.3, AL035071.1, LINC00886, AL035587.2, and AC007743.1). Kaplan-Meier and receiver operating characteristic curves demonstrated the acceptable predictive potency of the model. The nomogram and C-index confirmed the strong correlation between the risk signature and clinical decision-making. Furthermore, immune cell infiltration analysis and ssGSEA revealed significantly different immune statuses among risk groups. TMB analysis revealed the link between the high-risk group and high TMB. It is worth noting that the cumulative effect of the patients belonging to the high-risk group and having elevated TMB led to decreased patient survival times. The high-risk group depicted greater TIDE scores in contrast with the low-risk group, indicating greater potential for immune escape. Finally, qPCR validated the hub disulfidptosis-related lncRNAs in cell lines. The established novel signature holds potential regarding the prognosis prediction of individuals with ccRCC as well as predicting their responses to immunotherapy.
Collapse
Affiliation(s)
- Ning Wang
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Yifeng Hu
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Shasha Wang
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Qin Xu
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaojing Jiao
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Yanliang Wang
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Lei Yan
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Huixia Cao
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Fengmin Shao
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
44
|
Ge H, Zhou H, Song L, Tao Y, Hu L. Mitochondrial dysfunction and disulfidptosis co-regulate neuronal cell in neuropathic pain based on bioinformatics analysis. Mol Pain 2024; 20:17448069241290114. [PMID: 39323309 PMCID: PMC11468000 DOI: 10.1177/17448069241290114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/08/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024] Open
Abstract
Neuropathic pain (NP) affects approximately 6.9-10% of the world's population and necessitates the development of novel treatments. Mitochondria are essential in the regulation of cell death. Neuroimmune mechanisms are implicated in various forms of cell death associated with NP. However, the specific involvement of mitochondrial dysfunction and disulfidptosis in NP remains uncertain. Further research is required to gain a better understanding of their combined contribution. Our comprehensive study employs a variety of bioinformatic analysis methods, including differential gene analysis, weighted gene co-expression network analysis, machine learning, functional enrichment analysis, immune infiltration, sub-cluster analysis, single-cell dimensionality reduction and cell-cell communication to gain insight into the molecular mechanisms behind these processes. Our study rationally defines a list of key gene sets for mitochondrial dysfunction and disulfidptosis. 6 hub mitochondrial genes and 3 disulfidptosis-related genes (DRGs) were found to be associated with NP. The key genes were predominantly expressed in neurons and were lowly expressed in the NP group compared to SHAM. In addition, our macrophages used the APP (Amyloid precursor protein)-CD74 (MHC class II invariant chain) pathway to interact with neurons. These results suggest that NP is interconnected with the mechanistic processes of mitochondrial dysfunction and disulfidptosis, which may contribute to clinically targeted therapies.
Collapse
Affiliation(s)
- Hejia Ge
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hongmei Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China
| | - Liuyi Song
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China
| | - Yuqing Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China
| | - Li Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China
| |
Collapse
|
45
|
Zhao D, Meng Y, Dian Y, Zhou Q, Sun Y, Le J, Zeng F, Chen X, He Y, Deng G. Molecular landmarks of tumor disulfidptosis across cancer types to promote disulfidptosis-target therapy. Redox Biol 2023; 68:102966. [PMID: 38035663 PMCID: PMC10698012 DOI: 10.1016/j.redox.2023.102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The mystery about the mechanistic basis of disulfidptosis has recently been unraveled and shows promise as an effective treatment modality for triggering cancer cell death. However, the limited understanding of the role of disulfidptosis in tumor progression and drug sensitivity has hindered the development of disulfidptosis-targeted therapy and combinations with other therapeutic strategies. Here, we established a disulfidptosis signature model to estimate tumor disulfidptosis status in approximately 10,000 tumor samples across 33 cancer types and revealed its prognostic value. Then, we characterized disulfidptosis-associated molecular features and identified various types of molecular alterations that correlate with both drug-resistant and drug-sensitive responses to anti-tumor drugs. We further showed the vast heterogeneity in disulfidptosis status among 760 cancer cell lines across 25 cancer types. We experimentally validated that disulfidptosis score-high cell lines are more susceptible to glucose starvation-induced disulfidptosis compared to their counterparts with low scores. Finally, we investigated the impact of disulfidptosis status on drug response and revealed that disulfidptosis induction may enhance sensitivity to anti-cancer drugs, but in some cases, it could also lead to drug resistance in cultured cells. Overall, our multi-omics analysis firstly elucidates a comprehensive profile of disulfidptosis-related molecular alterations, prognosis, and potential therapeutic therapies at a pan-cancer level. These findings may uncover opportunities to utilize multiple drug sensitivities induced by disulfidptosis, thereby offering practical implications for clinical cancer therapy.
Collapse
Affiliation(s)
- Deze Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Yi He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
46
|
Ni L, Yu Q, You R, Chen C, Peng B. Development of the RF-GSEA Method for Identifying Disulfidptosis-Related Genes and Application in Hepatocellular Carcinoma. Curr Issues Mol Biol 2023; 45:9450-9470. [PMID: 38132439 PMCID: PMC10741996 DOI: 10.3390/cimb45120593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Disulfidptosis is a newly discovered cellular programmed cell death mode. Presently, a considerable number of genes related to disulfidptosis remain undiscovered, and its significance in hepatocellular carcinoma remains unrevealed. We have developed a powerful analytical method called RF-GSEA for identifying potential genes associated with disulfidptosis. This method draws inspiration from gene regulation networks and graph theory, and it is implemented through a combination of random forest regression model and Gene Set Enrichment Analysis. Subsequently, to validate the practical application value of this method, we applied it to hepatocellular carcinoma. Based on the RF-GSEA method, we developed a disulfidptosis-related signature. Lastly, we looked into how the disulfidptosis-related signature is connected to HCC prognosis, the tumor microenvironment, the effectiveness of immunotherapy, and the sensitivity of chemotherapy drugs. The RF-GSEA method identified a total of 220 disulfidptosis-related genes, from which 7 were selected to construct the disulfidptosis-related signature. The high-disulfidptosis-related score group had a worse prognosis compared to the low-disulfidptosis-related score group and showed lower infiltration levels of immune-promoting cells. The high-disulfidptosis-related score group had a higher likelihood of benefiting from immunotherapy compared to the low-disulfidptosis-related score group. The RF-GSEA method is a powerful tool for identifying disulfidptosis-related genes. The disulfidptosis-related signature effectively predicts HCC prognosis, immunotherapy response, and drug sensitivity.
Collapse
Affiliation(s)
- Linghao Ni
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Qian Yu
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Ruijia You
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Chen Chen
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Bin Peng
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
47
|
Xiao L, Yin W, Chen X, Zhang X, Zhang C, Yu Z, Lü M. A disulfidptosis-related lncRNA index predicting prognosis and the tumor microenvironment in colorectal cancer. Sci Rep 2023; 13:20135. [PMID: 37978247 PMCID: PMC10656577 DOI: 10.1038/s41598-023-47472-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Colorectal cancer (CRC) is a common and deadly cancer worldwide with a high lethality rate. Disulfidptosis has been found to be an emerging mode of death in cancer, and the purpose of this study was to explore the relationship between disulfidptosis-related lncRNAs (DRLs) and CRC and to develop a prognostic model for CRC and DRLs. The gene expression data and clinicopathologic information of colorectal cancer patients were obtained from The Cancer Genome Atlas (TCGA) and screened for DRLs based on correlation analysis. The least absolute shrinkage and selection operator (LASSO) and Cox regression were used to construct the prognostic model, and its validation was carried out by PCA and receiver operating characteristic (ROC) curves. We constructed nomograms combined with the model. Finally, the possible mechanisms by which lncRNAs affect CRC were explored by functional enrichment analysis, immune infiltration and immune escape analysis. In summary, we developed a prognostic marker consisting of lncRNAs associated with disulfidptosis to help clinicians predict the survival of different CRC patients and use different targeted therapies and immunotherapies depending on the condition.
Collapse
Affiliation(s)
- Lijun Xiao
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Wen Yin
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Xuanqin Chen
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Xu Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Chao Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Zehui Yu
- Laboratory Animal Center, Southwest Medical University, Luzhou City, China.
| | - Muhan Lü
- The Affiliated Hospital of Southwest Medical University, Luzhou City, China.
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou City, China.
| |
Collapse
|