1
|
Litman M, Spratt NJ, Beard DJ. The effect of nitroglycerin treatment on cerebral ischaemia: A systematic review and meta-analysis of animal studies. Nitric Oxide 2024; 151:10-16. [PMID: 39182717 DOI: 10.1016/j.niox.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/24/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Nitroglycerin has been of considerable interest as a treatment for ischaemic stroke. Recent clinical trials with nitroglycerin transdermal patches during the acute phase of stroke failed to improve functional outcomes. Systematic review and meta-analysis of the effectiveness of nitroglycerin in preclinical models of ischaemic stroke has not previously been reported, despite several clinical trials. OBJECTIVE To conduct a systematic review and meta-analysis of preclinical evidence regarding the effect of nitroglycerin on infarct volume in animal models of ischaemic stroke. SUMMARY OF REVIEW The protocol was registered in PROSPERO (CRD42023432644). Our search identified 238 publications. Three publications met inclusion criteria (including 10 comparisons of infarct size). Study quality was modest (median 6 out of 9), with no evidence of publication bias. Nitroglycerin did not significantly reduce infarct volume (NMD point estimate 20.2 % reduction, 95 % CI -1.52-52.7 %, p = 0.068). Subgroup analysis suggested greater efficacy of nitroglycerin with direct intracarotid administration to the ischaemic territory at the time of reperfusion. CONCLUSIONS A small number of studies (three) were included in this review. Overall, nitroglycerin did not reduce infarct volume in experimental stroke models. However, nitroglycerin may be of benefit when administered directly into the ischaemic territory. Given nitroglycerin's short half-life, we propose this route may minimise harmful reduction of cerebral perfusion pressure resulting from hypotension following systemic administration.
Collapse
Affiliation(s)
- Magdalena Litman
- School of Biomedical Science and Pharmacy, The University of Newcastle, Newcastle, Australia; Heart and Stroke Programme, Hunter Medical Research Institute, Newcastle, Australia
| | - Neil J Spratt
- School of Biomedical Science and Pharmacy, The University of Newcastle, Newcastle, Australia; Heart and Stroke Programme, Hunter Medical Research Institute, Newcastle, Australia; Department of Neurology, Hunter New England Local Health District, Newcastle, Australia
| | - Daniel J Beard
- School of Biomedical Science and Pharmacy, The University of Newcastle, Newcastle, Australia; Heart and Stroke Programme, Hunter Medical Research Institute, Newcastle, Australia.
| |
Collapse
|
2
|
Lamb RJ, Griffiths K, Lip GYH, Sorokin V, Frenneaux MP, Feelisch M, Madhani M. ALDH2 polymorphism and myocardial infarction: From alcohol metabolism to redox regulation. Pharmacol Ther 2024; 259:108666. [PMID: 38763322 DOI: 10.1016/j.pharmthera.2024.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Acute myocardial infarction (AMI) remains a leading cause of death worldwide. Increased formation of reactive oxygen species (ROS) during the early reperfusion phase is thought to trigger lipid peroxidation and disrupt redox homeostasis, leading to myocardial injury. Whilst the mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2) is chiefly recognised for its central role in ethanol metabolism, substantial experimental evidence suggests an additional cardioprotective role for ALDH2 independent of alcohol intake, which mitigates myocardial injury by detoxifying breakdown products of lipid peroxidation including the reactive aldehydes, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). Epidemiological evidence suggests that an ALDH2 mutant variant with reduced activity that is highly prevalent in the East Asian population increases AMI risk. Additional studies have uncovered a strong association between coronary heart disease and this ALDH2 mutant variant. It appears this enzyme polymorphism (in particular, in ALDH2*2/2 carriers) has the potential to have wide-ranging effects on thiol reactivity, redox tone and therefore numerous redox-related signaling processes, resilience of the heart to cope with lifestyle-related and environmental stressors, and the ability of the whole body to achieve redox balance. In this review, we summarize the journey of ALDH2 from a mitochondrial reductase linked to alcohol metabolism, via pre-clinical studies aimed at stimulating ALDH2 activity to reduce myocardial injury to clinical evidence for its protective role in the heart.
Collapse
Affiliation(s)
- Reece J Lamb
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom
| | - Kayleigh Griffiths
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; Danish Centre for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Vitaly Sorokin
- Department of Cardiac, Thoracic, and Vascular Surgery, National University Heart Centre, National University Health System, Singapore
| | | | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Melanie Madhani
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom.
| |
Collapse
|
3
|
Gupta RC, Singh-Gupta V, Szekely KJ, Zhang K, Lanfear DE, Sabbah HN. Dysregulation of cardiac mitochondrial aldehyde dehydrogenase 2: Studies in dogs with chronic heart failure. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 8:100067. [PMID: 38938550 PMCID: PMC11210280 DOI: 10.1016/j.jmccpl.2024.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Mitochondrial (MITO) dysfunction occurs in the failing heart and contributes to worsening of heart failure (HF). Reduced aldehyde dehydrogenase 2 (ALDH2) in left ventricular (LV) myocardium of diabetic hearts has been implicated in MITO dysfunction through accumulation of toxic aldehydes including and elevated levels of 4-hydroxy-2-nonenal (4HNE). This study examined whether dysregulation of MITO ALDH2 (mALDH2) occurs in mitochondria of the failing LV and is associated with increased levels of 4HNE. LV tissue from 7 HF and 7 normal (NL) dogs was obtained. Protein quantification of total mitochondrial ALDH2 (t-mALDH2), phosphorylated mALDH2 (p-mALDH2), total MITO protein kinase c epsilon (t-mPKCε), phosphorylated mPKCε (p-mPKCε) was performed by Western blotting, and total mALDH2 enzymatic activity was measured. Protein adducts of 4HNE-MITO and 4HNE-mALDH2 were also measured in MITO fraction by Western Blotting. Protein level of t-mALDH2 was decreased in HF compared with NL dogs (0.63 ± 0.07 vs 1.17 ± 0.08, p < 0.05) as did mALDH2 enzymatic activity (51.39 ± 3 vs. 107.66 ± 4 nmol NADH/min/mg, p < 0.05). Phosphorylated-mALDH2 and p-mPKCε were unchanged. 4HNE-MITO proteins adduct levels increased in HF compared with NL (2.45 ± 0.08 vs 1.30 ± 0.03 du, p < 0.05) as did adduct levels of 4HNE-mALDH2 (1.60 ± 0.20 vs 0.39 ± 0.08, p < 0.05). In isolated failing cardiomyocytes (CM) exposure to 4HNE decreased mALDH2 activity, increased ROS and 4HNE-ALDH2 adducts, and worsened MITO function. Stimulation of mALDH2 activity with ALDA-1 in isolated HF CMs compared to NL CMs improved ADP-stimulated respiration and maximal ATP synthesis to a greater extant (+47 % and +89 %, respectively). Down-regulation of mALDH2 protein levels and activity occurs in HF and contributes to MITO dysfunction and is likely caused by accumulation of 4HNE-mALDH2 adduct. Increasing mALDH2 activity (via ALDA-1) improved MITO function in failing CMs.
Collapse
Affiliation(s)
- Ramesh C. Gupta
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
- Henry Ford Health & Michigan State University Health Science, USA
| | - Vinita Singh-Gupta
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
- Henry Ford Health & Michigan State University Health Science, USA
| | - Kristina J. Szekely
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
- Henry Ford Health & Michigan State University Health Science, USA
| | - Kefei Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
- Henry Ford Health & Michigan State University Health Science, USA
| | - David E. Lanfear
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
- Henry Ford Health & Michigan State University Health Science, USA
| | - Hani N. Sabbah
- Corresponding author at: Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA. (H.N. Sabbah)
| |
Collapse
|
4
|
Bayo Jimenez MT, Hahad O, Kuntic M, Daiber A, Münzel T. Noise, Air, and Heavy Metal Pollution as Risk Factors for Endothelial Dysfunction. Eur Cardiol 2023; 18:e09. [PMID: 37377448 PMCID: PMC10291605 DOI: 10.15420/ecr.2022.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/12/2022] [Indexed: 06/29/2023] Open
Abstract
During the last two decades, large epidemiological studies have shown that the physical environment, including noise, air pollution or heavy metals, have a considerable impact on human health. It is known that the most common cardiovascular risk factors are all associated with endothelial dysfunction. Vascular tone, circulation of blood cells, inflammation, and platelet activity are some of the most essential functions regulated by the endothelium that suffer negative effects as a consequence of environmental pollution, causing endothelial dysfunction. In this review, we delineate the impact of environmental risk factors in connection to endothelial function. On a mechanistic level, a significant number of studies suggest the involvement of endothelial dysfunction to fundamentally drive the adverse endothelium health effects of the different pollutants. We focus on well-established studies that demonstrate the negative effects on the endothelium, with a focus on air, noise, and heavy metal pollution. This in-depth review on endothelial dysfunction as a consequence of the physical environment aims to contribute to the associated research needs by evaluating current findings from human and animal studies. From a public health perspective, these findings may also help to reinforce efforts promoting the research for adequate promising biomarkers for cardiovascular diseases since endothelial function is considered a hallmark of environmental stressor health effects.
Collapse
Affiliation(s)
- Maria Teresa Bayo Jimenez
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| | - Omar Hahad
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Rhine-MainMainz, Germany
- Leibniz Institute for Resilience Research (LIR)Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| | - Andreas Daiber
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Rhine-MainMainz, Germany
| | - Thomas Münzel
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Rhine-MainMainz, Germany
| |
Collapse
|
5
|
Beutler M, Harnischfeger J, Weber MHW, Hahnel SR, Quack T, Blohm A, Ueberall ME, Timm T, Lochnit G, Rennar GA, Gallinger TL, Houhou H, Rahlfs S, Falcone FH, Becker K, Schlitzer M, Haeberlein S, Czermak P, Salzig D, Grevelding CG. Identification and characterisation of the tegument-expressed aldehyde dehydrogenase SmALDH_312 of Schistosoma mansoni, a target of disulfiram. Eur J Med Chem 2023; 251:115179. [PMID: 36948075 DOI: 10.1016/j.ejmech.2023.115179] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
Schistosomiasis is an infectious disease caused by blood flukes of the genus Schistosoma and affects approximately 200 million people worldwide. Since Praziquantel (PZQ) is the only drug for schistosomiasis, alternatives are needed. By a biochemical approach, we identified a tegumentally expressed aldehyde dehydrogenase (ALDH) of S. mansoni, SmALDH_312. Molecular analyses of adult parasites showed Smaldh_312 transcripts in both genders and different tissues. Physiological and cell-biological experiments exhibited detrimental effects of the drug disulfiram (DSF), a known ALDH inhibitor, on larval and adult schistosomes in vitro. DSF also reduced stem-cell proliferation and caused severe tegument damage in treated worms. In silico-modelling of SmALDH_312 and docking analyses predicted DSF binding, which we finally confirmed by enzyme assays with recombinant SmALDH_312. Furthermore, we identified compounds of the Medicine for Malaria Venture (MMV) pathogen box inhibiting SmALDH_312 activity. Our findings represent a promising starting point for further development towards new drugs for schistosomiasis.
Collapse
Affiliation(s)
- Mandy Beutler
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Julie Harnischfeger
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Michael H W Weber
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Steffen R Hahnel
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Thomas Quack
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Ariane Blohm
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Monique E Ueberall
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany; Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Thomas Timm
- Protein Analytics, Institute of Biochemistry, Justus Liebig University Giessen, Germany
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Justus Liebig University Giessen, Germany
| | - Georg A Rennar
- Department of Pharmaceutical Chemistry, Philipps Universität Marburg, Germany, Germany
| | - Tom L Gallinger
- Department of Pharmaceutical Chemistry, Philipps Universität Marburg, Germany, Germany
| | - Hicham Houhou
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Stefan Rahlfs
- Institute for Biochemistry and Molecular Biology, Interdisciplinary Research Centre, Justus Liebig University, Germany
| | - Franco H Falcone
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Katja Becker
- Institute for Biochemistry and Molecular Biology, Interdisciplinary Research Centre, Justus Liebig University, Germany
| | - Martin Schlitzer
- Department of Pharmaceutical Chemistry, Philipps Universität Marburg, Germany, Germany
| | - Simone Haeberlein
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | | |
Collapse
|
6
|
Enhanced Permeability and Retention Effect as a Ubiquitous and Epoch-Making Phenomenon for the Selective Drug Targeting of Solid Tumors. J Pers Med 2022; 12:jpm12121964. [PMID: 36556185 PMCID: PMC9784116 DOI: 10.3390/jpm12121964] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
In 1979, development of the first polymer drug SMANCS [styrene-co-maleic acid (SMA) copolymer conjugated to neocarzinostatin (NCS)] by Maeda and colleagues was a breakthrough in the cancer field. When SMANCS was administered to mice, drug accumulation in tumors was markedly increased compared with accumulation of the parental drug NCS. This momentous result led to discovery of the enhanced permeability and retention effect (EPR effect) in 1986. Later, the EPR effect became known worldwide, especially in nanomedicine, and is still believed to be a universal mechanism for tumor-selective accumulation of nanomedicines. Some research groups recently characterized the EPR effect as a controversial concept and stated that it has not been fully demonstrated in clinical settings, but this erroneous belief is due to non-standard drug design and use of inappropriate tumor models in investigations. Many research groups recently provided solid evidence of the EPR effect in human cancers (e.g., renal and breast), with significant diversity and heterogeneity in various patients. In this review, we focus on the dynamics of the EPR effect and restoring tumor blood flow by using EPR effect enhancers. We also discuss new applications of EPR-based nanomedicine in boron neutron capture therapy and photodynamic therapy for solid tumors.
Collapse
|
7
|
Sureda-Gibert P, Romero-Reyes M, Akerman S. Nitroglycerin as a model of migraine: Clinical and preclinical review. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100105. [PMID: 36974065 PMCID: PMC10039393 DOI: 10.1016/j.ynpai.2022.100105] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Migraine stands as one of the most disabling neurological conditions worldwide. It is a disorder of great challenge to study given its heterogeneous representation, cyclic nature, and complexity of neural networks involved. Despite this, clinical and preclinical research has greatly benefitted from the use of the nitric oxide donor, nitroglycerin (NTG), to model this disorder, dissect underlying mechanisms, and to facilitate the development and screening of effective therapeutics. NTG is capable of triggering a migraine attack, only in migraineurs or patients with a history of migraine and inducing migraine-like phenotypes in rodent models. It is however unclear to what extent NTG and NO, as its breakdown product, is a determinant factor in the underlying pathophysiology of migraine, and importantly, whether it really does facilitate the translation from the bench to the bedside, and vice-versa. This review provides an insight into the evidence supporting the strengths of this model, as well as its limitations, and shines a light into the possible role of NO-related mechanisms in altered molecular signalling pathways.
Collapse
Affiliation(s)
- Paula Sureda-Gibert
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London SE5 8AF, UK
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Marcela Romero-Reyes
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Simon Akerman
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Zhu W, Feng D, Shi X, Wei Q, Yang L. The Potential Role of Mitochondrial Acetaldehyde Dehydrogenase 2 in Urological Cancers From the Perspective of Ferroptosis and Cellular Senescence. Front Cell Dev Biol 2022; 10:850145. [PMID: 35517510 PMCID: PMC9065557 DOI: 10.3389/fcell.2022.850145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Overproduction of reactive oxygen species (ROS) and superlative lipid peroxidation promote tumorigenesis, and mitochondrial aldehyde dehydrogenase 2 (ALDH2) is associated with the detoxification of ROS-mediated lipid peroxidation-generated reactive aldehydes such as 4-hydroxy-2-nonenal (4-HNE), malondialdehyde, and acrolein due to tobacco smoking. ALDH2 has been demonstrated to be highly associated with the prognosis and chemoradiotherapy sensitivity of many types of cancer, including leukemia, lung cancer, head and neck cancer, esophageal cancer, hepatocellular cancer, pancreatic cancer, and ovarian cancer. In this study, we explored the possible relationship between ALDH2 and urological cancers from the aspects of ferroptosis, epigenetic alterations, proteostasis, mitochondrial dysfunction, and cellular senescence.
Collapse
Affiliation(s)
| | | | | | - Qiang Wei
- *Correspondence: Qiang Wei, ; Lu Yang,
| | - Lu Yang
- *Correspondence: Qiang Wei, ; Lu Yang,
| |
Collapse
|
9
|
Pearson R, Butler A. Glyceryl Trinitrate: History, Mystery, and Alcohol Intolerance. Molecules 2021; 26:6581. [PMID: 34770988 PMCID: PMC8587134 DOI: 10.3390/molecules26216581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 11/23/2022] Open
Abstract
Glyceryl trinitrate (GTN) is one of the earliest known treatments for angina with a fascinating history that bridges three centuries. However, despite its central role in the nitric oxide (NO) story as a NO-donating compound, establishing the precise mechanism of how GTN exerts its medicinal benefit has proven to be far more difficult. This review brings together the explosive and vasodilatory nature of this three-carbon molecule while providing an update on the likely in vivo pathways through which GTN, and the rest of the organic nitrate family, release NO, nitrite, or a combination of both, while also trying to explain nitrate tolerance. Over the last 20 years the alcohol detoxification enzyme, aldehyde dehydrogenase (ALDH), has undoubtedly emerged as the front runner to explaining GTN's bioactivation. This is best illustrated by reduced GTN efficacy in subjects carrying the single point mutation (Glu504Lys) in ALDH, which is also responsible for alcohol intolerance, as characterized by flushing. While these findings are significant for anyone following the GTN story, they appear particularly relevant for healthcare professionals, and especially so, if administering GTN to patients as an emergency treatment. In short, although the GTN puzzle has not been fully solved, clinical study data continue to cement the importance of ALDH, as uncovered in 2002, as a key GTN activator.
Collapse
Affiliation(s)
- Russell Pearson
- School of Pharmacy & Bioengineering, Keele University, Newcastle-under-Lyme ST5 5BG, Staffordshire, UK
| | - Anthony Butler
- School of Psychology & Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK;
| |
Collapse
|
10
|
da Silva GM, da Silva MC, Nascimento DVG, Lima Silva EM, Gouvêa FFF, de França Lopes LG, Araújo AV, Ferraz Pereira KN, de Queiroz TM. Nitric Oxide as a Central Molecule in Hypertension: Focus on the Vasorelaxant Activity of New Nitric Oxide Donors. BIOLOGY 2021; 10:1041. [PMID: 34681140 PMCID: PMC8533285 DOI: 10.3390/biology10101041] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022]
Abstract
Cardiovascular diseases include all types of disorders related to the heart or blood vessels. High blood pressure is an important risk factor for cardiac complications and pathological disorders. An increase in circulating angiotensin-II is a potent stimulus for the expression of reactive oxygen species and pro-inflammatory cytokines that activate oxidative stress, perpetuating a deleterious effect in hypertension. Studies demonstrate the capacity of NO to prevent platelet or leukocyte activation and adhesion and inhibition of proliferation, as well as to modulate inflammatory or anti-inflammatory reactions and migration of vascular smooth muscle cells. However, in conditions of low availability of NO, such as during hypertension, these processes are impaired. Currently, there is great interest in the development of compounds capable of releasing NO in a modulated and stable way. Accordingly, compounds containing metal ions coupled to NO are being investigated and are widely recognized as having great relevance in the treatment of different diseases. Therefore, the exogenous administration of NO is an attractive and pharmacological alternative in the study and treatment of hypertension. The present review summarizes the role of nitric oxide in hypertension, focusing on the role of new NO donors, particularly the metal-based drugs and their protagonist activity in vascular function.
Collapse
Affiliation(s)
- Gabriela Maria da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Mirelly Cunha da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Déborah Victória Gomes Nascimento
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Ellen Mayara Lima Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Fabíola Furtado Fialho Gouvêa
- School of Technical Health, Health Sciences Center, Federal University of Paraíba, João Pessoa 58.051-900, PB, Brazil;
| | - Luiz Gonzaga de França Lopes
- Laboratory of Bioinorganic Chemistry, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza 60.020-181, CE, Brazil;
| | - Alice Valença Araújo
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Kelli Nogueira Ferraz Pereira
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| | - Thyago Moreira de Queiroz
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão 55.608-680, PE, Brazil; (G.M.d.S.); (M.C.d.S.); (D.V.G.N.); (E.M.L.S.); (A.V.A.); (K.N.F.P.)
| |
Collapse
|
11
|
Griffiths K, Lee JJ, Frenneaux MP, Feelisch M, Madhani M. Nitrite and myocardial ischaemia reperfusion injury. Where are we now? Pharmacol Ther 2021; 223:107819. [PMID: 33600852 DOI: 10.1016/j.pharmthera.2021.107819] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease remains the leading cause of death worldwide despite major advances in technology and treatment, with coronary heart disease (CHD) being a key contributor. Following an acute myocardial infarction (AMI), it is imperative that blood flow is rapidly restored to the ischaemic myocardium. However, this restoration is associated with an increased risk of additional complications and further cardiomyocyte death, termed myocardial ischaemia reperfusion injury (IRI). Endogenously produced nitric oxide (NO) plays an important role in protecting the myocardium from IRI. It is well established that NO mediates many of its downstream functions through the 'canonical' NO-sGC-cGMP pathway, which is vital for cardiovascular homeostasis; however, this pathway can become impaired in the face of inadequate delivery of necessary substrates, in particular L-arginine, oxygen and reducing equivalents. Recently, it has been shown that during conditions of ischaemia an alternative pathway for NO generation exists, which has become known as the 'nitrate-nitrite-NO pathway'. This pathway has been reported to improve endothelial dysfunction, protect against myocardial IRI and attenuate infarct size in various experimental models. Furthermore, emerging evidence suggests that nitrite itself provides multi-faceted protection, in an NO-independent fashion, against a myriad of pathophysiologies attributed to IRI. In this review, we explore the existing pre-clinical and clinical evidence for the role of nitrate and nitrite in cardioprotection and discuss the lessons learnt from the clinical trials for nitrite as a perconditioning agent. We also discuss the potential future for nitrite as a pre-conditioning intervention in man.
Collapse
Affiliation(s)
- Kayleigh Griffiths
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jordan J Lee
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Michael P Frenneaux
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Melanie Madhani
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
12
|
Rotarius TR, Lauver JD, Thistlethwaite JR, Scheuermann BW. Muscle blood flow is independent of conduit artery diameter following prior vasodilation in males. Physiol Rep 2021; 9:e14698. [PMID: 33427413 PMCID: PMC7798049 DOI: 10.14814/phy2.14698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/27/2020] [Accepted: 12/06/2020] [Indexed: 11/29/2022] Open
Abstract
At the onset of exercise in humans, muscle blood flow (MBF) increases to a new steady‐state that closely matches the metabolic demand of exercise. This increase has been attributed to “contraction‐induced vasodilation,” comprised of the skeletal muscle pump and rapid vasodilatory mechanisms. While most research in this area has focused on forearm blood flow (FBF) and vascular conductance, it is possible that separating FBF into diameter and blood velocity can provide more useful information on MBF regulation downstream of the conduit artery. Therefore, we attempted to dissociate the matching of oxygen delivery and oxygen demand by administering glyceryl tri‐nitrate (GTN) prior to handgrip exercise. Eight healthy males (29 ± 9 years) performed two trials consisting of two bouts of rhythmic handgrip exercise (30 contractions·min−1 at 5% of maximum) for 6 min, one for each control and GTN (0.4 mg sublingual) condition. Administration of GTN resulted in a 12% increase in resting brachial artery diameter that persisted throughout the duration of exercise (CON: 0.50 ± 0.01 cm; GTN: 0.56 ± 0.01 cm, p < 0.05). Resting FBF was greater following GTN administration compared to control (p < 0.05); however, differences in FBF disappeared following the onset of muscle contractions. Our results indicate that the matching of FBF to oxygen demand during exercise is not affected by prior vasodilation, so that any over‐perfusion is corrected at the onset of exercise. Additionally, our findings provide further evidence that the regulation of vascular tone within the microvasculature is independent of the conduit artery diameter.
Collapse
Affiliation(s)
- Timothy R Rotarius
- Department of Exercise Science and Athletic Training, Adrian College, Adrian, MI, USA
| | - Jakob D Lauver
- Department of Kinesiology, Coastal Carolina University, Conway, SC, USA
| | | | - Barry W Scheuermann
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
13
|
Ihdayhid AR, Thakur U, Yap G, Goeller M, Nerlekar N, Adams D, Isa M, Joshi M, Cameron J, Seneviratne S, Dey D, Achenbach S, Leipsic J, Ko BS. Ethnic differences in coronary anatomy, left ventricular mass and CT-derived fractional flow reserve. J Cardiovasc Comput Tomogr 2020; 15:249-257. [PMID: 33041249 DOI: 10.1016/j.jcct.2020.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/29/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Studies have observed higher incidence of cardiovascular mortality in South Asians (SA), and lower prevalence in East Asians (EA), compared with Caucasians. These observations are not entirely explained by ethnic differences in cardiovascular risk factors and mechanistic factors such as variations in cardiac anatomy and physiology may play a role. This study compared ethnic differences in CT-assessed left ventricular (LV) mass, coronary anatomy and non-invasive fractional flow reserve (FFRCT). METHODS Three-hundred symptomatic patients (age 59 ± 7.9, male 51%) underwent clinically-mandated CT-coronary-angiography (CTA) were matched for age, gender, BMI and diabetes (100 each ethnicity). Assessment of coronary stenosis, luminal dimensions and vessel dominance was performed by independent observers. LV mass, coronary luminal volume and FFRCT were quantified by blinded core-laboratory. A sub-analysis was performed on patients (n = 187) with normal/minimal disease (0-25% stenosis). RESULTS Stenosis severity was comparable across ethnic groups. EA demonstrated less left-dominant circulation (2%) compared with SA (8.2%) and Caucasians (10.1%). SA compared with EA and Caucasians demonstrated smallest indexed LV mass, coronary luminal volumes and dimensions. EA compared with Caucasians had comparable indexed LV mass, coronary luminal dimensions and highest luminal volumes. The latter was driven by higher prevalence of right-dominance including larger and longer right posterior left ventricular artery. FFRCT in the left anterior descending artery (LAD) was lowest in SA (0.87) compared with EA (0.89; P = 0.009) and Caucasians (0.89; P < 0.001), with no difference in other vessels. All observed differences were consistent in patients with minimal disease. CONCLUSION This single-centre study identified significant ethnic differences in CT-assessed LV mass, coronary anatomy and LAD FFRCT. These hypotheses generating results may provide a mechanistic explanation for ethnic differences in cardiovascular outcomes and require validation in larger cohorts.
Collapse
Affiliation(s)
- Abdul Rahman Ihdayhid
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia
| | - Udit Thakur
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia
| | - Grace Yap
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia
| | - Markus Goeller
- Friedrich Alexander University Erlangen Nürnberg (FAU), Faculty of Medicine, Department of Cardiology, Erlangen, Germany; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nitesh Nerlekar
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia
| | - Daniel Adams
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia
| | - Mourushi Isa
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia
| | - Mitwa Joshi
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia
| | - James Cameron
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia
| | - Sujith Seneviratne
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephan Achenbach
- Friedrich Alexander University Erlangen Nürnberg (FAU), Faculty of Medicine, Department of Cardiology, Erlangen, Germany
| | - Jonathan Leipsic
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Brian S Ko
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Clayton, Victoria, Australia.
| |
Collapse
|
14
|
Free radical-releasing systems for targeting biofilms. J Control Release 2020; 322:248-273. [PMID: 32243972 DOI: 10.1016/j.jconrel.2020.03.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 01/05/2023]
Abstract
The recent rise in antibiotic drug resistance and biofilm formation by microorganisms has driven scientists from different fields to develop newer strategies to target microorganisms responsible for infectious diseases. There is a growing interest in free radicals as therapeutic agents for antimicrobial applications. However, limitations such as short half-life has hindered their usage. Currently, several research groups are exploring various biomaterials that can prolong the half-life, increase storage duration and control the release of the therapeutic ranges of free radicals required for different applications, including biofilm eradication. This review paper initially provides a background to, and theoretical knowledge on, free radicals; and then proceeds to review studies that have employed various free radical-incorporated drug delivery systems as an approach to target biofilm formation and eradication. Some of the free radical releasing systems highlighted include polymers, nanoparticles and hydrogels, with a focus on biofilm eradication, where they impact significantly. The various challenges associated with their application are also discussed. Further, the review identifies future research and strategies that can potentiate the application of free radical-incorporated drug delivery systems for inhibiting biofilm formation and eradicating formed biofilms.
Collapse
|
15
|
Sase S, Goto K. Modeling of biologically relevant chemical transformations involving thionitrates. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1603726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Shohei Sase
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Ookayama, Tokyo, Japan
| | - Kei Goto
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Ookayama, Tokyo, Japan
| |
Collapse
|
16
|
Role of Mitochondrial Aldehyde Dehydrogenase in Nitroglycerin-Mediated Vasodilation: Observations Concerning the Dose-Response Relationship. J Cardiovasc Pharmacol 2019; 73:359-364. [PMID: 31162244 DOI: 10.1097/fjc.0000000000000673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mechanism of the bioactivation of nitroglycerin has long been controversial, with a number of suggested enzymatic pathways. More recently, aldehyde dehydrogenase-2 (ALDH-2) has been reported as the important enzyme involved in the bioactivation of nitroglycerin at therapeutically relevant concentrations. Other previously described enzyme systems can also bioactivate nitroglycerin, but only at concentrations, which are significantly higher than achieved in clinical practice. This study investigated the vascular response to nitroglycerin given over a wide range of concentrations in subjects with and without the ALDH-2 Glu504Lys polymorphism, a common genetic variant that greatly reduces the activity of ALDH-2 (n = 10 in both groups). Forearm blood flow (FBF) responses to a brachial artery infusion of nitroglycerin were assessed using venous occlusion plethysmography. Intra-arterial infusion of nitroglycerin caused a significant increase in FBF beginning at 0.464 µg/min with increasing responses seen in both groups at all infusion rates. However, there were no differences in the FBF responses to nitroglycerin in those with and without the ALDH-2 polymorphism, suggesting that ALDH-2 is not solely responsible for the bioactivation of nitroglycerin at either low (therapeutically relevant) or high concentrations of nitroglycerin.
Collapse
|
17
|
Demartini C, Greco R, Zanaboni AM, Sances G, De Icco R, Borsook D, Tassorelli C. Nitroglycerin as a comparative experimental model of migraine pain: From animal to human and back. Prog Neurobiol 2019; 177:15-32. [DOI: 10.1016/j.pneurobio.2019.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/19/2019] [Accepted: 02/10/2019] [Indexed: 12/13/2022]
|
18
|
Targeting ALDH2 in Atherosclerosis: Molecular Mechanisms and Therapeutic Opportunities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:211-220. [PMID: 31368106 DOI: 10.1007/978-981-13-6260-6_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is an important member of the functional aldehyde dehydrogenases (ALDHs) family in human beings, playing a fundamental role in the detoxification of acetaldehyde and other aldehydes. In recent years, a number of researches have given attention to the association between ALDH2 and atherosclerosis, which provided insights on targeting ALDH2 for therapeutic intervention of atherosclerosis. In this review, these inspiring studies will be discussed, and the clinical implications and concerns will be expounded.
Collapse
|
19
|
Chen CH, Ferreira JCB, Mochly-Rosen D. ALDH2 and Cardiovascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:53-67. [PMID: 31368097 DOI: 10.1007/978-981-13-6260-6_3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a non-cytochrome P450 mitochondrial aldehyde oxidizing enzyme. It is best known for its role in the metabolism of acetaldehyde, a common metabolite from alcohol drinking. More evidences have been accumulated in recent years to indicate a greater role of ALDH2 in the metabolism of other endogenous and exogenous aldehydes, especially lipid peroxidation-derived reactive aldehyde under oxidative stress. Many cardiovascular diseases are associated with oxidative stress and mitochondria dysfunction. Considering that an estimated 560 million East Asians carry a common ALDH2 deficient variant which causes the well-known alcohol flushing syndrome due to acetaldehyde accumulation, the importance of understanding the role of ALDH2 in these diseases should be highlighted. There are several unfavorable cardiovascular conditions that are associated with ALDH2 deficiency. This chapter reviews the function of ALDH2 in various pathological conditions of the heart in relation to aldehyde toxicity. It also highlights the importance and clinical implications of interaction between ALDH2 deficiency and alcohol drinking on cardiovascular disease among the East Asians.
Collapse
Affiliation(s)
- Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Julio C B Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, USA.
| |
Collapse
|
20
|
Münzel T, Daiber A. The potential of aldehyde dehydrogenase 2 as a therapeutic target in cardiovascular disease. Expert Opin Ther Targets 2018; 22:217-231. [PMID: 29431026 DOI: 10.1080/14728222.2018.1439922] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Mitochondrial aldehyde dehydrogenase (ALDH-2) plays a major role in the ethanol detoxification pathway by removing acetaldehyde. Therefore, ALDH-2 inhibitors such as disulfiram represent the first therapeutic targeting of ALDH-2 for alcoholism therapy. Areas covered: Recently, ALDH-2 was identified as an essential bioactivating enzyme of the anti-ischemic organic nitrate nitroglycerin, bringing ALDH-2 again into the focus of clinical interest. Mechanistic studies on the nitroglycerin bioactivation process revealed that during bioconversion of nitroglycerin and in the presence of reactive oxygen and nitrogen species the active site thiols of ALDH-2 are oxidized and the enzyme activity is lost. Thus, ALDH-2 activity represents a useful marker for cardiovascular oxidative stress, a concept, which has been meanwhile supported by a number of animal disease models. Mechanistic studies on the protective role of ALDH-2 in different disease processes identified the detoxification of 4-hydroxynonenal by ALDH-2 as a fundamental process of cardiovascular, cerebral and antioxidant protection. Expert opinion: The most recent therapeutic exploitation of ALDH-2 includes activators of the enzyme such as Alda-1 but also cell-based therapies (ALDH-bright cells) that deserve further clinical characterization in the future.
Collapse
Affiliation(s)
- Thomas Münzel
- a Center for Cardiology, Cardiology 1 , Medical Center of the Johannes Gutenberg University , Mainz , Germany.,b Center for Thrombosis and Hemostasis (CTH) , Medical Center of the Johannes Gutenberg University , Mainz , Germany.,c Partner Site Rhine-Main , German Center for Cardiovascular Research (DZHK) , Mainz , Germany
| | - Andreas Daiber
- a Center for Cardiology, Cardiology 1 , Medical Center of the Johannes Gutenberg University , Mainz , Germany.,b Center for Thrombosis and Hemostasis (CTH) , Medical Center of the Johannes Gutenberg University , Mainz , Germany.,c Partner Site Rhine-Main , German Center for Cardiovascular Research (DZHK) , Mainz , Germany
| |
Collapse
|
21
|
Opelt M, Wölkart G, Eroglu E, Waldeck-Weiermair M, Malli R, Graier WF, Kollau A, Fassett JT, Schrammel A, Mayer B, Gorren ACF. Sustained Formation of Nitroglycerin-Derived Nitric Oxide by Aldehyde Dehydrogenase-2 in Vascular Smooth Muscle without Added Reductants: Implications for the Development of Nitrate Tolerance. Mol Pharmacol 2018; 93:335-343. [PMID: 29358221 DOI: 10.1124/mol.117.110783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/18/2018] [Indexed: 11/22/2022] Open
Abstract
According to current views, oxidation of aldehyde dehydrogenase-2 (ALDH2) during glyceryltrinitrate (GTN) biotransformation is essentially involved in vascular nitrate tolerance and explains the dependence of this reaction on added thiols. Using a novel fluorescent intracellular nitric oxide (NO) probe expressed in vascular smooth muscle cells (VSMCs), we observed ALDH2-catalyzed formation of NO from GTN in the presence of exogenously added dithiothreitol (DTT), whereas only a short burst of NO, corresponding to a single turnover of ALDH2, occurred in the absence of DTT. This short burst of NO associated with oxidation of the reactive C302 residue in the active site was followed by formation of low-nanomolar NO, even without added DTT, indicating slow recovery of ALDH2 activity by an endogenous reductant. In addition to the thiol-reversible oxidation of ALDH2, thiol-refractive inactivation was observed, particularly under high-turnover conditions. Organ bath experiments with rat aortas showed that relaxation by GTN lasted longer than that caused by the NO donor diethylamine/NONOate, in line with the long-lasting nanomolar NO generation from GTN observed in VSMCs. Our results suggest that an endogenous reductant with low efficiency allows sustained generation of GTN-derived NO in the low-nanomolar range that is sufficient for vascular relaxation. On a longer time scale, mechanism-based, thiol-refractive irreversible inactivation of ALDH2, and possibly depletion of the endogenous reductant, will render blood vessels tolerant to GTN. Accordingly, full reactivation of oxidized ALDH2 may not occur in vivo and may not be necessary to explain GTN-induced vasodilation.
Collapse
Affiliation(s)
- Marissa Opelt
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, Karl-Franzens University (M.O., G.W., A.K., J.T.F., A.S., B.M., A.C.F.G.), and Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz (E.E., M.W.-W., R.M., W.F.G.), Graz, Austria
| | - Gerald Wölkart
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, Karl-Franzens University (M.O., G.W., A.K., J.T.F., A.S., B.M., A.C.F.G.), and Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz (E.E., M.W.-W., R.M., W.F.G.), Graz, Austria
| | - Emrah Eroglu
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, Karl-Franzens University (M.O., G.W., A.K., J.T.F., A.S., B.M., A.C.F.G.), and Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz (E.E., M.W.-W., R.M., W.F.G.), Graz, Austria
| | - Markus Waldeck-Weiermair
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, Karl-Franzens University (M.O., G.W., A.K., J.T.F., A.S., B.M., A.C.F.G.), and Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz (E.E., M.W.-W., R.M., W.F.G.), Graz, Austria
| | - Roland Malli
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, Karl-Franzens University (M.O., G.W., A.K., J.T.F., A.S., B.M., A.C.F.G.), and Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz (E.E., M.W.-W., R.M., W.F.G.), Graz, Austria
| | - Wolfgang F Graier
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, Karl-Franzens University (M.O., G.W., A.K., J.T.F., A.S., B.M., A.C.F.G.), and Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz (E.E., M.W.-W., R.M., W.F.G.), Graz, Austria
| | - Alexander Kollau
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, Karl-Franzens University (M.O., G.W., A.K., J.T.F., A.S., B.M., A.C.F.G.), and Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz (E.E., M.W.-W., R.M., W.F.G.), Graz, Austria
| | - John T Fassett
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, Karl-Franzens University (M.O., G.W., A.K., J.T.F., A.S., B.M., A.C.F.G.), and Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz (E.E., M.W.-W., R.M., W.F.G.), Graz, Austria
| | - Astrid Schrammel
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, Karl-Franzens University (M.O., G.W., A.K., J.T.F., A.S., B.M., A.C.F.G.), and Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz (E.E., M.W.-W., R.M., W.F.G.), Graz, Austria
| | - Bernd Mayer
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, Karl-Franzens University (M.O., G.W., A.K., J.T.F., A.S., B.M., A.C.F.G.), and Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz (E.E., M.W.-W., R.M., W.F.G.), Graz, Austria
| | - Antonius C F Gorren
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, Karl-Franzens University (M.O., G.W., A.K., J.T.F., A.S., B.M., A.C.F.G.), and Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz (E.E., M.W.-W., R.M., W.F.G.), Graz, Austria
| |
Collapse
|
22
|
Polymer nitric oxide donors potentiate the treatment of experimental solid tumours by increasing drug accumulation in the tumour tissue. J Control Release 2018; 269:214-224. [DOI: 10.1016/j.jconrel.2017.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/27/2022]
|
23
|
Sano T, Shimada K, Aoki Y, Kawashima T, Sase S, Goto K. Modeling of the Bioactivation of an Organic Nitrate by a Thiol to Form a Thionitrate Intermediate. Molecules 2016; 22:molecules22010019. [PMID: 28029139 PMCID: PMC6155724 DOI: 10.3390/molecules22010019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 11/16/2022] Open
Abstract
Thionitrates (R–SNO2) have been proposed as key intermediates in the biotransformation of organic nitrates that have been used for the clinical treatment of angina pectoris for over 100 years. It has been proposed and widely accepted that a thiol would react with an organic nitrate to afford a thionitrate intermediate. However, there has been no example of an experimental demonstration of this elementary chemical process in organic systems. Herein, we report that aryl- and primary-alkyl-substituted thionitrates were successfully synthesized by the reaction of the corresponding lithium thiolates with organic nitrates by taking advantage of cavity-shaped substituents. The structure of a primary-alkyl-substituted thionitrate was unambiguously established by X-ray crystallographic analysis.
Collapse
Affiliation(s)
- Tsukasa Sano
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| | - Keiichi Shimada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yohei Aoki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| | - Takayuki Kawashima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shohei Sase
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| | - Kei Goto
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| |
Collapse
|
24
|
Abstract
Nitrates have been used to treat symptoms of chronic stable angina for over 135 years. These drugs are known to activate nitric oxide (NO)-cyclic guanosine-3',-5'-monophasphate (cGMP) signaling pathways underlying vascular smooth muscle cell relaxation, albeit many questions relating to how nitrates work at the cellular level remain unanswered. Physiologically, the anti-angina effects of nitrates are mostly due to peripheral venous dilatation leading to reduction in preload and therefore left ventricular wall stress, and, to a lesser extent, epicardial coronary artery dilatation and lowering of systemic blood pressure. By counteracting ischemic mechanisms, short-acting nitrates offer rapid relief following an angina attack. Long-acting nitrates, used commonly for angina prophylaxis are recommended second-line, after beta-blockers and calcium channel antagonists. Nicorandil is a balanced vasodilator that acts as both NO donor and arterial K(+) ATP channel opener. Nicorandil might also exhibit cardioprotective properties via mitochondrial ischemic preconditioning. While nitrates and nicorandil are effective pharmacological agents for prevention of angina symptoms, when prescribing these drugs it is important to consider that unwanted and poorly tolerated hemodynamic side-effects such as headache and orthostatic hypotension can often occur owing to systemic vasodilatation. It is also necessary to ensure that a dosing regime is followed that avoids nitrate tolerance, which not only results in loss of drug efficacy, but might also cause endothelial dysfunction and increase long-term cardiovascular risk. Here we provide an update on the pharmacological management of chronic stable angina using nitrates and nicorandil.
Collapse
Affiliation(s)
- Jason M Tarkin
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke's Hospital, Cambridge, CB2 QQ, UK
| | - Juan Carlos Kaski
- Cardiovascular and Cell Sciences Research Institute, St George's, University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK.
| |
Collapse
|
25
|
Ebert AD, Kodo K, Liang P, Wu H, Huber BC, Riegler J, Churko J, Lee J, de Almeida P, Lan F, Diecke S, Burridge PW, Gold JD, Mochly-Rosen D, Wu JC. Characterization of the molecular mechanisms underlying increased ischemic damage in the aldehyde dehydrogenase 2 genetic polymorphism using a human induced pluripotent stem cell model system. Sci Transl Med 2016; 6:255ra130. [PMID: 25253673 DOI: 10.1126/scitranslmed.3009027] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nearly 8% of the human population carries an inactivating point mutation in the gene that encodes the cardioprotective enzyme aldehyde dehydrogenase 2 (ALDH2). This genetic polymorphism (ALDH2*2) is linked to more severe outcomes from ischemic heart damage and an increased risk of coronary artery disease (CAD), but the underlying molecular bases are unknown. We investigated the ALDH2*2 mechanisms in a human model system of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from individuals carrying the most common heterozygous form of the ALDH2*2 genotype. We showed that the ALDH2*2 mutation gave rise to elevated amounts of reactive oxygen species and toxic aldehydes, thereby inducing cell cycle arrest and activation of apoptotic signaling pathways, especially during ischemic injury. We established that ALDH2 controls cell survival decisions by modulating oxidative stress levels and that this regulatory circuitry was dysfunctional in the loss-of-function ALDH2*2 genotype, causing up-regulation of apoptosis in cardiomyocytes after ischemic insult. These results reveal a new function for the metabolic enzyme ALDH2 in modulation of cell survival decisions. Insight into the molecular mechanisms that mediate ALDH2*2-related increased ischemic damage is important for the development of specific diagnostic methods and improved risk management of CAD and may lead to patient-specific cardiac therapies.
Collapse
Affiliation(s)
- Antje D Ebert
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kazuki Kodo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ping Liang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Haodi Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bruno C Huber
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johannes Riegler
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jared Churko
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jaecheol Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patricia de Almeida
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Feng Lan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sebastian Diecke
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paul W Burridge
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph D Gold
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Stefano GB, Kream RM. Dysregulated mitochondrial and chloroplast bioenergetics from a translational medical perspective (Review). Int J Mol Med 2016; 37:547-55. [PMID: 26821064 PMCID: PMC4771107 DOI: 10.3892/ijmm.2016.2471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/22/2016] [Indexed: 02/06/2023] Open
Abstract
Mitochondria and chloroplasts represent endosymbiotic models of complex organelle development, driven by intense evolutionary pressure to provide exponentially enhanced ATP-dependent energy production functionally linked to cellular respiration and photosynthesis. Within the realm of translational medicine, it has become compellingly evident that mitochondrial dysfunction, resulting in compromised cellular bioenergetics, represents a key causative factor in the etiology and persistence of major diseases afflicting human populations. As a pathophysiological consequence of enhanced oxygen utilization that is functionally uncoupled from the oxidative phosphorylation of ADP, significant levels of reactive oxygen species (ROS) may be generated within mitochondria and chloroplasts, which may effectively compromise cellular energy production following prolonged stress/inflammatory conditions. Empirically determined homologies in biochemical pathways, and their respective encoding gene sequences between chloroplasts and mitochondria, suggest common origins via entrapped primordial bacterial ancestors. From evolutionary and developmental perspectives, the elucidation of multiple biochemical and molecular relationships responsible for errorless bioenergetics within mitochondrial and plastid complexes will most certainly enhance the depth of translational approaches to ameliorate or even prevent the destructive effects of multiple disease states. The selective choice of discussion points contained within the present review is designed to provide theoretical bases and translational insights into the pathophysiology of human diseases from a perspective of dysregulated mitochondrial bioenergetics with special reference to chloroplast biology.
Collapse
|
27
|
Fang J, Long L, Maeda H. Enhancement of Tumor-Targeted Delivery of Bacteria with Nitroglycerin Involving Augmentation of the EPR Effect. Methods Mol Biol 2016; 1409:9-23. [PMID: 26846798 DOI: 10.1007/978-1-4939-3515-4_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The use of bacteria, about 1 μm in size, is now becoming an attractive strategy for cancer treatment. Solid tumors exhibit the enhanced permeability and retention (EPR) effect for biocompatible macromolecules such as polymer-conjugated anticancer agents, liposomes, and micelles. This phenomenon permits tumor-selective delivery of such macromolecules. We report here that bacteria injected intravenously evidenced a property similar to that can of these macromolecules. Bacteria that can accumulate selectively in tumors may therefore be used in cancer treatment.Facultative or anaerobic bacteria will grow even under the hypoxic conditions present in solid tumors. We found earlier that nitric oxide (NO) was among the most important factors that facilitated the EPR effect via vasodilatation, opening of endothelial cell junction gaps, and increasing the blood flow of hypovascular tumors. Here, we describe the augmentation of the EPR effect by means of nitroglycerin (NG), a commonly used NO donor, using various macromolecular agents in different tumor models. More importantly, we report that NG significantly enhanced the delivery of Lactobacillus casei to tumors after intravenous injection of the bacteria, more than a tenfold increase in bacterial accumulation in tumors after NG treatment. This finding suggests that NG has a potential advantage to enhance bacterial therapy of cancer, and further investigations of this possibility are warranted.
Collapse
Affiliation(s)
- Jun Fang
- Research Institute for Drug Delivery System, Sojo University, 4-22-1 Ikeda, Nishi Ward, Kumamoto, Kumamoto Prefecture, 860-0082, Japan
| | - Liao Long
- Research Institute for Drug Delivery System, Sojo University, 4-22-1 Ikeda, Nishi Ward, Kumamoto, Kumamoto Prefecture, 860-0082, Japan
| | - Hiroshi Maeda
- Research Institute for Drug Delivery System, Sojo University, 4-22-1 Ikeda, Nishi Ward, Kumamoto, Kumamoto Prefecture, 860-0082, Japan. .,Laboratory of Microbiology and Oncology, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi Ward, Kumamoto, Kumamoto Prefecture, 860-0082, Japan.
| |
Collapse
|
28
|
Daiber A, Münzel T. Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress. Antioxid Redox Signal 2015; 23:899-942. [PMID: 26261901 PMCID: PMC4752190 DOI: 10.1089/ars.2015.6376] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3',-5'-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed.
Collapse
Affiliation(s)
- Andreas Daiber
- The 2nd Medical Clinic, Medical Center of the Johannes Gutenberg University , Mainz, Germany
| | - Thomas Münzel
- The 2nd Medical Clinic, Medical Center of the Johannes Gutenberg University , Mainz, Germany
| |
Collapse
|
29
|
Xia JQ, Song J, Zhang Y, An NN, Ding L, Zhang Z. Effect of aldehyde dehydrogenase 2 gene polymorphism on hemodynamics after nitroglycerin intervention in Northern Chinese Han population. Chin Med J (Engl) 2015; 128:180-5. [PMID: 25591559 PMCID: PMC4837835 DOI: 10.4103/0366-6999.149192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: Nitroglycerin (NTG) is one of the few immediate treatments for acute angina. Aldehyde dehydrogenase 2 (ALDH2) is a key enzyme in the human body that facilitates the biological metabolism of NTG. The biological mechanism of NTG serves an important function in NTG efficacy. Some reports still contradict the results that the correlation between ALDH2 gene polymorphisms and NTG and its clinical efficacy is different. However, data on NTG measurement by pain relief are subjective. This study aimed to investigate the influence of ALDH2 gene polymorphism on intervention with sublingual NTG using noninvasive hemodynamic parameters of cardiac output (CO) and systemic vascular resistance (SVR) in Northern Chinese Han population. Methods: This study selected 559 patients from the Affiliated Hospital of Qingdao University. A total of 203 patients presented with coronary heart disease (CHD) and 356 had non-CHD (NCHD) cases. All patient ALDH2 genotypes (G504A) were detected and divided into two types: Wild (GG) and mutant (GA/AA). Among the CHD group, 103 were wild-type cases, and 100 were mutant-type cases. Moreover, 196 cases were wild-type, and 160 cases were mutant type among the NCHD volunteers. A noninvasive hemodynamic detector was used to monitor the CO and the SVR at the 0, 5, and 15 minute time points after medication with 0.5 mg sublingual NTG. Two CO and SVR indicators were used for a comparative analysis of all case genotypes. Results: Both CO and SVR indicators significantly differed between the wild and mutant genotypes at various time points after intervention with sublingual NTG at 5 and 15 minutes in the NCHD (F = 16.460, 15.003, P = 0.000, 0.000) and CHD groups (F = 194.482, 60.582, P = 0.000, 0.000). All CO values in the wild-type case of both NCHD and CHD groups increased, whereas those in the mutant type decreased. The CO and ΔCO differences were statistically significant (P < 0.05; P < 0.05). The SVR and ΔSVR changed between the wild- and mutant-type cases at all-time points in both NCHD and CHD groups had statistically significant differences (P < 0.05; P < 0.05). Conclusion: ALDH2 (G504A) gene polymorphism is associated with changes in noninvasive hemodynamic parameters (i.e. CO and SVR) after intervention with sublingual NTG. This gene polymorphism may influence the effect of NTG intervention on Northern Chinese Han population.
Collapse
Affiliation(s)
| | | | | | | | | | - Zheng Zhang
- Department of Geriatrics, Qingdao University Medical College Affiliated Hospital, Qingdao, Shandong 266003, China
| |
Collapse
|
30
|
Steinhorn BS, Loscalzo J, Michel T. Nitroglycerin and Nitric Oxide--A Rondo of Themes in Cardiovascular Therapeutics. N Engl J Med 2015; 373:277-80. [PMID: 26176386 PMCID: PMC4836444 DOI: 10.1056/nejmsr1503311] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Benjamin S Steinhorn
- From the Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston
| | | | | |
Collapse
|
31
|
Human ALDH1B1 polymorphisms may affect the metabolism of acetaldehyde and all-trans retinaldehyde--in vitro studies and computational modeling. Pharm Res 2014; 32:1648-62. [PMID: 25413692 DOI: 10.1007/s11095-014-1564-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 10/28/2014] [Indexed: 01/08/2023]
Abstract
PURPOSE To elucidate additional substrate specificities of ALDH1B1 and determine the effect that human ALDH1B1 polymorphisms will have on substrate specificity. METHODS Computational-based molecular modeling was used to predict the binding of the substrates propionaldehyde, 4-hydroxynonenal, nitroglycerin, and all-trans retinaldehyde to ALDH1B1. Based on positive in silico results, the capacity of purified human recombinant ALDH1B1 to metabolize nitroglycerin and all-trans retinaldehyde was explored. Additionally, metabolism of 4-HNE by ALDH1B1 was revisited. Databases queried to find human polymorphisms of ALDH1B1 identified three major variants: ALDH1B1*2 (A86V), ALDH1B1*3 (L107R), and ALDH1B1*5 (M253V). Computational modeling was used to predict the binding of substrates and of cofactor (NAD(+)) to the variants. These human polymorphisms were created and expressed in a bacterial system and specific activity was determined. RESULTS ALDH1B1 metabolizes (and appears to be inhibited by) nitroglycerin and has favorable kinetics for the metabolism of all-trans retinaldehyde. ALDH1B1 metabolizes 4-HNE with higher apparent affinity than previously described, but with low throughput. Recombinant ALDH1B1*2 is catalytically inactive, whereas both ALDH1B1*3 and ALDH1B1*5 are catalytically active. Modeling indicated that the lack of activity in ALDH1B1*2 is likely due to poor NAD(+) binding. Modeling also suggests that ALDH1B1*3 may be less able to metabolize all-trans retinaldehyde and that ALDH1B1*5 may bind NAD(+) poorly. CONCLUSIONS ALDH1B1 metabolizes nitroglycerin and all-trans-retinaldehyde. One of the three human polymorphisms, ALDH1B1*2, is catalytically inactive, likely due to poor NAD(+) binding. Expression of this variant may affect ALDH1B1-dependent metabolic functions in stem cells and ethanol metabolism.
Collapse
|
32
|
Fang J, Liao L, Yin H, Nakamura H, Shin T, Maeda H. Enhanced bacterial tumor delivery by modulating the EPR effect and therapeutic potential of Lactobacillus casei. J Pharm Sci 2014; 103:3235-43. [PMID: 25041982 DOI: 10.1002/jps.24083] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/11/2014] [Accepted: 06/18/2014] [Indexed: 12/14/2022]
Abstract
Bacteria of micrometer size could accumulate in tumor based on enhanced permeability and retention (EPR) effect. We report here Lactobacillus casei (L. casei), a nonpathogenic facultatively anaerobic bacterium, preferentially accumulated in tumor tissues after intravenously (i.v.) injection; at 24 h, live bacteria were found more in the tumor, whereas the bacteria in normal tissues including the liver and spleen were cleared rapidly. The tumor-selective accumulation and growth of L. casei is probably due to the EPR effect and the hypoxic tumor environment. Moreover, the bacterial tumor delivery was significantly increased by a nitric oxide (NO) donor nitroglycerin (NG, 10-70 times) and an angiotensin II converting enzyme inhibitor, enalapril (6-18 times). Consequently significant suppression of tumor growth was found in a colon cancer C26 model, and more remarkable antitumor effect was achieved when L. casei was combined with NG, probably by modulating the host nonspecific immune responses; tumor necrosis factor-α significantly increased in tumor after the treatment, as well as NO synthase activity and myleoperoxidase activity. These findings suggest the potential of L. casei as a candidate for targeted bacterial antitumor therapy, especially in combine with NG or other vascular mediators.
Collapse
Affiliation(s)
- Jun Fang
- Institute of Drug Delivery Science, Sojo University, Ikeda 4-22-1, Kumamoto, 860-0082, Japan; Laboratory of Microbiology and Oncology, Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Kumamoto, 860-0082, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Chen CH, Ferreira JCB, Gross ER, Mochly-Rosen D. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol Rev 2014; 94:1-34. [PMID: 24382882 DOI: 10.1152/physrev.00017.2013] [Citation(s) in RCA: 421] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A family of detoxifying enzymes called aldehyde dehydrogenases (ALDHs) has been a subject of recent interest, as its role in detoxifying aldehydes that accumulate through metabolism and to which we are exposed from the environment has been elucidated. Although the human genome has 19 ALDH genes, one ALDH emerges as a particularly important enzyme in a variety of human pathologies. This ALDH, ALDH2, is located in the mitochondrial matrix with much known about its role in ethanol metabolism. Less known is a new body of research to be discussed in this review, suggesting that ALDH2 dysfunction may contribute to a variety of human diseases including cardiovascular diseases, diabetes, neurodegenerative diseases, stroke, and cancer. Recent studies suggest that ALDH2 dysfunction is also associated with Fanconi anemia, pain, osteoporosis, and the process of aging. Furthermore, an ALDH2 inactivating mutation (termed ALDH2*2) is the most common single point mutation in humans, and epidemiological studies suggest a correlation between this inactivating mutation and increased propensity for common human pathologies. These data together with studies in animal models and the use of new pharmacological tools that activate ALDH2 depict a new picture related to ALDH2 as a critical health-promoting enzyme.
Collapse
|
34
|
Nicolescu AC, Thatcher GRJ. Differential activation of soluble guanylate cyclase by a series of aryl disulfanyl dinitrate esters. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00261f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Seabra AB, Ouellet M, Antonic M, Chrétien MN, English AM. Catalysis of nitrite generation from nitroglycerin by glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Nitric Oxide 2013; 35:116-22. [PMID: 24064205 DOI: 10.1016/j.niox.2013.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 01/11/2023]
Abstract
Vascular relaxation to nitroglycerin (glyceryl trinitrate; GTN) requires its bioactivation by mechanisms that remain controversial. We report here that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the release of nitrite from GTN. In assays containing dithiothreitol (DTT) and NAD(+), the GTN reductase activity of purified GAPDH produces nitrite and 1,2-GDN as the major products. A vmax of 2.6nmolmin(-)(1)mg(-)(1) was measured for nitrite production by GAPDH from rabbit muscle and a GTN KM of 1.2mM. Reductive denitration of GTN in the absence of DTT results in dose- and time-dependent inhibition of GAPDH dehydrogenase activity. Disulfiram, a thiol-modifying drug, inhibits both the dehydrogenase and GTN reductase activity of GAPDH, while DTT or tris(2-carboxyethyl)phosphine reverse the GTN-induced inhibition. Incubation of intact human erythrocytes or hemolysates with 2mM GTN for 60min results in 50% inhibition of GAPDH's dehydrogenase activity, indicating that GTN is taken up by these cells and that the dehydrogenase is a target of GTN. Thus, erythrocyte GAPDH may contribute to GTN bioactivation.
Collapse
Affiliation(s)
- Amedea B Seabra
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | | | | | | | | |
Collapse
|
36
|
Lai CL, Yao CT, Chau GY, Yang LF, Kuo TY, Chiang CP, Yin SJ. Dominance of the inactive Asian variant over activity and protein contents of mitochondrial aldehyde dehydrogenase 2 in human liver. Alcohol Clin Exp Res 2013; 38:44-50. [PMID: 23909789 DOI: 10.1111/acer.12215] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/09/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND It has been well documented that a variant allele of mitochondrial aldehyde dehydrogenase 2 (ALDH2), ALDH2*2, commonly occurs in East Asians but rarely in other ethnic populations. This unique allelic variation significantly influences drinking behavior and susceptibility to development of alcoholism. Previous structural, functional, and cellular studies indicate that the resulting variant polypeptide subunit K (Lys-487) exerts dominance of null activity and shorter half-life over the tetrameric enzyme molecules in distinct manners. However, the in vivo evidence for the proposed dominance mechanisms remains lacking. METHODS To address this question, we investigated 33 surgical liver samples identified to be normal homozygous ALDH2*1/*1 (n = 17), heterozygous ALDH2*1/*2 (n = 13), and variant homozygous ALDH2*2/*2 (n = 3). The ALDH2 activity was determined at a sufficient low acetaldehyde concentration (3 μM) and the isozyme protein amount by immunotitration using purified class-specific antibodies. RESULTS The tissue ALDH2 activity in heterozygotes was 17% that of the ALDH2*1/*1 genotype (p < 0.001), whereas the activity of ALDH2*2/*2 was too low to be precisely determined. The protein amounts of tissue ALDH2 in variant homozygotes and heterozygotes were similar but only 30 to 40% that of normal homozygotes (p < 0.01). Linear regression analyses show that ALDH2 activities were significantly correlated with the protein contents in normal homozygotes and heterozygotes, respectively (p < 0.005). The specific activity of ALDH2 per enzyme protein in ALDH2*1/*2 was 38% that of ALDH2*1/*1 (p < 0.001). CONCLUSIONS These results are in good agreement with those predicted by the model studies, thus providing in vivo evidence for differential impairments of hepatic acetaldehyde oxidation with alcohol metabolism in individuals carrying ALDH2*1/*2 and ALDH2*2/*2 genotypes.
Collapse
Affiliation(s)
- Ching-Long Lai
- Department of Nursing , Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
37
|
Neubauer R, Neubauer A, Wölkart G, Schwarzenegger C, Lang B, Schmidt K, Russwurm M, Koesling D, Gorren ACF, Schrammel A, Mayer B. Potent inhibition of aldehyde dehydrogenase-2 by diphenyleneiodonium: focus on nitroglycerin bioactivation. Mol Pharmacol 2013; 84:407-14. [PMID: 23793290 DOI: 10.1124/mol.113.086835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aldehyde dehydrogenase-2 (ALDH2) catalyzes vascular bioactivation of the antianginal drug nitroglycerin (GTN) to yield nitric oxide (NO) or a related species that activates soluble guanylate cyclase (sGC), resulting in cGMP-mediated vasodilation. Accordingly, established ALDH2 inhibitors attenuate GTN-induced vasorelaxation in vitro and in vivo. However, the ALDH2 hypothesis has not been reconciled with early studies demonstrating potent inhibition of the GTN response by diphenyleneiodonium (DPI), a widely used inhibitor of flavoproteins, in particular NADPH oxidases. We addressed this issue and investigated the effects of DPI on GTN-induced relaxation of rat aortic rings and the function of purified ALDH2. DPI (0.3 µM) inhibited the high affinity component of aortic relaxation to GTN without affecting the response to NO, indicating that the drug interfered with GTN bioactivation. Denitration and bioactivation of 1-2 µM GTN, assayed as 1,2-glycerol dinitrate formation and activation of purified sGC, respectively, were inhibited by DPI with a half-maximally active concentration of about 0.2 µM in a GTN-competitive manner. Molecular modeling indicated that DPI binds to the catalytic site of ALDH2, and this was confirmed by experiments showing substrate-competitive inhibition of the dehydrogenase and esterase activities of the enzyme. Our data identify ALDH2 as highly sensitive target of DPI and explain inhibition of GTN-induced relaxation by this drug observed previously. In addition, the data provide new evidence for the essential role of ALDH2 in GTN bioactivation and may have implications to other fields of ALDH2 research, such as hepatic ethanol metabolism and cardiac ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Regina Neubauer
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Goto K, Yoshikawa S, Ideue T, Sase S. Transnitrosation from a stable thionitrate to an amine with concomitant formation of a sulfenic acid. J Sulphur Chem 2013. [DOI: 10.1080/17415993.2013.794801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Kei Goto
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Shuhei Yoshikawa
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Taku Ideue
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Shohei Sase
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| |
Collapse
|
39
|
Curtis B, Payne TJ, Ash DE, Mohanty DK. Secondary amines containing one aromatic nitro group: preparation, nitrosation, sustained nitric oxide release, and the synergistic effects of released nitric oxide and an arginase inhibitor on vascular smooth muscle cell proliferation. Bioorg Med Chem 2013; 21:1123-35. [PMID: 23375096 PMCID: PMC3574223 DOI: 10.1016/j.bmc.2012.12.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/16/2012] [Accepted: 12/28/2012] [Indexed: 01/05/2023]
Abstract
Atherosclerosis, a leading cause of death worldwide, is associated with the excessive proliferation of vascular smooth muscle cells. Nitrogen monoxide, more commonly known as nitric oxide, inhibits this uncontrolled proliferation. Herein we report the preparation of two families of nitric oxide donors; beginning with the syntheses of secondary amine precursors, obtained through the reaction between 2 equiv of various monoamines with 2,4 or 2,6-difluoronitrobenzene. The purified secondary amines were nitrosated then subjected to a Griess reagent test to examine the slow and sustained nitric oxide release rate for each compound in both the absence and presence of reduced glutathione. The release rate profiles of these two isomeric families of NO-donors were strongly dependent on the number of side chain methylene units and the relative orientations of the nitro groups with respect to the N-nitroso moieties. The nitrosated compounds were then added to human aortic smooth muscle cell cultures, individually and in tandem with S-2-amino-6-boronic acid (ABH), a potent arginase inhibitor. Cell viability studies indicated a lack of toxicity of the amine precursors, in addition to anti-proliferative effects exhibited by the nitrosated compounds, which were enhanced in the presence of ABH.
Collapse
Affiliation(s)
- Brandon Curtis
- Department of Chemistry, Central Michigan University, Mt. Pleasant, MI-48858, USA
| | | | - David E. Ash
- Department of Chemistry, Central Michigan University, Mt. Pleasant, MI-48858, USA
| | - Dillip K. Mohanty
- Department of Chemistry, Central Michigan University, Mt. Pleasant, MI-48858, USA
| |
Collapse
|
40
|
Lang BS, Gorren ACF, Oberdorfer G, Wenzl MV, Furdui CM, Poole LB, Mayer B, Gruber K. Vascular bioactivation of nitroglycerin by aldehyde dehydrogenase-2: reaction intermediates revealed by crystallography and mass spectrometry. J Biol Chem 2012; 287:38124-34. [PMID: 22988236 PMCID: PMC3488082 DOI: 10.1074/jbc.m112.371716] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aldehyde dehydrogenase-2 (ALDH2) catalyzes the bioactivation of nitroglycerin (glyceryl trinitrate, GTN) in blood vessels, resulting in vasodilation by nitric oxide (NO) or a related species. Because the mechanism of this reaction is still unclear we determined the three-dimensional structures of wild-type (WT) ALDH2 and of a triple mutant of the protein that exhibits low denitration activity (E268Q/C301S/C303S) in complex with GTN. The structure of the triple mutant showed that GTN binds to the active site via polar contacts to the oxyanion hole and to residues 268 and 301 as well as by van der Waals interactions to hydrophobic residues of the catalytic pocket. The structure of the GTN-soaked wild-type protein revealed a thionitrate adduct to Cys-302 as the first reaction intermediate, which was also found by mass spectrometry (MS) experiments. In addition, the MS data identified sulfinic acid as the irreversibly inactivated enzyme species. Assuming that the structures of the triple mutant and wild-type ALDH2 reflect binding of GTN to the catalytic site and the first reaction step, respectively, superposition of the two structures indicates that denitration of GTN is initiated by nucleophilic attack of Cys-302 at one of the terminal nitrate groups, resulting in formation of the observed thionitrate intermediate and release of 1,2-glyceryl dinitrate. Our results shed light on the molecular mechanism of the GTN denitration reaction and provide useful information on the structural requirements for high affinity binding of organic nitrates to the catalytic site of ALDH2.
Collapse
Affiliation(s)
- Barbara S Lang
- Department of Pharmacology and Toxicology, University of Graz, 8010 Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Chang YC, Chiu YF, Lee IT, Ho LT, Hung YJ, Hsiung CA, Quertermous T, Donlon T, Lee WJ, Lee PC, Chen CH, Mochly-Rosen D, Chuang LM. Common ALDH2 genetic variants predict development of hypertension in the SAPPHIRe prospective cohort: gene-environmental interaction with alcohol consumption. BMC Cardiovasc Disord 2012; 12:58. [PMID: 22839215 PMCID: PMC3476438 DOI: 10.1186/1471-2261-12-58] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/11/2012] [Indexed: 01/11/2023] Open
Abstract
Background Genetic variants near/within the ALDH2 gene encoding the mitochondrial aldehyde dehydrogenase 2 have been associated with blood pressure and hypertension in several case–control association studies in East Asian populations. Methods Three common tag single nucleotide polymorphisms (tagSNP) in the ALDH2 gene were genotyped in 1,134 subjects of Chinese origin from the Stanford Asia-Pacific Program for Hypertension and Insulin Resistance (SAPPHIRe) family cohort. We examined whether the ALDH2 SNP genotypes predicted the development of hypertension in the prospective SAPPHIRe cohort. Results Over an average follow-up period of 5.7 years, carriers homozygous for the rs2238152 T allele in the ALDH2 gene were more likely to progress to hypertension than were non-carriers (hazard ratio [HR], 2.88, 95% confidence interval [CI], 1.06-7.84, P = 0.03), corresponding to a population attributable risk of ~7.1%. The risk associated with the rs2238152 T allele were strongest in heavy/moderate alcohol drinkers and was reduced in non-drinkers, indicating an interaction between ALDH2 genetic variants and alcohol intake on the risk of hypertension (P for interaction = 0.04). The risk allele was associated with significantly lower ALDH2 gene expression levels in human adipose tissue. Conclusion ALDH2 genetic variants were associated with progression to hypertension in a prospective Chinese cohort. The association was modified by alcohol consumption.
Collapse
Affiliation(s)
- Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rudyk O, Prysyazhna O, Burgoyne JR, Eaton P. Nitroglycerin fails to lower blood pressure in redox-dead Cys42Ser PKG1α knock-in mouse. Circulation 2012; 126:287-95. [PMID: 22685118 PMCID: PMC3617728 DOI: 10.1161/circulationaha.112.101287] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/01/2012] [Indexed: 01/08/2023]
Abstract
BACKGROUND Although nitroglycerin has remained in clinical use since 1879, the mechanism by which it relaxes blood vessels to lower blood pressure remains incompletely understood. Nitroglycerin undergoes metabolism that generates several reaction products, including oxidants, and this bioactivation process is essential for vasodilation. Protein kinase G (PKG) mediates classic nitric oxide-dependent vasorelaxation, but the 1α isoform is also independently activated by oxidation that involves interprotein disulfide formation within this homodimeric protein complex. We hypothesized that nitroglycerin-induced vasodilation is mediated by disulfide activation of PKG1α. METHODS AND RESULTS Treating smooth muscle cells or isolated blood vessels with nitroglycerin caused PKG1α disulfide dimerization. PKG1α disulfide formation was increased in wild-type mouse aortas by in vivo nitroglycerin treatment, but this oxidation was lost as tolerance developed. To establish whether kinase oxidation underlies nitroglycerin-induced vasodilation in vivo, we used a Cys42Ser PKG1α knock-in mouse that cannot transduce oxidant signals because it does not contain the vital redox-sensing thiol. This redox-dead knock-in mouse was substantively deficient in hypotensive response to nitroglycerin compared with wild-type littermates as measured in vivo by radiotelemetry. Resistance blood vessels from knock-ins were markedly less sensitive to nitroglycerin-induced vasodilation (EC(50)=39.2 ± 10.7 μmol/L) than wild-types (EC(50)=12.1 ± 2.9 μmol/L). Furthermore, after ≈24 hours of treatment, wild-type controls stopped vasodilating to nitroglycerin, and the vascular sensitivity to nitroglycerin was decreased, whereas this tolerance phenomenon, which routinely hampers the management of hypertensive patients, was absent in knock-ins. CONCLUSIONS PKG1α disulfide formation is a significant mediator of nitroglycerin-induced vasodilation, and tolerance to nitroglycerin is associated with loss of kinase oxidation.
Collapse
Affiliation(s)
- Olena Rudyk
- Cardiovascular Division, King's College London, The British Heart Foundation Centre of Excellence, The Rayne Institute, St. Thomas' Hospital, United Kingdom
| | | | | | | |
Collapse
|
43
|
Koppaka V, Thompson DC, Chen Y, Ellermann M, Nicolaou KC, Juvonen RO, Petersen D, Deitrich RA, Hurley TD, Vasiliou V. Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol Rev 2012; 64:520-39. [PMID: 22544865 PMCID: PMC3400832 DOI: 10.1124/pr.111.005538] [Citation(s) in RCA: 403] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) belong to a superfamily of enzymes that play a key role in the metabolism of aldehydes of both endogenous and exogenous derivation. The human ALDH superfamily comprises 19 isozymes that possess important physiological and toxicological functions. The ALDH1A subfamily plays a pivotal role in embryogenesis and development by mediating retinoic acid signaling. ALDH2, as a key enzyme that oxidizes acetaldehyde, is crucial for alcohol metabolism. ALDH1A1 and ALDH3A1 are lens and corneal crystallins, which are essential elements of the cellular defense mechanism against ultraviolet radiation-induced damage in ocular tissues. Many ALDH isozymes are important in oxidizing reactive aldehydes derived from lipid peroxidation and thereby help maintain cellular homeostasis. Increased expression and activity of ALDH isozymes have been reported in various human cancers and are associated with cancer relapse. As a direct consequence of their significant physiological and toxicological roles, inhibitors of the ALDH enzymes have been developed to treat human diseases. This review summarizes known ALDH inhibitors, their mechanisms of action, isozyme selectivity, potency, and clinical uses. The purpose of this review is to 1) establish the current status of pharmacological inhibition of the ALDHs, 2) provide a rationale for the continued development of ALDH isozyme-selective inhibitors, and 3) identify the challenges and potential therapeutic rewards associated with the creation of such agents.
Collapse
Affiliation(s)
- Vindhya Koppaka
- Department of Pharmaceutical Sciences, University of Colorado Denver, 12850 East Montview Blvd., Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nossaman BD, Pankey EA, Badejo AR, Casey DB, Uppu S, Murthy SN, Kadowitz PJ. Analysis of responses to glyceryl trinitrate and sodium nitrite in the intact chest rat. Nitric Oxide 2012; 26:223-8. [PMID: 22465477 DOI: 10.1016/j.niox.2012.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 02/17/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
Abstract
Responses to glyceryl trinitrate/nitroglycerin (GTN), S-nitrosoglutathione (GSNO), and sodium nitrite were compared in the intact chest rat. The iv injections of GTN, sodium nitrite, and GSNO produced dose-dependent decreases in pulmonary and systemic arterial pressures. In as much as cardiac output was not reduced, the decreases in pulmonary and systemic arterial pressures indicate that GTN, sodium nitrite, and GSNO have significant vasodilator activity in the pulmonary and systemic vascular beds in the rat. Responses to GTN were attenuated by cyanamide, but not allopurinol, whereas responses to nitrite formed by the metabolism of GTN were attenuated by allopurinol and cyanamide. The results with allopurinol and cyanamide suggest that only mitochondrial aldehyde dehydrogenase is involved in the bioactivation of GTN, sodium nitrite, and GSNO, whereas both pathways are involved in the bioactivation of nitrite anion in the intact rat. The comparison of vasodilator activity indicates that GSNO and GTN are more than 1000-fold more potent than sodium nitrite in decreasing pulmonary and systemic arterial pressures in the rat. Following administration of 1H-[1,2,4]-oxadizaolo[4,3-]quinoxaline-1-one (ODQ), responses to GTN were significantly attenuated, indicating that responses are mediated by the activation of soluble guanylyl cyclase. These data suggest that the reduction of nitrite to nitric oxide formed from the metabolism of GTN, cannot account for the vasodilator activity of GTN in the intact rat and that another mechanism; perhaps the formation of an S-NO, may mediate the vasodilator response to GTN in this species.
Collapse
Affiliation(s)
- Bobby D Nossaman
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112-2699, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Stefano GB, Kream RM. Reciprocal regulation of cellular nitric oxide formation by nitric oxide synthase and nitrite reductases. Med Sci Monit 2012; 17:RA221-6. [PMID: 21959625 PMCID: PMC3539480 DOI: 10.12659/msm.881972] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our mini-review focuses on dual regulation of cellular nitric oxide (NO) signaling pathways by traditionally characterized enzymatic formation from L-arginine via the actions of NO synthases (NOS) and by enzymatic reduction of available cellular nitrite pools by a diverse class of cytosolic and mitochondrial nitrite reductases. Nitrite is a major metabolic product of NO and is found in all cell and tissue types that utilize NO signaling processes. Xanthine oxidoreductase (XOR) has been previously characterized as a housekeeping enzyme responsible for cellular uric acid formation via enzymatic conversion of hypoxanthine and xanthine. It has become apparent that XOR possesses multi-functional enzymatic activities outside the realm of xanthine metabolism and a small but significant literature also established a compelling functional association between administered sodium nitrite, XOR activation, and pharmacologically characterized NO transductive effects in positive cardiovascular function enhanced pulmonary perfusion, and protection against ischemia/reperfusion injury and hypoxic damage and oxidative stress. Similar positive vascular and cellular effects were observed to be functionally associated with mitochondrial aldehyde dehydrogenase and cytochrome c/cytochrome c oxidase. The profound implications of a reciprocal regulatory mechanism responsible for cytosolic and mitochondrial NO production are discussed below.
Collapse
Affiliation(s)
- George B Stefano
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, NY 11568-0210, USA.
| | | |
Collapse
|
46
|
Mao M, Sudhahar V, Ansenberger-Fricano K, Fernandes DC, Tanaka LY, Fukai T, Laurindo FR, Mason RP, Vasquez-Vivar J, Minshall RD, Stadler K, Bonini MG. Nitroglycerin drives endothelial nitric oxide synthase activation via the phosphatidylinositol 3-kinase/protein kinase B pathway. Free Radic Biol Med 2012; 52:427-35. [PMID: 22037515 PMCID: PMC3432314 DOI: 10.1016/j.freeradbiomed.2011.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 09/12/2011] [Accepted: 09/17/2011] [Indexed: 02/07/2023]
Abstract
Nitroglycerin (GTN) has been clinically used to treat angina pectoris and acute heart episodes for over 100 years. The effects of GTN have long been recognized and active research has contributed to the unraveling of numerous metabolic routes capable of converting GTN to the potent vasoactive messenger nitric oxide. Recently, the mechanism by which minute doses of GTN elicit robust pharmacological responses was revisited and eNOS activation was implicated as an important route mediating vasodilation induced by low GTN doses (1-50nM). Here, we demonstrate that at such concentrations the pharmacologic effects of nitroglycerin are largely dependent on the phosphatidylinositol 3-kinase, Akt/PKB, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signal transduction axis. Furthermore, we demonstrate that nitroglycerin-dependent accumulation of 3,4,5-InsP(3), probably because of inhibition of PTEN, is important for eNOS activation, conferring a mechanistic basis for GTN pharmacological action at pharmacologically relevant doses.
Collapse
Affiliation(s)
- Mao Mao
- Section of Cardiology and Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Varadarajan Sudhahar
- Section of Cardiology and Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kristine Ansenberger-Fricano
- Section of Cardiology and Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Denise C. Fernandes
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Leonardo Y. Tanaka
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Tohru Fukai
- Section of Cardiology and Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Francisco R.M. Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Ronald P. Mason
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | - Richard D. Minshall
- Departments of Pharmacology and Anesthesiology, University of Illinois at Chicago, IL, 60612 USA
| | - Krisztian Stadler
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Marcelo G. Bonini
- Section of Cardiology and Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- Corresponding author at: Section of Cardiology and Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA. (M.G. Bonini)
| |
Collapse
|
47
|
Abstract
Acute myocardial infarction (MI) and its sequelae are leading causes of morbidity and mortality worldwide. Nitroglycerin (glyceryl trinitrate [GTN]) remains a first-line treatment for angina pectoris and acute MI. Nitroglycerin achieves its benefit by giving rise to nitric oxide (NO), which causes vasodilation and increases blood flow to the myocardium. However, continuous delivery of GTN results in tolerance, limiting the use of this drug. Nitroglycerin tolerance is caused, at least in part, by inactivation of aldehyde dehydrogenase 2 (ALDH2), an enzyme that converts GTN to the vasodilator, NO. We recently found that in a MI model in animals, in addition to GTN's effect on the vasculature, sustained treatment negatively affected cardiomyocyte viability following ischemia, thus resulting in increased infarct size. Coadministration of Alda-1, an activator of ALDH2, with GTN improves metabolism of reactive aldehyde adducts and prevents the GTN-induced increase in cardiac dysfunction following MI. In this review, we describe the molecular mechanisms associated with the benefits and risks of GTN administration in MI.
Collapse
Affiliation(s)
- Julio C B Ferreira
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | | |
Collapse
|
48
|
Krishnatry AS, Kamei T, Wang H, Qu J, Fung HL. Identification of nitroglycerin-induced cysteine modifications of pro-matrix metalloproteinase-9. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2291-2298. [PMID: 21766372 DOI: 10.1002/rcm.5118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nitroglycerin (NTG), an important cardiovascular agent, has been shown recently to activate matrix metalloproteinase-9 (MMP-9) in biological systems, possibly leading to destabilization of atherosclerotic plaques. The chemical mechanism for this activation, particularly on the cysteine switch of the pro-form of MMP-9 (proMMP-9), has not been investigated and was examined here using nano-flow liquid chromatography coupled to mass spectrometry. In order to obtain high sequence coverage, two orthogonal enzymes (trypsin and GluC) were employed to digest the protein in parallel. Two complementary activation methods, collision-induced dissociation (CID) and electron-transfer dissociation (ETD), were employed for the identification of various modifications. A high-resolution Orbitrap analyzer was used to enable confident identification. Incubation of NTG with proMMP-9 resulted in the formation of an unstable thionitrate intermediate and oxidation of the cysteine switch to sulfinic and irreversible sulfonic acid derivatives. The unstable thionitrate modification was confirmed by both CID and ETD in the proteolytic peptides produced by both trypsin and GluC. Incubation of proMMP-9 with diethylenetriamine NONOate (a nitric oxide donor) led to sulfonic acid formation, but no observable sulfinic acid modification. Extensive tyrosine nitration by NTG was observed at Tyr-262, in close proximity to an oxidized Cys-256 of proMMP-9. The intramolecular interaction between these two residues toward NTG-induced oxidation was examined using a synthesized peptide representing the sequence in this domain, PWCSTTANYDTDDR, and the modification status was compared against an analog in which Cys was substituted by Ala. We observed a thionitrate product, extensive Cys oxidative modifications and enhanced tyrosine nitration with the Cys peptide but not with the Ala analog. Our results indicated that neighboring Cys and Tyr residues can facilitate each other's oxidation in the presence of NTG.
Collapse
Affiliation(s)
- Anu Shilpa Krishnatry
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | | | | | | | | |
Collapse
|
49
|
Yu H, Payne TJ, Mohanty DK. Effects of slow, sustained, and rate-tunable nitric oxide donors on human aortic smooth muscle cells proliferation. Chem Biol Drug Des 2011; 78:527-34. [PMID: 21740530 DOI: 10.1111/j.1747-0285.2011.01174.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Smooth muscle cell (SMC) proliferation has been accepted as a common event in the pathophysiology of vascular diseases, including atherogenesis and intimal hyperplasia. Delivery of the nitric oxide synthase (NOS) substrate l-arginine, pharmacological nitric oxide (NO) donors, NO gas or overexpression of NOS proteins can inhibit SMC proliferation and reduce the injury responses within the blood vessel wall. Although commercial development of NO donors that attempt to provide exogenous delivery of NO has accelerated over the last few years, none of the currently available products can provide controlled, sustained, time-tunable release of NO. Nitrosamine-based NO donors, prepared in our laboratory, present a unique and innovative alternative for possible treatments for long-term NO deficiency-related diseases, including atherosclerosis, asthma, erectile dysfunction, cancer, and neurodegenerative diseases. A family of secondary amines prepared via nucleophilic aromatic displacement reactions could be readily N-nitrosated to produce NO donors. NO release takes place in three distinct phases. During the initial phase, the release rate is extremely fast. In the second phase, the release is slower and the rate remains essentially the same during the final stage. These compounds inhibited up to 35% human aortic smooth muscle cell proliferation in a concentration-dependent manner.
Collapse
Affiliation(s)
- Hao Yu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL-35205, USA
| | | | | |
Collapse
|
50
|
Sakata S, Yoshihara T, Arima H, Shiraishi F, Oniki H, Takahashi-Yanaga F, Matsumura K, Sasaguri T. Differential effects of organic nitrates on arterial diameter among healthy Japanese participants with different mitochondrial aldehyde dehydrogenase 2 genotypes: randomised crossover trial. BMJ Open 2011; 1:e000133. [PMID: 22021773 PMCID: PMC3191425 DOI: 10.1136/bmjopen-2011-000133] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES To determine whether polymorphisms at codon 487 (*1, GAA=Glu; *2, AAA=Lys) of mitochondrial aldehyde dehydrogenase 2 (ALDH2) influence nitroglycerine (glyceryl trinitrate (GTN))-induced vasodilation, and whether GTN or isosorbide dinitrate (ISDN) is a more effective antianginal agent in each ALDH2 genotype. DESIGN A randomised, open-label, crossover trial with 117 healthy Japanese (20-39 years) whose genotypes were determined (*1/*1, n=47; *1/*2, n=48; *2/*2, n=22) was performed at Kyushu University Hospital, Fukuoka, Japan. Participants were randomly assigned to treatment: sublingual spray of GTN (0.3 mg) or ISDN (1.25 mg). After ≥ 1 week, measurements were repeated using the other drug. The main outcome measures were the maximal rate of increase in the brachial artery diameter determined by ultrasonography, the time required to attain maximal dilation (T(max)) and the time required to attain 90% maximal dilation (T(0.9)). RESULTS The maximal artery diameter increase in response to GTN or ISDN did not differ among genotypes. However, GTN T(max) was significantly longer for *2/*2 (299.7 s, 269.0-330.4) than *1/*1 (254.7 s, 238.6-273.4; p=0.0190). GTN T(0.9) was significantly longer in the *1/*2 (206.1 s, 191.7-219.3) and *2/*2 (231.4 s, 211.8-251.0) genotypes than *1/*1 (174.9 s, 161.5-188.3; p=0.0068, p<0.0001, respectively). In contrast, the time-course of ISDN-induced vasodilation did not differ among genotypes. GTN T(max) and T(0.9) among *1 allele carriers (*1/*1 and *1/*2) were significantly shorter than those of ISDN, whereas the time course of GTN and ISDN vasodilation did not differ among participants carrying *2/*2. CONCLUSIONS The amplitude of GTN-induced vasodilation was not influenced by the ALDH2 genotype, but the response was significantly delayed in *2 allele carriers, especially *2/*2. GTN dilated the artery more quickly than ISDN in *1/*1 and *1/*2, but not in *2/*2. Trial registration number UMIN000001492 (UMIN-CTR database).
Collapse
Affiliation(s)
- Satoko Sakata
- Department of Medicine and Clinical Science, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuya Yoshihara
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hisatomi Arima
- George Institute for Global Health, The University of Sydney, Sydney, Australia
| | - Fumie Shiraishi
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideyuki Oniki
- Department of Medicine and Clinical Science, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumi Takahashi-Yanaga
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Matsumura
- Department of Medicine and Clinical Science, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiyuki Sasaguri
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|