1
|
Bubak MP, Davidyan A, O'Reilly CL, Mondal SA, Keast J, Doidge SM, Borowik AK, Taylor ME, Volovičeva E, Kinter MT, Britton SL, Koch LG, Stout MB, Lewis TL, Miller BF. Metformin treatment results in distinctive skeletal muscle mitochondrial remodeling in rats with different intrinsic aerobic capacities. Aging Cell 2024; 23:e14235. [PMID: 38923664 PMCID: PMC11488331 DOI: 10.1111/acel.14235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
The rationale for the use of metformin as a treatment to slow aging was largely based on data collected from metabolically unhealthy individuals. For healthspan extension metformin will also be used in periods of good health. To understand the potential context specificity of metformin treatment on skeletal muscle, we used a rat model (high-capacity runner/low-capacity runner [HCR/LCR]) with a divide in intrinsic aerobic capacity. Outcomes of metformin treatment differed based on baseline intrinsic mitochondrial function, oxidative capacity of the muscle (gastroc vs soleus), and the mitochondrial population (intermyofibrillar vs. subsarcolemmal). Metformin caused lower ADP-stimulated respiration in LCRs, with less of a change in HCRs. However, a washout of metformin resulted in an unexpected doubling of respiratory capacity in HCRs. These improvements in respiratory capacity were accompanied by mitochondrial remodeling that included increases in protein synthesis and changes in morphology. Our findings raise questions about whether the positive findings of metformin treatment are broadly applicable.
Collapse
Affiliation(s)
- Matthew P. Bubak
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Arik Davidyan
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Department of Biological SciencesCalifornia State University SacramentoSacramentoCaliforniaUSA
| | - Colleen L. O'Reilly
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Samim A. Mondal
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Jordan Keast
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Stephen M. Doidge
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Agnieszka K. Borowik
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Michael E. Taylor
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Evelina Volovičeva
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Michael T. Kinter
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Steven L. Britton
- Department of AnesthesiologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Lauren G. Koch
- Department of Physiology and Pharmacology, College of Medicine and Life SciencesThe University of ToledoToledoOhioUSA
| | - Michael B. Stout
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Tommy L. Lewis
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Benjamin F. Miller
- Aging and Metabolism Research ProgramThe Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- The Oklahoma VA Medical CenterOklahoma CityOklahomaUSA
| |
Collapse
|
2
|
Bubak MP, Davidyan A, O'Reilly CL, Mondal SA, Keast J, Doidge SM, Borowik AK, Taylor ME, Volovičeva E, Kinter MT, Britton SL, Koch LG, Stout MB, Lewis TL, Miller BF. Metformin treatment results in distinctive skeletal muscle mitochondrial remodeling in rats with different intrinsic aerobic capacities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582957. [PMID: 38496648 PMCID: PMC10942369 DOI: 10.1101/2024.03.01.582957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The rationale for the use of metformin as a treatment to slow aging was largely based on data collected from metabolically unhealthy individuals. For healthspan extension metformin will also be used in periods of good health. To understand potential context specificity of metformin treatment on skeletal muscle, we used a rat model (HCR/LCR) with a divide in intrinsic aerobic capacity. Outcomes of metformin treatment differed based on baseline intrinsic mitochondrial function, oxidative capacity of the muscle (gastroc vs soleus), and the mitochondrial population (IMF vs SS). Metformin caused lower ADP-stimulated respiration in LCRs, with less of a change in HCRs. However, a washout of metformin resulted in an unexpected doubling of respiratory capacity in HCRs. These improvements in respiratory capacity were accompanied by mitochondrial remodeling that included increases in protein synthesis and changes in morphology. Our findings raise questions about whether the positive findings of metformin treatment are broadly applicable.
Collapse
|
3
|
Christensen RAG, Knight JA, Sutradhar R, Brooks JD. Association between estimated cardiorespiratory fitness and breast cancer: a prospective cohort study. Br J Sports Med 2023; 57:1238-1247. [PMID: 37336634 DOI: 10.1136/bjsports-2021-104870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVE To examine the association between cardiorespiratory fitness (CRF) and the risk of breast cancer in postmenopausal women. METHODS This study used data from 17 840 cancer-free postmenopausal women with a CRF assessment from the UK Biobank. High estimated CRF (eCRF) was categorised as being >80th percentile within 10-year age bands. Fine and Gray regression was used to examine the association between eCRF and breast cancer risk, accounting for both non-breast cancer diagnoses and all-cause mortality as competing risks. Age was used as the time scale. Several different models were produced, including those adjusting for known breast cancer risk factors, and stratified by measures of body fat (body mass index and per cent body fat). RESULTS Over a median follow-up of 11.0 years there were 529 cases of invasive breast cancer, 1623 cases of non-breast cancer disease and 241 deaths. With adjustment for breast cancer risk factors, high eCRF was associated with a 24% (subdistribution HR (SDHR) 0.76, 95% CI 0.60 to 0.97) lower risk of breast cancer. When stratified by measures of body fat, we found evidence of effect measure modification. Mainly, having high eCRF was only associated with a lower risk of breast cancer among those classified as having overweight/obesity (SDHR 0.33, 95% CI 0.11 to 1.01) or percentage body fat above the 1st quintile (SDHR 0.65, 95% CI 0.45 to 0.94). CONCLUSION Having higher CRF may be a protective factor against breast cancer in postmenopausal women but only for women with elevated body fat.
Collapse
Affiliation(s)
- Rebecca A G Christensen
- Public Health Sciences, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Julia A Knight
- Public Health Sciences, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Rinku Sutradhar
- Public Health Sciences, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Cancer Research Program, ICES, Toronto, Ontario, Canada
- Institue of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer D Brooks
- Public Health Sciences, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Mäkinen E, Wikgren J, Pekkala S, Koch LG, Britton SL, Nokia MS, Lensu S. Genotype determining aerobic exercise capacity associates with behavioral plasticity in middle-aged rats. Behav Brain Res 2023; 443:114331. [PMID: 36774999 DOI: 10.1016/j.bbr.2023.114331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
Good aerobic fitness associates positively with cognitive performance and brain health and conversely, low aerobic fitness predisposes to neurodegenerative diseases. To study how genotype together with exercise, started at older age, affects brain and behavior, we utilized rats that differ in inherited aerobic fitness. Rats bred for Low Capacity for Running (LCR) are shown to display less synaptic plasticity and more inflammation in the hippocampus and perform worse than rats bred for a High Capacity for Running (HCR) in tasks requiring flexible cognition. Here we used middle-aged (∼ 16 months) HCR and LCR rats to study how genotype and sex associate with anxiety and neural information filtering, termed sensory gating. Further, we assessed how inherited aerobic capacity associates with hippocampus-dependent learning, measured with contextual fear conditioning task. In females, we also investigated the effects of voluntary wheel running (5 weeks) on these characteristics. Our results indicate that independent of sex or voluntary running, HCR rats were more anxious in open-field tasks, exhibited lower sensory gating and learned more efficiently in contextual fear conditioning task than LCR rats. Voluntary running did not markedly affect innate behavior but slightly decreased the differences between female LCR and HCR rats in fear learning. In conclusion, inherited fitness seems to determine cognitive and behavioral traits independent of sex. Although the traits proved to be rather resistant to change at adult age, learning was slightly improved following exercise in LCR females, prone to obesity and poor fitness.
Collapse
Affiliation(s)
- Elina Mäkinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Jan Wikgren
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, OH, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Miriam S Nokia
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Sanna Lensu
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
5
|
Heemstra LA, Koch LG, Britton SL, Novak CM. Altered skeletal muscle sarco-endoplasmic reticulum Ca 2+-ATPase calcium transport efficiency after a thermogenic stimulus. Am J Physiol Regul Integr Comp Physiol 2022; 323:R628-R637. [PMID: 36094445 PMCID: PMC9602703 DOI: 10.1152/ajpregu.00173.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 01/22/2023]
Abstract
Exposure to predator threat induces a rapid and robust increase in skeletal muscle thermogenesis in rats. The central nervous system relays threat information to skeletal muscle through activation of the sympathetic nervous system, but muscle mechanisms mediating this thermogenesis remain unidentified. Given the relevance of sarcolipin-mediated futile calcium cycling through the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) pump to mammalian muscle nonshivering thermogenesis, we hypothesized that this plays a role in contextually induced muscle thermogenesis as well. This was assessed by measuring enzymatic activity of SERCA and sarcoplasmic reticulum Ca2+ transport, where the apparent coupling ratio (Ca2+ uptake rate divided by ATPase activity rate at a standard Ca2+ concentration) was predicted to decrease in association with muscle thermogenesis. Sprague-Dawley rats exposed to predator (ferret) odor (PO) showed a rapid decrease in the apparent coupling ratio in the soleus muscle, indicating SERCA uncoupling compared with control-odor-exposed rats. A rat model of high aerobic fitness and elevated muscle thermogenesis also demonstrated soleus muscle SERCA uncoupling relative to their obesity-prone, low-fitness counterparts. Both the high- and low-aerobic fitness rats showed soleus SERCA uncoupling with exposure to PO. Finally, no increase in sarcolipin expression in soleus muscle was detected with PO exposure. This dataset implicates muscle uncoupling of SERCA Ca2+ transport and ATP hydrolysis, likely through altered SERCA or sarcolipin function outside of translational regulation, as one contributor to the muscle thermogenesis provoked by exposure to predator threat. These data support the involvement of SERCA uncoupling in both muscle thermogenic induction and enhanced aerobic capacity.
Collapse
Affiliation(s)
- Lydia A Heemstra
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Colleen M Novak
- Department of Biological Sciences, Kent State University, Kent, Ohio
- School of Biomedical Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
6
|
Hu A, Zou H, Chen B, Zhong J. Posttranslational modifications in diabetes: Mechanisms and functions. Rev Endocr Metab Disord 2022; 23:1011-1033. [PMID: 35697961 DOI: 10.1007/s11154-022-09740-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 12/15/2022]
Abstract
As one of the most widespread chronic diseases, diabetes and its accompanying complications affect approximately one tenth of individuals worldwide and represent a growing cause of morbidity and mortality. Accumulating evidence has proven that the process of diabetes is complex and interactive, involving various cellular responses and signaling cascades by posttranslational modifications (PTMs). Therefore, understanding the mechanisms and functions of PTMs in regulatory networks has fundamental importance for understanding the prediction, onset, diagnosis, progression, and treatment of diabetes. In this review, we offer a holistic summary and illustration of the crosstalk between PTMs and diabetes, including both types 1 and 2. Meanwhile, we discuss the potential use of PTMs in diabetes treatment and provide a prospective direction for deeply understanding the metabolic diseases.
Collapse
Affiliation(s)
- Ang Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Haohong Zou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Bin Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
7
|
Lee MC, Hsu YJ, Sung HC, Wen YT, Wei L, Huang CC. Low Aerobic Capacity Accelerates Lipid Accumulation and Metabolic Abnormalities Caused by High-Fat Diet-Induced Obesity in Postpartum Mice. Nutrients 2022; 14:nu14183746. [PMID: 36145123 PMCID: PMC9502809 DOI: 10.3390/nu14183746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Women during pregnancy and postpartum show high rates of obesity and metabolic diseases, especially women with excessive caloric intake. In the past, it was proved that individuals with high intrinsic aerobic exercise capacities showed higher lipid metabolism and lower fat production than those with low intrinsic aerobic exercise capacities. The purpose of this study was to determine whether mice with the low-fitness phenotype (LAEC) were more likely to develop metabolic abnormalities and obesity under dietary induction after delivery, and if mice with a high-fitness phenotype (HAEC) had a protective mechanism. After parturition and weaning, postpartum Institute of Cancer Research (ICR) mice received dietary induction for 12 weeks and were divided into four groups (n = 8 per group): high-exercise capacity postpartum mice with a normal chow diet (HAEC-ND); high-exercise capacity postpartum mice with a high-fat diet (HAEC-HFD); low-exercise capacity postpartum mice with a normal chow diet (LAEC-ND); and low-exercise capacity postpartum mice with a high-fat diet (LAEC-HFD). Obesity caused by a high-fat diet led to decreased exercise performance (p < 0.05). Although there were significant differences in body posture under congenital conditions, the LAEC mice gained more weight and body fat after high-fat-diet intake (p < 0.05). Compared with HAEC-HFD, LAEC-HFD significantly increased blood lipids, such as total cholesterol (TC), triacylglycerol (TG), low-density lipoprotein (LDL) and other parameters (p < 0.05), and the content of TG in the liver, as well as inducing poor glucose tolerance (p < 0.05). In addition, after HFD intake, excessive energy significantly increased glycogen storage (p < 0.05), but the LAEC mice showed significantly lower muscle glycogen storage (p < 0.05). In conclusion, although we observed significant differences in intrinsic exercise capacity, and body posture and metabolic ability were also different, high-fat-diet intake caused weight gain and a risk of metabolic disorders, especially in postpartum low-fitness mice. However, HAEC mice still showed better lipid metabolism and protection mechanisms. Conversely, LAEC mice might accumulate more fat and develop metabolic diseases compared with their normal rodent chow diet (ND) control counterparts.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan
| | - Hsin-Ching Sung
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Ya-Ting Wen
- Division of Neurosurgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 116081, Taiwan
| | - Li Wei
- Division of Neurosurgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 116081, Taiwan
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei 110301, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110301, Taiwan
- Correspondence: (L.W.); (C.-C.H.); Tel.: +886-2-27361661 (ext. 6579) (L.W.); +886-3-328-3201 (ext. 2619) (C.-C.H.)
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan
- Correspondence: (L.W.); (C.-C.H.); Tel.: +886-2-27361661 (ext. 6579) (L.W.); +886-3-328-3201 (ext. 2619) (C.-C.H.)
| |
Collapse
|
8
|
Thierbach M, Heyne E, Schwarzer M, Koch LG, Britton SL, Wildemann B. Age and Intrinsic Fitness Affect the Female Rotator Cuff Tendon Tissue. Biomedicines 2022; 10:biomedicines10020509. [PMID: 35203717 PMCID: PMC8962357 DOI: 10.3390/biomedicines10020509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
The risk of the development of tendon disorders or ruptures increases with age, but it is unclear whether intrinsic fitness during lifetime might also affect tendon properties. To investigate this, a contrasting rat model of high-capacity runners (HCR with high intrinsic fitness) and low-capacity runners (LCR with low intrinsic fitness) was employed. Histological and molecular changes in rotator cuff (RC) tendons from 10 weeks old (young; HCR-10 and LCR-10) and 100 weeks old (old; HCR-100 and LCR-100) female rats were investigated. Age-dependent changes of RC tendons observed in HCR and LCR were increase of weight, decrease of tenocytes and RNA content, reduction of the wavy pattern of collagen and elastic fibers, repressed expression of Col1a1, Eln, Postn, Tnmd, Tgfb3 and Egr1 and reduction of the Col1:Col3 and Col1:Eln ratio. The LCR rats showed less physical activity, increased body weight, signs of metabolic disease and a reduced life expectancy. Their RC tendons revealed increased weight (more than age-dependent) and enlargement of the tenocyte nuclei (consistent with degenerative tendons). Low intrinsic fitness led to repressed expression of a further nine genes (Col3a1, Fbn1, Dcn, Tnc, Scx, Mkx, Bmp1, Tgfb1, Esr1) as well as the rise of the Col1:Col3 and Col1:Eln ratios (related to the lesser expression of Col3a1 and Eln). The intrinsic fitness influences the female RC tendons at least as much as age. Lower intrinsic fitness accelerates aging of RC tendons and leads to further impairment; this could result in decreased healing potential and elasticity and increased stiffness.
Collapse
Affiliation(s)
- Manuela Thierbach
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany;
| | - Estelle Heyne
- Department of Cardiothoracic Surgery, Jena University Hospital, 07747 Jena, Germany; (E.H.); (M.S.)
| | - Michael Schwarzer
- Department of Cardiothoracic Surgery, Jena University Hospital, 07747 Jena, Germany; (E.H.); (M.S.)
| | - Lauren G. Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH 43606, USA;
| | - Steven L. Britton
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany;
- Correspondence:
| |
Collapse
|
9
|
Alsahly MB, Zakari MO, Koch LG, Britton S, Katwa LC, Lust RM. Influence of Intrinsic Aerobic Exercise Capacity and Sex on Cardiac Injury Following Acute Myocardial Ischemia and Reperfusion. Front Cardiovasc Med 2021; 8:751864. [PMID: 34901212 PMCID: PMC8661003 DOI: 10.3389/fcvm.2021.751864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: Previous reports have suggested that active exercise aside, intrinsic aerobic running capacity (Low = LCR, high = HCR) in otherwise sedentary animals may influence several cardiovascular health-related indicators. Relative to the HCR phenotype, the LCR phenotype is characterized by decreased endothelial reactivity, increased susceptibility to reperfusion-induced arrhythmias following short, non-infarction ischemia, and increased diet-induced insulin resistance. More broadly, the LCR phenotype has come to be characterized as a "disease prone" model, with the HCRs as "disease resistant." Whether these effects extend to injury outcomes in an overt infarction or whether the effects are gender specific is not known. This study was designed to determine whether HCR/LCR phenotypic differences would be evident in injury responses to acute myocardial ischemia-reperfusion injury (AIR), measured as infarct size and to determine whether sex differences in infarction size were preserved with phenotypic selection. Methods: Regional myocardial AIR was induced in vivo by either 15 or 30 min ligation of the left anterior descending coronary artery, followed by 2 h of reperfusion. Global ischemia was induced in isolated hearts ex vivo using a Langendorff perfusion system and cessation of perfusion for either 15 or 30 min followed by 2 h of reperfusion. Infarct size was determined using 2, 3, 5-triphenyltetrazolium chloride (TTC) staining, and normalized to area at risk in the regional model, or whole heart in the global model. Portions of the tissue were paraffin embedded for H&E staining and histology analysis. Results: Phenotype dependent differences in infarct size were seen with 15 min occlusion/2 h reperfusion (LCR > HCR, p < 0.05) in both regional and global models. In both models, longer occlusion times (30 min/2 h) produced significantly larger infarctions in both phenotypes, but phenotypic differences were no longer present (LCR vs. HCR, p = n.s.). Sex differences in infarct size were present in each phenotype (LCR male > LCR female, p < 0.05; HCR male > HCR female, p < 0.05 regardless of length of occlusion, or ischemia model. Conclusions: There is cardioprotection afforded by high intrinsic aerobic capacity, but it is not infinite/continuous, and may be overcome with sufficient injury burden. Phenotypic selection based on endurance running capacity preserved sex differences in response to both short and longer term coronary occlusive challenges. Outcomes could not be associated with differences in system characteristics such as circulating inflammatory mediators or autonomic nervous system influences, as similar phenotypic injury patterns were seen in vivo, and in isolated crystalloid perfused heart ex vivo.
Collapse
Affiliation(s)
- Musaad B Alsahly
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States.,Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Madaniah O Zakari
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States.,Department of Physiology, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Lauren G Koch
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| | - Steven Britton
- Departments of Anesthesiology and Molecular and Integrative Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Laxmansa C Katwa
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Robert M Lust
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States.,East Carolina Diabetes and Obesity Center, East Carolina University, Greenville, NC, United States
| |
Collapse
|
10
|
Granier E, Zakari MO, Alsahly MB, Koch LG, Britton S, Katwa LC, Lust RM. Low Intrinsic Aerobic Capacity Limits Recovery Response to Hindlimb Ischemia. Front Cardiovasc Med 2021; 8:752955. [PMID: 34881306 PMCID: PMC8645587 DOI: 10.3389/fcvm.2021.752955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction: In this study, we determined the influence of intrinsic exercise capacity on the vascular adaptive responses to hind limb ischemia. High Capacity Running, HCR; Low Capacity Running, LCR, rats were used to assess intrinsic aerobic capacity effects on adaptive responses to ischemia. Methods: Muscle samples from both ischemic and non-ischemic limb in both strains were compared, histologically for the muscle-capillary relationship, and functionally using microspheres to track blood flow and muscle stimulation to test fatigability. PCR was used to identify the differences in gene expression between the phenotypes following occlusive ischemia. Results: Prior to ligation, there were not significant differences between the phenotypes in the exhaustion time with high frequency pacing. Following ligation, LCR decreased significantly in the exhaustion time compare with HCRs (437 ± 47 vs. 824 ± 56, p < 0.001). The immediate decrease in flow was significantly more severe in LCRs than HCRs (52.5 vs. 37.8%, p < 0.001). VEGF, eNOS, and ANG2 (but not ANG1) gene expression were decreased in LCRs vs. HCRs before occlusion, and increased significantly in LCRs 14D after occlusion, but not in HCRs. LCR capillary density (CD) was significantly lower at all time points after occlusion (LCR 7D = 564.76 ± 40.5, LCR 14D = 507.48 ± 54.2, both p < 0.05 vs. HCR for respective time point). NCAF increased significantly in HCR and LCR in response to ischemia. Summary: These results suggest that LCR confers increased risk for ischemic injury and is subject to delayed and less effective adaptive response to ischemic stress.
Collapse
Affiliation(s)
- Elizabeth Granier
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States.,Department of Biological Science, St. Louis Community College-Meremac, St. Louis, MO, United States
| | - Madaniah O Zakari
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States.,Department of Physiology, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Musaad B Alsahly
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States.,Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Lauren G Koch
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| | - Steven Britton
- Departments of Anesthesiology and Molecular and Integrative Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Laxmansa C Katwa
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Robert M Lust
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States.,East Carolina Diabetes and Obesity Center, East Carolina University, Greenville, NC, United States
| |
Collapse
|
11
|
Zhuang H, Karvinen S, Törmäkangas T, Zhang X, Ojanen X, Velagapudi V, Alen M, Britton SL, Koch LG, Kainulainen H, Cheng S, Wiklund P. Interactive effects of aging and aerobic capacity on energy metabolism-related metabolites of serum, skeletal muscle, and white adipose tissue. GeroScience 2021; 43:2679-2691. [PMID: 34089174 PMCID: PMC8602622 DOI: 10.1007/s11357-021-00387-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 05/17/2021] [Indexed: 12/25/2022] Open
Abstract
Aerobic capacity is a strong predictor of longevity. With aging, aerobic capacity decreases concomitantly with changes in whole body metabolism leading to increased disease risk. To address the role of aerobic capacity, aging, and their interaction on metabolism, we utilized rat models selectively bred for low and high intrinsic aerobic capacity (LCRs/HCRs) and compared the metabolomics of serum, muscle, and white adipose tissue (WAT) at two time points: Young rats were sacrificed at 9 months of age, and old rats were sacrificed at 21 months of age. Targeted and semi-quantitative metabolomics analysis was performed on the ultra-pressure liquid chromatography tandem mass spectrometry (UPLC-MS) platform. The effects of aerobic capacity, aging, and their interaction were studied via regression analysis. Our results showed that high aerobic capacity is associated with an accumulation of isovalerylcarnitine in muscle and serum at rest, which is likely due to more efficient leucine catabolism in muscle. With aging, several amino acids were downregulated in muscle, indicating more efficient amino acid metabolism, whereas in WAT less efficient amino acid metabolism and decreased mitochondrial β-oxidation were observed. Our results further revealed that high aerobic capacity and aging interactively affect lipid metabolism in muscle and WAT, possibly combating unfavorable aging-related changes in whole body metabolism. Our results highlight the significant role of WAT metabolism for healthy aging.
Collapse
Affiliation(s)
- Haihui Zhuang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Exercise Translational Medicine Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Sira Karvinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Timo Törmäkangas
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Xiaobo Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Exercise Translational Medicine Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowei Ojanen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Markku Alen
- Department of Medical Rehabilitation, Oulu University Hospital, Oulu, Finland
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Heikki Kainulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Sulin Cheng
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Exercise Translational Medicine Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Petri Wiklund
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Exercise Translational Medicine Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Huawei Helsinki Research Center, Huawei Technologies Oy (Finland) Co. Ltd, Helsinki, Finland
| |
Collapse
|
12
|
Alsahly MB, Zakari MO, Koch LG, Britton S, Katwa LC, Fisher-Wellman K, Lust RM. Augmented Cardiac Mitochondrial Capacity in High Capacity Aerobic Running "Disease-Resistant" Phenotype at Rest Is Lost Following Ischemia Reperfusion. Front Cardiovasc Med 2021; 8:752640. [PMID: 34805308 PMCID: PMC8595288 DOI: 10.3389/fcvm.2021.752640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Rationale: Regular active exercise is considered therapeutic for cardiovascular disease, in part by increasing mitochondrial respiratory capacity, but a significant amount of exercise capacity is determined genetically. Animal models, demonstrating either high capacity aerobic running (HCR) or low capacity aerobic running (LCR) phenotypes, have been developed to study the intrinsic contribution, with HCR rats subsequently characterized as "disease resistant" and the LCRs as "disease prone." Enhanced cardioprotection in HCRs has been variable and mutifactoral, but likely includes a metabolic component. These studies were conducted to determine the influence of intrinsic aerobic phenotype on cardiac mitochondrial function before and after ischemia and reperfusion. Methods: A total of 34 HCR and LCR rats were obtained from the parent colony at the University of Toledo, housed under sedentary conditions, and fed normal chow. LCR and HCR animals were randomly assigned to either control or ischemia-reperfusion (IR). On each study day, one HCR/LCR pair was anesthetized, and hearts were rapidly excised. In IR animals, the hearts were immediately flushed with iced hyperkalemic, hyperosmotic, cardioplegia solution, and subjected to global hypothermic ischemic arrest (80 min). Following the arrest, the hearts underwent warm reperfusion (120 min) using a Langendorff perfusion system. Following reperfusion, the heart was weighed and the left ventricle (LV) was isolated. A midventricular ring was obtained to estimate infarction size [triphenyltetrazolium chloride (TTC)] and part of the remaining tissue (~150 mg) was transferred to a homogenation buffer on ice. Isolated mitochondria (MITO) samples were prepared and used to determine respiratory capacity under different metabolic conditions. In control animals, MITO were obtained and prepared similarly immediately following anesthesia and heart removal, but without IR. Results: In the control rats, both resting and maximally stimulated respiratory rates were higher (32 and 40%, respectively; p < 0.05) in HCR mitochondria compared to LCR. After IR, resting MITO respiratory rates were decreased to about 10% of control in both strains, and the augmented capacity in HCRs was absent. Maximally stimulated rates also were decreased more than 50% from control and were no longer different between phenotypes. Ca++ retention capacity and infarct size were not significantly different between HCR and LCR (49.2 ± 5.6 vs. 53.7 ± 4.9%), nor was average coronary flow during reperfusion or arrhythmogenesis. There was a significant loss of mitochondria following IR, which was coupled with decreased function in the remaining mitochondria in both strains. Conclusion: Cardiac mitochondrial capacity from HCR was significantly higher than LCR in the controls under each condition. After IR insult, the cardiac mitochondrial respiratory rates were similar between phenotypes, as was Ca++ retention capacity, infarct size, and arrhythmogenicity, despite the increased mitochondrial capacity in the HCRs before ischemia. Relatively, the loss of respiratory capacity was actually greater in HCR than LCR. These data could suggest limits in the extent to which the HCR phenotype might be "protective" against acute tissue stressors. The extent to which any of these deficits could be "rescued" by adding an active exercise component to the intrinsic phenotype is unknown.
Collapse
Affiliation(s)
- Musaad B. Alsahly
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- East Carolina Diabetes and Obesity Center, East Carolina University, Greenville, NC, United States
| | - Madaniah O. Zakari
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Lauren G. Koch
- Department of Physiology, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Steven Britton
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| | - Laxmansa C. Katwa
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Kelsey Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Departments of Anesthesiology and Molecular and Integrative Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Robert M. Lust
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Departments of Anesthesiology and Molecular and Integrative Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Rats bred for low intrinsic aerobic exercise capacity link obesity with brain inflammation and reduced structural plasticity of the hippocampus. Brain Behav Immun 2021; 97:250-259. [PMID: 34224822 DOI: 10.1016/j.bbi.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Increasing evidence shows obesity and poor metabolic health are associated with cognitive deficits, but the mechanistic connections have yet to be resolved. We studied rats selectively bred for low and high intrinsic aerobic capacity in order to test the association between low physical fitness, a genetic predisposition for obesity, and brain health. We hypothesized that low-capacity runner (LCR) rats with concurrently greater levels of adiposity would have increased hippocampal inflammation and reduced plasticity compared to the more physically fit high-capacity runner (HCR) rats. METHODS We examined markers for inflammation and brain plasticity in the hippocampi of LCR rats and compared them to HCR rats. The effect of age was determined by studying the rats at a young age (8 weeks) and later in life (40 weeks). We used western blots and immunohistochemistry to quantify the expression of target proteins. RESULTS Our study showed that the number of adult-born new neurons in the hippocampus was significantly lower in LCR rats than it was in HCR rats already at a young age and that the difference became more pronounced with age. The expression of synaptic proteins was higher in young animals relative to older ones. Brain inflammation tended to be higher in LCR rats than it was in the HCR rats, and more prominent in older rats than in young ones. CONCLUSION Our study is the first to demonstrate that low intrinsic aerobic fitness that is associated with obesity and poor metabolic health is also linked with reduced hippocampal structural plasticity at a young age. Our results also suggest that inflammation of the brain could be one factor mediating the link between obesity and poor cognitive performance.
Collapse
|
14
|
Schwarzer M, Molis A, Schenkl C, Schrepper A, Britton SL, Koch LG, Doenst T. Genetically determined exercise capacity affects systemic glucose response to insulin in rats. Physiol Genomics 2021; 53:395-405. [PMID: 34297615 DOI: 10.1152/physiolgenomics.00014.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Aerobic exercise capacity is inversely related to morbidity and mortality as well as to insulin resistance. However, exercising in patients has led to conflicting results, presumably because aerobic exercise capacity consists of intrinsic (genetically determined) and extrinsic (environmentally determined) parts. The contribution of both parts to insulin sensitivity is also not clear. We investigated sedentary and exercised (aerobic interval training) high (HCR) and low capacity runners (LCR) differing in their genetically determined aerobic exercise capacity to determine the contribution of both parts to insulin sensitivity. METHODS AND RESULTS LCR and HCR differed in their untrained exercise capacity and body weight. Sedentary LCR displayed a diabetic phenotype with higher random glucose, lower glucose infusion rate during hyperinsulinemic euglycemic clamping than HCR. Echocardiography showed equal morphological and functional parameters and no change with exercise. Four weeks of exercise caused significant improvements in aerobic exercise capacity, which was more pronounced in LCR. However, with respect to glucose use, exercise affected HCR only. In these animals, exercise increased 2-deoxyglucose uptake in gastrocnemius (+58.5 %, p= 0.1) and in epididymal fat (+106 %; p<0.05). Citrate synthase activity also increased in these tissues (gastrocnemius 69 % epididymal fat 63 %). CONCLUSION In our model of HCR and LCR, genetic predisposition for low exercise capacity is associated with impaired insulin sensitivity and impedes exercise-induced improvements in insulin response. Our results suggest that genetic predisposition for low aerobic exercise capacity impairs insulin response, which may not be overcome by exercise.
Collapse
Affiliation(s)
- Michael Schwarzer
- Department of Cardiothoracic Surgery, Jena University Hospital, Jena, Germany
| | - Annika Molis
- Department of Cardiothoracic Surgery, Jena University Hospital, Jena, Germany
| | - Christina Schenkl
- Department of Cardiothoracic Surgery, Jena University Hospital, Jena, Germany
| | - Andrea Schrepper
- Department of Cardiothoracic Surgery, Jena University Hospital, Jena, Germany
| | - Steven L Britton
- Department of Anesthesiology, Department of Molecular and Integrative Physiology, University of Michigan-Ann Arbor, Ann Arbor, Michigan, United States
| | - Lauren Gerard Koch
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States
| | - Torsten Doenst
- Department of Cardiothoracic Surgery, Jena University Hospital, Jena, Germany
| |
Collapse
|
15
|
Mitochondrial health is enhanced in rats with higher vs. lower intrinsic exercise capacity and extended lifespan. NPJ Aging Mech Dis 2021; 7:1. [PMID: 33398019 PMCID: PMC7782588 DOI: 10.1038/s41514-020-00054-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 11/24/2020] [Indexed: 12/03/2022] Open
Abstract
The intrinsic aerobic capacity of an organism is thought to play a role in aging and longevity. Maximal respiratory rate capacity, a metabolic performance measure, is one of the best predictors of cardiovascular- and all-cause mortality. Rats selectively bred for high-(HCR) vs. low-(LCR) intrinsic running-endurance capacity have up to 31% longer lifespan. We found that positive changes in indices of mitochondrial health in cardiomyocytes (respiratory reserve, maximal respiratory capacity, resistance to mitochondrial permeability transition, autophagy/mitophagy, and higher lipids-over-glucose utilization) are uniformly associated with the extended longevity in HCR vs. LCR female rats. Cross-sectional heart metabolomics revealed pathways from lipid metabolism in the heart, which were significantly enriched by a select group of strain-dependent metabolites, consistent with enhanced lipids utilization by HCR cardiomyocytes. Heart–liver–serum metabolomics further revealed shunting of lipidic substrates between the liver and heart via serum during aging. Thus, mitochondrial health in cardiomyocytes is associated with extended longevity in rats with higher intrinsic exercise capacity and, probably, these findings can be translated to other populations as predictors of outcomes of health and survival.
Collapse
|
16
|
LI RONGSONG, ADAMI ALESSANDRA, CHANG CHIHCHIANG, TSENG CHIHONG, HSIAI TZUNGK, ROSSITER HARRYB. Serum Acylglycerols Inversely Associate with Muscle Oxidative Capacity in Severe COPD. Med Sci Sports Exerc 2021; 53:10-18. [PMID: 32694368 PMCID: PMC7737871 DOI: 10.1249/mss.0000000000002441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Chronic obstructive pulmonary disease (COPD) is associated with altered metabolism and body composition that accompany poor outcomes. We aimed to determine whether metabolic derangements in COPD are associated with skeletal muscle deconditioning and/or physical inactivity, independent of pulmonary obstruction. METHODS We characterized serum metabolites associated with muscle oxidative capacity or physical activity in 44 COPD patients (forced expiratory volume in 1 s [FEV1] = 61% ± 4% predicted) and 63 current and former smokers with normal spirometry (CON) (FEV1 = 93% ± 2% predicted). Medial gastrocnemius oxidative capacity was assessed at rest from the recovery rate constant (k) of muscle oxygen consumption using near-infrared spectroscopy. Step counts and physical activity (average vector magnitude units [VMU] per minute) were measured over 5-7 d using triaxial accelerometry. Untargeted prime and lipid metabolites were measured using liquid chromatography and mass spectrometry. RESULTS Muscle k (1.12 ± 0.05 vs 1.68 ± 0.06 min, P < 0.0001, d = 1.58) and VMU per minute (170 ± 26 vs 450 ± 50 VMU per minute, P = 0.004, d = 1.04) were lower in severe COPD (FEV1 < 50% predicted, n = 14-16) compared with CON (n = 56-60). A total of 129 prime metabolites and 470 lipids with known identity were quantified. Using sex as a covariate, lipidomics revealed 24 differentially expressed lipids (19 sphingomyelins) in COPD, consequent to a diminished sex difference of sphingomyelins in COPD (false discovery rate [FDR] < 0.05, n = 44). Total, and some individual, fatty acid concentrations were greater in severe COPD than CON (FDR < 0.05, n = 16, d = 0.56-1.02). After adjusting for FEV1% predicted, we observed that grouped diacylglycerides (ρ = -0.745, FDR = 0.03) and triacylglycerides (ρ = -0.811, FDR = 0.01) were negatively associated with muscle oxidative capacity, but not physical activity, in severe COPD (n = 14). CONCLUSION Strong negative associations relate impaired mitochondrial function to the accumulation of serum aclyglycerides in severe COPD.
Collapse
Affiliation(s)
- RONGSONG LI
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong, CHINA
| | - ALESSANDRA ADAMI
- Department of Kinesiology, University of Rhode Island, Kingston, RI
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor–UCLA Medical Center, Torrance, CA
| | - CHIH-CHIANG CHANG
- Department of Medicine, West Los Angeles VA Healthcare System, University of California, Los Angeles, CA
| | - CHI-HONG TSENG
- Department of Medicine, West Los Angeles VA Healthcare System, University of California, Los Angeles, CA
| | - TZUNG K. HSIAI
- Department of Medicine, West Los Angeles VA Healthcare System, University of California, Los Angeles, CA
| | - HARRY B. ROSSITER
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor–UCLA Medical Center, Torrance, CA
- Faculty of Biological Sciences, University of Leeds, Leeds, UNITED KINGDOM
| |
Collapse
|
17
|
Smyers ME, Koch LG, Britton SL, Wagner JG, Novak CM. Enhanced weight and fat loss from long-term intermittent fasting in obesity-prone, low-fitness rats. Physiol Behav 2020; 230:113280. [PMID: 33285179 DOI: 10.1016/j.physbeh.2020.113280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/10/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intermittent fasting (IF) strategies have emerged as viable alternatives to traditional calorie-restricted diets. A key predictor of metabolic health and response to diet is cardiometabolic fitness, including intrinsic aerobic capacity. In a contrasting rat model of aerobic capacity-high- and low-capacity runners (HCR, LCR)-we found that the lean and physically active HCR were also more responsive to a standard calorie-restricted diet. Here, we assessed the ability of IF to induce weight loss on a background of high and low aerobic fitness accompanied by different levels of daily physical activity. METHODS Female HCR and LCR (8 per line) were subjected to IF (alternate-day fasting) for 14 weeks. Outcomes included changes in body weight, fat and lean mass, daily physical activity, and food and water intake. After initial measurements, IF was continued, and measurements were repeated after one year of IF. RESULTS All rats lost weight with IF, and LCR lost significantly more weight than HCR. This difference was primarily due to differential fat loss; loss of lean mass, on the other hand, was similar between HCR and LCR. Total food intake decreased with IF, and LCR showed lower intake than HCR only during the first 5 weeks of IF. Physical activity was suppressed by long-term IF. Physical activity increased on fed days compared to fasted days, and this pattern was more pronounced in HCR. The differential effects of IF in HCR and LCR persisted after one year of IF, with IF preventing the marked weight gain seen in ad libitum fed LCR during this time. CONCLUSION Weight and fat loss from IF was more pronounced in obesity-prone, low-aerobic capacity LCR, despite the low activity levels seen in these rats. The possibility that aerobic capacity modulates response to IF in human participants remains unexplored.
Collapse
Affiliation(s)
- Mark E Smyers
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, United States.
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614-2598, United States.
| | - Steven L Britton
- Department of Anesthesiology, and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-5622, United States.
| | - Jacob G Wagner
- Department of Biological Sciences, Kent State University, Kent, OH 44242, United States.
| | - Colleen M Novak
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, United States; Department of Biological Sciences, Kent State University, Kent, OH 44242, United States.
| |
Collapse
|
18
|
Mukherjee SD, Koch LG, Britton SL, Novak CM. Aerobic capacity modulates adaptive thermogenesis: Contribution of non-resting energy expenditure. Physiol Behav 2020; 225:113048. [PMID: 32628949 PMCID: PMC7594631 DOI: 10.1016/j.physbeh.2020.113048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/17/2020] [Accepted: 07/02/2020] [Indexed: 11/19/2022]
Abstract
Decreases in energy stores requires negative energy balance where caloric expenditure exceeds energy intake, which can induce adaptive thermogenesis-the reduction of energy expenditure (EE) beyond that accounted for by the weight lost. Adaptive thermogenesis varies between individuals. The component of total daily EE responsible for the interindividual variation in adaptive thermogenesis was investigated in this study, using a rat model that differs in obesity propensity and physical activity. Total daily EE and physical activity were examined before and after 21 days of 50% calorie restriction in male and female rats with lean and obesity-prone phenotypes-rats selectively bred for high and low intrinsic aerobic capacity (HCR and LCR, respectively). Calorie restriction significantly decreased EE more than was predicted by loss of weight and lean mass, demonstrating adaptive thermogenesis. Within sex, HCR and LCR did not significantly differ in resting EE. However, the calorie restriction-induced suppression in non-resting EE, which includes activity EE, was significantly greater in HCR than in LCR; this phenotypic difference was significant for both male and female rats. Calorie restriction also significantly suppressed physical activity levels more in HCR than LCR. When VO2max was assessed in male rats, calorie restriction significantly decreased O2 consumption without significantly affecting running performance (running time, distance), indicating increased energy efficiency. Percent weight loss did not significantly differ between groups. Altogether, these results suggest that individual differences in calorie restriction-induced adaptive thermogenesis may be accounted for by variation in aerobic capacity. Moreover, it is likely that activity EE, not resting or basal metabolism, may explain or predict the variation in individuals' adaptive thermogenesis.
Collapse
Affiliation(s)
- Sromona Dudiki Mukherjee
- Department of Biological Sciences; Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio, United States.
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| | - Steven L Britton
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States; Department of Anesthesiology, and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Colleen M Novak
- Department of Biological Sciences; School of Biomedical Sciences, Kent State University, Kent, Ohio, United States
| |
Collapse
|
19
|
Damschroder D, Richardson K, Cobb T, Wessells R. The effects of genetic background on exercise performance in Drosophila. Fly (Austin) 2020; 14:80-92. [PMID: 33100141 PMCID: PMC7714460 DOI: 10.1080/19336934.2020.1835329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 10/29/2022] Open
Abstract
The use of the Drosophila model for studying the broad beneficial effects of exercise training has grown over the past decade. As work using Drosophila as an exercise model becomes more widespread, the influence of genetic background on performance should be examined in order to better understand its influence on assessments used to quantitatively measure and compare exercise phenotypes. In this article, we review the various methods of exercise training Drosophila, and the performance of different wild-type Drosophila strains on various physiological assessments of exercise response. We conclude by summarizing the performance trends of commonly used strains.
Collapse
Affiliation(s)
- Deena Damschroder
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kristin Richardson
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tyler Cobb
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Robert Wessells
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
20
|
Kelahmetoglu Y, Jannig PR, Cervenka I, Koch LG, Britton SL, Zhou J, Wang H, Robinson MM, Nair KS, Ruas JL. Comparative Analysis of Skeletal Muscle Transcriptional Signatures Associated With Aerobic Exercise Capacity or Response to Training in Humans and Rats. Front Endocrinol (Lausanne) 2020; 11:591476. [PMID: 33193103 PMCID: PMC7649134 DOI: 10.3389/fendo.2020.591476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
Increasing exercise capacity promotes healthy aging and is strongly associated with lower mortality rates. In this study, we analyzed skeletal muscle transcriptomics coupled to exercise performance in humans and rats to dissect the inherent and response components of aerobic exercise capacity. Using rat models selected for intrinsic and acquired aerobic capacity, we determined that the high aerobic capacity muscle transcriptome is associated with pathways for tissue oxygenation and vascularization. Conversely, the low capacity muscle transcriptome indicated immune response and metabolic dysfunction. Low response to training was associated with an inflammatory signature and revealed a potential link to circadian rhythm. Next, we applied bioinformatics tools to predict potential secreted factors (myokines). The predicted secretome profile for exercise capacity highlighted circulatory factors involved in lipid metabolism and the exercise response secretome was associated with extracellular matrix remodelling. Lastly, we utilized human muscle mitochondrial respiration and transcriptomics data to explore molecular mediators of exercise capacity and response across species. Human transcriptome comparison highlighted epigenetic mechanisms linked to exercise capacity and the damage repair for response. Overall, our findings from this cross-species transcriptome analysis of exercise capacity and response establish a foundation for future studies on the mechanisms that link exercise and health.
Collapse
Affiliation(s)
- Yildiz Kelahmetoglu
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska Institute, Stockholm, Sweden
| | - Paulo R. Jannig
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska Institute, Stockholm, Sweden
| | - Igor Cervenka
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska Institute, Stockholm, Sweden
| | - Lauren G. Koch
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Steven L. Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Jiajia Zhou
- Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew M. Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
- Department of Integrative Physiology, Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN, United States
| | - K Sreekumaran Nair
- Department of Integrative Physiology, Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN, United States
| | - Jorge L. Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska Institute, Stockholm, Sweden
- *Correspondence: Jorge L. Ruas,
| |
Collapse
|
21
|
Sujkowski A, Spierer AN, Rajagopalan T, Bazzell B, Safdar M, Imsirovic D, Arking R, Rand DM, Wessells R. Mito-nuclear interactions modify Drosophila exercise performance. Mitochondrion 2019; 47:188-205. [PMID: 30408593 PMCID: PMC7035791 DOI: 10.1016/j.mito.2018.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/19/2018] [Accepted: 11/03/2018] [Indexed: 02/08/2023]
Abstract
Endurance exercise has received increasing attention as a broadly preventative measure against age-related disease and dysfunction. Improvement of mitochondrial quality by enhancement of mitochondrial turnover is thought to be among the important molecular mechanisms underpinning the benefits of exercise. Interactions between the mitochondrial and nuclear genomes are important components of the genetic basis for variation in longevity, fitness and the incidence of disease. Here, we examine the effects of replacing the mitochondrial genome (mtDNA) of several Drosophila strains with mtDNA from other strains, or from closely related species, on exercise performance. We find that mitochondria from flies selected for longevity increase the performance of flies from a parental strain. We also find evidence that mitochondria from other strains or species alter exercise performance, with examples of both beneficial and deleterious effects. These findings suggest that both the mitochondrial and nuclear genomes, as well as interactions between the two, contribute significantly to exercise capacity.
Collapse
Affiliation(s)
- Alyson Sujkowski
- Department of Physiology, Wayne State University, Detroit, MI, United States
| | - Adam N Spierer
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| | - Thiviya Rajagopalan
- Department of Physiology, Wayne State University, Detroit, MI, United States
| | - Brian Bazzell
- Department of Physiology, Wayne State University, Detroit, MI, United States
| | - Maryam Safdar
- Department of Physiology, Wayne State University, Detroit, MI, United States
| | - Dinko Imsirovic
- Department of Physiology, Wayne State University, Detroit, MI, United States
| | - Robert Arking
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| | - Robert Wessells
- Department of Physiology, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
22
|
Rabelo PCR, Cordeiro LMS, Aquino NSS, Fonseca BBB, Coimbra CC, Wanner SP, Szawka RE, Soares DD. Rats with higher intrinsic exercise capacities exhibit greater preoptic dopamine levels and greater mechanical and thermoregulatory efficiencies while running. J Appl Physiol (1985) 2019; 126:393-402. [DOI: 10.1152/japplphysiol.00092.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study investigated whether intrinsic exercise capacity affects the changes in thermoregulation, metabolism and central dopamine (DA) induced by treadmill running. Male Wistar rats were subjected to three incremental exercises and ranked as low-performance (LP), standard-performance (SP), and high-performance (HP) rats. In the first experiment, abdominal (TABD) and tail (TTAIL) temperatures were registered in these rats during submaximal exercise (SE) at 60% of maximal speed. Immediately after SE, rats were decapitated and concentrations of DA and 3,4-dihydroxyphenylacetic acid (DOPAC) were determined in the preoptic area (POA). In the second experiment, oxygen consumption was measured and mechanical efficiency (ME) was calculated in these rats during an incremental exercise. HP rats ran for longer periods and were fatigued with higher TABD values, with no difference in TTAIL. Nevertheless, thermoregulatory efficiency was higher in HP rats, compared with other groups. DA and DOPAC concentrations in the POA were increased by SE, with higher levels in HP compared with LP and SP rats. V̇o2 also differed between groups, with HP rats displaying a lower consumption throughout the incremental exercise but a higher V̇o2 at fatigue. ME, in turn, was consistently higher in HP than in LP and SP rats. Thus, our results show that HP rats have greater TABD values at fatigue, which seem to be related to a higher dopaminergic activity in the POA. Moreover, HP rats exhibited a greater thermoregulatory efficiency during exercise, which can be attributed to a lower V̇o2, but not to changes in tail heat loss mechanisms. NEW & NOTEWORTHY Our findings reveal that rats with higher intrinsic exercise capacities have greater thermoregulatory efficiencies and increased dopaminergic activity in the preoptic area, a key brain area in thermoregulatory control, while exercising. Moreover, higher intrinsic exercise capacities are associated with decreased oxygen consumption for a given exercise intensity, which indicates greater mechanical efficiencies. Collectively, these findings help to advance our knowledge of why some rats of a given strain can exercise for longer periods than others.
Collapse
Affiliation(s)
- Patrícia C. R. Rabelo
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Letícia M. S. Cordeiro
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratório de Imunometabolismo, Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nayara S. S. Aquino
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno B. B. Fonseca
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cândido C. Coimbra
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Samuel P. Wanner
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raphael E. Szawka
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danusa D. Soares
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
23
|
Abstract
Metabolic syndrome is a complex disorder that comprises several other complex disorders, including obesity, hypertension, dyslipidemia, and diabetes. There are several rat models that encompass component features of MetS. Some models are inbred strains selected for one or more traits underlying MetS; others are population models with genetic risk for MetS traits, are induced by environmental stressors such as diet, are spontaneous monogenic mutant models, or are congenic strains derived from a combination of these models. Together they can be studied to identify the genetic and physiological underpinnings of MetS to identify candidate genes or mechanisms for study in human MetS subjects.
Collapse
Affiliation(s)
- Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
24
|
Zakari M, Alsahly M, Koch LG, Britton SL, Katwa LC, Lust RM. Are There Limitations to Exercise Benefits in Peripheral Arterial Disease? Front Cardiovasc Med 2018; 5:173. [PMID: 30538994 PMCID: PMC6277525 DOI: 10.3389/fcvm.2018.00173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/08/2018] [Indexed: 12/25/2022] Open
Abstract
Substantial evidence exists indicating that inactivity contributes to the progression of chronic disease, and conversely, that regular physical activity can both prevent the onset of disease as well as delay the progression of existing disease. To that end "exercise as medicine" has been advocated in the broad context as general medical care, but also in the specific context as a therapeutic, to be considered in much the same way as other drugs. As there are non-responders to many medications, there also are non-responders to exercise; individual who participate but do not demonstrate appreciable improvement/benefit. In some settings, the stress induced by exercise may aggravate an underlying condition, rather than attenuate chronic disease. As personalized medicine evolves with ready access to genetic information, so too will the incorporation of exercise in the context of those individual genetics. The focus of this brief review is to distinguish between the inherent capacity to perform, as compared to adaptive response to active exercise training in relation to cardiovascular health and peripheral arterial disease.
Collapse
Affiliation(s)
- Madaniah Zakari
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Department of Physiology, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Musaad Alsahly
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Lauren G. Koch
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| | - Steven L. Britton
- Departments of Anesthesiology and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Laxmansa C. Katwa
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Robert M. Lust
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
25
|
Gonzalez NC, Kuwahira I. Systemic Oxygen Transport with Rest, Exercise, and Hypoxia: A Comparison of Humans, Rats, and Mice. Compr Physiol 2018; 8:1537-1573. [PMID: 30215861 DOI: 10.1002/cphy.c170051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this article is to compare and contrast the known characteristics of the systemic O2 transport of humans, rats, and mice at rest and during exercise in normoxia and hypoxia. This analysis should help understand when rodent O2 transport findings can-and cannot-be applied to human responses to similar conditions. The O2 -transport system was analyzed as composed of four linked conductances: ventilation, alveolo-capillary diffusion, circulatory convection, and tissue capillary-cell diffusion. While the mechanisms of O2 transport are similar in the three species, the quantitative differences are naturally large. There are abundant data on total O2 consumption and on ventilatory and pulmonary diffusive conductances under resting conditions in the three species; however, there is much less available information on pulmonary gas exchange, circulatory O2 convection, and tissue O2 diffusion in mice. The scarcity of data largely derives from the difficulty of obtaining blood samples in these small animals and highlights the need for additional research in this area. In spite of the large quantitative differences in absolute and mass-specific O2 flux, available evidence indicates that resting alveolar and arterial and venous blood PO2 values under normoxia are similar in the three species. Additionally, at least in rats, alveolar and arterial blood PO2 under hypoxia and exercise remain closer to the resting values than those observed in humans. This is achieved by a greater ventilatory response, coupled with a closer value of arterial to alveolar PO2 , suggesting a greater efficacy of gas exchange in the rats. © 2018 American Physiological Society. Compr Physiol 8:1537-1573, 2018.
Collapse
Affiliation(s)
- Norberto C Gonzalez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ichiro Kuwahira
- Department of Pulmonary Medicine, Tokai University School of Medicine, Tokai University Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
26
|
Gavini CK, Britton SL, Koch LG, Novak CM. Inherently Lean Rats Have Enhanced Activity and Skeletal Muscle Response to Central Melanocortin Receptors. Obesity (Silver Spring) 2018; 26:885-894. [PMID: 29566460 PMCID: PMC5916025 DOI: 10.1002/oby.22166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Activity thermogenesis and energy expenditure (EE) are elevated in intrinsically lean rats (high-capacity runners [HCR]) and are also stimulated by melanocortin receptor activation in the ventromedial hypothalamus (VMH). This study determined whether HCR are more responsive to central modulation of activity EE compared with low-capacity runners (LCR). METHODS HCR and LCR rats received intra-VMH microinjections of melanotan II (MTII), a mixed melanocortin receptor agonist. Changes in EE, respiratory exchange ratio, activity EE, muscle heat, norepinephrine turnover, and muscle energetic modulators were compared. RESULTS HCR were significantly more responsive to intra-VMH MTII-induced changes in EE, activity EE, norepinephrine turnover to some muscle subgroups, and muscle mRNA expression of some energetic modulators. Though HCR had high muscle activity thermogenesis, limited MTII-induced modulation of muscle thermogenesis during activity was seen in LCR only. CONCLUSIONS An inherently lean, high-capacity rat phenotype showed elevated response to central melanocortin stimulation of activity EE and use of fat as fuel. This may be driven by sympathetic outflow to skeletal muscle, which was elevated after MTII. Central melanocortin receptor activation also altered skeletal muscle energetic modulators in a manner consistent with elevated EE and lowered respiratory exchange ratio.
Collapse
Affiliation(s)
- Chaitanya K. Gavini
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Steven L. Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lauren G. Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Colleen M. Novak
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
27
|
Kujala UM. Is physical activity a cause of longevity? It is not as straightforward as some would believe. A critical analysis. Br J Sports Med 2018; 52:914-918. [PMID: 29545237 DOI: 10.1136/bjsports-2017-098639] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2018] [Indexed: 11/04/2022]
Abstract
There are discrepant findings between (A) observational follow-ups and (B) interventional studies that investigate possible causal association between high physical activity and low mortality. Participation in vigorous physical activity at a specific time-point is an indicator of good fitness and health, and is associated with a reduced risk of death. However, neither randomised controlled trials nor experimental animal studies have provided conclusive evidence to show that physical activity started during adulthood extends lifespan. Consequently, the undisputed health-related benefits of exercise have yet to translate into any proven causal relationship with longevity. Physical activity improves fitness and physical function, and confers other health-related effects. These outcomes have a greater basis in evidence-based data than any claims of a reduced risk of death, especially when recommending physical activity for previously physically inactive middle-aged and elderly adults.
Collapse
Affiliation(s)
- Urho M Kujala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
28
|
Yoshizaki A, Antonio EL, Silva Junior JA, Crajoinas RO, Silva FA, Girardi ACC, Bocalini DS, Portes LA, Dos Santos LFN, Carlos FP, Camillo de Carvalho PDT, Tucci PJF, Serra AJ. Swimming Training Improves Myocardial Mechanics, Prevents Fibrosis, and Alters Expression of Ca2+ Handling Proteins in Older Rats. J Gerontol A Biol Sci Med Sci 2018; 73:468-474. [PMID: 29253100 DOI: 10.1093/gerona/glx244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/06/2017] [Indexed: 12/24/2022] Open
Abstract
Exercise training effects on the contractility of aged myocardium have been investigated for more than 20 years, but the data are still unclear. This study evaluated the hypothesis that a swimming training (ST) may improve myocardial inotropism in older rats. Male Wistar rats aged 4 (young)-and 21 (old)-months-old were divided into young untrained (YNT), old untrained (ONT), and old trained (OTR; 6 weeks of ST) groups. Echocardiography and hemodynamic were employed to assess left ventricular morphology and function. Myocardial mechanics was evaluated on papillary muscles. Histological and immunoblotting were carried out to evaluate fibrosis and proteins that modulate the myocardial function and calcium handling. We found that older rats did not show cardiac dysfunction, but ONT group showed lower physical performance during a swimming test (YNT: 5 ± 2; ONT: -16 ± 0.4; OTR: 51 ± 3; Δ%, sec). Moreover, ONT group showed worse myocardial inotropism, in which it was reversed by ST (Peak developed tension: YNT: 6.2 ± 0.7; ONT: 3.9 ± 0.3; OTR: 6.9 ± 0.9; g/mm2). The ST was associated with preserved collagen content (YNT: 0.38 ± 0.05; ONT: 0.78 ± 0.12; OTR: 0.34 ± 0.09; %). Exercise partially mitigated the effects of aging on intracellular Ca2+-regulating protein (eg, L-Ca2+ channel and phospholamban) and β-isoform of myosin. Thus, we propose that these molecular alterations together with inhibition of collagen increase contribute to improved myocardial performance in older rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Danilo Sales Bocalini
- Center for Physical Education and Sport, Federal University of Espirito Santo, São Paulo, Brazil
| | | | | | | | | | | | - Andrey Jorge Serra
- Federal University of São Paulo, São Paulo, Brazil.,Laboratory of Biophotonic, Nove de Julho University, São Paulo, Brazil
| |
Collapse
|
29
|
Chung JH. The role of DNA-PK in aging and energy metabolism. FEBS J 2018; 285:1959-1972. [PMID: 29453899 DOI: 10.1111/febs.14410] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/15/2018] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Abstract
DNA-dependent protein kinase (DNA-PK) is a very large holoenzyme comprised of the p470 kDa DNA-PK catalytic subunit (DNA-PKcs ) and the Ku heterodimer consisting of the p86 (Ku 80) and p70 (Ku 70) subunits. It is best known for its nonhomologous end joining (NHEJ) activity, which repairs double-strand DNA (dsDNA) breaks (DSBs). As expected, the absence of DNA-PK activity results in sensitivity to ionizing radiation, which generates DSBs and defect in lymphocyte development, which requires NHEJ of the V(D)J region in the immunoglobulin and T-cell receptor loci. DNA-PK also has been reported to have functions seemingly unrelated to NHEJ. For example, DNA-PK responds to insulin signaling to facilitate the conversion of carbohydrates to fatty acids in the liver. More recent evidence indicates that DNA-PK activity increases with age in skeletal muscle, promoting mitochondrial loss and weight gain. These discoveries suggest that our understanding of DNA-PK is far from complete. As many excellent reviews have already been written about the role of DNA-PK in NHEJ, here we will review the non-NHEJ role of DNA-PK with a focus on its role in aging and energy metabolism.
Collapse
Affiliation(s)
- Jay H Chung
- Laboratory of Obesity and Aging Research, Genetics and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Gan L, Ma D, Li M, Yang FC, Rogers RS, Wheatley JL, Koch LG, Britton SL, Thyfault JP, Geiger PC, Stanford JA. Region-specific differences in bioenergetic proteins and protein response to acute high fat diet in brains of low and high capacity runner rats. Neurosci Lett 2018. [PMID: 29522838 DOI: 10.1016/j.neulet.2018.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Aerobic capacity is a strong predictor of mortality. Low capacity runner (LCR) rats exhibit reduced mitochondrial function in peripheral organs. A high fat diet (HFD) can worsen metabolic phenotype in LCR rats. Little is known about metabolic changes in the brains of these rats, however. This study examined protein markers of mitochondrial function and metabolism as a function of aerobic running capacity and an acute HFD in four brain regions: the striatum, hippocampus, hypothalamus, and substantia nigra. After 3 days HFD or chow diets, we measured peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1-α), nuclear respiratory factors 1 (Nrf-1), mitochondrial transcription factor A (TFAM), and phosphorylated (activated) AMP-activated protein kinase (p-AMPK) protein levels in the four brain regions. LCR rats exhibited lower levels of mitochondrial proteins (PGC1-α, Nrf-1, TFAM), and greater p-AMPK, in striatum, but not in the other brain regions. Mitochondrial protein levels were greater in HFD LCR striatum, while p-AMPK was lower in this group. Markers of lower mitochondrial biogenesis and increased metabolic demand were limited to the LCR striatum, which nevertheless maintained the capacity to respond to an acute HFD challenge.
Collapse
Affiliation(s)
- Li Gan
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Delin Ma
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Min Li
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Fu-Chen Yang
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Robert S Rogers
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Joshua L Wheatley
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Research Service, Kansas City VA Medical Center, Kansas City, MO, USA
| | - Paige C Geiger
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John A Stanford
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
31
|
Thyfault JP, Morris EM. Intrinsic (Genetic) Aerobic Fitness Impacts Susceptibility for Metabolic Disease. Exerc Sport Sci Rev 2018; 45:7-15. [PMID: 27433978 DOI: 10.1249/jes.0000000000000087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- John P Thyfault
- 1Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS and 2Research Service, Kansas City VA Medical Center, Kansas City, MO
| | | |
Collapse
|
32
|
Koch LG, Britton SL. Theoretical and Biological Evaluation of the Link between Low Exercise Capacity and Disease Risk. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029868. [PMID: 28389512 DOI: 10.1101/cshperspect.a029868] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Large-scale epidemiological studies show that low exercise capacity is the highest risk factor for all-cause morbidity and mortality relative to other conditions including diabetes, hypertension, and obesity. This led us to formulate the energy transfer hypothesis (ETH): Variation in capacity for energy transfer is the central mechanistic determinant of the divide between disease and health. As a test of this hypothesis, we predicted that two-way selective breeding of genetically heterogeneous rats for low and high intrinsic treadmill running capacity (a surrogate for energy transfer) would also produce rats that differ for disease risks. The lines are termed low-capacity runners (LCRs) and high-capacity runners (HCRs) and, after 36 generations of selection, they differ by more than eightfold in running capacity. Consistent with the ETH, the LCRs score high for developing disease risks, including metabolic syndrome, neurodegeneration, cognitive impairment, fatty liver disease, susceptibility to cancer, and reduced longevity. The HCRs are resistant to the development of these disease risks. Here we synthesize ideas on nonequilibrium thermodynamics and evolution from Ilya Prigogine, Hans Krebs, and Peter Mitchell to formulate theoretic explanations for the ETH. First, at every moment in time, the atoms and molecules of organisms are reorganizing to pursue avenues for energy transfer. Second, this continuous organization is navigating in a constantly changing environment such that "strategies" are perpetually in flux and do not leave a simple footprint (evolution). Third, as a consequence, human populations demonstrate a wide variation in capacity for energy transfer that mirrors mechanistically the divide between disease and health.
Collapse
Affiliation(s)
- Lauren Gerard Koch
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan 48130
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan 48130.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48130
| |
Collapse
|
33
|
Zidon TM, Park YM, Welly RJ, Woodford ML, Scroggins RJ, Britton SL, Koch LG, Booth FW, Padilla J, Kanaley JA, Vieira-Potter VJ. Voluntary wheel running improves adipose tissue immunometabolism in ovariectomized low-fit rats. Adipocyte 2018; 7:20-34. [PMID: 29226756 DOI: 10.1080/21623945.2017.1402991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Loss of ovarian hormones is associated with increased adiposity, white adipose tissue (WAT) inflammation, and insulin resistance (IR). Previous work demonstrated ovariectomized (OVX) rats bred for high aerobic fitness (HCR) are protected against weight gain and IR compared to rats bred for low aerobic fitness (LCR) yet wheel running prevents OVX-induced IR in LCR rats. The purpose of this study was to determine whether adipose tissue immunometabolic characteristics from female HCR and LCR rats differs before or after OVX, and whether wheel running mitigates OVX-induced adipose tissue immunometabolic changes in LCR rats. Female OVX HCR and LCR rats were all fed a high fat diet (HFD) (n = 7-8/group) and randomized to either a running wheel or remain sedentary for 11 weeks. Ovary-intact rats (n = 7-12/group) were fed a standard chow diet with no wheel. Ovary-intact LCR rats had a greater visceral WAT inflammatory profile compared to HCR. Following OVX, sedentary LCR rats had greater serum leptin (p<0.001) and WAT inflammation (p<0.05) than sedentary HCR. Wheel running normalized the elevated serum leptin and reduced both visceral (p<0.05) and subcutaneous (p<0.03) WAT inflammatory markers in the LCR rats. Paradoxically, wheel running increased some markers of WAT inflammation in OVX HCR rats (p<0.05), which correlated with observed weight gain. Taken together, HCR rats appear to have a healthier WAT immune and metabolic profile compared to LCR, even following OVX. Wheel running improves WAT health in previously sedentary LCR rats. On the other hand, increased WAT inflammation is associated with adiposity gain despite a high volume of wheel running in HCR rats.
Collapse
Affiliation(s)
- Terese M. Zidon
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, US
| | - Young-Min Park
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, US
| | - Rebecca J. Welly
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, US
| | - Makenzie L. Woodford
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, US
| | - Rebecca J. Scroggins
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, US
| | - Steven L. Britton
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, US
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, US
| | - Lauren G. Koch
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, US
| | - Frank W. Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, US
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, US
- Department of Child Health, University of Missouri, Columbia, MO, US
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, US
| | - Jill A. Kanaley
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, US
| | | |
Collapse
|
34
|
Xue QL, Yang H, Li HF, Abadir PM, Burks TN, Koch LG, Britton SL, Carlson J, Chen L, Walston JD, Leng SX. Rapamycin increases grip strength and attenuates age-related decline in maximal running distance in old low capacity runner rats. Aging (Albany NY) 2017; 8:769-76. [PMID: 26997106 PMCID: PMC4925827 DOI: 10.18632/aging.100929] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/24/2016] [Indexed: 02/07/2023]
Abstract
Rapamycin is known to extend lifespan. We conducted a randomized placebo-controlled study of enteric rapamycin-treatment to evaluate its effect on physical function in old low capacity runner (LCR) rats, a rat model selected from diverse genetic background for low intrinsic aerobic exercise capacity without genomic manipulation and characterized by increased complex disease risks and aging phenotypes. The study was performed in 12 male and 16 female LCR rats aged 16-22 months at baseline. The treatment group was fed with rapamycin-containing diet pellets at approximately 2.24mg/kg body weight per day and the placebo group with the same diet without rapamycin for six months. Observation was extended for additional 2 months. Physical function measurements include grip strength measured as maximum tensile force using a rat grip strength meter and maximum running distance (MRD) using rat physical treadmill test. The results showed that rapamycin improved grip strength by 13% (p=.036) and 60% (p<.001) from its baseline in female and male rats, respectively. Rapamycin attenuated MRD decline by 66% (p<.001) and 46% (p=.319) in females and males, respectively. These findings provide initial evidence for beneficial effect of rapamycin on physical functioning in an aging rat model of high disease risks with significant implication in humans.
Collapse
Affiliation(s)
- Qian-Li Xue
- Department of Medicine Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, MD 21205, USA.,Center on Aging and Health, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Huanle Yang
- Department of Medicine Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hui-Fen Li
- Department of Medicine Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Peter M Abadir
- Department of Medicine Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tyesha N Burks
- Department of Medicine Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joshua Carlson
- Department of Medicine Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Laura Chen
- Department of Medicine Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jeremy D Walston
- Department of Medicine Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, MD 21205, USA.,Center on Aging and Health, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Sean X Leng
- Department of Medicine Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
35
|
Park YM, Padilla J, Kanaley JA, Zidon TM, Welly RJ, Britton SL, Koch LG, Thyfault JP, Booth FW, Vieira-Potter VJ. Voluntary Running Attenuates Metabolic Dysfunction in Ovariectomized Low-Fit Rats. Med Sci Sports Exerc 2017; 49:254-264. [PMID: 27669449 DOI: 10.1249/mss.0000000000001101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Ovariectomy and high-fat diet (HFD) worsen obesity and metabolic dysfunction associated with low aerobic fitness. Exercise training mitigates metabolic abnormalities induced by low aerobic fitness, but whether the protective effect is maintained after ovariectomy and HFD is unknown. PURPOSE This study determined whether, after ovariectomy and HFD, exercise training improves metabolic function in rats bred for low intrinsic aerobic capacity. METHODS Female rats selectively bred for low (LCR) and high (HCR) intrinsic aerobic capacity (n = 30) were ovariectomized, fed HFD, and randomized to either a sedentary (SED) or voluntary wheel running (EX) group. Resting energy expenditure, glucose tolerance, and spontaneous physical activity were determined midway through the experiment, whereas body weight, wheel running volume, and food intake were assessed throughout the study. Body composition, circulating metabolic markers, and skeletal muscle gene and protein expression were measured at sacrifice. RESULTS EX reduced body weight and adiposity in LCR rats (-10% and -50%, respectively; P < 0.05) and, unexpectedly, increased these variables in HCR rats (+7% and +37%, respectively; P < 0.05) compared with their respective SED controls, likely because of dietary overcompensation. Wheel running volume was approximately fivefold greater in HCR than LCR rats, yet EX enhanced insulin sensitivity equally in LCR and HCR rats (P < 0.05). This EX-mediated improvement in metabolic function was associated with thee gene upregulation of skeletal muscle interleukin-6 and interleukin-10. EX also increased resting energy expenditure, skeletal muscle mitochondrial content (oxidative phosphorylation complexes and citrate synthase activity), and adenosine monophosphate-activated protein kinase activation similarly in both lines (all P <0.05). CONCLUSION Despite a fivefold difference in running volume between rat lines, EX similarly improved systemic insulin sensitivity, resting energy expenditure, and skeletal muscle mitochondrial content and adenosine monophosphate-activated protein kinase activation in ovariectomized LCR and HCR rats fed HFD compared with their respective SED controls.
Collapse
Affiliation(s)
- Young-Min Park
- 1Nutrition and Exercise Physiology, University of Missouri, Columbia, MO; 2Child Health, University of Missouri, Columbia, MO; 3Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO; 4Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI; 5Department of Molecular Integrative Physiology, University of Kansas Medical Center, Kansas City, KS; and 6Biomedical Sciences, University of Missouri, Columbia, MO
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG. Role of Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms. Physiol Rev 2017; 97:1351-1402. [PMID: 28814614 PMCID: PMC6347102 DOI: 10.1152/physrev.00019.2016] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
This review proposes that physical inactivity could be considered a behavior selected by evolution for resting, and also selected to be reinforcing in life-threatening situations in which exercise would be dangerous. Underlying the notion are human twin studies and animal selective breeding studies, both of which provide indirect evidence for the existence of genes for physical inactivity. Approximately 86% of the 325 million in the United States (U.S.) population achieve less than the U.S. Government and World Health Organization guidelines for daily physical activity for health. Although underappreciated, physical inactivity is an actual contributing cause to at least 35 unhealthy conditions, including the majority of the 10 leading causes of death in the U.S. First, we introduce nine physical inactivity-related themes. Next, characteristics and models of physical inactivity are presented. Following next are individual examples of phenotypes, organ systems, and diseases that are impacted by physical inactivity, including behavior, central nervous system, cardiorespiratory fitness, metabolism, adipose tissue, skeletal muscle, bone, immunity, digestion, and cancer. Importantly, physical inactivity, itself, often plays an independent role as a direct cause of speeding the losses of cardiovascular and strength fitness, shortening of healthspan, and lowering of the age for the onset of the first chronic disease, which in turn decreases quality of life, increases health care costs, and accelerates mortality risk.
Collapse
Affiliation(s)
- Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Christian K Roberts
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - John P Thyfault
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Gregory N Ruegsegger
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Ryan G Toedebusch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
37
|
Pinto SK, Lamon S, Stephenson EJ, Kalanon M, Mikovic J, Koch LG, Britton SL, Hawley JA, Camera DM. Expression of microRNAs and target proteins in skeletal muscle of rats selectively bred for high and low running capacity. Am J Physiol Endocrinol Metab 2017; 313:E335-E343. [PMID: 28465283 PMCID: PMC6189633 DOI: 10.1152/ajpendo.00043.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 01/21/2023]
Abstract
Impairments in mitochondrial function and substrate metabolism are implicated in the etiology of obesity and Type 2 diabetes. MicroRNAs (miRNAs) can degrade mRNA or repress protein translation and have been implicated in the development of such disorders. We used a contrasting rat model system of selectively bred high- (HCR) or low- (LCR) intrinsic running capacity with established differences in metabolic health to investigate the molecular mechanisms through which miRNAs regulate target proteins mediating mitochondrial function and substrate oxidation processes. Quantification of select miRNAs using the rat miFinder miRNA PCR array revealed differential expression of 15 skeletal muscles (musculus tibialis anterior) miRNAs between HCR and LCR rats (14 with higher expression in LCR; P < 0.05). Ingenuity Pathway Analysis predicted these altered miRNAs to collectively target multiple proteins implicated in mitochondrial dysfunction and energy substrate metabolism. Total protein abundance of citrate synthase (CS; miR-19 target) and voltage-dependent anion channel 1 (miR-7a target) were higher in HCR compared with LCR cohorts (~57 and ~26%, respectively; P < 0.05). A negative correlation was observed for miR-19a-3p and CS (r = 0.32, P = 0.015) protein expression. To determine whether miR-19a-3p can regulate CS in vitro, we performed luciferase reporter and transfection assays in C2C12 myotubes. MiR-19a-3p binding to the CS untranslated region did not change luciferase reporter activity; however, miR-19a-3p transfection decreased CS protein expression (∼70%; P < 0.05). The differential miRNA expression targeting proteins implicated in mitochondrial dysfunction and energy substrate metabolism may contribute to the molecular basis, mediating the divergent metabolic health profiles of LCR and HCR rats.
Collapse
Affiliation(s)
- Samuel K Pinto
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Séverine Lamon
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University Geelong, Victoria, Australia
| | - Erin J Stephenson
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Ming Kalanon
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University Geelong, Victoria, Australia
| | - Jasmine Mikovic
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University Geelong, Victoria, Australia
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan; and
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan; and
| | - John A Hawley
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Donny M Camera
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia;
| |
Collapse
|
38
|
Park SJ, Gavrilova O, Brown AL, Soto JE, Bremner S, Kim J, Xu X, Yang S, Um JH, Koch LG, Britton SL, Lieber RL, Philp A, Baar K, Kohama SG, Abel ED, Kim MK, Chung JH. DNA-PK Promotes the Mitochondrial, Metabolic, and Physical Decline that Occurs During Aging. Cell Metab 2017; 25:1135-1146.e7. [PMID: 28467930 PMCID: PMC5485859 DOI: 10.1016/j.cmet.2017.04.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/25/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
Abstract
Hallmarks of aging that negatively impact health include weight gain and reduced physical fitness, which can increase insulin resistance and risk for many diseases, including type 2 diabetes. The underlying mechanism(s) for these phenomena is poorly understood. Here we report that aging increases DNA breaks and activates DNA-dependent protein kinase (DNA-PK) in skeletal muscle, which suppresses mitochondrial function, energy metabolism, and physical fitness. DNA-PK phosphorylates threonines 5 and 7 of HSP90α, decreasing its chaperone function for clients such as AMP-activated protein kinase (AMPK), which is critical for mitochondrial biogenesis and energy metabolism. Decreasing DNA-PK activity increases AMPK activity and prevents weight gain, decline of mitochondrial function, and decline of physical fitness in middle-aged mice and protects against type 2 diabetes. In conclusion, DNA-PK is one of the drivers of the metabolic and fitness decline during aging, and therefore DNA-PK inhibitors may have therapeutic potential in obesity and low exercise capacity.
Collapse
Affiliation(s)
- Sung-Jun Park
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra L Brown
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jamie E Soto
- Program in Molecular Medicine and Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Shannon Bremner
- Department of Orthopedic Surgery, University of California and V.A. Medical Centers, San Diego, La Jolla, CA 92093, USA
| | - Jeonghan Kim
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xihui Xu
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shutong Yang
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jee-Hyun Um
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren G Koch
- Department of Anesthesiology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven L Britton
- Department of Anesthesiology, The University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard L Lieber
- Department of Orthopedic Surgery, University of California and V.A. Medical Centers, San Diego, La Jolla, CA 92093, USA
| | - Andrew Philp
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA USA 95616
| | - Keith Baar
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA USA 95616
| | - Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Sciences University, Portland, OR 97239, USA
| | - E Dale Abel
- Program in Molecular Medicine and Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Myung K Kim
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jay H Chung
- Laboratory of Obesity and Aging Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
|
40
|
Kelly SA, Gomes FR, Kolb EM, Malisch JL, Garland T. Effects of activity, genetic selection, and their interaction on muscle metabolic capacities and organ masses in mice. J Exp Biol 2017; 220:1038-1047. [DOI: 10.1242/jeb.148759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/26/2016] [Indexed: 12/17/2022]
Abstract
Chronic voluntary exercise elevates total daily energy expenditure (DEE) and food consumption, potentially resulting in organ compensation supporting nutrient extraction/utilization. Additionally, species with naturally higher DEE often have larger processing organs, which may represent genetic differences and/or phenotypic plasticity. We tested for possible adaptive changes in organ masses of 4 replicate lines of house mice selected (37 generations) for high running (HR lines) compared with 4 non-selected control (C) lines. Females were housed with or without wheel access for 13-14 weeks beginning at 53-60 days of age. In addition to organ compensation, chronic activity may also require an elevated aerobic capacity. Therefore, we also measured hematocrit and both citrate synthase activity and myoglobin concentration in heart and gastrocnemius. Both selection (HR vs. C) and activity (wheels vs. no wheels) significantly affected morphological and biochemical traits. For example, with body mass as a covariate, mice from HR lines had significantly higher hematocrit and larger ventricles, with more myoglobin. Wheel access lengthened the small intestine, increased relative ventricle and kidney size, and increased skeletal muscle citrate synthase activity and myoglobin concentration. As compared with C lines, HR mice had greater training effects for ventricle mass, hematocrit, large intestine length, and gastrocnemius citrate synthase activity. For ventricle and gastrocnemius citrate synthase activity, the greater training was explainable quantitatively as a result of greater wheel running (i.e., “more pain, more gain”). For hematocrit and large intestine length, differences were not related to amount of wheel running and instead indicate inherently greater adaptive plasticity in HR lines.
Collapse
Affiliation(s)
- Scott A. Kelly
- Department of Biology, University of California, Riverside, Riverside, California 92521, USA
- Department of Zoology, Ohio Wesleyan University, Delaware, Ohio 43015, USA
| | - Fernando R. Gomes
- Department of Biology, University of California, Riverside, Riverside, California 92521, USA
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão. Trav.14, 101, 05508-900, São Paulo, SP, Brazil
| | - Erik M. Kolb
- Department of Biology, University of California, Riverside, Riverside, California 92521, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Jessica L. Malisch
- Department of Biology, University of California, Riverside, Riverside, California 92521, USA
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, Maryland 20686, USA
| | - Theodore Garland
- Department of Biology, University of California, Riverside, Riverside, California 92521, USA
| |
Collapse
|
41
|
Falegan OS, Vogel HJ, Hittel DS, Koch LG, Britton SL, Hepple RT, Shearer J. High Aerobic Capacity Mitigates Changes in the Plasma Metabolomic Profile Associated with Aging. J Proteome Res 2016; 16:798-805. [PMID: 27936752 DOI: 10.1021/acs.jproteome.6b00796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Advancing age is associated with declines in maximal oxygen consumption. Declines in aerobic capacity not only contribute to the aging process but also are an independent risk factor for morbidity, cardiovascular disease, and all-cause mortality. Although statistically convincing, the relationships between aerobic capacity, aging, and disease risk remain largely unresolved. To this end, we employed sensitive, system-based metabolomics approach to determine whether enhanced aerobic capacity could mitigate some of the changes seen in the plasma metabolomic profile associated with aging. Metabolomic profiles of plasma samples obtained from young (13 month) and old (26 month) rats bred for low (LCR) or high (HCR) running capacity using proton nuclear magnetic resonance spectroscopy (1H NMR) were examined. Results demonstrated strong profile separation in old and low aerobic capacity rats, whereas young and high aerobic capacity rat models were less predictive. Significantly differential metabolites between the groups include taurine, acetone, valine, and trimethylamine-N-oxide among other metabolites, specifically citrate, succinate, isovalerate, and proline, were differentially increased in older HCR animals compared with their younger counterparts. When interactions between age and aerobic capacity were examined, results demonstrated that enhanced aerobic capacity could mitigate some but not all age-associated alterations in the metabolomic profile.
Collapse
Affiliation(s)
- Oluyemi S Falegan
- Department of Biological Sciences, Faculty of Science, University of Calgary , Calgary, Alberta T2N1N4, Canada
| | - Hans J Vogel
- Department of Biological Sciences, Faculty of Science, University of Calgary , Calgary, Alberta T2N1N4, Canada.,Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary , Calgary, Alberta T2N1N4, Canada
| | - Dustin S Hittel
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary , Calgary, Alberta T2N1N4, Canada.,Faculty of Kinesiology, University of Calgary , Calgary, Alberta T2N1N4, Canada
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan , Ann Arbor, Michigan 48109, United States.,K. G. Jebsen Center for Exercise in Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology , Trondheim NO-7491, Norway
| | - Russ T Hepple
- Department of Physical Therapy, University of Florida , Gainesville, Florida 32610, United States
| | - Jane Shearer
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary , Calgary, Alberta T2N1N4, Canada.,Faculty of Kinesiology, University of Calgary , Calgary, Alberta T2N1N4, Canada
| |
Collapse
|
42
|
Padrão AI, Ferreira R, Amado F, Vitorino R, Duarte JA. Uncovering the exercise-related proteome signature in skeletal muscle. Proteomics 2016; 16:816-30. [PMID: 26632760 DOI: 10.1002/pmic.201500382] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 10/13/2015] [Accepted: 11/30/2015] [Indexed: 01/01/2023]
Abstract
Exercise training has been recommended as a nonpharmacological strategy for the prevention and attenuation of skeletal muscle atrophy in distinct pathophysiological conditions. Despite the well-established phenotypic alterations, the molecular mechanisms underlying exercise-induced skeletal muscle remodeling are poorly characterized. Proteomics based on mass spectrometry have been successfully applied for the characterization of skeletal muscle proteome, representing a pivotal approach for the wide characterization of the molecular networks that lead to skeletal muscle remodeling. Nevertheless, few studies were performed to characterize the exercise-induced proteome remodeling of skeletal muscle, with only six research papers focused on the cross-talk between exercise and pathophysiological conditions. In order to add new insights on the impact of distinct exercise programs on skeletal muscle proteome, molecular network analysis was performed with bioinformatics tools. This analysis highlighted an exercise-related proteome signature characterized by the up-regulation of the capacity for ATP generation, oxygen delivery, antioxidant capacity and regulation of mitochondrial protein synthesis. Chronic endurance training up-regulates the tricarboxylic acid cycle and oxidative phosphorylation system, whereas the release of calcium ion into cytosol and amino acid metabolism are the biological processes up-regulated by a single bout of exercise. Other issues as exercise intensity, load, mode and regimen as well as muscle type also influence the exercise-induced proteome signature. The comprehensive analysis of the molecular networks modulated by exercise training in health and disease, taking in consideration all these variables, might not only support the therapeutic effect of exercise but also highlight novel targets for the development of enhanced pharmacological strategies.
Collapse
Affiliation(s)
- Ana Isabel Padrão
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CIAFEL, Faculty of Sports, University of Porto, Porto, Portugal
| | - Rita Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Francisco Amado
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences and Institute for Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | | |
Collapse
|
43
|
Ren YY, Koch LG, Britton SL, Qi NR, Treutelaar MK, Burant CF, Li JZ. Selection-, age-, and exercise-dependence of skeletal muscle gene expression patterns in a rat model of metabolic fitness. Physiol Genomics 2016; 48:816-825. [PMID: 27637250 DOI: 10.1152/physiolgenomics.00118.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 09/09/2016] [Indexed: 11/22/2022] Open
Abstract
Intrinsic aerobic exercise capacity can influence many complex traits including obesity and aging. To study this connection we established two rat lines by divergent selection of untrained aerobic capacity. After 32 generations the high capacity runners (HCR) and low capacity runners (LCR) differed in endurance running distance and body fat, blood glucose, other health indicators, and natural life span. To understand the interplay among genetic differences, chronological age, and acute exercise we performed microarray-based gene expression analyses in skeletal muscle with a 2×2×2 design to simultaneously compare HCR and LCR, old and young animals, and rest and exhaustion. Transcripts for mitochondrial function are expressed higher in HCRs than LCRs at both rest and exhaustion and for both age groups. Expression of cell adhesion and extracellular matrix genes tend to decrease with age. This and other age effects are more prominent in LCRs than HCRs, suggesting that HCRs have a slower aging process and this may be partly due to their better metabolic health. Strenuous exercise mainly affects transcription regulation and cellular response. The effects of any one factor often depend on the other two. For example, there are ∼140 and ∼110 line-exercise "interacting" genes for old and young animals, respectively. Many genes highlighted in our study are consistent with prior reports, but many others are novel. The gene- and pathway-level statistics for the main effects, either overall or stratified, and for all possible interactions, represent a rich reference dataset for understanding the interdependence among lines, aging, and exercise.
Collapse
Affiliation(s)
- Yu-Yu Ren
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan; and
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan; and
| | - Nathan R Qi
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Mary K Treutelaar
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan;
| |
Collapse
|
44
|
Gaspar D, Zeugolis DI. Engineering in vitro complex pathophysiologies for drug discovery purposes. Drug Discov Today 2016; 21:1341-1344. [DOI: 10.1016/j.drudis.2016.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Karvinen SM, Silvennoinen M, Ma H, Törmäkangas T, Rantalainen T, Rinnankoski-Tuikka R, Lensu S, Koch LG, Britton SL, Kainulainen H. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity. Front Physiol 2016; 7:311. [PMID: 27504097 PMCID: PMC4958631 DOI: 10.3389/fphys.2016.00311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/07/2016] [Indexed: 01/31/2023] Open
Abstract
The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0.050), but not that of HCRs. In conclusion, rats born with high intrinsic capacity for aerobic exercise and better health have higher body temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs.
Collapse
Affiliation(s)
- Sira M Karvinen
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä Jyväskylä, Finland
| | - Mika Silvennoinen
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä Jyväskylä, Finland
| | - Hongqiang Ma
- Department of Health Sciences, University of Jyväskylä Jyväskylä, Finland
| | - Timo Törmäkangas
- Gerontology Research Center and Department of Health Sciences, University of Jyväskylä Jyväskylä, Finland
| | - Timo Rantalainen
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Melbourne, VIC, Australia
| | - Rita Rinnankoski-Tuikka
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä Jyväskylä, Finland
| | - Sanna Lensu
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä Jyväskylä, Finland
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan Medical School Ann Arbor, MI, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan Medical SchoolAnn Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Heikki Kainulainen
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä Jyväskylä, Finland
| |
Collapse
|
46
|
Roh J, Rhee J, Chaudhari V, Rosenzweig A. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms. Circ Res 2016; 118:279-95. [PMID: 26838314 DOI: 10.1161/circresaha.115.305250] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise, and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population.
Collapse
Affiliation(s)
- Jason Roh
- From the Cardiovascular Division (J. Roh, J. Rhee, V.C., A.R.) and Department of Anesthesiology, Critical Care, and Pain Medicine (J. Rhee), Massachusetts General Hospital and Harvard Medical School, Boston
| | - James Rhee
- From the Cardiovascular Division (J. Roh, J. Rhee, V.C., A.R.) and Department of Anesthesiology, Critical Care, and Pain Medicine (J. Rhee), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Vinita Chaudhari
- From the Cardiovascular Division (J. Roh, J. Rhee, V.C., A.R.) and Department of Anesthesiology, Critical Care, and Pain Medicine (J. Rhee), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Anthony Rosenzweig
- From the Cardiovascular Division (J. Roh, J. Rhee, V.C., A.R.) and Department of Anesthesiology, Critical Care, and Pain Medicine (J. Rhee), Massachusetts General Hospital and Harvard Medical School, Boston.
| |
Collapse
|
47
|
Sujkowski A, Bazzell B, Carpenter K, Arking R, Wessells RJ. Endurance exercise and selective breeding for longevity extend Drosophila healthspan by overlapping mechanisms. Aging (Albany NY) 2016; 7:535-52. [PMID: 26298685 PMCID: PMC4586100 DOI: 10.18632/aging.100789] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Endurance exercise has emerged as a powerful intervention that promotes healthy aging by maintaining the functional capacity of critical organ systems. In addition, long-term exercise reduces the incidence of age-related diseases in humans and in model organisms. Despite these evident benefits, the genetic pathways required for exercise interventions to achieve these effects are still relatively poorly understood. Here, we compare gene expression changes during endurance training in Drosophila melanogaster to gene expression changes during selective breeding for longevity. Microarrays indicate that 65% of gene expression changes found in flies selectively bred for longevity are also found in flies subjected to three weeks of exercise training. We find that both selective breeding and endurance training increase endurance, cardiac performance, running speed, flying height, and levels of autophagy in adipose tissue. Both interventions generally upregulate stress defense, folate metabolism, and lipase activity, while downregulating carbohydrate metabolism and odorant receptor expression. Several members of the methuselah-like (mthl) gene family are downregulated by both interventions. Knockdown of mthl-3 was sufficient to provide extension of negative geotaxis behavior, endurance and cardiac stress resistance. These results provide support for endurance exercise as a broadly acting anti-aging intervention and confirm that exercise training acts in part by targeting longevity assurance pathways.
Collapse
Affiliation(s)
- Alyson Sujkowski
- Department of Physiology, Wayne State School of Medicine, Detroit, MI 48201, USA
| | - Brian Bazzell
- Department of Physiology, Wayne State School of Medicine, Detroit, MI 48201, USA
| | - Kylie Carpenter
- Department of Physiology, Wayne State School of Medicine, Detroit, MI 48201, USA
| | - Robert Arking
- Department of Biological Science, Wayne State University, Detroit, MI 48201, USA
| | - Robert J Wessells
- Department of Physiology, Wayne State School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
48
|
Physical activity in adulthood: genes and mortality. Sci Rep 2015; 5:18259. [PMID: 26666586 PMCID: PMC4678877 DOI: 10.1038/srep18259] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/10/2015] [Indexed: 11/16/2022] Open
Abstract
Observational studies report a strong inverse relationship between leisure-time physical activity and all-cause mortality. Despite suggestive evidence from population-based associations, scientists have not been able to show a beneficial effect of physical activity on the risk of death in controlled intervention studies among individuals who have been healthy at baseline. On the other hand, high cardiorespiratory fitness is known to be a strong predictor of reduced mortality, even more robust than physical activity level itself. Here, in both animals and/or human twins, we show that the same genetic factors influence physical activity levels, cardiorespiratory fitness, and risk of death. Previous observational follow-up studies in humans suggest that increasing fitness through physical activity levels could prolong life; however, our controlled interventional study with laboratory rats bred for low and high intrinsic fitness contrast with these findings. Also, we find no evidence for the suggested association using pairwise analysis among monozygotic twin pairs who are discordant in their physical activity levels. Based on both our animal and human findings, we propose that genetic pleiotropy might partly explain the frequently observed associations between high baseline physical activity and later reduced mortality in humans.
Collapse
|
49
|
Ruegsegger GN, Toedebusch RG, Braselton JF, Roberts CK, Booth FW. Reduced metabolic disease risk profile by voluntary wheel running accompanying juvenile Western diet in rats bred for high and low voluntary exercise. Physiol Behav 2015; 152:47-55. [DOI: 10.1016/j.physbeh.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 12/14/2022]
|
50
|
Shukla C, Koch LG, Britton SL, Cai M, Hruby VJ, Bednarek M, Novak CM. Contribution of regional brain melanocortin receptor subtypes to elevated activity energy expenditure in lean, active rats. Neuroscience 2015; 310:252-67. [PMID: 26404873 DOI: 10.1016/j.neuroscience.2015.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 12/13/2022]
Abstract
Physical activity and non-exercise activity thermogenesis (NEAT) are crucial factors accounting for individual differences in body weight, interacting with genetic predisposition. In the brain, a number of neuroendocrine intermediates regulate food intake and energy expenditure (EE); this includes the brain melanocortin (MC) system, consisting of MC peptides as well as their receptors (MCR). MC3R and MC4R have emerged as critical modulators of EE and food intake. To determine how variance in MC signaling may underlie individual differences in physical activity levels, we examined behavioral response to MC receptor agonists and antagonists in rats that show high and low levels of physical activity and NEAT, that is, high- and low-capacity runners (HCR, LCR), developed by artificial selection for differential intrinsic aerobic running capacity. Focusing on the hypothalamus, we identified brain region-specific elevations in expression of MCR 3, 4, and also MC5R, in the highly active, lean HCR relative to the less active and obesity-prone LCR. Further, the differences in activity and associated EE as a result of MCR activation or suppression using specific agonists and antagonists were similarly region-specific and directly corresponded to the differential MCR expression patterns. The agonists and antagonists investigated here did not significantly impact food intake at the doses used, suggesting that the differential pattern of receptor expression may by more meaningful to physical activity than to other aspects of energy balance regulation. Thus, MCR-mediated physical activity may be a key neural mechanism in distinguishing the lean phenotype and a target for enhancing physical activity and NEAT.
Collapse
Affiliation(s)
- C Shukla
- Department of Biological Sciences, Kent State University, Kent, OH, United States; Harvard Medical School - VA Boston Healthcare System, Boston, MA, United States.
| | - L G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - S L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - M Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - V J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - M Bednarek
- MedImmune Limited, Cambridge, United Kingdom
| | - C M Novak
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|