1
|
Wu J, Qian Y, Yang K, Zhang S, Zeng E, Luo D. Innate immune cells in vascular lesions: mechanism and significance of diversified immune regulation. Ann Med 2025; 57:2453826. [PMID: 39847394 PMCID: PMC11758805 DOI: 10.1080/07853890.2025.2453826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Angiogenesis is a complex physiological process. In recent years, the immune regulation of angiogenesis has received increasing attention, and innate immune cells, which are centred on macrophages, are thought to play important roles in vascular neogenesis and development. Various innate immune cells can act on the vasculature through a variety of mechanisms, with commonalities as well as differences and synergistic effects, which are crucial for the progression of vascular lesions. In recent years, monotherapy with antiangiogenic drugs has encountered therapeutic bottlenecks because of the short-term effect of 'vascular normalization'. The combination treatment of antiangiogenic therapy and immunotherapy breaks the traditional treatment pattern. While it has a remarkable curative effect and survival benefits, it also faces many challenges. This review focuses on innate immune cells and mainly introduces the regulatory mechanisms of monocytes, macrophages, natural killer (NK) cells, dendritic cells (DCs) and neutrophils in vascular lesions. The purpose of this paper was to elucidate the underlying mechanisms of angiogenesis and development and the current research status of innate immune cells in regulating vascular lesions in different states. This review provides a theoretical basis for addressing aberrant angiogenesis in disease processes or finding new antiangiogenic immune targets in inflammation and tumor.
Collapse
Affiliation(s)
- Jinjing Wu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yulu Qian
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Kuang Yang
- Queen Mary University of London, Nanchang University, Nanchang, China
| | - Shuhua Zhang
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Cardiovascular Research Institute, Nanchang, Jiangxi, China
| | - Erming Zeng
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Daya Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Makram OM, Nain P, Vasbinder A, Weintraub NL, Guha A. Cardiovascular Risk Assessment and Prevention in Cardio-Oncology: Beyond Traditional Risk Factors. Cardiol Clin 2025; 43:1-11. [PMID: 39551552 DOI: 10.1016/j.ccl.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
This review goes beyond traditional approaches in cardio-oncology, highlighting often-neglected factors impacting patient care. Social determinants, environment, health care access, and gut microbiome significantly influence patient outcomes. Powerful tools like multi-omics and wearable technologies offer deeper insights into real-world experiences. The future lies in integrating these advancements with established practices to achieve precision cardio-oncology care. By crafting tailored therapies and continuously updating comprehensive management plans based on real-time data, we can unlock the full potential of personalized care for all patients.
Collapse
Affiliation(s)
- Omar M Makram
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; Department of Medicine, Cardio-Oncology Program, Cardiology Division, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Priyanshu Nain
- Department of Medicine, Cardio-Oncology Program, Cardiology Division, Medical College of Georgia at Augusta University, Augusta, GA, USA; Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Alexi Vasbinder
- Department of Biobehavioral Nursing and Health Informatics, School of Nursing, University of Washington, Seattle, WA, USA
| | - Neal L Weintraub
- Department of Medicine, Cardio-Oncology Program, Cardiology Division, Medical College of Georgia at Augusta University, Augusta, GA, USA; Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Avirup Guha
- Department of Medicine, Cardio-Oncology Program, Cardiology Division, Medical College of Georgia at Augusta University, Augusta, GA, USA; Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
3
|
Cortiana V, Vaghela H, Bakhle R, Santhosh T, Kaiwan O, Tausif A, Goel A, Suhail MK, Patel N, Akram O, Kaka N, Sethi Y, Moinuddin A. Beyond the Heart: The Predictive Role of Coronary Artery Calcium Scoring in Non-Cardiovascular Disease Risk Stratification. Diagnostics (Basel) 2024; 14:2349. [PMID: 39518317 PMCID: PMC11545064 DOI: 10.3390/diagnostics14212349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Coronary artery calcium scoring (CACS), a non-invasive measure of coronary atherosclerosis, has significantly enhanced cardiovascular (CV) risk assessment and stratification in asymptomatic individuals. More recently, a higher score for CAC has been associated with an increased risk of non-CV diseases and all-cause mortality. This review consolidated evidence supporting the role of CAC in assessing non-CV diseases, emphasizing its potential in early diagnosis and prognosis. We observed a strong association between CACS and non-CV diseases, viz., chronic obstructive pulmonary disease, pulmonary embolism, pneumonia, diabetes, chronic kidney disease, osteoporosis, metabolic dysfunction-associated steatotic liver disease, nephrolithiasis, stroke, dementia, malignancies, and several autoimmune diseases. Also, CAC may aid in evaluating the risk of CV conditions developing secondary to the non-CV diseases mentioned earlier. Further evidence from prospective studies, intervention trials, and population-based behavioral studies is needed to establish CAC cutoff values and explore preventative care applications, facilitating their broader integration into healthcare practices.
Collapse
Affiliation(s)
- Viviana Cortiana
- PearResearch, Dehradun 248001, India; (V.C.); (H.V.); (R.B.); (T.S.); (A.T.); (N.P.); (N.K.); (A.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Hetvee Vaghela
- PearResearch, Dehradun 248001, India; (V.C.); (H.V.); (R.B.); (T.S.); (A.T.); (N.P.); (N.K.); (A.M.)
- Pandit Deendayal Upadhyay Medical College, Rajkot 360001, India
| | - Rahul Bakhle
- PearResearch, Dehradun 248001, India; (V.C.); (H.V.); (R.B.); (T.S.); (A.T.); (N.P.); (N.K.); (A.M.)
- Medical College Baroda, Maharaja Sayajirao University, Vadodara 390001, India
| | - Tony Santhosh
- PearResearch, Dehradun 248001, India; (V.C.); (H.V.); (R.B.); (T.S.); (A.T.); (N.P.); (N.K.); (A.M.)
- Dr. Somervell Memorial CSI Medical College, Thiruvananthapuram 695504, India
| | - Oroshay Kaiwan
- PearResearch, Dehradun 248001, India; (V.C.); (H.V.); (R.B.); (T.S.); (A.T.); (N.P.); (N.K.); (A.M.)
- Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Aalia Tausif
- PearResearch, Dehradun 248001, India; (V.C.); (H.V.); (R.B.); (T.S.); (A.T.); (N.P.); (N.K.); (A.M.)
| | - Ashish Goel
- Department of Physiology, Graphic Era Institute of Medical Sciences, Dehradun 248008, India;
| | - Mohammed K. Suhail
- Department of Public Health & Community Medicine, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Neil Patel
- PearResearch, Dehradun 248001, India; (V.C.); (H.V.); (R.B.); (T.S.); (A.T.); (N.P.); (N.K.); (A.M.)
- Department of Medicine, GMERS Medical College, Himmatnagar 390021, India
| | - Omar Akram
- Department of Medicine, Highland Hospital, Alameda Health System, Oakland, CA 94602, USA
| | - Nirja Kaka
- PearResearch, Dehradun 248001, India; (V.C.); (H.V.); (R.B.); (T.S.); (A.T.); (N.P.); (N.K.); (A.M.)
- Department of Medicine, GMERS Medical College, Himmatnagar 390021, India
| | - Yashendra Sethi
- PearResearch, Dehradun 248001, India; (V.C.); (H.V.); (R.B.); (T.S.); (A.T.); (N.P.); (N.K.); (A.M.)
- Department of Medicine, Government Doon Medical College, HNB Uttarakhand Medical Education University, Dehradun 248001, India
| | - Arsalan Moinuddin
- PearResearch, Dehradun 248001, India; (V.C.); (H.V.); (R.B.); (T.S.); (A.T.); (N.P.); (N.K.); (A.M.)
- School of Sports and Exercise, University of Gloucestershire, Cheltenham GL50 2RH, UK
| |
Collapse
|
4
|
Pannucci P, Van Daele M, Cooper SL, Wragg ES, March J, Groenen M, Hill SJ, Woolard J. Role of endothelin ET A receptors in the hypertension induced by the VEGFR-2 kinase inhibitors axitinib and lenvatinib in conscious freely-moving rats. Biochem Pharmacol 2024; 228:116007. [PMID: 38145828 DOI: 10.1016/j.bcp.2023.116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Receptor tyrosine kinase inhibitors (RTKIs) suppress tumour growth by targeting vascular endothelial growth factor receptor 2 (VEGFR-2) which is an important mediator of angiogenesis. Here, we demonstrate that two potent RTKIs, axitinib and lenvatinib, are associated with hypertensive side effects. Doppler flowmetry was used to evaluate regional haemodynamic profiles of axitinib and lenvatinib. Male Sprague Dawley rats (350-500 g) were instrumented with Doppler flow probes (renal and mesenteric arteries and descending abdominal aorta) and catheters (jugular vein and distal abdominal aorta, via the caudal artery). Rats were dosed daily with axitinib (3 or 6 mg.kg-1) or lenvatinib (1 or 3 mg.kg-1) and regional haemodynamics were recorded over a maximum of 4 days. Both RTKIs caused significant (p < 0.05) increases in mean arterial pressure (MAP), which was accompanied by significant (p < 0.05) vasoconstriction in both the mesenteric and hindquarters vascular beds. To gain insight into the involvement of endothelin-1 (ET-1) in RTKI-mediated hypertension, we also monitored heart rate (HR) and MAP in response to axitinib or lenvatinib in animals treated with the ETA receptor selective antagonist sitaxentan (5 mg.kg-1) or the mixed ETA/ETB receptor antagonist bosentan (15 mg.kg-1) over two days. Co-treatment with bosentan or sitaxentan markedly reduced the MAP effects mediated by both RTKIs (p < 0.05). Bosentan, but not sitaxentan, also attenuated ET-1 mediated increases in HR. These data suggest that selective antagonists of ETA receptors may be appropriate to alleviate the hypertensive effects of axitinib and lenvatinib.
Collapse
Affiliation(s)
- Patrizia Pannucci
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Marieke Van Daele
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Samantha L Cooper
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Edward S Wragg
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Julie March
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Marleen Groenen
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK.
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK.
| |
Collapse
|
5
|
Ciccarese C, Anghelone A, Stefani A, Cigliola A, Strusi A, D'Agostino F, Bria E, Iacovelli R, Tortora G. The incidence and relative risk of major adverse cardiovascular events and hypertension in patients treated with immune checkpoint inhibitors plus tyrosine-kinase inhibitors for solid tumors: a systemic review and meta-analysis. Expert Rev Anticancer Ther 2024; 24:623-633. [PMID: 38879826 DOI: 10.1080/14737140.2024.2357814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/03/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Combinations of immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs) can be responsible for major adverse cardiovascular events (MACEs). We performed a meta-analysis to assess the relative risk (RR) of MACEs and hypertension in cancer patients treated with ICI+TKI combinations. RESEARCH DESIGN AND METHODS We selected prospective trials through MEDLINE/PubMed, Cochrane Library, and ASCOMeeting abstracts. We calculated combined ORs, RRs, and 95% CIs using RevMansoftware for meta-analysis (v.5.2.3). RESULTS Seven studies were selected for the analysis of MACEs (3849 patients). The incidence MACEs were 0.8% with ICI+TKI combinations, compared to 0.2% in the control arms for both any- and high-grade. ICI+TKI combinations significantly increased the risk of any- (OR = 3.21; p = 0.01) and high-grade MACEs (OR = 2.72; p = 0.05). Ten studies were selected for the analysis of hypertension (5744 patients). The incidence of treatment-related hypertension of any-grade and high-grade was41.3% (vs. 20.8%) and 26.1% (vs. 12.3%) with ICI+TKI combinations, respectively. ICI+TKI combinations significantly increased the risk of treatment-related hypertension of any-grade (RR = 2.10; p = 0.001), but not of high-grade (p = 0.11). CONCLUSIONS ICI+TKI combinations increase the risk of MACEs compared to controls, although the absolute incidence is eventually low. Routine cardiovascular monitoring in asymptomatic patients is therefore not recommended.
Collapse
Affiliation(s)
- Chiara Ciccarese
- Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Alessio Stefani
- Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Cigliola
- Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | - Emilio Bria
- Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberto Iacovelli
- Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology, Comprehensive Cancer Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
6
|
Fabiani I, Chianca M, Aimo A, Emdin M, Dent S, Fedele A, Cipolla CM, Cardinale DM. Use of new and emerging cancer drugs: what the cardiologist needs to know. Eur Heart J 2024; 45:1971-1987. [PMID: 38591670 DOI: 10.1093/eurheartj/ehae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
The last decade has witnessed a paradigm shift in cancer therapy, from non-specific cytotoxic chemotherapies to agents targeting specific molecular mechanisms. Nonetheless, cardiovascular toxicity of cancer therapies remains an important concern. This is particularly relevant given the significant improvement in survival of solid and haematological cancers achieved in the last decades. Cardio-oncology is a subspecialty of medicine focusing on the identification and prevention of cancer therapy-related cardiovascular toxicity (CTR-CVT). This review will examine the new definition of CTR-CVT and guiding principles for baseline cardiovascular assessment and risk stratification before cancer therapy, providing take-home messages for non-specialized cardiologists.
Collapse
Affiliation(s)
- Iacopo Fabiani
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Michela Chianca
- Interdisciplinary Center for Health Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Aimo
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
- Interdisciplinary Center for Health Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Michele Emdin
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
- Interdisciplinary Center for Health Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Susan Dent
- Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Antonella Fedele
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Carlo Maria Cipolla
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Daniela Maria Cardinale
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| |
Collapse
|
7
|
Ioffe D, Bhatia-Patel SC, Gandhi S, Hamad EA, Dotan E. Cardiovascular Concerns, Cancer Treatment, and Biological and Chronological Aging in Cancer: JACC Family Series. JACC CardioOncol 2024; 6:143-158. [PMID: 38774000 PMCID: PMC11103051 DOI: 10.1016/j.jaccao.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 05/24/2024] Open
Abstract
Cardiovascular disease (CVD) and cancer are leading causes of death globally, particularly among the rapidly growing population of older adults (OAs). CVD is a leading cause of mortality among cancer survivors, often accelerated by cancer treatments associated with short- or long-term cardiotoxicity. Moreover, there is a dynamic relationship among CVD, cancer, and aging, characterized by shared risk factors and biological hallmarks, that plays an important role in caring for OAs, optimizing treatment approaches, and developing preventive strategies. Assessment of geriatric domains (eg, functional status, comorbidities, cognition, polypharmacy, nutritional status, social support, psychological well-being) is critical to individualizing treatment of OAs with cancer. The authors discuss considerations in caring for an aging population with cancer, including methods for the assessment of OAs with CVD and/or cardiovascular risk factors planned for cancer therapy. Multidisciplinary care is critical in optimizing patient outcomes and maintaining quality of life in this growing vulnerable population.
Collapse
Affiliation(s)
- Dina Ioffe
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | - Sakshi Gandhi
- Department of Medicine, Temple University Hospital, Philadelphia, Pennsylvania, USA
| | - Eman A. Hamad
- Department of Medicine, Temple University Hospital, Philadelphia, Pennsylvania, USA
| | - Efrat Dotan
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Kreidieh F, McQuade J. Novel insights into cardiovascular toxicity of cancer targeted and immune therapies: Beyond ischemia with non-obstructive coronary arteries (INOCA). AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 40:100374. [PMID: 38510501 PMCID: PMC10946000 DOI: 10.1016/j.ahjo.2024.100374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Novel immune and targeted therapies approved over the past 2 decades have resulted in dramatic improvements in cancer-specific outcomes for many cancer patients. However, many of these agents can induce cardiovascular toxicity in a subset of patients. The field of cardio-oncology was established based on observations that anti-neoplastic chemotherapies and mantle radiation can lead to premature cardiomyopathy in cancer survivors. While conventional chemotherapy, targeted therapy, and immune therapies can all result in cardiovascular adverse events, the mechanisms, timing, and incidence of these events are inherently different. Many of these effects converge upon the coronary microvasculature to involve, through endocardial endothelial cells, a more direct effect through close proximity to cardiomyocyte with cellular communication and signaling pathways. In this review, we will provide an overview of emerging paradigms in the field of Cardio-Oncology, particularly the role of the coronary microvasculature in mediating cardiovascular toxicity of important cancer targeted and immune therapies. As the number of cancer patients treated with novel immune and targeted therapies grows exponentially and subsequently the number of long-term cancer survivors dramatically increases, it is critical that cardiologists and cardiology researchers recognize the unique potential cardiovascular toxicities of these agents.
Collapse
Affiliation(s)
- Firas Kreidieh
- Instructor of Clinical Medicine- Division of Hematology-Oncology; Associate Director- Internal Medicine Residency Program, American University of Beirut, Beirut, Lebanon
| | - Jennifer McQuade
- Associate Professor and Physician Scientist in Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
9
|
Di Lisi D, Cadeddu Dessalvi C, Zito C, Madaudo C, Manganaro R, Mercurio V, Deidda M, Santoro C, Penna C, Monte IP, Spallarossa P, Tocchetti CG, Novo G. Management of cancer patients at high and very-high risk of cardiotoxicity: Main questions and answers. Curr Probl Cardiol 2024; 49:102229. [PMID: 38154703 DOI: 10.1016/j.cpcardiol.2023.102229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
In recent years, important advances have been made in the field of Cardio-Oncology. The 2022 ESC Guidelines on Cardio-Oncology proposed a baseline cardiovascular risk stratification for cancer patients and preventive strategies in patients at high and very-high risk of cardiotoxicity. Cardiovascular toxic effects of anti-cancer drugs are being extensively studied; surveillance programs have been proposed, based on the baseline cardiovascular risk. On the other hand, there is little data on Cardio-Oncological management of patients at high and very-high cardiovascular risk with previous cardiovascular diseases. For example, little is known about management of cancer patients with heart failure with reduced ejection fraction (HFrEF), patients with a recent myocardial infarction or other cardiovascular diseases; when to resume anti-cancer drugs after a cardiovascular toxic event. Collaboration between Cardiologists and Oncologists and multidisciplinary team evaluations are certainly essential to decide the best therapeutic strategy for cancer patients, to treat cancer while saving the heart. Therefore, in the present review, we attempt to provide a useful guide to clinicians in treating patients with high and very-high risk of cardiotoxicity by enucleating main questions and answering them based on the evidence available as well as expert opinion and our clinical experience.
Collapse
Affiliation(s)
- Daniela Di Lisi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Division of Cardiology, University Hospital Paolo Giaccone, Palermo, Italy..
| | | | - Concetta Zito
- Department of Clinical and Experimental Medicine - Cardiology Unit, University of Messina, Messina, Italy
| | - Cristina Madaudo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Division of Cardiology, University Hospital Paolo Giaccone, Palermo, Italy
| | - Roberta Manganaro
- Department of Clinical and Experimental Medicine - Cardiology Unit, University of Messina, Messina, Italy
| | - Valentina Mercurio
- Department of Translational Medical Sciences, Federico II University, Naples, Italy; Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Federico II University, Naples, Italy; Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Martino Deidda
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Italy-IRCCS Italian Cardiovascular Network & Department of Internal Medicine, University of Genova, 16121 Genova, Italy
| | - Ciro Santoro
- Department of Advanced Biomedical Sciences, Federico II University, 80131 Naples, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences of Turin University, Orbassano, Turin, I-10043, Italy
| | - Ines Paola Monte
- Department of General Surgery and Medical-Surgery Specialities- Cardiology, University of Catania, Catania, Italy
| | - Paolo Spallarossa
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Italy-IRCCS Italian Cardiovascular Network & Department of Internal Medicine, University of Genova, 16121 Genova, Italy
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy; Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Federico II University, Naples, Italy; Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), Federico II University, Naples, Italy
| | - Giuseppina Novo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Division of Cardiology, University Hospital Paolo Giaccone, Palermo, Italy
| |
Collapse
|
10
|
Wong-Siegel JR, Hayashi RJ, Foraker R, Mitchell JD. Cardiovascular toxicities after anthracycline and VEGF-targeted therapies in adolescent and young adult cancer survivors. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2023; 9:30. [PMID: 37420285 DOI: 10.1186/s40959-023-00181-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/12/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Cancer survival rates have been steadily improving in the adolescent and young adult (AYA) population, but survivors are at increased risk for cardiovascular disease (CVD). The cardiotoxic effects of anthracycline therapy have been well studied. However, the cardiovascular toxicity associated with newer therapies, such as the vascular endothelial growth factor (VEGF) inhibitors, is less well understood. OBJECTIVE This retrospective study of AYA cancer survivors sought to gain insight into their burden of cardiovascular toxicities (CT) following initiation of anthracycline and/or VEGF inhibitor therapy. METHODS Data were extracted from electronic medical records over a fourteen-year period at a single institution. Cox proportional hazards regression modeling was used to examine risk factors for CT within each treatment group. Cumulative incidence was calculated with death as a competing risk. RESULTS Of the 1,165 AYA cancer survivors examined, 32%, 22%, and 34% of patients treated with anthracycline, VEGF inhibitor, or both, developed CT. Hypertension was the most common outcome reported. Males were at increased risk for CT following anthracycline therapy (HR: 1.34, 95% CI 1.04-1.73). The cumulative incidence of CT was highest in patients who received both anthracycline and VEGF inhibitor (50% at ten years of follow up). CONCLUSIONS CT was common among AYA cancer survivors who received anthracycline and/or VEGF inhibitor therapy. Male sex was an independent risk factor for CT following anthracycline treatment. Further screening and surveillance are warranted to continue understanding the burden of CVD following VEGF inhibitor therapy.
Collapse
Affiliation(s)
- Jeannette R Wong-Siegel
- Division of Pediatric Cardiology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO, USA
| | - Robert J Hayashi
- Division of Pediatric Hematology/Oncology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO, USA
| | - Randi Foraker
- Institute for Informatics, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua D Mitchell
- Cardio-Oncology Center of Excellence, Division of Cardiology, Washington University in St. Louis, 660 S. Euclid Ave, CB 8086, St. Louis, MO, 63110, USA.
| |
Collapse
|
11
|
Watson NW, Shatzel JJ, Al-Samkari H. Cyclin-dependent kinase 4/6 inhibitor-associated thromboembolism: a critical evaluation of the current evidence. J Thromb Haemost 2023; 21:758-770. [PMID: 36696184 PMCID: PMC10065951 DOI: 10.1016/j.jtha.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 01/09/2023]
Abstract
Cyclin-dependent kinase 4/6 (CDK 4/6) inhibitors are an essential treatment modality for hormone receptor-positive breast cancer. As the rates of breast cancer continue to rise globally and the indications for CDK 4/6 inhibitors now extend beyond metastatic disease, more patients than ever are receiving these agents. Thrombosis is an emerging clinical concern with this class of agents, particularly venous thromboembolism. Although venous thromboembolism initially emerged as an adverse effect of interest in early trials, more recent studies have demonstrated even higher incidences of thrombosis in real-world clinical practice. In this review, we summarize the evidence to date that has informed the thrombosis risk for these agents both in clinical trials and real-world studies. We review data describing the venous and arterial thromboembolic risks in clinical trials of CDK 4/6 inhibitors as well as the now rather extensive real-world evidence available, including a comparison of risk for each of the 3 agents approved for use in breast cancer: palcociclib, ribociclib, and abemaciclib. As the role of prophylactic anticoagulation continues to remain unknown in women receiving CDK 4/6 inhibitors, future efforts directed at carefully investigating the risks and benefits of thromboprophylaxis may lead to improved outcomes in these patients.
Collapse
Affiliation(s)
| | - Joseph J Shatzel
- Knight Cancer Institute, Oregon Health and Sciences University, Portland, Oregon, USA; Division of Biomedical Engineering, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Hanny Al-Samkari
- Harvard Medical School, Boston, Massachusetts, USA; Division of Hematology and Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
12
|
Wang S, Wang Y, Yu J, Wu H, Zhou Y. Lenvatinib as First-Line Treatment for Unresectable Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14225525. [PMID: 36428618 PMCID: PMC9688932 DOI: 10.3390/cancers14225525] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 11/12/2022] Open
Abstract
Lenvatinib was approved in 2018 as a first-line treatment for patients with unresectable hepatocellular carcinoma (HCC). This systematic review and meta-analysis aimed to provide the most updated evidence about the efficacy and safety of lenvatinib as a first-line treatment for unresectable HCC. An electronic search of the PubMed database, Web of Science, Embase, and Cochrane Library was undertaken to identify all relevant studies up to May 2022. The pooled effect sizes were calculated based on the random-effects model. One phase III randomized controlled trial and 23 retrospective studies of 2438 patients were eligible for analysis. For patients treated with lenvatinib as first-line treatment, the pooled median overall survival (OS), median progression-free survival (PFS), 1-year OS rate, 1-year PFS rate, objective response rate (ORR), and disease control rate (DCR) were 11.36 months, 6.68 months, 56.0%, 27.0%, 36.0% and 75.0%, respectively. Lenvatinib showed a significantly superior efficacy compared with sorafenib (HR for OS, 0.85 and HR for PFS, 0.72; OR for ORR, 4.25 and OR for DCR, 2.23). The current study demonstrates that lenvatinib can provide better tumor responses and survival benefits than sorafenib as a first-line treatment for unresectable HCC, with a comparable incidence of adverse events.
Collapse
Affiliation(s)
- Shijie Wang
- Department of Oncological Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361000, China
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, China
| | - Yiting Wang
- Department of Stomatology, People’s Hospital of Zhengzhou, People’s Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Jiangtao Yu
- Department of General Surgery, People’s Hospital of Zhengzhou, People’s Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Huaxing Wu
- Department of Oncological Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Yanming Zhou
- Department of Oncological Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361000, China
- Correspondence: ; Tel.: +86-0592-2139708
| |
Collapse
|
13
|
Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, Boriani G, Cardinale D, Cordoba R, Cosyns B, Cutter DJ, de Azambuja E, de Boer RA, Dent SF, Farmakis D, Gevaert SA, Gorog DA, Herrmann J, Lenihan D, Moslehi J, Moura B, Salinger SS, Stephens R, Suter TM, Szmit S, Tamargo J, Thavendiranathan P, Tocchetti CG, van der Meer P, van der Pal HJH. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 2022; 43:4229-4361. [PMID: 36017568 DOI: 10.1093/eurheartj/ehac244] [Citation(s) in RCA: 1055] [Impact Index Per Article: 351.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
14
|
Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, Boriani G, Cardinale D, Cordoba R, Cosyns B, Cutter DJ, de Azambuja E, de Boer RA, Dent SF, Farmakis D, Gevaert SA, Gorog DA, Herrmann J, Lenihan D, Moslehi J, Moura B, Salinger SS, Stephens R, Suter TM, Szmit S, Tamargo J, Thavendiranathan P, Tocchetti CG, van der Meer P, van der Pal HJH. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J Cardiovasc Imaging 2022; 23:e333-e465. [PMID: 36017575 DOI: 10.1093/ehjci/jeac106] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
15
|
Receptor tyrosine kinase inhibitors negatively impact on pro-reparative characteristics of human cardiac progenitor cells. Sci Rep 2022; 12:10132. [PMID: 35710779 PMCID: PMC9203790 DOI: 10.1038/s41598-022-13203-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/23/2022] [Indexed: 12/21/2022] Open
Abstract
Receptor tyrosine kinase inhibitors improve cancer survival but their cardiotoxicity requires investigation. We investigated these inhibitors’ effects on human cardiac progenitor cells in vitro and rat heart in vivo. We applied imatinib, sunitinib or sorafenib to human cardiac progenitor cells, assessing cell viability, proliferation, stemness, differentiation, growth factor production and second messengers. Alongside, sunitinib effects were assessed in vivo. Inhibitors decreased (p < 0.05) cell viability, at levels equivalent to ‘peak’ (24 h; imatinib: 91.5 ± 0.9%; sunitinib: 83.9 ± 1.8%; sorafenib: 75.0 ± 1.6%) and ‘trough’ (7 days; imatinib: 62.3 ± 6.2%; sunitinib: 86.2 ± 3.5%) clinical plasma levels, compared to control (100% viability). Reduced (p < 0.05) cell cycle activity was seen with imatinib (29.3 ± 4.3% cells in S/G2/M-phases; 50.3 ± 5.1% in control). Expression of PECAM-1, Nkx2.5, Wnt2, linked with cell differentiation, were decreased (p < 0.05) 2, 2 and 6-fold, respectively. Expression of HGF, p38 and Akt1 in cells was reduced (p < 0.05) by sunitinib. Second messenger (p38 and Akt1) blockade affected progenitor cell phenotype, reducing c-kit and growth factor (HGF, EGF) expression. Sunitinib for 9 days (40 mg/kg, i.p.) in adult rats reduced (p < 0.05) cardiac ejection fraction (68 ± 2% vs. baseline (83 ± 1%) and control (84 ± 4%)) and reduced progenitor cell numbers. Receptor tyrosine kinase inhibitors reduce cardiac progenitor cell survival, proliferation, differentiation and reparative growth factor expression.
Collapse
|
16
|
Tullemans BME, Brouns SLN, Swieringa F, Sabrkhany S, van den Berkmortel FWPJ, Peters NAJB, de Bruijn P, Koolen SLW, Heemskerk JWM, Aarts MJB, Kuijpers MJE. Quantitative and qualitative changes in platelet traits of sunitinib-treated patients with renal cell carcinoma in relation to circulating sunitinib levels: a proof-of-concept study. BMC Cancer 2022; 22:653. [PMID: 35698081 PMCID: PMC9195440 DOI: 10.1186/s12885-022-09676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Tyrosine kinase inhibitors (TKIs), such as sunitinib, are used for cancer treatment, but may also affect platelet count and function with possible hemostatic consequences. Here, we investigated whether patient treatment with the TKI sunitinib affected quantitative and qualitative platelet traits as a function of the sunitinib level and the occurrence of bleeding. Methods Blood was collected from 20 metastatic renal cell carcinoma (mRCC) patients before treatment, and at 2 weeks, 4 weeks and 3 months after sunitinib administration. We measured blood cell counts, platelet aggregation, and concentrations of sunitinib as well as its N-desethyl metabolite in plasma, serum and isolated platelets. Progression of disease (PD) and bleeding were monitored after 3 months. Results In sunitinib-treated mRCC patients, concentrations of (N-desethyl-)sunitinib in plasma and serum were highly correlated. In the patients’ platelets the active metabolite levels were relatively increased as compared to sunitinib. On average, a sustained reduction in platelet count was observed on-treatment, which was significantly related to the inhibitor levels in plasma/serum. Principal component and correlational analysis showed that the (N-desethyl-)sunitinib levels in plasma/serum were linked to a reduction in both platelet count and collagen-induced platelet aggregation. The reduced aggregation associated in part with reported bleeding, but did not correlate to PD. Conclusion The sunitinib-induced reduction in quantitative and qualitative platelet traits may reflect the effective sunitinib levels in the patient. These novel results may serve as a proof-of-principle for other TKI-related drugs, where both platelet count and functions are affected, which could be used for therapeutic drug monitoring. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09676-0.
Collapse
Affiliation(s)
- Bibian M E Tullemans
- Cardiovascular Research Institute Maastricht, Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Sanne L N Brouns
- Cardiovascular Research Institute Maastricht, Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Frauke Swieringa
- Cardiovascular Research Institute Maastricht, Department of Biochemistry, Maastricht University, Maastricht, The Netherlands.,Synapse Research Institute, Maastricht, The Netherlands
| | - Siamack Sabrkhany
- Cardiovascular Research Institute Maastricht, Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | | | - Peter de Bruijn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Department of Pharmacy, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Johan W M Heemskerk
- Cardiovascular Research Institute Maastricht, Department of Biochemistry, Maastricht University, Maastricht, The Netherlands.,Synapse Research Institute, Maastricht, The Netherlands
| | - Maureen J B Aarts
- Department of Medical Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Cardiovascular Research Institute Maastricht, Department of Biochemistry, Maastricht University, Maastricht, The Netherlands. .,Thrombosis Expertise Centre, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
17
|
Rini BI, Moslehi JJ, Bonaca M, Schmidinger M, Albiges L, Choueiri TK, Motzer RJ, Atkins MB, Haanen J, Mariani M, Wang J, Hariharan S, Larkin J. Prospective Cardiovascular Surveillance of Immune Checkpoint Inhibitor-Based Combination Therapy in Patients With Advanced Renal Cell Cancer: Data From the Phase III JAVELIN Renal 101 Trial. J Clin Oncol 2022; 40:1929-1938. [PMID: 35239416 PMCID: PMC9177241 DOI: 10.1200/jco.21.01806] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/21/2021] [Accepted: 01/20/2022] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Both immune checkpoint inhibitors (ICIs) and vascular endothelial growth factor receptor (VEGFR) inhibitors are approved for advanced renal cell carcinoma treatment and can cause cardiovascular events (CVs); thus, combination therapy could lead to major adverse CV events (MACE). Cardiac serum biomarker assessment and imaging, including left ventricular ejection fraction (LVEF) monitoring, can be used to evaluate MACE. METHODS To our knowledge, the JAVELIN Renal 101 trial, assessing avelumab plus axitinib versus sunitinib in patients with advanced renal cell carcinoma, is the first randomized study of ICI plus VEGFR inhibitor treatment to include prospective serial cardiac monitoring of LVEF and serum cardiac biomarkers. RESULTS MACE (defined as grade ≥ 3 CV AEs) occurred in 31 patients (7.1%) in the combination arm and 17 patients (3.9%) in the sunitinib arm. Patients in the combination arm who had high baseline troponin T values were at higher risk of MACE versus patients with low values (MACE in 6/35 v 7/135, respectively; relative risk, 3.31; 95% CI, 1.19 to 9.22). This association was not observed in patients treated with sunitinib. Other CV baseline risk factors and serum cardiac biomarkers were not significantly predictive for MACE, although a trend toward an association with dyslipidemia was seen in the combination arm. No clinical value of on-treatment routine monitoring of LVEF in relation to MACE was observed. Although LVEF decline was significantly more frequent in the combination arm, most patients recovered, and decline was not associated with other significant cardiac events or symptoms. CONCLUSION Patients with high baseline troponin T levels receiving ICI and VEGFR combinations may need to be monitored more closely for MACE. Routine monitoring of LVEF in asymptomatic patients is not recommended.
Collapse
Affiliation(s)
- Brian I. Rini
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - Javid J. Moslehi
- Section of Cardio-Oncology & Immunology, Division of Cardiology, Cardiovascular Research Institute, University of California San Francisco School of Medicine, San Francisco, CA
- Vanderbilt University Medical Center, Nashville, TN
| | - Marc Bonaca
- Colorado Prevention Center Clinical Research, Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Manuela Schmidinger
- Department of Urology and Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel, Vienna, Austria
| | - Laurence Albiges
- Medical Oncology Department, Institut Gustave Roussy, Villejuif, France
| | - Toni K. Choueiri
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA
| | | | | | - John Haanen
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | | | - James Larkin
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
18
|
Wu H, Ding X, Zhang Y, Li W, Chen J. Incidence and risk of hypertension with lenvatinib in treatment of solid tumors: An updated systematic review and meta-analysis. J Clin Hypertens (Greenwich) 2022; 24:667-676. [PMID: 35538636 PMCID: PMC9180318 DOI: 10.1111/jch.14463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 12/26/2022]
Abstract
This meta‐analysis was performed to assess the relationship between Lenvatinib use for malignancy and hypertension (HTN). A total of 2483 patients met inclusion criteria. The relative risk (RR) for all‐grade and high‐grade (≧3) HTN were 2.61 (p ≦ .001) and 3.35 (p≦ .001), respectively, for Lenvatinib compared with other multitarget tyrosine kinase inhibitors or placebo. The cumulative incidence of all‐grade and high‐grade HTN was 70% and 34%, respectively. The studies with median treatment duration (TD) longer than 7.4 months demonstrated a higher incidence of high‐grade HTN than studies with shorter TD (34% vs 28%). The incidence of all levels of HTN increased with TD (68% vs 49%). Trials with median progression‐free survival (PFS) longer than nine months had a higher incidence of both all‐grade (37% vs 28%) and high‐grade (71% vs 48%) HTN. Lenvatinib, a drug commonly used in cancer treatment, is a risk factor for the development of HTN. A longer duration of Lenvatinib treatment was associated with higher frequency of HTN. Further investigation for Lenvatinib of the association between the occurrence of HTN and prognosis will be warranted.
Collapse
Affiliation(s)
- Hongxiao Wu
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Ding
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yongchao Zhang
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jinglong Chen
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Cardio-onco-metabolism: metabolic remodelling in cardiovascular disease and cancer. Nat Rev Cardiol 2022; 19:414-425. [PMID: 35440740 PMCID: PMC10112835 DOI: 10.1038/s41569-022-00698-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease and cancer are the two leading causes of morbidity and mortality in the world. The emerging field of cardio-oncology has revealed that these seemingly disparate disease processes are intertwined, owing to the cardiovascular sequelae of anticancer therapies, shared risk factors that predispose individuals to both cardiovascular disease and cancer, as well the possible potentiation of cancer growth by cardiac dysfunction. As a result, interest has increased in understanding the fundamental biological mechanisms that are central to the relationship between cardiovascular disease and cancer. Metabolism, appropriate regulation of energy, energy substrate utilization, and macromolecular synthesis and breakdown are fundamental processes for cellular and organismal survival. In this Review, we explore the emerging data identifying metabolic dysregulation as an important theme in cardio-oncology. We discuss the growing recognition of metabolic reprogramming in cardiovascular disease and cancer and view the novel area of cardio-oncology through the lens of metabolism.
Collapse
|
20
|
Quintanilha JCF, Hammond K, Liu Y, Marmorino F, Borelli B, Cremolini C, Nixon AB, Innocenti F. Plasma levels of VEGF-A and VCAM-1 as predictors of drug-induced hypertension in patients treated with VEGF-pathway inhibitors. Br J Clin Pharmacol 2022; 88:4171-4179. [PMID: 35437784 DOI: 10.1111/bcp.15356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/14/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Hypertension is a common toxicity induced by vascular endothelial growth factor (VEGF)-pathway inhibitors. There are no validated markers of hypertension induced by these drugs. EXPERIMENTAL APPROACH We previously discovered that cancer patients with lower plasma levels of angiopoietin-2, VCAM-1, and VEGF-A are at high risk of developing severe hypertension when treated with bevacizumab. This study aimed to validate the predictive value of these markers in pretreatment plasma samples of an additional cohort of 101 colorectal cancer patients treated with regorafenib. The levels of angiopoietin-2, VCAM-1, and VEGF-A were measured by ELISA. The association between proteins and grade ≥2 regorafenib-induced hypertension was performed by calculating the odds ratio (OR) from logistic regression. Using the optimal cut-point of each protein, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for hypertension were estimated. KEY RESULTS Lower levels of VCAM-1 (p=0.015, OR=3.11, 95% CI 1.27-8.08) and VEGF-A (p=0.007, OR=3.47, 95% CI 1.40-8.75) were associated with a higher risk of hypertension. Levels of angiopoietin-2 were not associated with hypertension. The multivariable model indicates an independent effect of VCAM-1 (p=0.018, OR=3.18, 95% CI 1.25-8.68) and VEGF-A (p=0.008, OR=3.77, 95% CI 1.44-10.21). The presence of low levels of both VCAM-1 and VEGF-A had an OR of 9.46 (95% CI 3.08-33.26, p=1.70x10-4 ) for the risk of hypertension (sensitivity of 41.4%, specificity of 93.1%, PPV of 70.6% and NPV of 79.8%). CONCLUSION AND IMPLICATIONS This study confirmed the value of VCAM-1 and VEGF-A levels in predicting hypertension induced by regorafenib, another VEGF-pathway inhibitor.
Collapse
Affiliation(s)
- Julia C F Quintanilha
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kelli Hammond
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yingmiao Liu
- Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | - Federica Marmorino
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Beatrice Borelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Andrew B Nixon
- Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | | |
Collapse
|
21
|
Johnson DB, Nebhan CA, Moslehi JJ, Balko JM. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat Rev Clin Oncol 2022; 19:254-267. [PMID: 35082367 PMCID: PMC8790946 DOI: 10.1038/s41571-022-00600-w] [Citation(s) in RCA: 521] [Impact Index Per Article: 173.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
The development of immune-checkpoint inhibitors (ICIs) has heralded a new era in cancer treatment, enabling the possibility of long-term survival in patients with metastatic disease, and providing new therapeutic indications in earlier-stage settings. As such, characterizing the long-term implications of receiving ICIs has grown in importance. An abundance of evidence exists describing the acute clinical toxicities of these agents, although chronic effects have not been as well catalogued. Nonetheless, emerging evidence indicates that persistent toxicities might be more common than initially suggested. While generally low-grade, these chronic sequelae can affect the endocrine, rheumatological, pulmonary, neurological and other organ systems. Fatal toxicities also comprise a diverse set of clinical manifestations and can occur in 0.4-1.2% of patients. This risk is a particularly relevant consideration in light of the possibility of long-term survival. Finally, the effects of immune-checkpoint blockade on a diverse range of immune processes, including atherosclerosis, heart failure, neuroinflammation, obesity and hypertension, have not been characterized but remain an important area of research with potential relevance to cancer survivors. In this Review, we describe the current evidence for chronic immune toxicities and the long-term implications of these effects for patients receiving ICIs.
Collapse
Affiliation(s)
- Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN, USA.
| | - Caroline A Nebhan
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN, USA
| | - Javid J Moslehi
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Justin M Balko
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|
22
|
Endothelial regulation of calmodulin expression and eNOS-calmodulin interaction in vascular smooth muscle. Mol Cell Biochem 2022; 477:1489-1498. [PMID: 35171400 DOI: 10.1007/s11010-022-04391-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
Abstract
Calmodulin (CaM) is a Ca2+ sensor protein that is required for numerous vascular smooth muscle cell (VSMC) functions. Since CaM is not expressed enough for its many target proteins, factors that modulate its expression and interactions with targets in VSMCs can have extensive effects on vascular functions. VSMCs receive many regulatory inputs from endothelial cells (ECs). However, it is unknown if ECs regulate vascular functions via controlling expression of CaM and its interactions in VSMCs. In this work, we tested the hypothesis that ECs also affect VSMC signaling via regulation of CaM expression and interactions with its target proteins in VSMCs. Using ECs and VSMCs isolated from the same vessels and grown in a co-culture system, we observed that the presence of proliferating ECs significantly upregulates total CaM expression in VSMCs. An imaging module was devised to concurrently measure free Ca2+ and CaM levels in VSMCs in co-culture with ECs. Using indo-1/AM and a CaM biosensor built from a modified CaM-binding sequence of endothelial nitric oxide synthase (eNOS), this system revealed that in response to a generic Ca2+ signal, free Ca2+-bound CaM level is enhanced ~ threefold in VSMCs in co-culture with proliferating ECs. Interestingly, VSMCs express eNOS and eNOS-CaM association in response to the same Ca2+ stimulus is also enhanced ~ threefold in VSMCs co-cultured with ECs. Mechanistically, the endothelium-dependent upregulation of CaM in VSMCs is not affected by inhibition of NO production or endothelin receptors but is prevented by inhibition of vascular endothelial growth factor receptors. Consistently, VEGF-A level is upregulated in VSMCs co-cultured with proliferating ECs. These data indicate a new role of the endothelium in regulating vascular functions via upregulating CaM and its interactions in VSMCs.
Collapse
|
23
|
Lau DK, Mencel J, Chau I. Safety and efficacy review of aflibercept for the treatment of metastatic colorectal cancer. Expert Opin Drug Saf 2022; 21:589-597. [PMID: 34986714 DOI: 10.1080/14740338.2022.2008905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Anti-angiogenic drugs are an efficacious class of therapy in the treatment of patients with metastatic colorectal cancer (mCRC). Aflibercept, a vascular endothelial growth factor (VEGF) trap which binds the angiogenic factors VEGF-A, VEGF-B, and placental growth factor (PIGF) is approved in combination with FOLFIRI chemotherapy following progression after an oxaliplatin-containing regimen. AREAS COVERED This report provides a review of the practice-changing clinical studies which have established the use of anti-angiogenic therapy as second-line therapy in mCRC including aflibercept with FOLFIRI (5FU, leucovorin, irinotecan). This review also evaluates aflibercept with other chemotherapy regimens as well as efficacy and safety data from real-world studies. EXPERT OPINION Aflibercept in combination with FOLFIRI chemotherapy is an established safe and efficacious regimen for the treatment of mCRC as second-line chemotherapy. Although several toxicities have been described, the majority are either low grade or manageable by drug cessation and supportive therapies. For optimal outcomes, patient selection and close observation of toxicities is essential.
Collapse
Affiliation(s)
- David K Lau
- Gastrointestinal and Lymphoma Unit, The Royal Marsden NHS Foundation Trust, London and Surrey, United Kingdom
| | - Justin Mencel
- Gastrointestinal and Lymphoma Unit, The Royal Marsden NHS Foundation Trust, London and Surrey, United Kingdom
| | - Ian Chau
- Gastrointestinal and Lymphoma Unit, The Royal Marsden NHS Foundation Trust, London and Surrey, United Kingdom
| |
Collapse
|
24
|
Bansal N, Joshi C, Adams MJ, Hutchins K, Ray A, Lipshultz SE. Cardiotoxicity in pediatric lymphoma survivors. Expert Rev Cardiovasc Ther 2021; 19:957-974. [PMID: 34958622 DOI: 10.1080/14779072.2021.2013811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Over the past five decades, the diagnosis and management of children with various malignancies have improved tremendously. As a result, an increasing number of children are long-term cancer survivors. With improved survival, however, has come an increased risk of treatment-related cardiovascular complications that can appear decades later. AREAS COVERED This review discusses the pathophysiology, epidemiology and effects of treatment-related cardiovascular complications from anthracyclines and radiotherapy in pediatric lymphoma survivors. There is a paucity of evidence-based recommendations for screening for and treatment of cancer therapy-induced cardiovascular complications. We discuss current preventive measures and strategies for their treatment. EXPERT OPINION Significant cardiac adverse effects occur due to radiation and chemotherapy received by patients treated for lymphoma. Higher lifetime cumulative doses, female sex, longer follow-up, younger age, and preexisting cardiovascular disease are associated with a higher incidence of cardiotoxicity. With deeper understanding of the mechanisms of these adverse cardiac effects and identification of driver mutations causing these effects, personalized cancer therapy to limit cardiotoxic effects while ensuring an adequate anti-neoplastic effect would be ideal. In the meantime, expanding the use of cardioprotective agents with the best evidence such as dexrazoxane should be encouraged and further studied.
Collapse
Affiliation(s)
- Neha Bansal
- Division of Pediatric Cardiology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx NY, USA
| | - Chaitya Joshi
- Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo NY, USA
| | - Michael Jacob Adams
- Department of Public Health Sciences, University of Rochester, Rochester NY, USA
| | - Kelley Hutchins
- John A. Burns School of Medicine, Pediatric Hematology/Oncology, Kapiolani Medical Center for Women and Children, Honolulu HI, USA
| | - Andrew Ray
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo NY, USA
| | - Steven E Lipshultz
- Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo NY, USA.,Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo NY, USA.,Pediatrics Department, John R. Oishei Children's Hospital, UBMD Pediatrics Practice Group, Buffalo NY, USA
| |
Collapse
|
25
|
Kaae AC, Kreissl MC, Krüger M, Infanger M, Grimm D, Wehland M. Kinase-Inhibitors in Iodine-Refractory Differentiated Thyroid Cancer-Focus on Occurrence, Mechanisms, and Management of Treatment-Related Hypertension. Int J Mol Sci 2021; 22:12217. [PMID: 34830100 PMCID: PMC8623313 DOI: 10.3390/ijms222212217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
Differentiated thyroid cancer (DTC) usually has a good prognosis when treated conventionally with thyroidectomy, radioactive iodine (RAI) and thyroid-stimulating hormone suppression, but some tumors develop a resistance to RAI therapy, requiring alternative treatments. Sorafenib, lenvatinib and cabozantinib are multikinase inhibitors (MKIs) approved for the treatment of RAI-refractory DTC. The drugs have been shown to improve progression-free survival (PFS) and overall survival (OS) via the inhibition of different receptor tyrosine kinases (RTKs) that are involved in tumorigenesis and angiogenesis. Both sorafenib and lenvatinib have been approved irrespective of the line of therapy for the treatment of RAI-refractory DTC, whereas cabozantinib has only been approved as a second-line treatment. Adverse effects (AEs) such as hypertension are often seen with MKI treatment, but are generally well manageable. In this review, current clinical studies will be discussed, and the toxicity and safety of sorafenib, lenvatinib and cabozantinib treatment will be evaluated, with a focus on AE hypertension and its treatment options. In short, treatment-emergent hypertension (TE-HTN) occurs with all three drugs, but is usually well manageable and leads only to a few dose modifications or even discontinuations. This is emphasized by the fact that lenvatinib is widely considered the first-line drug of choice, despite its higher rate of TE-HTN.
Collapse
Affiliation(s)
- Anne Christine Kaae
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark; (A.C.K.); (D.G.)
| | - Michael C. Kreissl
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany;
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.K.); (M.I.)
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.K.); (M.I.)
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark; (A.C.K.); (D.G.)
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.K.); (M.I.)
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.K.); (M.I.)
| |
Collapse
|
26
|
Watson N, Al-Samkari H. Thrombotic and bleeding risk of angiogenesis inhibitors in patients with and without malignancy. J Thromb Haemost 2021; 19:1852-1863. [PMID: 33928747 DOI: 10.1111/jth.15354] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023]
Abstract
Over the past two decades, therapies targeting angiogenesis have developed into a major class of cancer therapeutics. The vascular endothelial growth factor (VEGF) family of signaling proteins, a group of potent angiogenic growth factors, and their receptors represent the main targets of this therapeutic class. To date, 16 antiangiogenic agents have been approved in the United States for the treatment of cancer and several more are in development. An important consideration with antiangiogenic therapy is toxicity, in particular thrombotic and bleeding risks. These complications have emerged as a major clinical concern that may affect the use of these agents in patients both with and without cancer who may already have an elevated risk of thrombosis and bleeding. Although these agents are frequently considered together as a class when contemplating their bleeding and thrombotic risks, in fact the risks for venous thromboembolism, arterial thrombosis, and bleeding vary significantly between different classes of antiangiogenic agents and even among different agents within a class. In this narrative review, we describe the literature investigating the venous and arterial thrombotic and bleeding risks associated with the currently available antiangiogenic drugs. In addition, we discuss these specific complications in the context of both cancer therapy as well as the management of nonmalignant disorders now managed with antiangiogenic agents, including hereditary hemorrhagic telangiectasia and neovascular age-related macular degeneration.
Collapse
Affiliation(s)
| | - Hanny Al-Samkari
- Harvard Medical School, Boston, MA, USA
- Division of Hematology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
27
|
Lehmann LH, Cautela J, Palaskas N, Baik AH, Meijers WC, Allenbach Y, Alexandre J, Rassaf T, Müller OJ, Aras M, Asnani AH, Deswal A, Laufer-Perl M, Thuny F, Kerneis M, Hayek SS, Ederhy S, Salem JE, Moslehi JJ. Clinical Strategy for the Diagnosis and Treatment of Immune Checkpoint Inhibitor-Associated Myocarditis: A Narrative Review. JAMA Cardiol 2021; 6:1329-1337. [PMID: 34232253 DOI: 10.1001/jamacardio.2021.2241] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Importance In the last decade, immune checkpoint inhibitors (ICIs) have been approved for the treatment of many cancer types. Immune checkpoint inhibitor-associated myocarditis has emerged as a significant and potentially fatal adverse effect. Recognizing, diagnosing, and treating ICI-associated myocarditis poses new challenges for the practicing clinician. Here, the current literature on ICI-associated myocarditis is reviewed. Observations Clinical presentation and cardiac pathological findings are highly variable in patients with ICI-associated myocarditis. Although endomyocardial biopsy is the criterion standard diagnostic test, a combination of clinical suspicion, cardiac biomarkers (specifically troponin), and cardiac imaging, in addition to biopsy, is often needed to support the diagnosis. Importantly, the combination of a cytotoxic T-lymphocyte-associated protein 4 inhibitor with a programmed cell death protein 1 or programmed death-ligand 1 inhibitor increases the risk of developing ICI-associated myocarditis. Conclusion and Relevance This review aims to provide a standardized diagnostic and therapeutic approach for patients with suspected ICI-associated myocarditis. A complete history of recent cancer treatments and physical examination in combination with cardiac biomarkers, cardiac imaging, and endomyocardial biopsy represent a pragmatic diagnostic approach for most cases of ICI-associated myocarditis. The addition of novel biomarkers or imaging modalities is an area of active research and should be evaluated in larger cohorts.
Collapse
Affiliation(s)
- Lorenz H Lehmann
- Department of Cardiology, Angiology, and Pneumology, Cardio-Oncology Unit, Heidelberg University Hospital, Heidelberg, Germany.,German Centre for Cardiovascular Research, partner site Heidelberg/Mannheim, Heidelberg, Germany.,German Cancer Research Centre, Heidelberg, Germany
| | - Jennifer Cautela
- Aix-Marseille University, University Mediterranean Center of Cardio-Oncology, Unit of Heart Failure and Valvular Heart Diseases, Center for Cardiovascular and Nutrition Research, Nord Hospital, Assistance Publique-Hôpitaux de Marseille, France.,Groupe Méditerranéen de Cardio-Oncologie, Marseille, France.,Oncosafety Network of the Early Phases Cancer Trials Center, Marseille, France
| | - Nicolas Palaskas
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Alan H Baik
- Department of Medicine, Division of Cardiology, University of California, San Francisco
| | - Wouter C Meijers
- Cardio-Oncology Program, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yves Allenbach
- Department of Internal Medicine and Clinical Immunology, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Joachim Alexandre
- Department of Pharmacology, Normandie University, University of Caen Normandy, PICARO Cardio-oncology Program, Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, Caen, France
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Kiel, Germany.,German Center for Cardiovascular Research, partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Mandar Aras
- Department of Medicine, Division of Cardiology, University of California, San Francisco
| | - Aarti H Asnani
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Anita Deswal
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Michal Laufer-Perl
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Franck Thuny
- Aix-Marseille University, University Mediterranean Center of Cardio-Oncology, Unit of Heart Failure and Valvular Heart Diseases, Center for Cardiovascular and Nutrition Research, Nord Hospital, Assistance Publique-Hôpitaux de Marseille, France.,Groupe Méditerranéen de Cardio-Oncologie, Marseille, France
| | - Mathieu Kerneis
- Sorbonne Université, ACTION Study Group, Institut National de la Santé et de la Recherche Médicale, Institut de Cardiologie, Hôpital Pitié-Salpêtrière (Assistance Publique-Hôpitaux de Paris), Paris, France
| | - Salim S Hayek
- Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor
| | - Stéphane Ederhy
- Hôpitaux Universitaires Paris-Est, Assistance Publique-Hôpitaux de Paris, Hôpital Saint Antoine, Service de Cardiologie, Unico, Unité de Cardio-Oncologie, Groupe de Recherche Clinique en Cardio-Oncologie, Université Pierre et Marie Curie, Paris, France
| | - Joe-Elie Salem
- Cardio-Oncology Program, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pharmacology, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, UNICO-GRECO Cardio-Oncology Program, Pitié-Salpêtrière Hospital, Paris, France
| | - Javid J Moslehi
- Cardio-Oncology Program, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
28
|
Fleming MR, Xiao L, Jackson KD, Beckman JA, Barac A, Moslehi JJ. Vascular Impact of Cancer Therapies: The Case of BTK (Bruton Tyrosine Kinase) Inhibitors. Circ Res 2021; 128:1973-1987. [PMID: 34110908 PMCID: PMC10185355 DOI: 10.1161/circresaha.121.318259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Novel targeted cancer therapies have revolutionized oncology therapies, but these treatments can have cardiovascular complications, which include heterogeneous cardiac, metabolic, and vascular sequelae. Vascular side effects have emerged as important considerations in both cancer patients undergoing active treatment and cancer survivors. Here, we provide an overview of vascular effects of cancer therapies, focusing on small-molecule kinase inhibitors and specifically inhibitors of BTK (Bruton tyrosine kinase), which have revolutionized treatment and prognosis for B-cell malignancies. Cardiovascular side effects of BTK inhibitors include atrial fibrillation, increased risk of bleeding, and hypertension, with the former 2 especially providing a treatment challenge for the clinician. Cardiovascular complications of small-molecule kinase inhibitors can occur through either on-target (targeting intended target kinase) or off-target kinase inhibition. We will review these concepts and focus on the case of BTK inhibitors, highlight the emerging data suggesting an off-target effect that may provide insights into development of arrhythmias, specifically atrial fibrillation. We believe that cardiac and vascular sequelae of novel targeted cancer therapies can provide insights into human cardiovascular biology.
Collapse
Affiliation(s)
- Matthew R Fleming
- Division of Cardiovascular Medicine (M.R.F., J.A.B., J.J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ling Xiao
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (L.X.)
| | - Klarissa D Jackson
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (K.D.J.)
| | - Joshua A Beckman
- Division of Cardiovascular Medicine (M.R.F., J.A.B., J.J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ana Barac
- Georgetown University and MedStar Heart and Vascular Institute, MedStar Washing Hospital Center, DC (A.B.)
| | - Javid J Moslehi
- Division of Cardiovascular Medicine (M.R.F., J.A.B., J.J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Cardio-Oncology Program (J.J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
29
|
Yu Q, Li K, Zhao A, Wei M, Huang Z, Zhang Y, Chen Y, Lian T, Wang C, Xu L, Zhang Y, Xu C, Liu F. Sorafenib not only impairs endothelium-dependent relaxation but also promotes vasoconstriction through the upregulation of vasoconstrictive endothelin type B receptors. Toxicol Appl Pharmacol 2021; 414:115420. [PMID: 33503445 DOI: 10.1016/j.taap.2021.115420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/06/2021] [Accepted: 01/21/2021] [Indexed: 01/01/2023]
Abstract
As a VEGF-targeting agent, sorafenib has been used to treat a number of solid tumors but can easily lead to adverse vascular effects. To elucidate the underlying mechanism, rat mesenteric arteries were subjected to organ cultured in the presence of different concentrations of sorafenib (0, 3, 6 and 9 mg/L) with or without inhibitors (U0126, 10-5 M; SB203580, 10-5 M; SP200126, 10-5 M) of MAPK kinases, and then acetylcholine- or sodium nitroprusside-induced vasodilation and sarafotoxin 6c-induced vasoconstriction were monitored by a sensitive myograph. The NO synthetases, the nitrite levels, the endothelial marker CD31,the ETB and ETA receptors and the phosphorylation of MAPK kinases were studied. Next, rats were orally administrated by sorafenib for 4 weeks (7.5 and 15 mg/kg/day), and their blood pressure, plasma ET-1, the ETB and ETA receptors and the phosphorylation of MAPK kinases in the mesenteric arteries were investigated. The results showed that sorafenib impairs endothelium-dependent vasodilation due to decreased NO levels and the low expression of eNOS and iNOS. Weak staining for CD31 indicated that sorafenib induced endothelial damage. Moreover, sorafenib caused the upregulation of vasoconstrictive ETB receptors, the enhancement of ETB receptor-mediated vasoconstriction and the activation of JNK/MAPK. Blocking the JNK, ERK1/2 and p38/MAPK signaling pathways by using the inhibitors significantly abolished ETB receptor-mediated vasoconstriction. Furthermore, it was observed that the oral administration of sorafenib caused an increase in blood pressure and plasma ET-1, upregulation of the ETB receptor and the activation of JNK in the mesenteric arteries. In conclusion, sorafenib not only impairs endothelium-dependent vasodilatation but also enhances ETB receptor-mediated vasoconstriction, which may be the causal factors for hypertension and other adverse vascular effects in patients treated with sorafenib.
Collapse
MESH Headings
- Angiogenesis Inhibitors/toxicity
- Animals
- Blood Pressure/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Hypertension/chemically induced
- Hypertension/metabolism
- Hypertension/physiopathology
- JNK Mitogen-Activated Protein Kinases/metabolism
- Male
- Mesenteric Artery, Superior/drug effects
- Mesenteric Artery, Superior/metabolism
- Mesenteric Artery, Superior/physiopathology
- Nitric Oxide/metabolism
- Rats, Sprague-Dawley
- Receptor, Endothelin B/genetics
- Receptor, Endothelin B/metabolism
- Signal Transduction
- Sorafenib/toxicity
- Tissue Culture Techniques
- Up-Regulation
- Vasoconstriction/drug effects
- Vasodilation/drug effects
- p38 Mitogen-Activated Protein Kinases/metabolism
- Rats
Collapse
Affiliation(s)
- Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China; Department of Histology and Embryology, Xi'an Medical University, Xi'an 710021, China; Department of Pharmacology, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China.
| | - Kun Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Andong Zhao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Mengqian Wei
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Zhenhao Huang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Yunting Zhang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Ying Chen
- School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.
| | - Ting Lian
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Chuan Wang
- Department of Pharmacology, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Li Xu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Yaping Zhang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Cangbao Xu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Fuqiang Liu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China; Cardiovascular Department, Shaanxi Provincial People's Hospital, Xi'an 710010, China.
| |
Collapse
|
30
|
Chang FC, Chen TWW, Huang TTM, Lin WC, Liu JS, Chiang WC, Chen YM, Hsu C, Yeh KH, Chu TS. Spectrum of cancer patients receiving renal biopsy. J Formos Med Assoc 2021; 121:152-161. [PMID: 33640191 DOI: 10.1016/j.jfma.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The frontier of onco-nephrology, particularly renal complications of cancer and treatment, remains unexplored. We revisit the fundamental tool of diagnosing kidney disease, renal biopsy, in cancer patients with renal manifestation. METHODS Patients who received renal biopsy from July 2015 to July 2019 were analyzed. Primary outcomes included end-stage renal disease (ESRD), mortality, and catastrophic outcome defined as either ESRD or mortality. A Cox proportional hazards model and Kaplan-Meier technique were used to assess the association with outcome measurements and survival analyses. Immunosuppression after renal biopsy and response to the treatment were evaluated. RESULTS Among the 77 patients, the median age was 66 years (interquartile range [IQR] 59-73 years) and 46 (59.7%) were male. At the time of renal biopsy, 57 patients (74%) had various degrees of renal insufficiency. Tubulointerstitial damage score, quantified by renal pathology, were associated with higher hazards of ESRD (hazard ratio [HR], 1.77; 95% confidence interval [95% CI], 1.20 to 2.61; P = 0.004) and catastrophic outcome (HR, 1.30; 95% CI, 0.99 to 1.70; P = 0.058). The response rate to immunosuppression was lower in those diagnosed with tubulointerstitial nephritis (1 of 4 patients, 25%) than those with glomerulopathy (10 of 20 patients, 50%). CONCLUSION Renal biopsy may improve diagnostic accuracy and assist in treatment guidance of cancer patients with renal manifestation. Renal biopsy should be encouraged with clinical indication. Collaboration between oncologists and nephrologists is of paramount importance to provide more comprehensive care for caner patients.
Collapse
Affiliation(s)
- Fan-Chi Chang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tom Wei-Wu Chen
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Thomas Tao-Min Huang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Chou Lin
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jia-Sin Liu
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chih Chiang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yung-Ming Chen
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chiun Hsu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; National Taiwan University Cancer Center, Taipei, Taiwan
| | - Kun-Huei Yeh
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Tzong-Shinn Chu
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
31
|
Gutierrez C, Rajendram P, Pastores SM. Toxicities Associated with Immunotherapy and Approach to Cardiotoxicity with Novel Cancer Therapies. Crit Care Clin 2020; 37:47-67. [PMID: 33190775 DOI: 10.1016/j.ccc.2020.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, major advances in oncology especially the advent of targeted agents and immunotherapies (immune checkpoint inhibitors [ICIs] and chimeric antigen receptor [CAR] T-cell therapy) have led to improved quality of life and survival rates in patients with cancer. This article focuses on the clinical features, and grading and management of toxicities associated with ICIs and CAR T-cell therapy. In addition, because cardiotoxicity is one of the most harmful effects of anticancer therapeutics, we describe the risk factors and mechanisms of cardiovascular injury associated with newer agents, screening technologies for at-risk patients, and preventive and treatment strategies.
Collapse
Affiliation(s)
- Cristina Gutierrez
- Department of Critical Care Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Prabalini Rajendram
- Department of Critical Care, Respiratory Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Stephen M Pastores
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, 1275 York Avenue C-1179, New York, NY 10065, USA.
| |
Collapse
|
32
|
Influence of NOS3 rs2070744 genotypes on hepatocellular carcinoma patients treated with lenvatinib. Sci Rep 2020; 10:17054. [PMID: 33051476 PMCID: PMC7553969 DOI: 10.1038/s41598-020-73930-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
We investigated whether or not nitric oxide synthase 3 (NOS3) rs2070744 genotypes can affect the response for lenvatinib treatment in patients with hepatocellular carcinoma (HCC). We evaluated the relation of the NOS3 rs2070744 genotypes to the tumor response, progression-free survival (PFS), and overall survival (OS) as the response for lenvatinib. We also examined the association between fibroblast growth factor receptor (FGFR) gene polymorphisms, a potential feature of lenvatinib, and the response. There were no significant differences between the studies for either PFS or OS, even though patients with the TT genotype had a longer mean PFS (hazard ratio [HR] 0.60; p = 0.069) and mean OS (HR 0.46; p = 0.075) than those with the TC/CC genotypes. However, patients with a single-nucleotide polymorphism (SNP) combination pattern of the NOS3 rs2070744 TC/CC and FGFR4 rs351855 CT/TT genotypes had a significantly shorter mean PFS (HR 2.56; p = 0.006) and mean OS (HR 3.36; p = 0.013) than those with the other genotypes. The NOS3 rs2070744 genotypes did not influence the clinical response. However, the SNP combination pattern of the NOS3 rs2070744 and FGFR4 rs351855 genotypes may be helpful as treatment effect predictors and prognostic factors for HCC patients treated with lenvatinib.
Collapse
|
33
|
Neves KB, Montezano AC, Lang NN, Touyz RM. Vascular toxicity associated with anti-angiogenic drugs. Clin Sci (Lond) 2020; 134:2503-2520. [PMID: 32990313 DOI: 10.1042/cs20200308] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Over the past two decades, the treatment of cancer has been revolutionised by the highly successful introduction of novel molecular targeted therapies and immunotherapies, including small-molecule kinase inhibitors and monoclonal antibodies that target angiogenesis by inhibiting vascular endothelial growth factor (VEGF) signaling pathways. Despite their anti-angiogenic and anti-cancer benefits, the use of VEGF inhibitors (VEGFi) and other tyrosine kinase inhibitors (TKIs) has been hampered by potent vascular toxicities especially hypertension and thromboembolism. Molecular processes underlying VEGFi-induced vascular toxicities still remain unclear but inhibition of endothelial NO synthase (eNOS), reduced nitric oxide (NO) production, oxidative stress, activation of the endothelin system, and rarefaction have been implicated. However, the pathophysiological mechanisms still remain elusive and there is an urgent need to better understand exactly how anti-angiogenic drugs cause hypertension and other cardiovascular diseases (CVDs). This is especially important because VEGFi are increasingly being used in combination with other anti-cancer dugs, such as immunotherapies (immune checkpoint inhibitors (ICIs)), other TKIs, drugs that inhibit epigenetic processes (histone deacetylase (HDAC) inhibitor) and poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors, which may themselves induce cardiovascular injury. Here, we discuss vascular toxicities associated with TKIs, especially VEGFi, and provide an up-to-date overview on molecular mechanisms underlying VEGFi-induced vascular toxicity and cardiovascular sequelae. We also review the vascular effects of VEGFi when used in combination with other modern anti-cancer drugs.
Collapse
Affiliation(s)
- Karla B Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
| | - Ninian N Lang
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
| |
Collapse
|
34
|
Versmissen J, Mirabito Colafella KM, Koolen SLW, Danser AHJ. Vascular Cardio-Oncology: Vascular Endothelial Growth Factor inhibitors and hypertension. Cardiovasc Res 2020; 115:904-914. [PMID: 30726882 DOI: 10.1093/cvr/cvz022] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/16/2018] [Accepted: 01/24/2019] [Indexed: 12/27/2022] Open
Abstract
Since the formation of new blood vessels is essential for tumour growth and metastatic spread, inhibition of angiogenesis by targeting the vascular endothelial growth factor (VEGF) pathway is an effective strategy for various types of cancer, most importantly renal cell carcinoma, thyroid cancer, and hepatocellular carcinoma. However, VEGF inhibitors have serious side effects, most importantly hypertension and nephropathy. In case of fulminant hypertension, this may only be handled by lowering the dosage since the blood pressure rise is proportional to the amount of VEGF inhibition. These effects pathophysiologically and clinically resemble the most severe complication of pregnancy, preeclampsia, in which case an insufficient placenta leads to a rise in sFlt-1 levels causing a decrease in VEGF availability. Due to this overlap, studies in preeclampsia may provide important information for VEGF inhibitor-induced toxicity and vice versa. In both VEGF inhibitor-induced toxicity and preeclampsia, endothelin (ET)-1 appears to be a pivotal player. In this review, after briefly summarizing the anticancer effects, we discuss the mechanisms that potentially underlie the unwanted effects of VEGF inhibitors, focusing on ET-1, nitric oxide and oxidative stress, the renin-angiotensin-aldosterone system, and rarefaction. Given the salt sensitivity of this phenomenon, as well as the beneficial effects of aspirin in preeclampsia and cancer, we next provide novel treatment options for VEGF inhibitor-induced toxicity, including salt restriction, ET receptor blockade, and cyclo-oxygenase inhibition, in addition to classical antihypertensive and renoprotective drugs. We conclude with the recommendation of therapeutic drug monitoring to improve patient outcome.
Collapse
Affiliation(s)
- Jorie Versmissen
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, CA Rotterdam, The Netherlands
| | - Katrina M Mirabito Colafella
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, CA Rotterdam, The Netherlands.,Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Melbourne, Australia
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.,Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, CA Rotterdam, The Netherlands
| |
Collapse
|
35
|
Casavecchia G, Galderisi M, Novo G, Gravina M, Santoro C, Agricola E, Capalbo S, Zicchino S, Cameli M, De Gennaro L, Righini FM, Monte I, Tocchetti CG, Brunetti ND, Cadeddu C, Mercuro G. Early diagnosis, clinical management, and follow-up of cardiovascular events with ponatinib. Heart Fail Rev 2020; 25:447-456. [DOI: 10.1007/s10741-020-09926-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Stavniichuk A, Savchuk O, Khan AH, Jankiewicz WK, Imig JD. A SORAFENIB INDUCED MODEL OF GLOMERULAR KIDNEY DISEASE. ACTA ACUST UNITED AC 2020; 81:25-31. [PMID: 33251532 DOI: 10.17721/1728_2748.2020.81.25-31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glomerular injury and proteinuria are important pathophysiological features of chronic kidney disease. In the present study, we provide data on a glomerular injury model that was developed using the cancer chemotherapy drug sorafenib. Sorafenib is a tyrosine kinase inhibitor that acts via the vascular endothelial growth factor (VEGF) signaling pathway and is widely used to treat a variety of cancers. On the other hand, sorafenib causes serious renal side effects in patients including the development of chronic kidney disease. The current study aimed to utilize the nephrotoxic property of sorafenib to develop a rat model for chronic kidney disease. We demonstrate that rats administered sorafenib for 8 weeks along with a high salt diet (8% NaCl enriched) develop hypertension (80mmHg higher systolic blood pressure), proteinuria (75% higher), and 4-fold higher glomerular injury compared to vehicle-treated normal control rat. Sorafenib induced glomerular injury was associated with decreased (20-80% lower) renal mRNA expression of key glomerular structural proteins such as nephrin, podocin, synaptopodin, and podoplanin compared to vehicle-treated normal control rat. Renal cortical endothelial-to-mesenchymal transition (EndoMT) was activated in the sorafenib induced glomerular injury model. In the sorafenib treated rats, the renal EndoMT was evident with 20% lower mRNA expression of an endothelial marker WT-1 and 2 to 3-fold higher expression of mesenchymal markers Col III, FSP-1, α-SMA, and vimentin. In conclusion, we developed a rat pre-clinical chronic kidney disease model that manifest glomerular injury. We further demonstrate that the glomerular injury in this model is associated with decreased renal mRNA expression of key glomerular structural proteins and an activated kidney EndoMT.
Collapse
Affiliation(s)
| | - O Savchuk
- Taras Shevchenko National University, Kyiv, Ukraine
| | | | | | - John D Imig
- The Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
37
|
Campia U, Moslehi JJ, Amiri-Kordestani L, Barac A, Beckman JA, Chism DD, Cohen P, Groarke JD, Herrmann J, Reilly CM, Weintraub NL. Cardio-Oncology: Vascular and Metabolic Perspectives: A Scientific Statement From the American Heart Association. Circulation 2019; 139:e579-e602. [PMID: 30786722 DOI: 10.1161/cir.0000000000000641] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardio-oncology has organically developed as a new discipline within cardiovascular medicine as a result of the cardiac and vascular adverse sequelae of the major advances in cancer treatment. Patients with cancer and cancer survivors are at increased risk of vascular disease for a number of reasons. First, many new cancer therapies, including several targeted therapies, are associated with vascular and metabolic complications. Second, cancer itself serves as a risk factor for vascular disease, especially by increasing the risk for thromboembolic events. Finally, recent data suggest that common modifiable and genetic risk factors predispose to both malignancies and cardiovascular disease. Vascular complications in patients with cancer represent a new challenge for the clinician and a new frontier for research and investigation. Indeed, vascular sequelae of novel targeted therapies may provide insights into vascular signaling in humans. Clinically, emerging challenges are best addressed by a multidisciplinary approach in which cardiovascular medicine specialists and vascular biologists work closely with oncologists in the care of patients with cancer and cancer survivors. This novel approach realizes the goal of providing superior care through the creation of cardio-oncology consultative services and the training of a new generation of cardiovascular specialists with a broad understanding of cancer treatments.
Collapse
|
38
|
Yeh ETH, Ewer MS, Moslehi J, Dlugosz-Danecka M, Banchs J, Chang HM, Minotti G. Mechanisms and clinical course of cardiovascular toxicity of cancer treatment I. Oncology. Semin Oncol 2019; 46:397-402. [PMID: 31753424 DOI: 10.1053/j.seminoncol.2019.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
Abstract
The opening session of Second International Colloquium on Cardio-Oncology addressed two areas of vital interest. The first reviewed new thoughts related to established agents. While anthracycline cardiotoxicity has been studied and reviewed extensively, ongoing research attempting to understand why it appears the mechanism(s) of toxicity differs from that of oncologic efficacy continue to evoke comment and intriguing speculation. Better understanding of the role of β-topoisomerase II in toxicity has advanced our understanding of the cascade of events that lead to heart failure. Additionally, the cardioprotective role of dexrazoxane fits well with our new understanding of how β-topoisomerase II works. Beyond the anthracyclines, new insight is providing us insight to better understand the impact on cardiac function seen with other agents including those targeting HER2 and several tyrosine-kinase inhibitors. Unlike the anthracyclines, these agents affect cardiac function in ways that are less direct, and therefore have different characteristics and should be thought of in alternate ways. This new knowledge regarding established agents furthers our understanding of the spectrum of cardiotoxicity and cardiac dysfunction in the cancer patient. The session also addressed cardiovascular toxicities of newer and established agents beyond myocardial dysfunction including effects on the vasculature. These agents cause changes that may be temporary or permanent, and that range from subclinical to life-threatening. The session ended with a discussion of the cardiac effects of immune checkpoint inhibitors. These agents can cause rare and sometimes fatal cardiac inflammation, for which long-term follow up may be required.
Collapse
Affiliation(s)
- Edward T H Yeh
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO
| | - Michael S Ewer
- The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Javid Moslehi
- Cardio-Oncology Program, Vanderbilt School of Medicine, Nashville, TN
| | | | - Jose Banchs
- The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Hui-Ming Chang
- Center for Precision Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO
| | - Giorgio Minotti
- Department of Medicine, Campus Bio-Medico University, Rome, Italy.
| |
Collapse
|
39
|
Budolfsen C, Faber J, Grimm D, Krüger M, Bauer J, Wehland M, Infanger M, Magnusson NE. Tyrosine Kinase Inhibitor-Induced Hypertension: Role of Hypertension as a Biomarker in Cancer Treatment. Curr Vasc Pharmacol 2019; 17:618-634. [DOI: 10.2174/1570161117666190130165810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 02/07/2023]
Abstract
:Cancer treatment is an area of continuous improvement. Therapy is becoming more targeted and the use of anti-angiogenic agents in multiple cancers, specifically tyrosine kinase inhibitors (TKIs), has demonstrated prolonged survival outcomes compared with previous drugs. Therefore, they have become a well-established part of the treatment.:Despite good results, there is a broad range of moderate to severe adverse effects associated with treatment. Hypertension (HTN) is one of the most frequent adverse effects and has been associated with favourable outcomes (in terms of cancer treatment) of TKI treatment.:High blood pressure is considered a class effect of TKI treatment, although the mechanisms have not been fully described. Three current hypotheses of TKI-associated HTN are highlighted in this narrative review. These include nitric oxide decrease, a change in endothelin-1 levels and capillary rarefaction.:Several studies have investigated HTN as a potential biomarker of TKI efficacy. HTN is easy to measure and adding this factor to prognostic models has been shown to improve specificity. HTN may become a potential biomarker in clinical practice involving treating advanced cancers. However, data are currently limited by the number of studies and knowledge of the mechanism of action.
Collapse
Affiliation(s)
- Cecilie Budolfsen
- Department of Biomedicine and Pharmacology, Aarhus University, Wilhelm Meyers Alle 4, 8000 Aarhus C, Denmark
| | - Julie Faber
- Department of Biomedicine and Pharmacology, Aarhus University, Wilhelm Meyers Alle 4, 8000 Aarhus C, Denmark
| | - Daniela Grimm
- Department of Biomedicine and Pharmacology, Aarhus University, Wilhelm Meyers Alle 4, 8000 Aarhus C, Denmark
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Johann Bauer
- Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Nils Erik Magnusson
- Diabetes and Hormone Diseases, Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| |
Collapse
|
40
|
Kim SR, Eirin A, Herrmann SMS, Saad A, Juncos LA, Lerman A, Textor SC, Lerman LO. Preserved endothelial progenitor cell angiogenic activity in African American essential hypertensive patients. Nephrol Dial Transplant 2019; 33:392-401. [PMID: 28402508 DOI: 10.1093/ndt/gfx032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
Background African American (AA) subjects with essential hypertension (EH) have greater inflammation and cardiovascular complications than Caucasian EH. An impaired endogenous cellular repair system may exacerbate vascular injury in hypertension, yet whether these differ between AA EH and Caucasian EH remains unknown. Vascular repair by circulating endothelial progenitor cells (EPCs) is controlled by regulators of EPC mobilization, homing, adhesion and new vessel formation, but can be hindered by various cytokines. We hypothesized that EPC levels and function would be impaired in AA EH compared with Caucasian EH, in association with increased levels of inflammatory mediators and EPC regulators. Methods CD34+/KDR+ EPCs were isolated from inferior vena cava and renal vein blood samples of AA EH and Caucasian EH patients (n = 18 each) and from peripheral veins of 17 healthy volunteers (HVs) and enumerated using fluorescence-activated cell sorting. Angiogenic function of late-outgrowth endothelial cells expanded from these samples for 3 weeks was tested in vitro. Levels of inflammatory mediators, angiogenic factors and EPC regulators were measured by Luminex. Results EPC levels were decreased in both AA and Caucasian EH compared with HVs, whereas their late-outgrowth endothelial cell angiogenic function was comparable. Levels of several inflammatory mediators were elevated in AA EH compared with Caucasian EH and HVs. Contrarily, vascular endothelial growth factor and its receptor-2 were lower. EPC levels inversely correlated with blood pressure in all hypertensive patients and estimated glomerular filtration rate with inflammatory mediators only in AA EH. Conclusions Despite lower EPC numbers, decreased vascular endothelial growth factor signaling and inflammation, EPC function is preserved in AA EH compared with Caucasian EH and HVs, suggesting compensatory mechanisms for vascular repair.
Collapse
Affiliation(s)
- Seo Rin Kim
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Ahmed Saad
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Luis A Juncos
- Division of Nephrology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Stephen C Textor
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
41
|
Computed Tomography in Heart Failure. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019. [DOI: 10.1007/s12410-019-9512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
The Systemic Safety of Ranibizumab in Patients 85 Years and Older with Neovascular Age-Related Macular Degeneration. Ophthalmol Retina 2019; 2:667-675. [PMID: 31047375 DOI: 10.1016/j.oret.2018.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 01/11/2018] [Accepted: 01/18/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Ranibizumab safety is well established for treatment of neovascular age-related macular degeneration (nAMD), but less is known about the risk of systemic serious adverse events (SAEs), specifically among patients with heightened baseline risk due to age (≥85 years). This analysis examines whether patients ≥85 years of age versus those <85 years experience an increased risk of key systemic SAEs during intravitreal ranibizumab treatment for nAMD. DESIGN Retrospective, pooled analysis of safety data from 5 phase III/IIIb multicenter randomized clinical trials in patients with nAMD: ANCHOR, MARINA, PIER, SAILOR, and HARBOR. PARTICIPANTS Patients with nAMD receiving ranibizumab (n = 4347) or control (sham/verteporfin photodynamic therapy, n = 441) treatment included in the safety-evaluable set of the 5 trials. METHODS The incidence of nonocular SAEs was analyzed stratified by age (<85 years [n = 3795] vs ≥85 years [n = 993]), treatment (control, ranibizumab 0.3 mg, ranibizumab 0.5 mg, ranibizumab 2.0 mg), and injection frequency (monthly, as needed [PRN]). MAIN OUTCOME MEASURES Incidence of key systemic SAEs, defined as total nonocular SAEs, deaths, cardiovascular events, cerebrovascular (CBV) events, and Antiplatelet Trialists' Collaboration events. RESULTS The MARINA and ANCHOR trials had greater rates of key SAEs for patients ≥85 years versus those <85 years. Ranibizumab exposure did not increase the risk of most SAEs in elderly patients; for CBV events and death, the effect of ranibizumab versus control treatment for age ≥85 years was not interpretable due to small number of events (CBV: n = 2, 2, 5 for control, ranibizumab 0.3 mg, and ranibizumab 0.5 mg, respectively; death: n = 2, 4, 5, respectively). Across all 5 trials, an increased risk was found for age ≥85 years versus <85 years for the marketed dose of ranibizumab 0.5 mg. In the HARBOR trial, increased rates of key SAEs (excluding total nonocular SAEs) for age ≥85 years versus <85 years were observed with monthly dosing but not with PRN dosing; event rates were similar for 2.0 mg versus 0.5 mg. CONCLUSIONS Consistent with general trends, the risk of key systemic SAEs was associated with age ≥85 years versus <85 years, but not with ranibizumab drug exposure. The difference between monthly versus PRN was inconclusive. There was no evidence of a dose effect. Interpretation of this retrospective analysis is limited because it was not prospectively powered for statistically definitive conclusions.
Collapse
|
43
|
Mao X, Xu H, Li S, Su J, Li W, Guo Q, Wang P, Guo R, Xiao X, Zhang Y, Yang H. Exploring pharmacological mechanisms of Xueshuan-Xinmai-Ning tablets acting on coronary heart disease based on drug target-disease gene interaction network. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:159-168. [PMID: 30668365 DOI: 10.1016/j.phymed.2018.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/07/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Xueshuan-Xinmai-Ning Tablet (XXNT), a commercially available patent drug, has been extensively used in the treatment of coronary heart disease (CHD) with a satisfying therapeutic efficacy. The aim of this study was to explore the underlying pharmacological mechanisms of XXNT acting on CHD. STUDY DESIGN An integrative pharmacology-based investigation was performed. METHOD Putative targets of composite compounds contained in XXNT were predicted using the Drug Target Prediction Tool in the Computation Platform for Integrative Pharmacology of Traditional Chinese Medicine (TCMIP, www.tcmip.cn) and MedChem Studio. Then, an interaction network of XXNT putative targets-known CHD-related genes was constructed, and candidate XXNT targets related to its therapeutic effects on CHD were identified by calculating three major network topological features. Functional enrichment analysis was performed to investigate the specific functions and pathways involved by the candidate XXNT targets acting on CHD, which were further validated by in vitro experiments. RESULTS A total of 742 putative targets hit 126 chemical components contained in XXNT were predicted. Following the construction of XXNT putative target-known CHD-related gene network, and the network topological feature calculation, we identified 51 candidate XXNT targets related to its therapeutic effects on CHD. Functionally, these candidate XXNT targets were significantly associated with various cardiovascular system-related pathways, sedation-related pathways, inflammatory and immune-related pathways and endocrine/metabolic system-related pathways. More importantly, the in vitro experiment validation confirmed the regulatory effects of XXNT in SRC, VEGF and VEGFR-1, which play roles in VEGF signaling pathway, based on the endothelial injury cell model. CONCLUSION Our findings reveal that XXNT may attenuate the major pathological changes of CHD through regulating its candidate targets, which might be involved into the signal transductions in nervous-endocrine-immune-cardiovascular-metabolic system.
Collapse
Affiliation(s)
- Xia Mao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Sen Li
- Department of Pharmaceutics, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jin Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Weijie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Qiuyan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Ping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Rui Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Xuefeng Xiao
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China.
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China.
| |
Collapse
|
44
|
Blaes AH, Thavendiranathan P, Moslehi J. Cardiac Toxicities in the Era of Precision Medicine: Underlying Risk Factors, Targeted Therapies, and Cardiac Biomarkers. Am Soc Clin Oncol Educ Book 2018; 38:764-774. [PMID: 30231407 DOI: 10.1200/edbk_208509] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer therapies can cause a variety of cardiac toxicities, including ischemia, cardiomyopathy, heart failure, myocarditis, arrhythmias, vascular disease, hypertension, and hyperlipidemia. Addressing cardiovascular risk at baseline, before initiating therapy, during cancer treatment, and in the survivorship period is imperative. It may be useful to risk stratify individuals with cardiovascular risk factors using biomarkers or imaging before they receive potentially cardiotoxic therapies. Additionally, new guidelines recommend cardiac imaging with echocardiography in the survivorship period 6 to 12 months after completing cancer therapy for these high-risk individuals. Close collaboration between cardiology and oncology in both clinical practice and future research is essential.
Collapse
Affiliation(s)
- Anne H Blaes
- From the Division of Hematology/Oncology, University of Minnesota, Minneapolis, MN; Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Division of Cardiology, University of Toronto, Toronto, ON, Canada; Division of Cardiology, Vanderbilt University, Nashville, TN
| | - Paaladinesh Thavendiranathan
- From the Division of Hematology/Oncology, University of Minnesota, Minneapolis, MN; Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Division of Cardiology, University of Toronto, Toronto, ON, Canada; Division of Cardiology, Vanderbilt University, Nashville, TN
| | - Javid Moslehi
- From the Division of Hematology/Oncology, University of Minnesota, Minneapolis, MN; Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Division of Cardiology, University of Toronto, Toronto, ON, Canada; Division of Cardiology, Vanderbilt University, Nashville, TN
| |
Collapse
|
45
|
Furuto Y, Hashimoto H, Namikawa A, Outi H, Takahashi H, Horiuti H, Honda K, Shibuya Y. Focal segmental glomerulosclerosis lesion associated with inhibition of tyrosine kinases by lenvatinib: a case report. BMC Nephrol 2018; 19:273. [PMID: 30340546 PMCID: PMC6194623 DOI: 10.1186/s12882-018-1074-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022] Open
Abstract
Background Lenvatinib is a tyrosine kinase inhibitor with novel binding ability. It is considered the standard of care for metastatic thyroid cancer; moreover, whether it is indicated for other malignant tumors has been examined. Lenvatinib increases the risk of kidney injury in some patients. In comparison with sorafenib, which is a conventional tyrosine kinase inhibitor (TKI), lenvatinib results in more side effects, including hypertension and proteinuria. We describe a case of secondary focal segmental glomerulosclerosis (FSGS) that developed following treatment of metastatic thyroid cancer with lenvatinib and reviewed the mechanisms of renal impairment. Case presentation We describe a patient with metastatic thyroid cancer who developed hypertension, nephrotic syndrome, and acute kidney injury after 3 months of lenvatinib treatment. Renal biopsy results revealed that 7 of 16 glomeruli indicated complete hyalinization, and that the glomeruli with incomplete hyalinization showed FSGS due to a vascular endothelial disorder and podocyte damage, which seemed to have been induced by lenvatinib treatment. These findings were similar to those of renal impairment treated with conventional TKIs. Although lenvatinib treatment was discontinued, up to 15 months were required to achieve remission of proteinuria, thus leading to chronic kidney disease with hyalinized lesions. Conclusions To the best of our knowledge, this is the first reported case of secondary FSGS by lenvatinib treatment. Renal impairment treated with TKIs is commonly associated with minimal change nephrotic syndrome/FSGS findings, and it is suggested that renal involvement with TKI is different from that with the vascular endothelial growth factor ligand. Overexpression of c-mip due to TKI causes disorders such as podocyte dysregulation and promotion of apoptosis, which cause FSGS. Lenvatinib may result in FSGS by a similar mechanism with another TKI and could cause irreversible renal impairment; therefore caution must be used. It is essential to monitor blood pressure, urinary findings, and the renal function.
Collapse
Affiliation(s)
- Yoshitaka Furuto
- Department of Hypertension and Nephrology, NTT Medical Centre Tokyo, 5-9-22, Higasi-Gotanda, Shinagawa-ku, Tokyo, 141-8625, Japan.
| | - Hirotsugu Hashimoto
- Department of Diagnostic Pathology, NTT Medical Centre Tokyo, 5-9-22, Higasi-Gotanda, Shinagawa-ku, Tokyo, 141-8625, Japan
| | - Akio Namikawa
- Department of Hypertension and Nephrology, NTT Medical Centre Tokyo, 5-9-22, Higasi-Gotanda, Shinagawa-ku, Tokyo, 141-8625, Japan
| | - Haruki Outi
- Department of Hypertension and Nephrology, NTT Medical Centre Tokyo, 5-9-22, Higasi-Gotanda, Shinagawa-ku, Tokyo, 141-8625, Japan
| | - Hiroko Takahashi
- Department of Hypertension and Nephrology, NTT Medical Centre Tokyo, 5-9-22, Higasi-Gotanda, Shinagawa-ku, Tokyo, 141-8625, Japan
| | - Hajime Horiuti
- Department of Diagnostic Pathology, NTT Medical Centre Tokyo, 5-9-22, Higasi-Gotanda, Shinagawa-ku, Tokyo, 141-8625, Japan
| | - Kazuho Honda
- Department of Microscopic Anatomy, Showa University Hospital, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yuko Shibuya
- Department of Hypertension and Nephrology, NTT Medical Centre Tokyo, 5-9-22, Higasi-Gotanda, Shinagawa-ku, Tokyo, 141-8625, Japan
| |
Collapse
|
46
|
Ross DM, Arthur C, Burbury K, Ko BS, Mills AK, Shortt J, Kostner K. Chronic myeloid leukaemia and tyrosine kinase inhibitor therapy: assessment and management of cardiovascular risk factors. Intern Med J 2018; 48 Suppl 2:5-13. [PMID: 29388307 DOI: 10.1111/imj.13716] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Several BCR-ABL1 tyrosine kinase inhibitors (TKIs) are approved for the first-line treatment of chronic phase chronic myeloid leukaemia (CML). Disease control is achieved in the vast majority of patients and disease-specific survival is excellent. Consequently, there is now emphasis on managing comorbidities and minimising treatment-related toxicity. Second-generation TKIs have cardiovascular risks that are greater than with imatinib treatment, but these risks must be balanced against the superior CML responses encountered with more potent TKIs. Cardiovascular risk should be assessed at baseline using a locally validated model based on the Framingham risk equation. Clinicians involved in the care of CML patients should be aware of the vascular complications of TKIs and manage cardiovascular risk factors early to mitigate treatment-related risks. Reversible risk factors, such as dyslipidaemia, smoking, diabetes and hypertension, should be addressed. We summarise the available data on cardiovascular complications in CML patients treated with TKIs. Using the latest evidence and collective expert opinion, we provide practical advice for clinicians to assess, stratify and manage cardiovascular risk in people with CML receiving TKI therapy.
Collapse
Affiliation(s)
- David M Ross
- Department of Haematology, Royal Adelaide Hospital and Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Chris Arthur
- Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Kate Burbury
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Brian S Ko
- MonashHeart, Monash Health, Melbourne, Victoria, Australia
| | - Anthony K Mills
- Division of Cancer Services, Princess Alexandra Hospital, Melbourne, Victoria, Australia
| | - Jake Shortt
- Monash Haematology, Department of Haematology, Monash Health, Melbourne, Victoria, Australia.,School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Karam Kostner
- Department of Cardiology, Mater Hospital and University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
47
|
Paez-Mayorga J, Chen AL, Kotla S, Tao Y, Abe RJ, He ED, Danysh BP, Hofmann MCC, Le NT. Ponatinib Activates an Inflammatory Response in Endothelial Cells via ERK5 SUMOylation. Front Cardiovasc Med 2018; 5:125. [PMID: 30238007 PMCID: PMC6135907 DOI: 10.3389/fcvm.2018.00125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/20/2018] [Indexed: 12/18/2022] Open
Abstract
Ponatinib is a multi-targeted third generation tyrosine kinase inhibitor (TKI) used in the treatment of chronic myeloid leukemia (CML) patients harboring the Abelson (Abl)-breakpoint cluster region (Bcr) T315I mutation. In spite of having superb clinical efficacy, ponatinib triggers severe vascular adverse events (VAEs) that significantly limit its therapeutic potential. On vascular endothelial cells (ECs), ponatinib promotes EC dysfunction and apoptosis, and inhibits angiogenesis. Furthermore, ponatinib-mediated anti-angiogenic effect has been suggested to play a partial role in systemic and pulmonary hypertension via inhibition of vascular endothelial growth factor receptor 2 (VEGFR2). Even though ponatinib-associated VAEs are well documented, their etiology remains largely unknown, making it difficult to efficiently counteract treatment-related adversities. Therefore, a better understanding of the mechanisms by which ponatinib mediates VAEs is critical. In cultured human aortic ECs (HAECs) treated with ponatinib, we found an increase in nuclear factor NF-kB/p65 phosphorylation and NF-kB activity, inflammatory gene expression, cell permeability, and cell apoptosis. Mechanistically, ponatinib abolished extracellular signal-regulated kinase 5 (ERK5) transcriptional activity even under activation by its upstream kinase mitogen-activated protein kinase kinase 5α (CA-MEK5α). Ponatinib also diminished expression of ERK5 responsive genes such as Krüppel-like Factor 2/4 (klf2/4) and eNOS. Because ERK5 SUMOylation counteracts its transcriptional activity, we examined the effect of ponatinib on ERK5 SUMOylation, and found that ERK5 SUMOylation is increased by ponatinib. We also found that ponatibib-mediated increased inflammatory gene expression and decreased anti-inflammatory gene expression were reversed when ERK5 SUMOylation was inhibited endogenously or exogenously. Overall, we propose a novel mechanism by which ponatinib up-regulates endothelial ERK5 SUMOylation and shifts ECs to an inflammatory phenotype, disrupting vascular homeostasis.
Collapse
Affiliation(s)
- Jesus Paez-Mayorga
- Department of Cardiovascular Sciences, Center of Cardiovascular Regeneration Houston, Methodist Research Institute, Methodist Hospital, Houston, TX, United States
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Andrew L. Chen
- Department of Cardiovascular Sciences, Center of Cardiovascular Regeneration Houston, Methodist Research Institute, Methodist Hospital, Houston, TX, United States
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yunting Tao
- Department of Cardiovascular Sciences, Center of Cardiovascular Regeneration Houston, Methodist Research Institute, Methodist Hospital, Houston, TX, United States
| | - Rei J. Abe
- Department of Cardiovascular Sciences, Center of Cardiovascular Regeneration Houston, Methodist Research Institute, Methodist Hospital, Houston, TX, United States
| | - Emma D. He
- Department of Cardiovascular Sciences, Center of Cardiovascular Regeneration Houston, Methodist Research Institute, Methodist Hospital, Houston, TX, United States
| | - Brian P. Danysh
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marie-Claude C. Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Center of Cardiovascular Regeneration Houston, Methodist Research Institute, Methodist Hospital, Houston, TX, United States
| |
Collapse
|
48
|
Tullemans BME, Heemskerk JWM, Kuijpers MJE. Acquired platelet antagonism: off-target antiplatelet effects of malignancy treatment with tyrosine kinase inhibitors. J Thromb Haemost 2018; 16:1686-1699. [PMID: 29975003 DOI: 10.1111/jth.14225] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Indexed: 12/26/2022]
Abstract
Platelets can contribute to tumor progression and metastasis. Cancer patients are at increased risk of thrombosis, and advanced stages of cancer are associated with thrombocytosis or increased platelet reactivity. Tyrosine kinase inhibitors (TKIs) are widely used as a targeted strategy for cancer treatment, with the aim of prolonging progression-free survival of the patients. Because of their broad kinase target spectrum, most TKIs inevitably have off-target effects. Platelets rely on tyrosine kinase activity for their activation. Frequently observed side effects are lowering of platelet count and inhibition of platelet functions, whether or not accompanied by an increased bleeding risk. In this review, we aim to give insights into: (i) 38 TKIs that are currently used for the treatment of different types of cancer, either on the market or in clinical trials; (ii) how distinct TKIs can inhibit activation mechanisms in platelets; and (iii) the clinical consequences of the antiplatelet effects of TKI treatment. For several TKIs, the knowledge on affinity for their targets does not align with the published effects on platelets and reported bleeding events. This review should raise awareness of the potential antiplatelet effects of several TKIs, which will be enhanced in the presence of antithrombotic drugs.
Collapse
Affiliation(s)
- B M E Tullemans
- Cardiovascular Research Institute Maastricht, Department of Biochemistry, Maastricht University, Maastricht, the Netherlands
| | - J W M Heemskerk
- Cardiovascular Research Institute Maastricht, Department of Biochemistry, Maastricht University, Maastricht, the Netherlands
| | - M J E Kuijpers
- Cardiovascular Research Institute Maastricht, Department of Biochemistry, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
49
|
Caletti S, Paini A, Coschignano MA, De Ciuceis C, Nardin M, Zulli R, Muiesan ML, Salvetti M, Rizzoni D. Management of VEGF-Targeted Therapy-Induced Hypertension. Curr Hypertens Rep 2018; 20:68. [PMID: 29959593 DOI: 10.1007/s11906-018-0871-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW From a physiological point of view, VEGFs (vascular endothelial growth factors) and their receptors (VEGFR) play a critical role in vascular development angiogenesis, endothelial function, and vascular tone. On the pathological side, VEGF-VEGFR signaling may induce dysregulated angiogenesis, which contributes to the growth and to the spread of tumors, being essential for neoplastic proliferation and invasion. RECENT FINDINGS Pharmacological inhibition of VEGF-VEGFR is now a cornerstone in the treatment of many malignancies; however, treatment with VEGF inhibitors is commonly associated with an increase in blood pressure values. This side effect is strictly connected with the mechanism of action of these medications and might represent an index of therapy efficacy. The optimal management of this form of hypertension is, at present, not clear. Calcium channel blockers and renin-angiotensin system inhibitors probably represent the most appropriate classes of hypertensive dugs for the treatment of this condition; however, no conclusive data are presently available.
Collapse
Affiliation(s)
- Stefano Caletti
- Clinica Medica, Department of Medical and Surgical Sciences, University of Brescia, c/o 2a Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy
| | - Anna Paini
- Clinica Medica, Department of Medical and Surgical Sciences, University of Brescia, c/o 2a Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy
| | - Maria Antonietta Coschignano
- Clinica Medica, Department of Medical and Surgical Sciences, University of Brescia, c/o 2a Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy
| | - Carolina De Ciuceis
- Clinica Medica, Department of Medical and Surgical Sciences, University of Brescia, c/o 2a Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy
| | - Matteo Nardin
- Clinica Medica, Department of Medical and Surgical Sciences, University of Brescia, c/o 2a Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy
| | - Roberto Zulli
- Clinica Medica, Department of Medical and Surgical Sciences, University of Brescia, c/o 2a Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy
| | - Maria Lorenza Muiesan
- Clinica Medica, Department of Medical and Surgical Sciences, University of Brescia, c/o 2a Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy
| | - Massimo Salvetti
- Clinica Medica, Department of Medical and Surgical Sciences, University of Brescia, c/o 2a Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy
| | - Damiano Rizzoni
- Clinica Medica, Department of Medical and Surgical Sciences, University of Brescia, c/o 2a Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy.
| |
Collapse
|
50
|
Klee NS, McCarthy CG, Martinez-Quinones P, Webb RC. Out of the frying pan and into the fire: damage-associated molecular patterns and cardiovascular toxicity following cancer therapy. Ther Adv Cardiovasc Dis 2017; 11:297-317. [PMID: 28911261 PMCID: PMC5933669 DOI: 10.1177/1753944717729141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/09/2017] [Indexed: 12/18/2022] Open
Abstract
Cardio-oncology is a new and rapidly expanding field that merges cancer and cardiovascular disease. Cardiovascular disease is an omnipresent side effect of cancer therapy; in fact, it is the second leading cause of death in cancer survivors after recurrent cancer. It has been well documented that many cancer chemotherapeutic agents cause cardiovascular toxicity. Nonetheless, the underlying cause of cancer therapy-induced cardiovascular toxicity is largely unknown. In this review, we discuss the potential role of damage-associated molecular patterns (DAMPs) as an underlying contributor to cancer therapy-induced cardiovascular toxicity. With an increasing number of cancer patients, as well as extended life expectancy, understanding the mechanisms underlying cancer therapy-induced cardiovascular disease is of the utmost importance to ensure that cancer is the only disease burden that cancer survivors have to endure.
Collapse
Affiliation(s)
- Nicole S. Klee
- Department of Physiology, Medical College of Georgia at Augusta University, 1120 15 Street, Augusta, GA 30912, USA
| | - Cameron G. McCarthy
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Patricia Martinez-Quinones
- Departments of Physiology and Surgery, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - R. Clinton Webb
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|