1
|
Wu B, Weng X, Pan Y, Tian Z, Wu P, Shao J, Liu Y, Huang R, Xu T, Zhou K. Genetic inhibition of nicotinamide N-methyltransferase and prevention of alcohol-associated fatty liver in humans. J Hum Genet 2025; 70:141-146. [PMID: 39695269 DOI: 10.1038/s10038-024-01313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/20/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Recent studies of animal models reported Nicotinamide N-methyltransferase (NNMT) as a potential therapeutic target for preventing alcohol-associated fatty liver (AFL), yet its efficacy and safety in humans remain unknown. We aim to estimate the effectiveness and safety of inhibiting NNMT in humans. We leveraged Electronic Medical Records (EMRs) data coupled with genetic information to perform a retrospective drug target validation study. We examined longitudinal clinical data from 612 individuals with excessive alcohol consumption. Two variants lowering NNMT protein levels were combined to calculate a weighted NNMT genetic score that could mimic mild inhibition of NNMT. Participants with an NNMT score above the median were classified as genetically inhibited, while others were considered non-inhibited. We then evaluated whether genetic inhibition of NNMT would affect the incidence of AFL or the risk of liver injury, to illuminate the effectiveness and safety of genetic inhibition of NNMT respectively. NNMT genetic inhibition correlated with a reduced AFL risk (hazard ratio [HR] 0.67, 95% confidence interval [CI] 0.49-0.90, P = 0.009) without a significant increase in serum aminotransferase levels (P > 0.10). Notably, elevated ALT and AST levels were observed (P < 0.05) in the genetically inhibited group prior to alcohol exposure. These findings suggest NNMT inhibition is a promising avenue for AFL prevention among individuals with excessive alcohol intake. They also underscore the need for precise target population identification to mitigate potential adverse effects.
Collapse
Affiliation(s)
- Benrui Wu
- National Laboratory of Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiong Weng
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland
| | - Ying Pan
- Department of general practice, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Zijian Tian
- National Laboratory of Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Wu
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Jian Shao
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Yiying Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rong Huang
- Medical Science and Technology Innovation Center, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China.
| | - Kaixin Zhou
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China.
- College of Public Health, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Guo R, Li Y, Song Q, Huang R, Ge X, Nieto N, Jiang Y, Song Z. Increasing cellular NAD + protects hepatocytes against palmitate-induced lipotoxicity by preventing PARP-1 inhibition and the mTORC1-p300 pathway activation. Am J Physiol Cell Physiol 2025; 328:C776-C790. [PMID: 39871470 DOI: 10.1152/ajpcell.00946.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/20/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
Hepatic lipotoxicity, resulting from excessive lipid accumulation in hepatocytes, plays a central role in the pathogenesis of various metabolic liver diseases. Despite recent progress, the precise mechanisms remain incompletely understood. Using excessive exposure to palmitate in hepatocytes as our primary experimental model and mice studies, we aimed to uncover the mechanisms behind hepatic lipotoxicity, thereby developing potential treatments. Our data reveal for the first time that exposure to palmitate leads to downregulated expression of poly (ADP-ribose) polymerase 1 (PARP-1) in hepatocytes, inhibiting its enzymatic activity. Whereas inhibiting PARP-1 worsens palmitate-induced hepatotoxicity, preventing PARP-1 suppression, using nicotinamide adenine dinucleotide (NAD+) precursors, nicotinamide N-methyltransferase (NNMT) inhibitors, or a poly(ADP-ribose) glycohydrolase (PARG) inhibitor, prevents it. Moreover, we uncover that PARP-1 suppression contributes to palmitate-triggered mechanistic target of rapamycin complex 1 (mTORC1) activation, which has been previously reported by us to contribute to palmitate-induced hepatocyte cell death. Furthermore, our results identify p300 as a downstream target of mTORC1 activation upon palmitate exposure. Importantly, p300 inhibition via either pharmacological or genetic approaches protects against palmitate hepatotoxicity. In addition, we provide evidence that the toll-like receptor 4 (TLR4)-nuclear factor κB (NF-κB) pathway activation in response to palmitate plays a mechanistic role in mediating palmitate-induced PARP-1 downregulation in that both TLR4 antagonist and NF-κB inhibitors prevent palmitate-induced PARP-1 reduction and protect against hepatocyte cell death. In conclusion, our study presents new evidence that the PARP-1-mTORC1-p300 pathway serves as a novel molecular mechanism underlying palmitate-induced hepatic lipotoxicity. Targeting the PARP-1 pathway by increasing cellular NAD+ availability either through its precursor supplementation or by inhibiting its degradation represents a promising therapeutic approach for treating hepatic lipotoxicity.NEW & NOTEWORTHY This study explores the mechanisms of palmitate-induced hepatotoxicity, highlighting the role of PARP-1 downregulation in triggering the mTORC1-p300 pathway and resultant hepatocyte cell death. It further reveals that enhancing cellular NAD+ levels through either precursor supplementation or NNMT inhibitors prevents lipotoxicity by restoring PARP-1 activity. Finally, the study identifies that the TLR4-NF-κB activation mediates palmitate-induced PARP-1 suppression and offers potential therapeutic insights for metabolic liver diseases caused by lipotoxicity.
Collapse
Affiliation(s)
- Rui Guo
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States
| | - Yanhui Li
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States
| | - Qing Song
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, United States
| | - Xiaodong Ge
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, United States
| | - Natalia Nieto
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, United States
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, Illinois, United States
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States
| |
Collapse
|
3
|
Yang Y, Li F, Li Y, Li X, Zhao Z, Zhang N, Li H. Nicotinamide n-methyltransferase inhibitor synergizes with sodium-glucose cotransporter 2 inhibitor to protect renal tubular epithelium in experimental models of type 2 diabetes mellitus. J Diabetes Complications 2025; 39:108952. [PMID: 39848127 DOI: 10.1016/j.jdiacomp.2025.108952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/18/2024] [Accepted: 01/12/2025] [Indexed: 01/25/2025]
Abstract
AIMS We aim to explore the potential of nicotinamide n-methyltransferase (NNMT) as a sensitive marker of renal tubular injury and the possibility of an NNMT inhibitor to combine with sodium-glucose cotransporter 2 (SGLT2) inhibitor to protect proximal tubular epithelium in vivo and in vitro model of Type 2 diabetes mellitus (T2DM), respectively. METHODS In vivo, immunohistochemical staining, Masson's trichrome staining and Sirius red staining were used to observe the changes of NNMT expression, renal tubular injury and interstitial fibrosis in renal tissue from the db/db mice. Bioinformatic analysis was also conducted to broaden the range of data validation. In vitro, Western Blot and quantitative RT-PCR were used to measure the degree of damage of HK-2 cells. RESULTS Our in vivo data showed upregulation of NNMT expression paralleled renal tubular damage and interstitial fibrosis. Our in vitro data revealed both NNMT inhibitors and SGLT2 inhibitors can protect against the injury as assessed by extracellular matrix (ECM) synthesis and profibrotic phenotype transition of HK-2 cells, and the combination of these two agents can further reduce these injuries. CONCLUSIONS The present study is the first to show that NNMT is a promising marker of renal tubular injury in diabetic nephropathy (DN) and NNMT inhibitors can synergize with SGLT2 inhibitors to protect HK-2 better. Our findings will provide the insight and pave the way of developing novel therapeutic strategies for chronic renal tubular injury associated with T2DM.
Collapse
MESH Headings
- Animals
- Sodium-Glucose Transporter 2 Inhibitors/pharmacology
- Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
- Nicotinamide N-Methyltransferase/metabolism
- Nicotinamide N-Methyltransferase/antagonists & inhibitors
- Nicotinamide N-Methyltransferase/genetics
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Mice
- Diabetic Nephropathies/prevention & control
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/drug therapy
- Diabetic Nephropathies/metabolism
- Humans
- Male
- Fibrosis
- Drug Synergism
- Kidney Tubules/drug effects
- Kidney Tubules/pathology
- Kidney Tubules/metabolism
- Mice, Inbred C57BL
- Cell Line
- Enzyme Inhibitors/pharmacology
- Disease Models, Animal
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/pathology
- Kidney Tubules, Proximal/metabolism
- Diabetes Mellitus, Experimental/complications
- Drug Therapy, Combination
Collapse
Affiliation(s)
- Yuling Yang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Fengxia Li
- Jiaxing University, No. 899 Guangqiong Road, Nanhu District, Jiaxing 314001, China
| | - Yankun Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xue Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Zhonghua Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Nong Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Hui Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
4
|
Xing Z, Tu BP. Mechanisms and rationales of SAM homeostasis. Trends Biochem Sci 2025:S0968-0004(24)00281-0. [PMID: 39818457 DOI: 10.1016/j.tibs.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 01/18/2025]
Abstract
S-Adenosylmethionine (SAM) is the primary methyl donor for numerous cellular methylation reactions. Its central role in methylation and involvement with many pathways link its availability to the regulation of cellular processes, the dysregulation of which can contribute to disease states, such as cancer or neurodegeneration. Emerging evidence indicates that intracellular SAM levels are maintained within an optimal range by a variety of homeostatic mechanisms. This suggests that the need to maintain SAM homeostasis represents a significant evolutionary pressure across all kingdoms of life. Here, we review how SAM controls cellular functions at the molecular level and discuss strategies to maintain SAM homeostasis. We propose that SAM exerts a broad and underappreciated influence in cellular regulation that remains to be fully elucidated.
Collapse
Affiliation(s)
- Zheng Xing
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX USA.
| |
Collapse
|
5
|
Mierzejewska P, Denslow A, Papiernik D, Zabrocka A, Kutryb-Zając B, Charkiewicz K, Braczko A, Smoleński RT, Wietrzyk J, Słomińska EM. 4-Pyridone-3-carboxamide-1-β-D-ribonucleoside Reduces Cyclophosphamide Effects and Induces Endothelial Inflammation in Murine Breast Cancer Model. Int J Mol Sci 2024; 26:35. [PMID: 39795893 PMCID: PMC11719935 DOI: 10.3390/ijms26010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/30/2025] Open
Abstract
4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR) is a nicotinamide derivative, considered a new oncometabolite. 4PYR formation induced a cytotoxic effect on the endothelium. Elevated blood 4PYR concentration was observed in patients with cancer. Still, little is known about the metabolic and functional effects of 4PYR in this pathology. The study aimed to investigate whether this toxic accumulation of 4PYR may affect the activity of anticancer therapy with cyclophosphamide in the orthotropic model of breast cancer. Female Balb/c mice were injected with 4T1 breast cancer cells and assigned into three groups: treated with PBS (Control), cyclophosphamide-treated (+CP), 4PYR-treated (+4PYR), and mice treated with both 4PYR and CP(+4PYR+CP) for 28 days. Afterward, blood and serum samples, liver, muscle, spleen, heart, lungs, aortas, and tumor tissue were collected for analysis of concentrations of nucleotides, nicotinamide metabolites, and 4PYR with its metabolites, as well as the liver level of cytochrome P450 enzymes. 4PYR treatment caused elevation of blood 4PYR, its monophosphate and a nicotinamide adenine dinucleotide (NAD+) analog-4PYRAD. Blood 4PYRAD concentration in the +4PYR+CP was reduced in comparison to +4PYR. Tumor growth and final tumor mass were significantly decreased in +CP and did not differ in +4PYR in comparison to Control. However, we observed a substantial increase in these parameters in +4PYR+CP as compared to +CP. The extracellular adenosine deamination rate was measured to assess vascular inflammation, and it was higher in +4PYR than the Control. Treatment with 4PYR and CP caused the highest vascular ATP hydrolysis and adenosine deamination rate. 4PYR administration caused significant elevation of CYP2C9 and reduction in CYP3A4 liver concentrations in both +4PYR and +4PYR+CP as compared to Control and +CP. In additional experiments, we compared healthy mice without cancer, treated with 4PYR (4PYR w/o cancer) and PBS (Control w/o cancer), where 4PYR treatment caused an increase in the serum proinflammatory cytokine expression as compared to Control w/o cancer. 4PYR accumulation in the blood interferes with cyclophosphamide anticancer activity and induces a pro-inflammatory shift of endothelial extracellular enzymes, probably by affecting its metabolism by cytochrome P450 enzymes. This observation may have crucial implications for the activity of various anticancer drugs metabolized by cytochrome P450.
Collapse
Affiliation(s)
- Paulina Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdańsk, Poland; (B.K.-Z.); (A.B.); (R.T.S.)
| | - Agnieszka Denslow
- Laboratory of Experimental Anticancer Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 02-103 Wrocław, Poland (D.P.); (J.W.)
| | - Diana Papiernik
- Laboratory of Experimental Anticancer Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 02-103 Wrocław, Poland (D.P.); (J.W.)
| | - Alicja Zabrocka
- Regional Center for Blood Donation and Blood Treatment in Gdansk, 80-309 Gdańsk, Poland;
| | - Barbara Kutryb-Zając
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdańsk, Poland; (B.K.-Z.); (A.B.); (R.T.S.)
| | - Karol Charkiewicz
- Department of Perinatology and Obstetrics, Medical University of Bialystok, 15-089 Białystok, Poland;
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdańsk, Poland; (B.K.-Z.); (A.B.); (R.T.S.)
| | - Ryszard T. Smoleński
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdańsk, Poland; (B.K.-Z.); (A.B.); (R.T.S.)
| | - Joanna Wietrzyk
- Laboratory of Experimental Anticancer Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 02-103 Wrocław, Poland (D.P.); (J.W.)
| | - Ewa M. Słomińska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdańsk, Poland; (B.K.-Z.); (A.B.); (R.T.S.)
| |
Collapse
|
6
|
Sun WD, Zhu XJ, Li JJ, Mei YZ, Li WS, Li JH. Nicotinamide N-methyltransferase (NNMT): A key enzyme in cancer metabolism and therapeutic target. Int Immunopharmacol 2024; 142:113208. [PMID: 39312861 DOI: 10.1016/j.intimp.2024.113208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Emerging research has positioned Nicotinamide N-methyltransferase (NNMT) as a key player in oncology, with its heightened expression frequently observed across diverse cancers. This increased presence is tightly linked to tumor initiation, proliferation, and metastasis. The enzymatic function of NNMT is centered on the methylation of nicotinamide (NAM), utilizing S-adenosylmethionine (SAM) as the methyl donor, which results in the generation of S-adenosyl-L-homocysteine (SAH) and methyl nicotinamide (MNAM). This metabolic process reduces the availability of NAM, necessary for Nicotinamide adenine dinucleotide (NAD+) synthesis, and generates SAH, precursor to homocysteine (Hcy). These alterations are theorized to foster the resilience, expansion, and invasiveness of cancer cells. Furthermore, NNMT is implicated in enhancing cancer malignancy by affecting multiple signaling pathways, such as phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), cancer-associated fibroblasts (CAFs) and 5-Methyladenosine (5-MA), epithelial-mesenchymal transition (EMT), and epigenetic mechanisms. Upregulation of NNMT metabolism plays a key role in the formation and maintenance of the tumour microenvironment. While the use of small molecule inhibitors and RNA interference (RNAi) to target NNMT has shown therapeutic promise, the full extent of NNMT's influence on cancer is not yet fully understood, and clinical evidence is limited. This article systematically describes the relationship between the functional metabolism of NNMT enzymes and the cancer and tumour microenvironments, describing the mechanisms by which NNMT contributes to cancer initiation, proliferation, and metastasis, as well as targeted therapies. Additionally, we discuss the future opportunities and challenges of NNMT in targeted anti-cancer treatments.
Collapse
Affiliation(s)
- Wei-Dong Sun
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Xiao-Juan Zhu
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Jing-Jing Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Ya-Zhong Mei
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Wen-Song Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Jiang-Hua Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China.
| |
Collapse
|
7
|
Park J, Shin EJ, Kim TH, Yang JH, Ki SH, Kang KW, Kim KM. Exploring NNMT: from metabolic pathways to therapeutic targets. Arch Pharm Res 2024; 47:893-913. [PMID: 39604638 DOI: 10.1007/s12272-024-01519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Cellular metabolism-related epigenetic modulation plays a pivotal role in the maintenance of cellular homeostasis. Nicotinamide N-methyltransferase (NNMT) serves as a crucial link between cellular metabolism and epigenetics by catalyzing nicotinamide methylation using the universal methyl donor S-adenosyl-L-methionine. This direct connection bridges the methylation-mediated one-carbon metabolism with nicotinamide adenine dinucleotide levels. Numerous studies have revealed tissue-specific differences in NNMT expression and activity, indicating that its varied physiological and pathological roles depend on its distribution. In this review, we provide an overview of the NNMT involvement in various pathological conditions, including cancer, liver disease, obesity, diabetes, brain disease, pulmonary disease, cardiovascular disease, and kidney disease. By synthesizing this information, our article aims to enhance our understanding of the cellular mechanisms underlying NNMT biology related to diverse diseases and lay the molecular groundwork for developing therapeutic strategies for pharmacological interventions.
Collapse
Affiliation(s)
- Jeongwoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
| | - Tae Hyun Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-Do, 58245, Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea.
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea.
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
8
|
Xiong Z, Fang G, Mondal RK, Liao Y, Nie N, Chen YC, Kim M. On-Chip NADH Detection in Multicellular Models Using an AlGaN/GaN Photodetector Array with Enhanced Sensitivity. NANO LETTERS 2024; 24:14993-15000. [PMID: 39475050 DOI: 10.1021/acs.nanolett.4c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) is a pivotal coenzyme, existing in its oxidized form (NAD+) and reduced form (NADH). Both are essential in cellular redox reactions and are implicated in energy production and cancer. Current NADH detection methods often involve complex optical measurements. We propose a miniaturized, on-chip photoelectric sensor array using AlGaN/GaN two-dimensional electron gas (2DEG) photodetectors for NADH quantification. The device exhibits an ultralow dark current and ultrahigh UV light responsivity, enabling sensitive NADH detection. By exploiting the absorbance disparity between NADH and NAD+, our sensor achieves rapid, sensitive detection, surpassing commercial assays. It effectively detects NADH levels in 3D multicellular models, promising cancer screening and monitoring. This sensor platform offers a significant advancement in NADH quantification, with the potential for high-throughput testing and point-of-care diagnostics. Our study presents an efficient approach for NADH sensing, addressing the need for rapid and sensitive detection methods in biomedical research and clinical practice.
Collapse
Affiliation(s)
- Zhongshu Xiong
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Guocheng Fang
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Ramit Kumar Mondal
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Yikai Liao
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Ningyuan Nie
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Yu-Cheng Chen
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Munho Kim
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| |
Collapse
|
9
|
Rane DV, García-Calvo L, Kristiansen KA, Bruheim P. Zic-HILIC MS/MS Method for NADomics Provides Novel Insights into Redox Homeostasis in Escherichia coli BL21 Under Microaerobic and Anaerobic Conditions. Metabolites 2024; 14:607. [PMID: 39590843 PMCID: PMC11596675 DOI: 10.3390/metabo14110607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Nicotinamide adenine dinucleotide (NAD+), its precursors, and its derivatives (collectively NADome) play a crucial role in cellular processes and maintain redox homeostasis. Understanding the dynamics of these metabolic pools and redox reactions can provide valuable insights into metabolic functions, especially cellular regulation and stress response mechanisms. The accurate quantification of these metabolites is challenging due to the interconversion between the redox forms. Methods: Our laboratory previously developed a zwitterionic hydrophilic interaction liquid chromatography (zic-HILIC)-tandem mass spectrometry method for the quantification of five essential pyridine nucleotides, including NAD+ derivatives and it's reduced forms, with 13C isotope dilution and matrix-matched calibration. In this study, we have improved the performance of the chromatographic method and expanded its scope to twelve analytes for a comprehensive view of NAD+ biosynthesis and utilization. The analytical method was validated and applied to investigate Escherichia coli BL21 under varying oxygen supplies including aerobic, microaerobic, and anaerobic conditions. Conclusions: The intracellular absolute metabolite concentrations ranged over four orders of magnitude with NAD+ as the highest abundant, while its precursors were much less abundant. The composition of the NADome at oxygen-limited conditions aligned more with that in the anaerobic conditions rather than in the aerobic phase. Overall, the NADome was quite homeostatic and E. coli rapidly, but in a minor way, adapted the metabolic activity to the challenging shift in the growth conditions and achieved redox balance. Our findings demonstrate that the zic-HILIC-MS/MS method is sensitive, accurate, robust, and high-throughput, providing valuable insights into NAD+ metabolism and the potential significance of these metabolites in various biological contexts.
Collapse
Affiliation(s)
| | | | | | - Per Bruheim
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway; (D.V.R.); (K.A.K.)
| |
Collapse
|
10
|
Marín-Blázquez M, Rovira J, Ramírez-Bajo MJ, Zapata-Pérez R, Rabadán-Ros R. NAD + enhancers as therapeutic agents in the cardiorenal axis. Cell Commun Signal 2024; 22:537. [PMID: 39516787 PMCID: PMC11546376 DOI: 10.1186/s12964-024-01903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiorenal diseases represent a complex interplay between heart failure and renal dysfunction, being clinically classified as cardiorenal syndromes (CRS). Recently, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism, through deficient NAD+ synthesis and/or elevated consumption, have proved to be decisive in the onset and progress of cardiorenal disease. NAD+ is a pivotal coenzyme in cellular metabolism, being significant in various signaling pathways, such as energy metabolism, DNA damage repair, gene expression, and stress response. Convincing evidence suggests that strategies designed to boost cellular NAD+ levels are a promising therapeutic option to address cardiovascular and renal disorders. Here, we review and discuss the implications of NAD+ metabolism in cardiorenal diseases, focusing on the propitious NAD+ boosting therapeutic strategies, based on the use of NAD+ precursors, poly(ADP-ribose) polymerase inhibitors, sirtuin activators, and other alternative approaches, such as CD38 blockade, nicotinamide phosphoribosyltransferase activation and combined interventions.
Collapse
Affiliation(s)
- Mariano Marín-Blázquez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - Rubén Zapata-Pérez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| | - Rubén Rabadán-Ros
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| |
Collapse
|
11
|
Hou S, Xu H, Lei S, Zhao D. Overexpressed nicotinamide N‑methyltransferase in endometrial stromal cells induced by macrophages and estradiol contributes to cell proliferation in endometriosis. Cell Death Discov 2024; 10:463. [PMID: 39489776 PMCID: PMC11532478 DOI: 10.1038/s41420-024-02229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Endometriosis, an estrogen-dependent chronic inflammatory condition, afflicts reproductive-aged women. However, the underlying pathological mechanisms remain to be elucidated. Nicotinamide N-methyltransferase (NNMT) is a critical enzyme involved in cellular metabolism and methylation regulation. This study investigated the role of NNMT in endometriosis. By analyzing datasets GSE5108, GSE7305, GSE141549, GSE23339, and GSE25628, we identified a significant overexpression of NNMT in the eutopic endometrium and ectopic lesions of endometriosis patients compared to normal endometrium. Furthermore, NNMT was upregulated in collected endometrioma specimens and isolated primary endometrial stromal cells (ESCs) compared to their respective controls. Inhibition of NNMT using JBSNF-000088 attenuated the proliferation, migration, and invasion of ESCs. In vivo, treatment of mouse models of endometriosis with JBSNF-000088 resulted in a marked reduction in lesion weight and quantity. NNMT expression in ESCs was dose-dependently upregulated by 17β-estradiol at concentrations of 1 nM, 10 nM, and 100 nM, an effect that was attenuated by 10 nM progesterone. Additionally, treating HESCs with macrophage-conditioned medium elevated NNMT expression at both mRNA and protein levels. Knockdown of NNMT impeded the proliferation, migration, and invasion of ESCs, which was paralleled by decreased phosphorylation levels of Erb-b2 receptor tyrosine kinase 4 (ERBB4), PI3K, and AKT. Conversely, overexpressing ERBB4 mitigated the NNMT knockdown-induced decline in phosphorylated PI3K and AKT and rescued the proliferation of ESCs. Altogether, these results indicate that the overexpression of NNMT induced by estrogen and macrophage interaction modulates ESC proliferation via the NNMT-ERBB4-PI3K/AKT signaling pathway, as well as promotes cellular migration and invasion, contributing to the development of endometriosis.
Collapse
Affiliation(s)
- Shuhui Hou
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Xu
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shating Lei
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Dong Zhao
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Babula JJ, Bui D, Stevenson HL, Watowich SJ, Neelakantan H. Nicotinamide N-methyltransferase inhibition mitigates obesity-related metabolic dysfunction. Diabetes Obes Metab 2024; 26:5272-5282. [PMID: 39161060 PMCID: PMC11622326 DOI: 10.1111/dom.15879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
AIM To assess the effects of a small-molecule nicotinamide N-methyltransferase (NNMT) inhibitor, 5A1MQ, on body composition, metabolic variables, fatty liver pathologies, and circulating biomarkers in diet-induced obese (DIO) mice, and characterize its plasma pharmacokinetics (PK) and tissue distribution in vivo. MATERIALS AND METHODS DIO mice were administered vehicle or 5A1MQ once daily for 28 days. Longitudinal measures of body composition, blood glucose and plasma insulin levels, and terminal measures of liver histopathology and serum markers, were evaluated. Plasma and tissue PK were established in age- and strain-matched mice after intravenous, oral, and subcutaneous dosing of 5A1MQ. RESULTS 5A1MQ treatment dose-dependently limited body weight and fat mass gains, improved oral glucose tolerance and insulin sensitivity, and suppressed hyperinsulinaemia in DIO mice. Liver histology from 5A1MQ-treated DIO mice showed attenuated hepatic steatosis and macrophage infiltration, and correspondingly reduced liver weight, size, and triglyceride levels. 5A1MQ treatment normalized circulating levels of alanine transaminase, aspartate transaminase, and ketone bodies, supporting an overall improvement in liver and metabolic functions. The pharmacodynamic effects of 5A1MQ were further corroborated by its high systemic exposure and effective distribution to metabolically active tissues, including adipose, muscle and liver, following subcutaneous dosing of mice. CONCLUSIONS This work validates NNMT inhibition as a viable pharmacological approach to ameliorate metabolic imbalances and improve liver pathologies that develop with obesity.
Collapse
Affiliation(s)
| | - Dinh Bui
- Ridgeline Therapeutics, Houston, TX, USA
| | - Heather L. Stevenson
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Stanley J. Watowich
- Ridgeline Therapeutics, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | | |
Collapse
|
13
|
Holkom M, Yang X, Li R, Chen Y, Zhao H, Shang Z. Fibroblast regulates angiogenesis in assembled oral cancer organoid: A possible role of NNMT. Oral Dis 2024; 30:4982-4992. [PMID: 38566601 DOI: 10.1111/odi.14945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/27/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Tumour angiogenesis is affected by various cell types in the tumour microenvironment (TME), including cancer cells and cancer-associated fibroblasts (CAFs). Here, an assembled organoid model was generated to investigate the mechanism by which the TME regulates angiogenesis in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS Secretion of vascular endothelial growth factor-A (VEGFA) was analysed to compare the proangiogenic properties of OSCC cells and corresponding CAFs. Cell aggregates consisting of endothelial cells (ECs), CAFs and cancer cells were generated to construct assembled organoids. Nicotinamide N-methyltransferase (NNMT) was pharmacologically or genetically inhibited to block the activation of CAFs. ATAC-seq was employed to test the transcriptional network of fibroblasts overexpressing NNMT. RESULTS Compared with cancer cells, CAFs secreted more VEGFA. Coculture with CAFs more effectively promoted the sprouting of ECs. Blockade of CAF activation via inhibition of NNMT drastically reduced the expression of CD31 in the assembled organoids. Overexpression of NNMT enhanced the transcription of genes related to angiogenesis in fibroblasts. Specifically, NNMT orchestrated the enrichment of the transcription factor JUNB at the promoter of VEGFA. CONCLUSIONS We clarify that stromal NNMT enables the steady reproduction of angiogenesis in assembled oral cancer organoids, providing a novel target for exploiting antiangiogenic therapy.
Collapse
Affiliation(s)
- Mohammed Holkom
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rui Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hui Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Falnes PØ. Closing in on human methylation-the versatile family of seven-β-strand (METTL) methyltransferases. Nucleic Acids Res 2024; 52:11423-11441. [PMID: 39351878 PMCID: PMC11514484 DOI: 10.1093/nar/gkae816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Methylation is a common biochemical reaction, and a number of methyltransferase (MTase) enzymes mediate the various methylation events occurring in living cells. Almost all MTases use the methyl donor S-adenosylmethionine (AdoMet), and, in humans, the largest group of AdoMet-dependent MTases are the so-called seven-β-strand (7BS) MTases. Collectively, the 7BS MTases target a wide range of biomolecules, i.e. nucleic acids and proteins, as well as several small metabolites and signaling molecules. They play essential roles in key processes such as gene regulation, protein synthesis and metabolism, as well as neurotransmitter synthesis and clearance. A decade ago, roughly half of the human 7BS MTases had been characterized experimentally, whereas the remaining ones merely represented hypothetical enzymes predicted from bioinformatics analysis, many of which were denoted METTLs (METhylTransferase-Like). Since then, considerable progress has been made, and the function of > 80% of the human 7BS MTases has been uncovered. In this review, I provide an overview of the (estimated) 120 human 7BS MTases, grouping them according to substrate specificities and sequence similarity. I also elaborate on the challenges faced when studying these enzymes and describe recent major advances in the field.
Collapse
Affiliation(s)
- Pål Ø Falnes
- Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316Oslo, Norway
- CRESCO - Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
15
|
Ueno M, Sugiyama H, Li F, Nishimura T, Arakawa H, Chen X, Cheng X, Takeuchi S, Takeshita Y, Takamura T, Miyagi S, Toyama T, Soga T, Masuo Y, Kato Y, Nakamura H, Tsujiguchi H, Hara A, Tajima A, Noguchi-Shinohara M, Ono K, Kurayoshi K, Kobayashi M, Tadokoro Y, Kasahara A, Shoulkamy MI, Maeda K, Ogoshi T, Hirao A. A Supramolecular Biosensor for Rapid and High-Throughput Quantification of a Disease-Associated Niacin Metabolite. Anal Chem 2024; 96:14499-14507. [PMID: 39183562 DOI: 10.1021/acs.analchem.4c02653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Metabolic abnormalities play a pivotal role in various pathological conditions, necessitating the quantification of specific metabolites for diagnosis. While mass spectrometry remains the primary method for metabolite measurement, its limited throughput underscores the need for biosensors capable of rapid detection. Previously, we reported that pillar[6]arene with 12 carboxylate groups (P6AC) forms host-guest complexes with 1-methylnicotinamide (1-MNA), which is produced in vivo by nicotinamide N-methyltransferase (NNMT). P6AC acts as a biosensor by measuring the fluorescence quenching caused by photoinduced electron transfer upon 1-MNA binding. However, the low sensitivity of P6AC makes it impractical for detecting 1-MNA in unpurified biological samples. In this study, we found that P6A with 12 sulfonate groups (P6AS) is a specific and potent supramolecular host for 1-MNA interactions even in biological samples. The 1-MNA binding affinity of P6AS in water was found to be (5.68 ± 1.02) × 106 M-1, which is approximately 700-fold higher than that of P6AC. Moreover, the 1-MNA detection limit of P6AS was determined to be 2.84 × 10-7 M, which is substantially lower than that of P6AC. Direct addition of P6AS to culture medium was sufficient to quantify 1-MNA produced by cancer cells. Furthermore, this sensor was able to specifically detect 1-MNA even in unpurified human urine. P6AS therefore enables rapid and high-throughput quantification of 1-MNA, and further improvement of our strategy will contribute to the establishment of high-throughput screening of NNMT inhibitors, diagnosis of liver diseases, and imaging of human cancer cells in vivo.
Collapse
Affiliation(s)
- Masaya Ueno
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroki Sugiyama
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Feng Li
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tatsuya Nishimura
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Xi Chen
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Xiaoxiao Cheng
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Shinji Takeuchi
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Division of Medical Oncology Cancer Research Institute, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Sakae Miyagi
- Innovative Clinical Research Center, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Tadashi Toyama
- Innovative Clinical Research Center, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Kakuganji-mizukami, Tsuruoka, Yamagata 997-0052, Japan
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroyuki Nakamura
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiromasa Tsujiguchi
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Akinori Hara
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Moeko Noguchi-Shinohara
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masahiko Kobayashi
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuko Tadokoro
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Atsuko Kasahara
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Mahmoud I Shoulkamy
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Katsuhiro Maeda
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomoki Ogoshi
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
16
|
Myong S, Nguyen AQ, Challa S. Biological Functions and Therapeutic Potential of NAD + Metabolism in Gynecological Cancers. Cancers (Basel) 2024; 16:3085. [PMID: 39272943 PMCID: PMC11394644 DOI: 10.3390/cancers16173085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an important cofactor for both metabolic and signaling pathways, with the dysregulation of NAD+ levels acting as a driver for diseases such as neurodegeneration, cancers, and metabolic diseases. NAD+ plays an essential role in regulating the growth and progression of cancers by controlling important cellular processes including metabolism, transcription, and translation. NAD+ regulates several metabolic pathways such as glycolysis, the citric acid (TCA) cycle, oxidative phosphorylation, and fatty acid oxidation by acting as a cofactor for redox reactions. Additionally, NAD+ acts as a cofactor for ADP-ribosyl transferases and sirtuins, as well as regulating cellular ADP-ribosylation and deacetylation levels, respectively. The cleavage of NAD+ by CD38-an NAD+ hydrolase expressed on immune cells-produces the immunosuppressive metabolite adenosine. As a result, metabolizing and maintaining NAD+ levels remain crucial for the function of various cells found in the tumor microenvironment, hence its critical role in tissue homeostasis. The NAD+ levels in cells are maintained by a balance between NAD+ biosynthesis and consumption, with synthesis being controlled by the Preiss-Handler, de novo, and NAD+ salvage pathways. The primary source of NAD+ synthesis in a variety of cell types is directed by the expression of the enzymes central to the three biosynthesis pathways. In this review, we describe the role of NAD+ metabolism and its synthesizing and consuming enzymes' control of cancer cell growth and immune responses in gynecologic cancers. Additionally, we review the ongoing efforts to therapeutically target the enzymes critical for NAD+ homeostasis in gynecologic cancers.
Collapse
Affiliation(s)
- Subin Myong
- The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Anh Quynh Nguyen
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Sridevi Challa
- The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
17
|
Liang R, Xiang Q, Dai M, Lin T, Xie D, Song Q, Liu Y, Yue J. Identification of nicotinamide N-methyltransferase as a promising therapeutic target for sarcopenia. Aging Cell 2024; 23:e14236. [PMID: 38838088 PMCID: PMC11488295 DOI: 10.1111/acel.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
Sarcopenia is a significant geriatric syndrome that involves the loss of skeletal muscle mass and strength. Due to its substantial endocrine role, the metabolic microenvironment of skeletal muscle undergoes changes with age. Examining the pathogenesis of sarcopenia through focusing on metabolic dysregulation could offer insights for developing more effective intervention strategies. In this study, we analyzed the transcriptomics data to identify specific genes involved in the regulation of metabolism in skeletal muscle during the development of sarcopenia. Three machine learning algorithms were employed to screen key target genes exhibiting strong correlations with metabolism, which were further validated using RNA-sequencing data and publicly accessible datasets. Among them, the metabolic enzyme nicotinamide N-methyltransferase (NNMT) was elevated in sarcopenia, and predicted sarcopenia with an area under the curve exceeding 0.7, suggesting it as a potential therapeutic target for sarcopenia. As expected, inhibition of NNMT improved the grip strength in aging mice and alleviated age-related decline in the mass index of the quadriceps femoris muscles and whole-body lean mass index. Additionally, the NNMTi treatment increased the levels of nicotinamide adenine dinucleotide (NAD+) content, as well as PGC1α and p-AMPK expression in the muscles of both the D-galactose-treated mouse model and naturally aging mouse model. Overall, this work demonstrates NNMT as a promising target for preventing age-related decline in muscle mass and strength.
Collapse
Affiliation(s)
- Rui Liang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Qiao Xiang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Miao Dai
- Department of GeriatricsJiujiang No 1 People's HospitalJiujiangJiangxiChina
| | - Taiping Lin
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Dongmei Xie
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Quhong Song
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Yu Liu
- National Clinical Research Center for Geriatrics, General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Jirong Yue
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
18
|
Almeida DA, Twomey E, Vargas-Salinas F, Meyer C, Schulte LM. Sexy fingers: Pheromones in the glands of male dendrobatid frogs. Mol Ecol 2024; 33:e17476. [PMID: 39034599 DOI: 10.1111/mec.17476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Abstract
Many animals exchange chemicals during courtship and mating. In some amphibians, sexual chemical communication is mediated by pheromones produced in male breeding glands that are transferred to the female's nostrils during mating. This has been mostly studied in salamanders, despite frogs having similar glands and courtship behaviours suggestive of chemical communication. In Neotropical poison frogs (Dendrobatidae and Aromobatidae), males of many species develop breeding glands in their fingers, causing certain fingers to visibly swell. Many also engage in cephalic amplexus, whereby the male's swollen fingers are placed in close contact with the female's nares during courtship. Here, we investigate the possible roles of swollen fingers in pheromone production using whole-transcriptome sequencing (RNAseq). We examined differential gene expression in the swollen versus non-swollen fingers and toes of two dendrobatid species, Leucostethus brachistriatus and Epipedobates anthonyi, both of which have specialised mucous glands in finger IV, the latter of which has cephalic amplexus. The overwhelming pattern of gene expression in both species was strong upregulation of sodefrin precursor-like factors (SPFs) in swollen fingers, a well-known pheromone system in salamanders. The differentially expressed SPF transcripts in each species were very high (>40), suggesting a high abundance of putative protein pheromones in both species. Overall, the high expression of SPFs in the swollen fingers in both species, combined with cephalic amplexus, supports the hypothesis that these traits, widespread across members of the subfamilies Colostethinae and Hyloxalinae (ca. 141 species), are involved in chemical signalling during courtship.
Collapse
Affiliation(s)
- Diana Abondano Almeida
- Department of Wildlife-/Zoo-Animal-Biology and Systematics, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Evan Twomey
- Department of Wildlife-/Zoo-Animal-Biology and Systematics, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Fernando Vargas-Salinas
- Grupo de Investigación en Evolución, Ecología y Conservación (EECO), Programa de Biología, Universidad del Quindío, Armenia, Colombia
| | - Carmen Meyer
- Department of Wildlife-/Zoo-Animal-Biology and Systematics, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lisa M Schulte
- Department of Wildlife-/Zoo-Animal-Biology and Systematics, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Wang X, Zhao H, Luo X, Chen Y, Shi C, Wang Y, Bai J, Shao Z, Shang Z. NNMT switches the proangiogenic phenotype of cancer-associated fibroblasts via epigenetically regulating ETS2/VEGFA axis. Oncogene 2024; 43:2647-2660. [PMID: 39069579 DOI: 10.1038/s41388-024-03112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are known to promote angiogenesis in oral squamous cell carcinoma (OSCC). However, the epigenetic mechanisms through which CAFs facilitate angiogenesis within the tumor microenvironment are still poorly characterized. Nicotinamide N'-methyltransferase (NNMT), a member of the N-methyltransferase family, was found to be a key molecule in the activation of CAFs. This study shows that NNMT in fibroblasts contributes to angiogenesis and tumor growth through an epigenetic reprogramming-ETS2-VEGFA signaling axis in OSCC. Single-cell RNA Sequencing (scRNA-seq) analysis suggests that NNMT is mainly highly expressed in fibroblasts of head and neck squamous cell carcinoma (HNSCC). Moreover, analysis of the TCGA database and multiple immunohistochemical staining of clinical samples also identified a positive correlation between NNMT and tumor angiogenesis. This research further employed an assembled organoid model and a fibroblast-endothelial cell co-culture model to authenticate the proangiogenic ability of NNMT. At the molecular level, high expression of NNMT in CAFs was found to promote ETS2 expression by regulating H3K27 methylation level through mediating methylation deposition. Furthermore, ETS2 was verified to be an activating transcription factor of VEGFA in this study. Collectively, our findings delineate an epigenetic molecular regulatory network of angiogenesis and provide a theoretical basis for exploring new targets and clinical strategy in OSCC.
Collapse
Affiliation(s)
- Xinmiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hui Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinyue Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Congyu Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yifan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junqiang Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhe Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China.
- Day Surgery Center, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China.
- Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Yang M, Wang B, Hou W, Zeng H, He W, Zhang XK, Yan D, Yu H, Huang L, Pei L, Li K, Qin H, Lin T, Huang J. NAD + metabolism enzyme NNMT in cancer-associated fibroblasts drives tumor progression and resistance to immunotherapy by modulating macrophages in urothelial bladder cancer. J Immunother Cancer 2024; 12:e009281. [PMID: 39067875 DOI: 10.1136/jitc-2024-009281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND This study comprehensively investigates the association between the expression of nicotinamide N-methyltransferase (NNMT) and clinical outcomes of urothelial bladder cancer (UBC), as well as the molecular mechanisms by which NNMT in cancer-associated fibroblast (CAF) modulates tumor progression and immunotherapy resistance in UBC. METHODS Single-cell transcriptomic analyses, immunohistochemical and immunofluorescence assays were performed on bladder cancer samples to validate the relationship between NNMT expression and clinical outcomes. A series of experiments, including chromatin immunoprecipitation assay, liquid chromatography tandem mass spectrometry assay, and CRISPR‒Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein 9) knockout, together with in vivo models, have been established to determine the molecular functions of NNMT in CAFs in UBC. RESULTS We demonstrated that elevated expression of the nicotinamide adenine dinucleotide (NAD+) metabolism enzyme NNMT in CAFs (NNMT+ CAFs) was significantly associated with non-response to programmed death-ligand 1 (PD-L1) blockade immunotherapy in patients with UBC and predicted the unfavorable prognosis of UBC in two independent large cohorts. Targeting NNMT using the inhibitor 5-Amino-1-methylquinolinium iodide significantly reduced tumor growth and enhanced the apoptotic effects of the anti-PD-L1 antibody in UBC mouse models. Mechanistically, NNMT+ CAFs recruit tumor-associated macrophages via epigenetic reprogramming of serum amyloid A (SAA) to drive tumor cell proliferation and confer resistance to programmed death-1/PD-L1 blockade immunotherapy. CONCLUSIONS NNMT+ CAFs were significantly associated with non-response to PD-L1 blockade immunotherapy in patients with UBC. Elevated NNMT, specifically in CAFs, upregulates SAA expression and enhances the recruitment and differentiation of macrophages in the tumor microenvironment, thereby directly or indirectly promoting tumor progression and conferring resistance to immunotherapies in bladder cancer.
Collapse
Affiliation(s)
- Meihua Yang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R.China
| | - Bo Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Weibin Hou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Honghui Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R.China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xin-Ke Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Dong Yan
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Hao Yu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Long Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Lu Pei
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Haide Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
21
|
Zheng C, Li Y, Wu X, Gao L, Chen X. Advances in the Synthesis and Physiological Metabolic Regulation of Nicotinamide Mononucleotide. Nutrients 2024; 16:2354. [PMID: 39064797 PMCID: PMC11279976 DOI: 10.3390/nu16142354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Nicotinamide mononucleotide (NMN), the direct precursor of nicotinamide adenine dinucleotide (NAD+), is involved in the regulation of many physiological and metabolic reactions in the body. NMN can indirectly affect cellular metabolic pathways, DNA repair, and senescence, while also being essential for maintaining tissues and dynamic metabolic equilibria, promoting healthy aging. Therefore, NMN has found many applications in the food, pharmaceutical, and cosmetics industries. At present, NMN synthesis strategies mainly include chemical synthesis and biosynthesis. Despite its potential benefits, the commercial production of NMN by organic chemistry approaches faces environmental and safety problems. With the rapid development of synthetic biology, it has become possible to construct microbial cell factories to produce NMN in a cost-effective way. In this review, we summarize the chemical and biosynthetic strategies of NMN, offering an overview of the recent research progress on host selection, chassis cell optimization, mining of key enzymes, metabolic engineering, and adaptive fermentation strategies. In addition, we also review the advances in the role of NMN in aging, metabolic diseases, and neural function. This review provides comprehensive technical guidance for the efficient biosynthesis of NMN as well as a theoretical basis for its application in the fields of food, medicine, and cosmetics.
Collapse
Affiliation(s)
- Chuxiong Zheng
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| | - Yumeng Li
- National Technology Innovation Center for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (Y.L.); (X.W.)
| | - Xin Wu
- National Technology Innovation Center for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (Y.L.); (X.W.)
| | - Le Gao
- National Technology Innovation Center for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (Y.L.); (X.W.)
| | - Xiaoyi Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| |
Collapse
|
22
|
Li JJ, Sun WD, Zhu XJ, Mei YZ, Li WS, Li JH. Nicotinamide N-Methyltransferase (NNMT): A New Hope for Treating Aging and Age-Related Conditions. Metabolites 2024; 14:343. [PMID: 38921477 PMCID: PMC11205546 DOI: 10.3390/metabo14060343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The complex process of aging leads to a gradual deterioration in the function of cells, tissues, and the entire organism, thereby increasing the risk of disease and death. Nicotinamide N-methyltransferase (NNMT) has attracted attention as a potential target for combating aging and its related pathologies. Studies have shown that NNMT activity increases over time, which is closely associated with the onset and progression of age-related diseases. NNMT uses S-adenosylmethionine (SAM) as a methyl donor to facilitate the methylation of nicotinamide (NAM), converting NAM into S-adenosyl-L-homocysteine (SAH) and methylnicotinamide (MNA). This enzymatic action depletes NAM, a precursor of nicotinamide adenine dinucleotide (NAD+), and generates SAH, a precursor of homocysteine (Hcy). The reduction in the NAD+ levels and the increase in the Hcy levels are considered important factors in the aging process and age-related diseases. The efficacy of RNA interference (RNAi) therapies and small-molecule inhibitors targeting NNMT demonstrates the potential of NNMT as a therapeutic target. Despite these advances, the exact mechanisms by which NNMT influences aging and age-related diseases remain unclear, and there is a lack of clinical trials involving NNMT inhibitors and RNAi drugs. Therefore, more in-depth research is needed to elucidate the precise functions of NNMT in aging and promote the development of targeted pharmaceutical interventions. This paper aims to explore the specific role of NNMT in aging, and to evaluate its potential as a therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiang-Hua Li
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China; (J.-J.L.); (W.-D.S.); (X.-J.Z.); (Y.-Z.M.); (W.-S.L.)
| |
Collapse
|
23
|
Sun WD, Zhu XJ, Li JJ, Mei YZ, Li WS, Li JH. Nicotinamide N-methyltransferase (NNMT): a novel therapeutic target for metabolic syndrome. Front Pharmacol 2024; 15:1410479. [PMID: 38919254 PMCID: PMC11196770 DOI: 10.3389/fphar.2024.1410479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Metabolic syndrome (MetS) represents a constellation of metabolic abnormalities, typified by obesity, hypertension, hyperglycemia, and hyperlipidemia. It stems from intricate dysregulations in metabolic pathways governing energy and substrate metabolism. While comprehending the precise etiological mechanisms of MetS remains challenging, evidence underscores the pivotal roles of aberrations in lipid metabolism and insulin resistance (IR) in its pathogenesis. Notably, nicotinamide N-methyltransferase (NNMT) has recently surfaced as a promising therapeutic target for addressing MetS. Single nucleotide variants in the NNMT gene are significantly correlated with disturbances in energy metabolism, obesity, type 2 diabetes (T2D), hyperlipidemia, and hypertension. Elevated NNMT gene expression is notably observed in the liver and white adipose tissue (WAT) of individuals with diabetic mice, obesity, and rats afflicted with MetS. Knockdown of NNMT elicits heightened energy expenditure in adipose and hepatic tissues, mitigates lipid accumulation, and enhances insulin sensitivity. NNMT catalyzes the methylation of nicotinamide (NAM) using S-adenosyl-methionine (SAM) as the donor methyl group, resulting in the formation of S-adenosyl-l-homocysteine (SAH) and methylnicotinamide (MNAM). This enzymatic process results in the depletion of NAM, a precursor of nicotinamide adenine dinucleotide (NAD+), and the generation of SAH, a precursor of homocysteine (Hcy). Consequently, this cascade leads to reduced NAD+ levels and elevated Hcy levels, implicating NNMT in the pathogenesis of MetS. Moreover, experimental studies employing RNA interference (RNAi) strategies and small molecule inhibitors targeting NNMT have underscored its potential as a therapeutic target for preventing or treating MetS-related diseases. Nonetheless, the precise mechanistic underpinnings remain elusive, and as of yet, clinical trials focusing on NNMT have not been documented. Therefore, further investigations are warranted to elucidate the intricate roles of NNMT in MetS and to develop targeted therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiang-Hua Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
24
|
Serritelli EN, Sartini D, Campagna R, Pozzi V, Martin NI, van Haren MJ, Salvolini E, Cecati M, Rubini C, Emanuelli M. Targeting nicotinamide N-methyltransferase decreased aggressiveness of osteosarcoma cells. Eur J Clin Invest 2024; 54:e14185. [PMID: 38426563 DOI: 10.1111/eci.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Osteosarcoma (OS) is a primary bone malignancy that mostly affects young people, characterized by high metastatic potential, and a marked chemoresistance that is responsible for disease relapse in most patients. Therefore, it is necessary to identify novel molecules to setup targeted strategies to improve the clinical outcome. The enzyme nicotinamide N-methyltransferase (NNMT) catalyses the N-methylation of nicotinamide and other analogs, playing a crucial role in the biotransformation of drugs and xenobiotics. NNMT overexpression was reported in a wide variety of cancers, and several studies demonstrated that is able to promote cell proliferation, migration and resistance to chemotherapy. The aim of this study was to explore the potential involvement of NNMT in OS. METHODS Immunohistochemical analyses have been performed to evaluate NNMT expression in selected OS and healthy bone tissue samples. Subsequently, OS cell lines have been transfected with vectors targeting NNMT mRNA (shRNAs) and the impact of this downregulation on migration, cell proliferation, and response to chemotherapeutic treatment was also analysed by wound healing, MTT, SRB and Trypan blue assays, respectively. RESULTS Results showed that OS samples display a significantly higher NNMT expression compared with healthy tissue. Preliminary results suggest that NNMT silencing in OS cell lines is associated to a decrease of cell proliferation and migration, as well as to enhanced sensitivity to chemotherapy. Data obtained showed that NNMT may represent an interesting marker for OS detection and a promising target for effective anti-cancer therapy.
Collapse
Affiliation(s)
- E N Serritelli
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - D Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - R Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - V Pozzi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - N I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - M J van Haren
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - E Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - M Cecati
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - C Rubini
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - M Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
25
|
Pozzi V, Molinelli E, Campagna R, Serritelli EN, Cecati M, De Simoni E, Sartini D, Goteri G, Martin NI, van Haren MJ, Salvolini E, Simonetti O, Offidani A, Emanuelli M. Knockdown of nicotinamide N-methyltransferase suppresses proliferation, migration, and chemoresistance of Merkel cell carcinoma cells in vitro. Hum Cell 2024; 37:729-738. [PMID: 38504052 PMCID: PMC11016511 DOI: 10.1007/s13577-024-01047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer, with a propensity for early metastasis. Therefore, early diagnosis and the identification of novel targets become fundamental. The enzyme nicotinamide N-methyltransferase (NNMT) catalyzes the reaction of N-methylation of nicotinamide and other analogous compounds. Although NNMT overexpression was reported in many malignancies, the significance of its dysregulation in cancer cell phenotype was partly clarified. Several works demonstrated that NNMT promotes cancer cell proliferation, migration, and chemoresistance. In this study, we investigated the possible involvement of this enzyme in MCC. Preliminary immunohistochemical analyses were performed to evaluate NNMT expression in MCC tissue specimens. To explore the enzyme function in tumor cell metabolism, MCC cell lines have been transfected with plasmids encoding for short hairpin RNAs (shRNAs) targeting NNMT mRNA. Preliminary immunohistochemical analyses showed elevated NNMT expression in MCC tissue specimens. The effect of enzyme downregulation on cell proliferation, migration, and chemosensitivity was then evaluated through MTT, trypan blue, and wound healing assays. Data obtained clearly demonstrated that NNMT knockdown is associated with a decrease of cell proliferation, viability, and migration, as well as with enhanced sensitivity to treatment with chemotherapeutic drugs. Taken together, these results suggest that NNMT could represent an interesting MCC biomarker and a promising target for targeted anti-cancer therapy.
Collapse
Affiliation(s)
- Valentina Pozzi
- Department of Clinical Sciences, Polytechnic University of Marche, 60020, Ancona, Italy
| | - Elisa Molinelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60020, Ancona, Italy
| | - Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60020, Ancona, Italy.
| | - Emma N Serritelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60020, Ancona, Italy
| | - Monia Cecati
- Department of Clinical Sciences, Polytechnic University of Marche, 60020, Ancona, Italy
| | - Edoardo De Simoni
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60020, Ancona, Italy
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, 60020, Ancona, Italy.
| | - Gaia Goteri
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60020, Ancona, Italy
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Matthijs J van Haren
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Eleonora Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, 60020, Ancona, Italy
| | - Oriana Simonetti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60020, Ancona, Italy
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60020, Ancona, Italy
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60020, Ancona, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, 60131, Ancona, Italy
| |
Collapse
|
26
|
Suntornsaratoon P, Antonio JM, Flores J, Upadhyay R, Veltri J, Bandyopadhyay S, Dadala R, Kim M, Liu Y, Balasubramanian I, Turner JR, Su X, Li WV, Gao N, Ferraris RP. Lactobacillus rhamnosus GG Stimulates Dietary Tryptophan-Dependent Production of Barrier-Protecting Methylnicotinamide. Cell Mol Gastroenterol Hepatol 2024; 18:101346. [PMID: 38641207 PMCID: PMC11193042 DOI: 10.1016/j.jcmgh.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND & AIMS Lacticaseibacillus rhamnosus GG (LGG) is the world's most consumed probiotic but its mechanism of action on intestinal permeability and differentiation along with its interactions with an essential source of signaling metabolites, dietary tryptophan (trp), are unclear. METHODS Untargeted metabolomic and transcriptomic analyses were performed in LGG monocolonized germ-free mice fed trp-free or -sufficient diets. LGG-derived metabolites were profiled in vitro under anaerobic and aerobic conditions. Multiomic correlations using a newly developed algorithm discovered novel metabolites tightly linked to tight junction and cell differentiation genes whose abundances were regulated by LGG and dietary trp. Barrier-modulation by these metabolites were functionally tested in Caco2 cells, mouse enteroids, and dextran sulfate sodium experimental colitis. The contribution of these metabolites to barrier protection is delineated at specific tight junction proteins and enterocyte-promoting factors with gain and loss of function approaches. RESULTS LGG, strictly with dietary trp, promotes the enterocyte program and expression of tight junction genes, particularly Ocln. Functional evaluations of fecal and serum metabolites synergistically stimulated by LGG and trp revealed a novel vitamin B3 metabolism pathway, with methylnicotinamide (MNA) unexpectedly being the most robust barrier-protective metabolite in vitro and in vivo. Reduced serum MNA is significantly associated with increased disease activity in patients with inflammatory bowel disease. Exogenous MNA enhances gut barrier in homeostasis and robustly promotes colonic healing in dextran sulfate sodium colitis. MNA is sufficient to promote intestinal epithelial Ocln and RNF43, a master inhibitor of Wnt. Blocking trp or vitamin B3 absorption abolishes barrier recovery in vivo. CONCLUSIONS Our study uncovers a novel LGG-regulated dietary trp-dependent production of MNA that protects the gut barrier against colitis.
Collapse
Affiliation(s)
- Panan Suntornsaratoon
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jayson M Antonio
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Juan Flores
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Ravij Upadhyay
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - John Veltri
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | | | - Rhema Dadala
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Michael Kim
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Yue Liu
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | | | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Xiaoyang Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Wei Vivian Li
- Department of Statistics, University of California, Riverside, Riverside, California
| | - Nan Gao
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey; Department of Biological Sciences, Rutgers University, Newark, New Jersey.
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey.
| |
Collapse
|
27
|
Fashe MM, Le TV, Gower MN, Mulrenin IR, Dorman KF, Smith S, Fallon JK, Dumond JB, Boggess KA, Lee CR. Impact of Pregnancy on the Pharmacokinetics and Metabolism of Nicotinamide in Humans. Clin Pharmacol Ther 2024; 115:556-564. [PMID: 38093631 PMCID: PMC11250906 DOI: 10.1002/cpt.3146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
In pre-eclampsia models, nicotinamide (NAM) has protective effects in pre-eclampsia and is being evaluated as a therapeutic nutraceutical in clinical studies. NAM undergoes extensive hepatic metabolism by NAM N-methyltransferase to methylnicotinamide (MNA), which is subsequently metabolized to methyl-2-pyridone-5-carboxamide (M2PY) by aldehyde oxidase. However, the pharmacokinetics of NAM and its major metabolites has never been studied in pregnant individuals. Blood samples were collected before and 1, 2, 4, 8, and 24 hours after single 1 g oral NAM dose in healthy pregnant (gestational age 24-33 weeks) and nonpregnant female volunteers (n = 6/group). Pooled urine was collected from 0 to 8 hours. NAM, MNA, and M2PY area under the concentration-time curve (AUC) data were analyzed by noncompartmental analysis. No difference in the plasma AUC0→24 of NAM (median (25%-75%): 463 (436-576) vs. 510 (423, 725) μM*hour, P = 0.430) and its intermediate metabolite MNA (89.1 (60.4, 124.4) vs. 83.8 (62.7, 93.7) μM*hour, P = 0.515) was observed in pregnant and nonpregnant volunteers, respectively; however, the terminal metabolite M2PY AUC0 → 24 was significantly lower in pregnant individuals (218 (188, 254) vs. 597 (460, 653) μM*hour, P < 0.001). NAM renal clearance (CLR ; P = 0.184), MNA CLR (P = 0.180), and total metabolite formation clearance (P = 0.405) did not differ across groups; however, M2PY CLR was significantly higher in pregnant individuals (10.5 (9.3-11.3) vs. 7.5 (6.4-8.5) L/h, P = 0.002). These findings demonstrate that the PK of NAM and systemic exposure to its intermediate metabolite MNA are not significantly altered during pregnancy, and systemic exposure to NAM's major metabolite M2PY was reduced during pregnancy due to increased renal elimination.
Collapse
Affiliation(s)
- Muluneh M. Fashe
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tien V. Le
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Megan N. Gower
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ian R. Mulrenin
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karen F. Dorman
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Spenser Smith
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John K. Fallon
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julie B. Dumond
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kim A. Boggess
- Department of Obstetrics & Gynecology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig R. Lee
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
28
|
Ghanem MS, Caffa I, Monacelli F, Nencioni A. Inhibitors of NAD + Production in Cancer Treatment: State of the Art and Perspectives. Int J Mol Sci 2024; 25:2092. [PMID: 38396769 PMCID: PMC10889166 DOI: 10.3390/ijms25042092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The addiction of tumors to elevated nicotinamide adenine dinucleotide (NAD+) levels is a hallmark of cancer metabolism. Obstructing NAD+ biosynthesis in tumors is a new and promising antineoplastic strategy. Inhibitors developed against nicotinamide phosphoribosyltransferase (NAMPT), the main enzyme in NAD+ production from nicotinamide, elicited robust anticancer activity in preclinical models but not in patients, implying that other NAD+-biosynthetic pathways are also active in tumors and provide sufficient NAD+ amounts despite NAMPT obstruction. Recent studies show that NAD+ biosynthesis through the so-called "Preiss-Handler (PH) pathway", which utilizes nicotinate as a precursor, actively operates in many tumors and accounts for tumor resistance to NAMPT inhibitors. The PH pathway consists of three sequential enzymatic steps that are catalyzed by nicotinate phosphoribosyltransferase (NAPRT), nicotinamide mononucleotide adenylyltransferases (NMNATs), and NAD+ synthetase (NADSYN1). Here, we focus on these enzymes as emerging targets in cancer drug discovery, summarizing their reported inhibitors and describing their current or potential exploitation as anticancer agents. Finally, we also focus on additional NAD+-producing enzymes acting in alternative NAD+-producing routes that could also be relevant in tumors and thus become viable targets for drug discovery.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
29
|
Li P, Xia C, Kong X, Zhang J. Enhancing nicotinamide N-methyltransferase bisubstrate inhibitor activity through 7-deazaadenosine and linker modifications. Bioorg Chem 2024; 143:106963. [PMID: 38048700 DOI: 10.1016/j.bioorg.2023.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 12/06/2023]
Abstract
Nicotinamide N-methyltransferase (NNMT) catalyzes the transfer of a methyl group from S-adenosylmethionine (SAM) to nicotinamide (NAM) and other pyridine-related compounds and is involved in various metabolic processes in the human body. In addition, abnormal expression of NNMT occurs under various pathological conditions such as cancer, diabetes, metabolic disorders, and neurodegenerative diseases, making it a promising drug target worthy of in-depth research. Small-molecule NNMT inhibitors with high potency and selectivity are necessary chemical tools to test biological hypotheses and potential therapies. In this study, we developed a series of highly active NNMT inhibitors by modifying N7 position of adenine. Among them, compound 3-12 (IC50 = 47.9 ± 0.6 nM) exhibited potent inhibitory activity and also had an excellent selectivity profile over a panel of human methyltransferases. We showed that the N7 position of adenine in the NNMT bisubstrate inhibitor was a modifiable site, thus offering insights into the development of NNMT inhibitors.
Collapse
Affiliation(s)
- Pengyu Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Cuicui Xia
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China; Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xiangqian Kong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China.
| | - Jiancun Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China.
| |
Collapse
|
30
|
Wei X, Tan Y, Huang J, Dong X, Feng W, Liu T, Yang Z, Yang G, Luo X. N1-methylnicotinamide impairs gestational glucose tolerance in mice. J Mol Endocrinol 2024; 72:e230126. [PMID: 38029302 PMCID: PMC10831565 DOI: 10.1530/jme-23-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
N1-methylnicotinamide (MNAM), a product of methylation of nicotinamide through nicotinamide N-methyltransferase, displays antidiabetic effects in male rodents. This study aimed to evaluate the ameliorative potential of MNAM on glucose metabolism in a gestational diabetes mellitus (GDM) model. C57BL/6N mice were fed with a high-fat diet (HFD) for 6 weeks before pregnancy and throughout gestation to establish the GDM model. Pregnant mice were treated with 0.3% or 1% MNAM during gestation. MNAM supplementation in CHOW diet and HFD both impaired glucose tolerance at gestational day 14.5 without changes in insulin tolerance. However, MNAM supplementation reduced hepatic lipid accumulation as well as mass and inflammation in visceral adipose tissue. MNAM treatment decreased GLUT4 mRNA and protein expression in skeletal muscle, where NAD+ salvage synthesis and antioxidant defenses were dampened. The NAD+/sirtuin system was enhanced in liver, which subsequently boosted hepatic gluconeogenesis. GLUT1 protein was diminished in placenta by MNAM. In addition, weight of placenta, fetus weight, and litter size were not affected by MNAM treatment. The decreased GLUT4 in skeletal muscle, boosted hepatic gluconeogenesis and dampened GLUT1 in placenta jointly contribute to the impairment of glucose tolerance tests by MNAM. Our data provide evidence for the careful usage of MNAM in treatment of GDM.
Collapse
Affiliation(s)
- Xiaojing Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
- Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yutian Tan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
- Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jiaqi Huang
- Institute of Basic Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Ximing Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
- Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Weijie Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
- Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Tanglin Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
- Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Zhao Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guiying Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
- Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
| |
Collapse
|
31
|
Zhang Q, Li Z, Li Q, Trammell SA, Schmidt MS, Pires KM, Cai J, Zhang Y, Kenny H, Boudina S, Brenner C, Abel ED. Control of NAD + homeostasis by autophagic flux modulates mitochondrial and cardiac function. EMBO J 2024; 43:362-390. [PMID: 38212381 PMCID: PMC10897141 DOI: 10.1038/s44318-023-00009-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024] Open
Abstract
Impaired autophagy is known to cause mitochondrial dysfunction and heart failure, in part due to altered mitophagy and protein quality control. However, whether additional mechanisms are involved in the development of mitochondrial dysfunction and heart failure in the setting of deficient autophagic flux remains poorly explored. Here, we show that impaired autophagic flux reduces nicotinamide adenine dinucleotide (NAD+) availability in cardiomyocytes. NAD+ deficiency upon autophagic impairment is attributable to the induction of nicotinamide N-methyltransferase (NNMT), which methylates the NAD+ precursor nicotinamide (NAM) to generate N-methyl-nicotinamide (MeNAM). The administration of nicotinamide mononucleotide (NMN) or inhibition of NNMT activity in autophagy-deficient hearts and cardiomyocytes restores NAD+ levels and ameliorates cardiac and mitochondrial dysfunction. Mechanistically, autophagic inhibition causes the accumulation of SQSTM1, which activates NF-κB signaling and promotes NNMT transcription. In summary, we describe a novel mechanism illustrating how autophagic flux maintains mitochondrial and cardiac function by mediating SQSTM1-NF-κB-NNMT signaling and controlling the cellular levels of NAD+.
Collapse
Affiliation(s)
- Quanjiang Zhang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Zhonggang Li
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Qiuxia Li
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Samuel Aj Trammell
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Mark S Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Karla Maria Pires
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jinjin Cai
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yuan Zhang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Helena Kenny
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Sihem Boudina
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Diabetes & Cancer Metabolism, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - E Dale Abel
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
32
|
Chen J, Lu H, Cao D, Sun J, Qi F, Liu X, Liu J, Yang J, Yu M, Zhou H, Cheng N, Wang J, Zhang Y, Peng P, Wang T, Shen K, Sun W. Urine and serum metabolomic analysis of endometrial cancer diagnosis and classification based on ultra-performance liquid chromatography mass spectrometry. Metabolomics 2024; 20:18. [PMID: 38281200 DOI: 10.1007/s11306-023-02085-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024]
Abstract
OBJECTIVE This study aimed to reveal the urinary and serum metabolic pattern of endometrial cancer (EC) and establish diagnostic models to identify EC from controls, high-risk from low-risk EC, and type II from type I EC. METHOD This study included 146 EC patients (comprising 79 low-risk and 67 high-risk patients, including 124 type I and 22 type II) and 59 controls. The serum and urine samples were analyzed using ultraperformance liquid chromatography mass spectrometry. Analysis was used to elucidate the distinct metabolites and altered metabolic pathways. Receiver operating characteristic (ROC) analyses were employed to discover and validate the potential biomarker models. RESULTS Serum and urine metabolomes displayed significant differences between EC and controls, with metabolites related to amino acid and nicotinamide metabolisms. The serum and urine panels distinguished these two groups with Area Under the Curve (AUC) of 0.821 and 0.902, respectively. The panel consisting of serum and urine metabolites demonstrated the best predictive ability (AUC = 0.953 and 0.976 in discovering and validation group). In comparing high-risk and low risk EC, differential metabolites were enriched in purine and glutamine metabolism. The AUC values for serum and urine panels were 0.818, and 0.843, respectively. The combined panel exhibited better predictive accuracy (0.881 in discovering group and 0.936 in external validation). In the comparison between type I and type II group, altered folic acid metabolism was identified. The serum, urine and combined panels discriminated these two groups with the AUC of 0.829, 0.913 and 0.922, respectively. CONCLUSION The combined urine and serum metabolome effectively revealed the metabolic patterns in EC patients, offering valuable diagnostic models for EC diagnosis and classification.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hezhen Lu
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Jiameng Sun
- Core Facility of Instrument, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Qi
- Core Facility of Instrument, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyan Liu
- Core Facility of Instrument, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaqi Liu
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mei Yu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huimei Zhou
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ninghai Cheng
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinhui Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Peng Peng
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tao Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Sun
- China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
33
|
Minafò YA, Antonini D, Dellambra E. NAD+ Metabolism-Related Gene Profile Can Be a Relevant Source of Squamous Cell Carcinoma Biomarkers. Cancers (Basel) 2024; 16:309. [PMID: 38254798 PMCID: PMC10814490 DOI: 10.3390/cancers16020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Poor survival rates of squamous cell carcinomas (SCCs) are associated with high recurrence, metastasis, and late diagnosis, due in part to a limited number of reliable biomarkers. Thus, the identification of signatures improving the diagnosis of different SCC types is mandatory. Considering the relevant role of NAD+ metabolism in SCC chemoprevention and therapy, the study aimed at identifying new biomarkers based on NAD+ metabolism-related gene (NMRG) expression. Gene expression of 18 NMRGs and clinical-pathological information for patients with head and neck SCC (HNSCC), lung SCC (LuSCC), and cervix SCC (CeSCC) from The Cancer Genome Atlas (TCGA) were analyzed by several bioinformatic tools. We identified a 16-NMRG profile discriminating 3 SCCs from 3 non-correlated tumors. We found several genes for HNSCC, LuSCC, and CeSCC with high diagnostic power. Notably, three NMRGs were SCC-type specific biomarkers. Furthermore, specific signatures displayed high diagnostic power for several clinical-pathological characteristics. Analyzing tumor-infiltrating immune cell profiles and PD-1/PD-L1 levels, we found that NMRG expression was associated with suppressive immune microenvironment mainly in HNSCC. Finally, the evaluation of patient survival identified specific genes for HNSCC, LuSCC, and CeSCC with potential prognostic power. Therefore, our analyses indicate NAD+ metabolism as an important source of SCC biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Ylenia Aura Minafò
- Molecular and Cell Biology Laboratory, Fondazione Luigi Maria Monti, IDI-IRCCS, Via dei Monti di Creta, 104, 00167 Rome, Italy;
| | - Dario Antonini
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Elena Dellambra
- Molecular and Cell Biology Laboratory, Fondazione Luigi Maria Monti, IDI-IRCCS, Via dei Monti di Creta, 104, 00167 Rome, Italy;
| |
Collapse
|
34
|
Alexandris AS, Koliatsos VE. NAD +, Axonal Maintenance, and Neurological Disease. Antioxid Redox Signal 2023; 39:1167-1184. [PMID: 37503611 PMCID: PMC10715442 DOI: 10.1089/ars.2023.0350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 07/29/2023]
Abstract
Significance: The remarkable geometry of the axon exposes it to unique challenges for survival and maintenance. Axonal degeneration is a feature of peripheral neuropathies, glaucoma, and traumatic brain injury, and an early event in neurodegenerative diseases. Since the discovery of Wallerian degeneration (WD), a molecular program that hijacks nicotinamide adenine dinucleotide (NAD+) metabolism for axonal self-destruction, the complex roles of NAD+ in axonal viability and disease have become research priority. Recent Advances: The discoveries of the protective Wallerian degeneration slow (WldS) and of sterile alpha and TIR motif containing 1 (SARM1) activation as the main instructive signal for WD have shed new light on the regulatory role of NAD+ in axonal degeneration in a growing number of neurological diseases. SARM1 has been characterized as a NAD+ hydrolase and sensor of NAD+ metabolism. The discovery of regulators of nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) proteostasis in axons, the allosteric regulation of SARM1 by NAD+ and NMN, and the existence of clinically relevant windows of action of these signals has opened new opportunities for therapeutic interventions, including SARM1 inhibitors and modulators of NAD+ metabolism. Critical Issues: Events upstream and downstream of SARM1 remain unclear. Furthermore, manipulating NAD+ metabolism, an overdetermined process crucial in cell survival, for preventing the degeneration of the injured axon may be difficult and potentially toxic. Future Directions: There is a need for clarification of the distinct roles of NAD+ metabolism in axonal maintenance as contrasted to WD. There is also a need to better understand the role of NAD+ metabolism in axonal endangerment in neuropathies, diseases of the white matter, and the early stages of neurodegenerative diseases of the central nervous system. Antioxid. Redox Signal. 39, 1167-1184.
Collapse
Affiliation(s)
| | - Vassilis E. Koliatsos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Chen X, Li J, Yu L, Maule F, Chang L, Gallant JA, Press DJ, Raithatha SA, Hagel JM, Facchini PJ. A cane toad (Rhinella marina) N-methyltransferase converts primary indolethylamines to tertiary psychedelic amines. J Biol Chem 2023; 299:105231. [PMID: 37690691 PMCID: PMC10570959 DOI: 10.1016/j.jbc.2023.105231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023] Open
Abstract
Psychedelic indolethylamines have emerged as potential medicines to treat several psychiatric pathologies. Natural sources of these compounds include 'magic mushrooms' (Psilocybe spp.), plants used to prepare ayahuasca, and toads. The skin and parotid glands of certain toads accumulate a variety of specialized metabolites including toxic guanidine alkaloids, lipophilic alkaloids, poisonous steroids, and hallucinogenic indolethylamines such as DMT, 5-methoxy-DMT, and bufotenin. The occurrence of psychedelics has contributed to the ceremonial use of toads, particularly among Mesoamerican peoples. Yet, the biosynthesis of psychedelic alkaloids has not been elucidated. Herein, we report a novel indolethylamine N-methyltransferase (RmNMT) from cane toad (Rhinella marina). The RmNMT sequence was used to identify a related NMT from the common toad, Bufo bufo. Close homologs from various frog species were inactive, suggesting a role for psychedelic indolethylamine biosynthesis in toads. Enzyme kinetic analyses and comparison with functionally similar enzymes showed that recombinant RmNMT was an effective catalyst and not product inhibited. The substrate promiscuity of RmNMT enabled the bioproduction of a variety of substituted indolethylamines at levels sufficient for purification, pharmacological screening, and metabolic stability assays. Since the therapeutic potential of psychedelics has been linked to activity at serotonergic receptors, we evaluated binding of derivatives at 5-HT1A and 5-HT2A receptors. Primary amines exhibited enhanced affinity at the 5-HT1A receptor compared with tertiary amines. With the exception of 6-substituted derivatives, N,N-dimethylation also protected against catabolism by liver microsomes.
Collapse
Affiliation(s)
- Xue Chen
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | - Jing Li
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | - Lisa Yu
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | - Francesca Maule
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Limei Chang
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | | | - David J Press
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | | | - Jillian M Hagel
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | - Peter J Facchini
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada; Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
36
|
Perez MF, Sarkies P. Histone methyltransferase activity affects metabolism in human cells independently of transcriptional regulation. PLoS Biol 2023; 21:e3002354. [PMID: 37883365 PMCID: PMC10602318 DOI: 10.1371/journal.pbio.3002354] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The N-terminal tails of eukaryotic histones are frequently posttranslationally modified. The role of these modifications in transcriptional regulation is well-documented. However, the extent to which the enzymatic processes of histone posttranslational modification might affect metabolic regulation is less clear. Here, we investigated how histone methylation might affect metabolism using metabolomics, proteomics, and RNA-seq data from cancer cell lines, primary tumour samples and healthy tissue samples. In cancer, the expression of histone methyltransferases (HMTs) was inversely correlated to the activity of NNMT, an enzyme previously characterised as a methyl sink that disposes of excess methyl groups carried by the universal methyl donor S-adenosyl methionine (SAM or AdoMet). In healthy tissues, histone methylation was inversely correlated to the levels of an alternative methyl sink, PEMT. These associations affected the levels of multiple histone marks on chromatin genome-wide but had no detectable impact on transcriptional regulation. We show that HMTs with a variety of different associations to transcription are co-regulated by the Retinoblastoma (Rb) tumour suppressor in human cells. Rb-mutant cancers show increased total HMT activity and down-regulation of NNMT. Together, our results suggest that the total activity of HMTs affects SAM metabolism, independent of transcriptional regulation.
Collapse
Affiliation(s)
- Marcos Francisco Perez
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Department of Cells and Tissues, Instituto de Biologia Molecular de Barcelona (IBMB), CSIC, Barcelona, Spain
| | - Peter Sarkies
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Peters JP, Brahms A, Janicaud V, Anikeeva M, Peschke E, Ellermann F, Ferrari A, Hellmold D, Held-Feindt J, Kim NM, Meiser J, Aden K, Herges R, Hövener JB, Pravdivtsev AN. Nitrogen-15 dynamic nuclear polarization of nicotinamide derivatives in biocompatible solutions. SCIENCE ADVANCES 2023; 9:eadd3643. [PMID: 37611105 PMCID: PMC10446501 DOI: 10.1126/sciadv.add3643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Dissolution dynamic nuclear polarization (dDNP) increases the sensitivity of magnetic resonance imaging by more than 10,000 times, enabling in vivo metabolic imaging to be performed noninvasively in real time. Here, we are developing a group of dDNP polarized tracers based on nicotinamide (NAM). We synthesized 1-15N-NAM and 1-15N nicotinic acid and hyperpolarized them with dDNP, reaching (13.0 ± 1.9)% 15N polarization. We found that the lifetime of hyperpolarized 1-15N-NAM is strongly field- and pH-dependent, with T1 being as long as 41 s at a pH of 12 and 1 T while as short as a few seconds at neutral pH and fields below 1 T. The remarkably short 1-15N lifetime at low magnetic fields and neutral pH drove us to establish a unique pH neutralization procedure. Using 15N dDNP and an inexpensive rodent imaging probe designed in-house, we acquired a 15N MRI of 1-15N-NAM (previously hyperpolarized for more than an hour) in less than 1 s.
Collapse
Affiliation(s)
- Josh P. Peters
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Arne Brahms
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Vivian Janicaud
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Maria Anikeeva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Eva Peschke
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Arianna Ferrari
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Dana Hellmold
- Department of Neurosurgery, University Medical Center Kiel, Arnold-Heller-Str. 3, House D, 24105 Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Kiel, Arnold-Heller-Str. 3, House D, 24105 Kiel, Germany
| | - Na-mi Kim
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, 1210 Luxembourg, Luxembourg
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
- Department of Internal Medicine I, University Medical Center Kiel, Kiel, Germany
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| |
Collapse
|
38
|
Iyamu ID, Zhao T, Huang R. Structure-Activity Relationship Studies on Cell-Potent Nicotinamide N-Methyltransferase Bisubstrate Inhibitors. J Med Chem 2023; 66:10510-10527. [PMID: 37523719 DOI: 10.1021/acs.jmedchem.3c00632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Nicotinamide N-methyltransferase (NNMT) is a metabolic enzyme implicated in multiple diseases, making it a promising therapeutic target. Building upon our recently reported NNMT inhibitor II399, we systematically investigate the structure-activity relationship by designing and synthesizing a series of analogues. Among them, two top inhibitors II559 (Ki = 1.2 nM) and II802 (Ki = 1.6 nM) displayed over 5000-fold selectivity for NNMT over closely related methyltransferases. Moreover, II559 and II802 showed enhanced cellular inhibition, with a cellular IC50 value of approximately 150 nM, making them the most cell-potent bisubstrate inhibitors reported to date. Furthermore, both inhibitors reduced the cell viability with a GI50 value of ∼10 μM and suppressed the migration of aggressive clear cell renal cancer cell carcinoma cell lines. Overall, II559 and II802 would serve as valuable probes to investigate the enzymatic function of NNMT in health and diseases.
Collapse
Affiliation(s)
- Iredia D Iyamu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tianqi Zhao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
39
|
Ye Q, Xu G, Huang H, Pang S, Xie B, Feng B, Liang P, Qin Y, Li S, Luo Y, Xue C, Li W. Nicotinamide N-Methyl Transferase as a Predictive Marker of Tubular Fibrosis in CKD. Int J Gen Med 2023; 16:3331-3344. [PMID: 37576910 PMCID: PMC10417815 DOI: 10.2147/ijgm.s420706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose Chronic kidney disease (CKD) progression is complex. There are not standardized methods for predicting the prognosis of CKD. Nicotinamide N-methyltransferase (NNMT) has been shown to be associated with renal fibrosis. This study aimed to validate NNMT as a prognostic biomarker of progressive CKD. Patients and Methods We explored the relationship between NNMT expression and CKD-related outcome variables using the NephroseqV5 and GEO databases. Additionally, a validation set of 37 CKD patients was enrolled to measure the correlation between NNMT expression levels and CKD outcomes. Furthermore, single-cell RNA sequencing data and the Human Protein Atlas were reanalyzed to investigate the expression specificity of NNMT in the kidney. Finally, to detect the status of NNMT expression with tubular fibrosis in vivo, we constructed a unilateral ureteral obstruction (UUO) mouse treated with an NNMT inhibitor. Results Analyzing the datasets showed that NNMT was expressed mainly in proximal tubule compartments. And patients with high NNMT expression levels had a significantly lower overall survival rate compared to those with low NNMT expression levels (P = 0.013). NNMT was independent of prognosis factors in the multivariate Cox regression model, and the AUCs for CKD progression at 1, 3, and 5 years were 0.849, 0.775, and 0.877, respectively. Pathway enrichment analysis indicated that NNMT regulates the biological processes of tubulointerstitial fibrosis (TIF). In the validation group, NNMT levels were significantly higher in the CKD group combined with interstitial fibrosis. In vivo, NNMT was a high expression in the UUO group, peaking at postoperative day 21. Treatment with an NNMT inhibitor improved renal tubular interstitial fibrosis, and expression levels of FN, α-SMA, VIM, and TGF-β1 were decreased compared with UUO (P < 0.05). Conclusion NNMT was expressed mainly in tubular renal compartments, and associated with CKD prognosis. It holds potential as a diagnostic biomarker for tubular fibrosis in CKD.
Collapse
Affiliation(s)
- Qinglin Ye
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Guiling Xu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Haizhen Huang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Shuting Pang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Boji Xie
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Bingmei Feng
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Peng Liang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yijie Qin
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Siji Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yin Luo
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Chao Xue
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Wei Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
40
|
Dhuguru J, Dellinger RW, Migaud ME. Defining NAD(P)(H) Catabolism. Nutrients 2023; 15:3064. [PMID: 37447389 DOI: 10.3390/nu15133064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Dietary vitamin B3 components, such as nicotinamide and nicotinic acid, are precursors to the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD+). NAD+ levels are thought to decline with age and disease. While the drivers of this decline remain under intense investigation, strategies have emerged seeking to functionally maintain NAD+ levels through supplementation with NAD+ biosynthetic intermediates. These include marketed products, such as nicotinamide riboside (NR) and its phosphorylated form (NMN). More recent developments have shown that NRH (the reduced form of NR) and its phosphorylated form NMNH also increases NAD+ levels upon administration, although they initially generate NADH (the reduced form of NAD+). Other means to increase the combined levels of NAD+ and NADH, NAD(H), include the inhibition of NAD+-consuming enzymes or activation of biosynthetic pathways. Multiple studies have shown that supplementation with an NAD(H) precursor changes the profile of NAD(H) catabolism. Yet, the pharmacological significance of NAD(H) catabolites is rarely considered although the distribution and abundance of these catabolites differ depending on the NAD(H) precursor used, the species in which the study is conducted, and the tissues used for the quantification. Significantly, some of these metabolites have emerged as biomarkers in physiological disorders and might not be innocuous. Herein, we review the known and emerging catabolites of the NAD(H) metabolome and highlight their biochemical and physiological function as well as key chemical and biochemical reactions leading to their formation. Furthermore, we emphasize the need for analytical methods that inform on the full NAD(H) metabolome since the relative abundance of NAD(H) catabolites informs how NAD(H) precursors are used, recycled, and eliminated.
Collapse
Affiliation(s)
- Jyothi Dhuguru
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | | | - Marie E Migaud
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| |
Collapse
|
41
|
Couto JP, Vulin M, Jehanno C, Coissieux M, Hamelin B, Schmidt A, Ivanek R, Sethi A, Bräutigam K, Frei AL, Hager C, Manivannan M, Gómez‐Miragaya J, Obradović MMS, Varga Z, Koelzer VH, Mertz KD, Bentires‐Alj M. Nicotinamide N-methyltransferase sustains a core epigenetic program that promotes metastatic colonization in breast cancer. EMBO J 2023; 42:e112559. [PMID: 37259596 PMCID: PMC10308372 DOI: 10.15252/embj.2022112559] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023] Open
Abstract
Metastatic colonization of distant organs accounts for over 90% of deaths related to solid cancers, yet the molecular determinants of metastasis remain poorly understood. Here, we unveil a mechanism of colonization in the aggressive basal-like subtype of breast cancer that is driven by the NAD+ metabolic enzyme nicotinamide N-methyltransferase (NNMT). We demonstrate that NNMT imprints a basal genetic program into cancer cells, enhancing their plasticity. In line, NNMT expression is associated with poor clinical outcomes in patients with breast cancer. Accordingly, ablation of NNMT dramatically suppresses metastasis formation in pre-clinical mouse models. Mechanistically, NNMT depletion results in a methyl overflow that increases histone H3K9 trimethylation (H3K9me3) and DNA methylation at the promoters of PR/SET Domain-5 (PRDM5) and extracellular matrix-related genes. PRDM5 emerged in this study as a pro-metastatic gene acting via induction of cancer-cell intrinsic transcription of collagens. Depletion of PRDM5 in tumor cells decreases COL1A1 deposition and impairs metastatic colonization of the lungs. These findings reveal a critical activity of the NNMT-PRDM5-COL1A1 axis for cancer cell plasticity and metastasis in basal-like breast cancer.
Collapse
Affiliation(s)
- Joana Pinto Couto
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Milica Vulin
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Charly Jehanno
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Marie‐May Coissieux
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Baptiste Hamelin
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Alexander Schmidt
- Proteomics Core Facility, BiozentrumUniversity of BaselBaselSwitzerland
| | - Robert Ivanek
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| | - Atul Sethi
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| | - Konstantin Bräutigam
- Computational and Translational Pathology Group, Department of Pathology and Molecular Pathology, University Hospital ZurichUniversity of ZurichZürichSwitzerland
- Institute of PathologyUniversity of BernBernSwitzerland
| | - Anja L Frei
- Computational and Translational Pathology Group, Department of Pathology and Molecular Pathology, University Hospital ZurichUniversity of ZurichZürichSwitzerland
| | - Carolina Hager
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Madhuri Manivannan
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Jorge Gómez‐Miragaya
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Milan MS Obradović
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Zsuzsanna Varga
- Computational and Translational Pathology Group, Department of Pathology and Molecular Pathology, University Hospital ZurichUniversity of ZurichZürichSwitzerland
| | - Viktor H Koelzer
- Computational and Translational Pathology Group, Department of Pathology and Molecular Pathology, University Hospital ZurichUniversity of ZurichZürichSwitzerland
| | - Kirsten D Mertz
- Institute of PathologyCantonal Hospital BasellandLiestalSwitzerland
| | - Mohamed Bentires‐Alj
- Department of Biomedicine, University Hospital BaselUniversity of BaselBaselSwitzerland
- Department of SurgeryUniversity Hospital BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| |
Collapse
|
42
|
Song Q, Wang J, Griffiths A, Lee SM, Iyamu ID, Huang R, Cordoba-Chacon J, Song Z. Nicotinamide N-methyltransferase upregulation contributes to palmitate-elicited peroxisome proliferator-activated receptor transactivation in hepatocytes. Am J Physiol Cell Physiol 2023; 325:C29-C41. [PMID: 37212549 PMCID: PMC10259858 DOI: 10.1152/ajpcell.00010.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) plays a pivotal role in regulating lipid metabolism and hepatic PPARγ transactivation contributes to fatty liver development. Fatty acids (FAs) are well-known endogenous ligands for PPARγ. Palmitate, a 16-C saturated FA (SFA) and the most abundant SFA in human circulation, is a strong inducer of hepatic lipotoxicity, a central pathogenic factor for various fatty liver diseases. In this study, using both alpha mouse liver 12 (AML12) and primary mouse hepatocytes, we investigated the effects of palmitate on hepatic PPARγ transactivation and underlying mechanisms, as well as the role of PPARγ transactivation in palmitate-induced hepatic lipotoxicity, all of which remain ambiguous currently. Our data revealed that palmitate exposure was concomitant with both PPARγ transactivation and upregulation of nicotinamide N-methyltransferase (NNMT), a methyltransferase catalyzing the degradation of nicotinamide, the predominant precursor for cellular NAD+ biosynthesis. Importantly, we discovered that PPARγ transactivation by palmitate was blunted by NNMT inhibition, suggesting that NNMT upregulation plays a mechanistic role in PPARγ transactivation. Further investigations uncovered that palmitate exposure is associated with intracellular NAD+ decline and NAD+ replenishment with NAD+-enhancing agents, nicotinamide and nicotinamide riboside, obstructed palmitate-induced PPARγ transactivation, implying that cellular NAD+ decline resulted from NNMT upregulation represents a potential mechanism behind palmitate-elicited PPARγ transactivation. At last, our data showed that the PPARγ transactivation marginally ameliorated palmitate-induced intracellular triacylglycerol accumulation and cell death. Collectively, our data provided the first-line evidence supporting that NNMT upregulation plays a mechanistic role in palmitate-elicited PPARγ transactivation, potentially through reducing cellular NAD+ contents.NEW & NOTEWORTHY Hepatic PPARγ transactivation contributes to fatty liver development. Saturated fatty acids (SFAs) induce hepatic lipotoxicity. Here, we investigated whether and how palmitate, the most abundant SFA in the human blood, affects PPARγ transactivation in hepatocytes. We reported for the first time that upregulation of nicotinamide N-methyltransferase (NNMT), a methyltransferase catalyzing the degradation of nicotinamide, the predominant precursor for cellular NAD+ biosynthesis, plays a mechanistic role in regulating palmitate-elicited PPARγ transactivation through reducing intracellular NAD+ contents.
Collapse
Affiliation(s)
- Qing Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Jun Wang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Alexandra Griffiths
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Samuel Man Lee
- Division of Endocrinology/Diabetes & Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Iredia D Iyamu
- Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, United States
| | - Jose Cordoba-Chacon
- Division of Endocrinology/Diabetes & Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
43
|
Yalameha B, Reza Nejabati H. Urinary Exosomal Metabolites: Overlooked Clue for Predicting Cardiovascular Risk. Clin Chim Acta 2023:117445. [PMID: 37315726 DOI: 10.1016/j.cca.2023.117445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Over the last decade, increasing research has focused on urinary exosomes (UEs) in biological fluids and their relationship with physiological and pathological processes. UEs are membranous vesicles with a size of 40-100 nm, containing a number of bioactive molecules such as proteins, lipids, mRNAs, and miRNAs. These vesicles are an inexpensive non-invasive source that can be used in clinical settings to differentiate healthy patients from diseased patients, thereby serving as potential biomarkers for the early identification of disease. Recent studies have reported the isolation of small molecules called exosomal metabolites from individuals' urine with different diseases. These metabolites could utilize for a variety of purposes, such as the discovery of biomarkers, investigation of mechanisms related to disease development, and importantly prediction of cardiovascular diseases (CVDs) risk factors, including thrombosis, inflammation, oxidative stress, hyperlipidemia as well as homocysteine. It has been indicated that alteration in urinary metabolites of N1-methylnicotinamide, 4-aminohippuric acid, and citric acid can be valuable in predicting cardiovascular risk factors, providing a novel approach to evaluating the pathological status of CVDs. Since the UEs metabolome has been clearly and precisely so far unexplored in CVDs, the present study has specifically addressed the role of the mentioned metabolites in the prediction of CVDs risk factors.
Collapse
Affiliation(s)
- Banafsheh Yalameha
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
44
|
Phillips IR, Veeravalli S, Khadayate S, Shephard EA. Metabolomic and transcriptomic analyses of Fmo5-/- mice reveal roles for flavin-containing monooxygenase 5 (FMO5) in NRF2-mediated oxidative stress response, unfolded protein response, lipid homeostasis, and carbohydrate and one-carbon metabolism. PLoS One 2023; 18:e0286692. [PMID: 37267233 PMCID: PMC10237457 DOI: 10.1371/journal.pone.0286692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023] Open
Abstract
Flavin-containing monooxygenase 5 (FMO5) is a member of the FMO family of proteins, best known for their roles in the detoxification of foreign chemicals and, more recently, in endogenous metabolism. We have previously shown that Fmo5-/- mice display an age-related lean phenotype, with much reduced weight gain from 20 weeks of age. The phenotype is characterized by decreased fat deposition, lower plasma concentrations of glucose, insulin and cholesterol, higher glucose tolerance and insulin sensitivity, and resistance to diet-induced obesity. In the present study we report the use of metabolomic and transcriptomic analyses of livers of Fmo5-/- and wild-type mice to identify factors underlying the lean phenotype of Fmo5-/- mice and gain insights into the function of FMO5. Metabolomics was performed by the Metabolon platform, utilising ultrahigh performance liquid chromatography-tandem mass spectroscopy. Transcriptomics was performed by RNA-Seq and results analysed by DESeq2. Disruption of the Fmo5 gene has wide-ranging effects on the abundance of metabolites and expression of genes in the liver. Metabolites whose concentration differed between Fmo5-/- and wild-type mice include several saturated and monounsaturated fatty acids, complex lipids, amino acids, one-carbon intermediates and ADP-ribose. Among the genes most significantly and/or highly differentially expressed are Apoa4, Cd36, Fitm1, Hspa5, Hyou1, Ide, Me1 and Mme. The results reveal that FMO5 is involved in upregulating the NRF2-mediated oxidative stress response, the unfolded protein response and response to hypoxia and cellular stress, indicating a role for the enzyme in adaptation to oxidative and metabolic stress. FMO5 also plays a role in stimulating a wide range of metabolic pathways and processes, particularly ones involved in lipid homeostasis, the uptake and metabolism of glucose, the generation of cytosolic NADPH, and in one-carbon metabolism. The results predict that FMO5 acts by stimulating the NRF2, XBP1, PPARA and PPARG regulatory pathways, while inhibiting STAT1 and IRF7 pathways.
Collapse
Affiliation(s)
- Ian R. Phillips
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Sunil Veeravalli
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Sanjay Khadayate
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom
| | - Elizabeth A. Shephard
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
45
|
Neti SS, Wang B, Iwig DF, Onderko EL, Booker SJ. Enzymatic Fluoromethylation Enabled by the S-Adenosylmethionine Analog Te-Adenosyl- L-(fluoromethyl)homotellurocysteine. ACS CENTRAL SCIENCE 2023; 9:905-914. [PMID: 37252363 PMCID: PMC10214534 DOI: 10.1021/acscentsci.2c01385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 05/31/2023]
Abstract
Fluoromethyl, difluoromethyl, and trifluoromethyl groups are present in numerous pharmaceuticals and agrochemicals, where they play critical roles in the efficacy and metabolic stability of these molecules. Strategies for late-stage incorporation of fluorine-containing atoms in molecules have become an important area of organic and medicinal chemistry as well as synthetic biology. Herein, we describe the synthesis and use of Te-adenosyl-L-(fluoromethyl)homotellurocysteine (FMeTeSAM), a novel and biologically relevant fluoromethylating agent. FMeTeSAM is structurally and chemically related to the universal cellular methyl donor S-adenosyl-L-methionine (SAM) and supports the robust transfer of fluoromethyl groups to oxygen, nitrogen, sulfur, and some carbon nucleophiles. FMeTeSAM is also used to fluoromethylate precursors to oxaline and daunorubicin, two complex natural products that exhibit antitumor properties.
Collapse
Affiliation(s)
- Syam Sundar Neti
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Bo Wang
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - David F. Iwig
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Elizabeth L. Onderko
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Squire J. Booker
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
46
|
Dutta T, Kapoor N, Mathew M, Chakraborty SS, Ward NP, Prieto-Farigua N, Falzone A, DeLany JP, Smith SR, Coen PM, DeNicola GM, Gardell SJ. Source of nicotinamide governs its metabolic fate in cultured cells, mice, and humans. Cell Rep 2023; 42:112218. [PMID: 36897780 DOI: 10.1016/j.celrep.2023.112218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
Metabolic routing of nicotinamide (NAM) to NAD+ or 1-methylnicotinamide (MeNAM) has impacts on human health and aging. NAM is imported by cells or liberated from NAD+. The fate of 2H4-NAM in cultured cells, mice, and humans was determined by stable isotope tracing. 2H4-NAM is an NAD+ precursor via the salvage pathway in cultured A549 cells and human PBMCs and in A549 cell xenografts and PBMCs from 2H4-NAM-dosed mice and humans, respectively. 2H4-NAM is a MeNAM precursor in A549 cell cultures and xenografts, but not isolated PBMCs. NAM released from NAD+ is a poor MeNAM precursor. Additional A549 cell tracer studies yielded further mechanistic insight. NAMPT activators promote NAD+ synthesis and consumption. Surprisingly, NAM liberated from NAD+ in NAMPT activator-treated A549 cells is also routed toward MeNAM production. Metabolic fate mapping of the dual NAM sources across the translational spectrum (cells, mice, humans) illuminates a key regulatory node governing NAD+ and MeNAM synthesis.
Collapse
Affiliation(s)
- Tumpa Dutta
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA.
| | - Nidhi Kapoor
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA
| | - Meril Mathew
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA
| | - Suban S Chakraborty
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA
| | - Nathan P Ward
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Nicolas Prieto-Farigua
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Aimee Falzone
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - James P DeLany
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA
| | - Steven R Smith
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA
| | - Paul M Coen
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Stephen J Gardell
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA.
| |
Collapse
|
47
|
Harikrishna AS, Venkitasamy K. Identification of novel human nicotinamide N-methyltransferase inhibitors: a structure-based pharmacophore modeling and molecular dynamics approach. J Biomol Struct Dyn 2023; 41:14638-14650. [PMID: 36856058 DOI: 10.1080/07391102.2023.2183714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/18/2023] [Indexed: 03/02/2023]
Abstract
Human nicotinamide N-methyltransferase (hNNMT) is a cytosolic enzyme associated in the phase-II metabolism, belonging to the S-adenosyl-L-methionine (SAM)-dependent methyltransferases family. Overexpression of hNNMT was observed in diseases such as metabolic disorders and different types of cancers, which suggest NNMT as a prospective therapeutic target. In this study we propose a structure-based pharmacophore model to understand the structural features responsible for the pharmacological activity. The generated model was validated using the ROC curve (AUC), goodness of hit score (GH), specificity, sensitivity and enrichment factor (EF). The pharmacophore was employed to retrieve active molecules from the ZINC database, followed by virtual-screening and molecular docking. Six molecules with the best pharmfit score, binding energy and ADMET properties were identified in this study. A 150 ns molecular dynamics simulation was performed on the selected molecules complexed with hNNMT protein to validate the results. The molecules ZINC35464499, ZINC13311192, ZINC31159282, ZINC14650833, ZINC14819515 and ZINC00303881 were identified, which could be act as the potential hNNMT inhibitors and can also be used as direct hits for developing novel hNNMT antagonists.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- A S Harikrishna
- Chemical Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India
| | - Kesavan Venkitasamy
- Chemical Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
48
|
Both prolonged high-fat diet consumption and calorie restriction boost hepatic NAD+ metabolism in mice. J Nutr Biochem 2023; 115:109296. [PMID: 36849030 DOI: 10.1016/j.jnutbio.2023.109296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Hepatic NAD+ homeostasis is essential to metabolic flexibility upon energy balance challenges. The molecular mechanism is unclear. This study aimed to determine how the enzymes involved in NAD+ salvage (Nampt, Nmnat1, Nrk1), clearance (Nnmt, Aox1, Cyp2e1), and consumption pathways (Sirt1, Sirt3, Sirt6, Parp1, Cd38) were regulated in the liver upon energy overload or shortage, as well as their relationships with glucose and lipid metabolism. Male C57BL/6N mice were fed ad libitum with the CHOW diet, high-fat diet (HFD), or subjected to 40% calorie restriction (CR) CHOW diet for 16 weeks respectively. HFD feeding increased hepatic lipids content and inflammatory markers, while lipids accumulation was not changed by CR. Both HFD feeding and CR elevated the hepatic NAD+ levels, as well as gene and protein levels of Nampt and Nmnat1. Furthermore, both HFD feeding and CR lowered acetylation of PGC-1α in parallel with the reduced hepatic lipogenesis and enhanced fatty acid oxidation, while CR enhanced hepatic AMPK activity and gluconeogenesis. Hepatic Nampt and Nnmt gene expression negatively correlated with fasting plasma glucose levels concomitant with positive correlations with Pck1 gene expression. Nrk1 and Cyp2e1 gene expression positively correlated with fat mass and plasma cholesterol levels, as well as Srebf1 gene expression. These data highlight that hepatic NAD+ metabolism will be induced for either the down-regulation of lipogenesis upon over nutrition or up-regulation of gluconeogenesis in response to CR, thus contributing to the hepatic metabolic flexibility upon energy balance challenges.
Collapse
|
49
|
Campagna R, Vignini A. NAD + Homeostasis and NAD +-Consuming Enzymes: Implications for Vascular Health. Antioxidants (Basel) 2023; 12:376. [PMID: 36829935 PMCID: PMC9952603 DOI: 10.3390/antiox12020376] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a ubiquitous metabolite that takes part in many key redox reactions. NAD+ biosynthesis and NAD+-consuming enzymes have been attracting markedly increasing interest since they have been demonstrated to be involved in several crucial biological pathways, impacting genes transcription, cellular signaling, and cell cycle regulation. As a consequence, many pathological conditions are associated with an impairment of intracellular NAD+ levels, directly or indirectly, which include cardiovascular diseases, obesity, neurodegenerative diseases, cancer, and aging. In this review, we describe the general pathways involved in the NAD+ biosynthesis starting from the different precursors, analyzing the actual state-of-art of the administration of NAD+ precursors or blocking NAD+-dependent enzymes as strategies to increase the intracellular NAD+ levels or to counteract the decline in NAD+ levels associated with ageing. Subsequently, we focus on the disease-related and age-related alterations of NAD+ homeostasis and NAD+-dependent enzymes in endothelium and the consequent vascular dysfunction, which significantly contributes to a wide group of pathological disorders.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy
- Research Center of Health Education and Health Promotion, Università Politecnica delle Marche, 60121 Ancona, Italy
| |
Collapse
|
50
|
Zhu S, Han X, Yang R, Tian Y, Zhang Q, Wu Y, Dong S, Zhang B. Metabolomics study of ribavirin in the treatment of orthotopic lung cancer based on UPLC-Q-TOF/MS. Chem Biol Interact 2023; 370:110305. [PMID: 36529159 DOI: 10.1016/j.cbi.2022.110305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Ribavirin is a common antiviral drug, especially for patients with hepatitis C. Our recent studies demonstrated that ribavirin showed anti-tumor activity in colorectal cancer and hepatocellular carcinoma, but its effects on lung cancer remains unclear. This study aimed to evaluate the anti-tumor activity of ribavirin against lung cancer and elucidate the underlying mechanism. We established orthotopic mouse model of lung cancer (LLC and GLC-82) and employed an ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based metabolomics approach. We found that ribavirin significantly inhibited the proliferation and colony formation of lung cancer cells. Tumor sizes of orthotopic lung cancer in ribavirin-treated groups were also significantly lower than those in control groups. Metabolomics analysis revealed that ribavirin mainly affected 5 metabolic pathways in orthotopic lung tumor models, taurine and hypotaurine metabolism, nicotinate and nicotinamide metabolism, linoleic acid metabolism, arginine biosynthesis and arachidonic acid metabolism. Furthermore, we identified 5 upregulated metabolites including β-nicotinamide adenine dinucleotide (NAD+), nicotinamide (NAM), taurine, ornithine and citrulline, and 7 downregulated metabolites including 1-methylnicotinamide (MNAM), S-adenosyl-l-homocysteine (SAH), N1-Methyl-2-pyridone-5-carboxamide (2PY), homocysteine (Hcy), linoleic acid, arachidonic acid (AA) and argininosuccinic acid in ribavirin-treated groups. These results provide new insight into the anti-tumor mechanism of ribavirin for lung cancer.
Collapse
Affiliation(s)
- Shihao Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiang Han
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ruiying Yang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yizhen Tian
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qingqing Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yongjie Wu
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shuhong Dong
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Baolai Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|