1
|
Ferro MHDS, Morante I, Nishino FA, Estevam C, do Amaral FG, Cipolla-Neto J, Stumpp T. Melatonin influence on miRNA expression in sperm, hypothalamus, pre-frontal cortex and cerebellum of Wistar rats. PLoS One 2025; 20:e0312403. [PMID: 39869591 PMCID: PMC11771911 DOI: 10.1371/journal.pone.0312403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/04/2024] [Indexed: 01/29/2025] Open
Abstract
Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo. MicroRNAs from sperm have been associated with modulation of embryonic development and inheritance of psychiatric symptoms, including autism. Given that microRNAs and melatonin are ubiquitous molecules with important roles in the organism, the aim of this study was to investigate the expression of specific microRNAs in sperm, brain and cerebellum of pinealectomized rats. For this study, Wistar rats had their pineal gland removed at 60 post-partum. Part of these rats received exogenous melatonin until the day of the euthanasia. The control group did not receive any treatment or manipulation. The sperm, hypothalamus, prefrontal cortex and cerebellum were collected for analysis of microRNA expression by RT-qPCR. The results suggest that melatonin absence caused by pinealectomy increases the expression of the target microRNAs in the sperm. Although the data suggest an alteration (increase or decrease depending on the region and microRNA) of expression levels of some microRNAs in the brain and cerebellum of pinealectomized rats, the differences were not statistically significant. This seems to be a consequence of the intragroup variation. Melatonin administration restored the levels of the target microRNAs in the sperm. Additional studies are needed to understand the impact of the alterations of microRNA expression to the pinealectomized rats as well as to their descendants.
Collapse
Affiliation(s)
- Mísia Helena da Silva Ferro
- Laboratory of Developmental Biology, Department of Morphology and Genetics–Paulista Medicine School, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - Ingrid Morante
- Laboratory of Developmental Biology, Department of Morphology and Genetics–Paulista Medicine School, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - Fernanda Akane Nishino
- Department of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Camila Estevam
- Laboratory of Developmental Biology, Department of Morphology and Genetics–Paulista Medicine School, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | | | - José Cipolla-Neto
- Department of Physiology and Biophysics, Neurobiology Lab, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Taiza Stumpp
- Laboratory of Developmental Biology, Department of Morphology and Genetics–Paulista Medicine School, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| |
Collapse
|
2
|
Wang Z, Wang S, Bi Y, Boiti A, Zhang S, Vallone D, Lan X, Foulkes NS, Zhao H. Light-regulated microRNAs shape dynamic gene expression in the zebrafish circadian clock. PLoS Genet 2025; 21:e1011545. [PMID: 39777894 PMCID: PMC11750094 DOI: 10.1371/journal.pgen.1011545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/21/2025] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
A key property of the circadian clock is that it is reset by light to remain synchronized with the day-night cycle. An attractive model to explore light input to the circadian clock in vertebrates is the zebrafish. Circadian clocks in zebrafish peripheral tissues and even zebrafish-derived cell lines are entrainable by direct light exposure thus providing unique insight into the function and evolution of light regulatory pathways. Our previous work has revealed that light-induced gene transcription is a key step in the entrainment of the circadian clock as well as enabling the more general adaptation of zebrafish cells to sunlight exposure. However, considerable evidence points to post-transcriptional regulatory mechanisms, notably microRNAs (miRNAs), playing an essential role in shaping dynamic changes in mRNA levels. Therefore, does light directly impact the function of miRNAs? Are there light-regulated miRNAs and if so, which classes of mRNA do they target? To address these questions, we performed a complete sequencing analysis of light-induced changes in the zebrafish transcriptome, encompassing small non-coding RNAs as well as mRNAs. Importantly, we identified sets of light-regulated miRNAs, with many regulatory targets representing light-inducible mRNAs including circadian clock genes and genes involved in redox homeostasis. We subsequently focused on the light-responsive miR-204-3-3p and miR-430a-3p which are predicted to regulate the expression of cryptochrome genes (cry1a and cry1b). Luciferase reporter assays validated the target binding of miR-204-3-3p and miR-430a-3p to the 3'UTRs of cry1a and cry1b, respectively. Furthermore, treatment with mimics and inhibitors of these two miRNAs significantly affected the dynamic expression of their target genes but also other core clock components (clock1a, bmal1b, per1b, per2, per3), as well as the rhythmic locomotor activity of zebrafish larvae. Thus, our identification of light-responsive miRNAs reveals new intricacy in the multi-level regulation of the circadian clockwork by light.
Collapse
Affiliation(s)
- Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Shuang Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Yi Bi
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Alessandra Boiti
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Shengxiang Zhang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Daniela Vallone
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Nicholas S. Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Symonds JD, Park KL, Mignot C, Macleod S, Armstrong M, Ashrafian H, Bernard G, Brown K, Brunklaus A, Callaghan M, Classen G, Cohen JS, Cutcutache I, de Sainte Agathe JM, Dyment D, Elliot KS, Isapof A, Joss S, Keren B, Marble M, McTague A, Osmond M, Page M, Planes M, Platzer K, Redon S, Reese J, Saenz M, Smith-Hicks C, Stobo D, Stockhaus C, Vuillaume ML, Wolf NI, Wakeling EL, Yoon G, Knight JC, Zuberi SM. POLR3B is associated with a developmental and epileptic encephalopathy with myoclonic-atonic seizures and ataxia. Epilepsia 2024; 65:3303-3323. [PMID: 39348199 DOI: 10.1111/epi.18115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 10/02/2024]
Abstract
OBJECTIVE POLR3B encodes the second largest subunit of RNA polymerase III, which is essential for transcription of small non-coding RNAs. Biallelic pathogenic variants in POLR3B are associated with an inherited hypomyelinating leukodystrophy. Recently, de novo heterozygous variants in POLR3B were reported in six individuals with ataxia, spasticity, and demyelinating peripheral neuropathy. Three of these individuals had epileptic seizures. The aim of this article is to precisely define the epilepsy phenotype associated with de novo heterozygous POLR3B variants. METHODS We used online gene-matching tools to identify 13 patients with de novo POLR3B variants. We systematically collected genotype and phenotype data from clinicians using two standardized proformas. RESULTS All 13 patients had novel POLR3B variants. Twelve of 13 variants were classified as pathogenic or likely pathogenic as per American College of Medical Genetics (ACMG) criteria. Patients presented with generalized myoclonic, myoclonic-atonic, atypical absence, or tonic-clonic seizures between the ages of six months and 4 years. Epilepsy was classified as epilepsy with myoclonic-atonic seizures (EMAtS) in seven patients and "probable EMAtS" in two more. Seizures were treatment resistant in all cases. Three patients became seizure-free. All patients had some degree of developmental delay or intellectual disability. In most cases developmental delay was apparent before the onset of seizures. Three of 13 cases were reported to have developmental stagnation or regression in association with seizure onset. Treatments for epilepsy that were reported by clinicians to be effective were: sodium valproate, which was effective in five of nine patients (5/9) who tried it; rufinamide (2/3); and ketogenic diet (2/3). Additional features were ataxia/incoordination (8/13); microcephaly (7/13); peripheral neuropathy (4/13), and spasticity/hypertonia (6/13). SIGNIFICANCE POLR3B is a novel genetic developmental and epileptic encephalopathy (DEE) in which EMAtS is the predominant epilepsy phenotype. Ataxia, neuropathy, and hypertonia may be variously observed in these patients.
Collapse
Affiliation(s)
- Joseph D Symonds
- Paediatric Neurosciences Research Group, School of Health and Wellbeing, University of Glasgow, Glasgow, UK
- Royal Hospital for Children, Glasgow, UK
| | - Kristen L Park
- Children's Hospital Colorado, Anschutz Medical Campus, University of Colorado, Aurora, Colorado, USA
| | - Cyril Mignot
- Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière-Hôpital Trousseau, Sorbonne Université, Paris, France
| | | | | | - Houman Ashrafian
- Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Department of Experimental Therapeutics, Radcliffe Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, Quebec, Canada
- Department Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada
- Child Health and Human Development Program, Research, Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Kathleen Brown
- Department of Pediatrics, Section of Genetics and Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Andreas Brunklaus
- Paediatric Neurosciences Research Group, School of Health and Wellbeing, University of Glasgow, Glasgow, UK
- Royal Hospital for Children, Glasgow, UK
| | - Mary Callaghan
- Department of Paediatrics, University Hospital Wishaw, Wishaw, UK
| | - Georg Classen
- Children's Center Bethel, University Bielefeld, Bielefeld, Germany
| | - Julie S Cohen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - David Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | | | - Arnaud Isapof
- Service de Neuropédiatrie, Hôpital Trousseau, Sorbonne Université, Paris, France
| | - Shelagh Joss
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospitals, Glasgow, UK
| | - Boris Keren
- Department of Genetics, Pitié-Salpêtrière Hospital, APHP. Sorbonne Université, Paris, France
| | - Michael Marble
- Division of Pediatric Genetics, Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Amy McTague
- Developmental Neurosciences. Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | | | - Marc Planes
- Service de Génétique Médicale et Biologie de la Reproduction, CHU de Brest, Brest, France
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA, Paris, France
- Université Brest, Brest, France
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Sylvia Redon
- Service de Génétique Médicale et Biologie de la Reproduction, CHU de Brest, Brest, France
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA, Paris, France
- Université Brest, Brest, France
| | - James Reese
- Presbyterian Healthcare System, Albuquerque, New Mexico, USA
| | - Margarita Saenz
- Department of Pediatrics, Section of Genetics and Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Constance Smith-Hicks
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel Stobo
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospitals, Glasgow, UK
| | - Christian Stockhaus
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Marie-Laure Vuillaume
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA, Paris, France
- UMR 1253, iBrain, University of Tours, Tours, France
- Genetics Department, University of Tours, Tours, France
| | - Nicole I Wolf
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma's Children's Hospital, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Emma L Wakeling
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Grace Yoon
- Departments of Paediatrics and Molecular Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, School of Health and Wellbeing, University of Glasgow, Glasgow, UK
- Royal Hospital for Children, Glasgow, UK
| |
Collapse
|
4
|
Rafiyan M, Tootoonchi E, Golpour M, Davoodvandi A, Reiter RJ, Asemi R, Sharifi M, Rasooli Manesh SM, Asemi Z. Melatonin for gastric cancer treatment: where do we stand? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03451-7. [PMID: 39287677 DOI: 10.1007/s00210-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Gastric cancer (GC) is the third leading reason of death in men and the fourth in women. Studies have documented an inhibitory function of melatonin on the proliferation, progression and invasion of GC cells. MicroRNAs (miRNAs) are small, non-coding RNAs that play an important function in regulation of biological processes and gene expression of the cells. Some studies reported that melatonin can suppress the progression of GC by regulating the exosomal miRNAs. Thus, melatonin represents a promising potential therapeutic agent for subjects with GC. Herein, we evaluate the existing data of both in vivo and in vitro studies to clarify the molecular processes involved in the therapeutic effects of melatonin in GC. The data emphasize the critical function of melatonin in several signaling ways by which it may inhibit cancer cell proliferation, decrease chemo-resistance, induce apoptosis as well as limit invasion, angiogenesis, and metastasis. This review provides a resource that identifies some of the mechanisms by which melatonin controls GC enlargement. In light of the findings, melatonin should be considered a novel and testable therapeutic mediator for GC treatment.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Tootoonchi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdieh Golpour
- Student Research Committee, Mazandarn University of Medical Sciences, Sari, Mazandaran, Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Yao YP, Chien HW, Wang K, Yang YS, Su SC, Chang LC, Lin HY, Yang SF. Genetic association of diabetic retinopathy with long noncoding RNA CDKN2B-AS1 gene polymorphism. Eur J Ophthalmol 2024:11206721241266704. [PMID: 39056133 DOI: 10.1177/11206721241266704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
AIM We attempted to test the influences of cyclin dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) gene polymorphisms on the susceptibility to Diabetic retinopathy (DR). METHODS Five single-nucleotide polymorphisms (SNPs) of the CDKN2B-AS1 gene, rs564398, rs1333048, rs1537373, rs2151280, and rs8181047 were examined in 280 DR cases and 455 DR-free diabetic controls. RESULTS Among these loci tested, we demonstrated that diabetic carriers of at least one polymorphic allele (G) of rs2151280 (AG and GG; AOR, 1.613; 95% CI, 1.040-2.501; p = 0.033) are more susceptible to proliferative DR but not non-proliferative DR. This genetic association with the risk of developing proliferative DR was further strengthened in homozygotes for the polymorphic allele (G) of rs2151280 (GG; AOR, 2.194; 95% CI, 1.117-4.308; p = 0.023). We detected a significant association of the polymorphic allele (G) of rs2151280 with proliferative DR patients (OR, 1.503; 95% CI, 1.112-2.033; p = 0.008) but not with the entire DR or non-proliferative DR group. Moreover, as compared to those who do not possess the polymorphic allele of rs2151280 (AA), DR patients carrying at least one polymorphic allele of rs2151280 (AG + GG) exhibited a lower glomerular filtration rate and HDL cholesterol level, revealing a promotive role of rs2151280 in renal and cardiovascular complications of diabetes. CONCLUSION Taken together, our findings implicate an impact of CDKN2B-AS1 gene polymorphisms on the progression of DR.
Collapse
Affiliation(s)
- Yen-Po Yao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Hsiang-Wen Chien
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
- Departments of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Kai Wang
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
- Departments of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Yi-Sun Yang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Lun-Ching Chang
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Hung-Yu Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Show Chwan Memorial Hospital, Changhua, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Optometry, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
6
|
Lin SH, Lu JW, Hsieh WT, Chou YE, Su TC, Tsai TJ, Tsai YJ, Yang PJ, Yang SF. Evaluation of the clinical significance of long non-coding RNA MALAT1 genetic variants in human lung adenocarcinoma. Aging (Albany NY) 2024; 16:5740-5750. [PMID: 38517388 PMCID: PMC11006483 DOI: 10.18632/aging.205675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Lung adenocarcinoma (LUAD) is the most frequent histological subtype of lung cancer, which is the most common malignant tumor and the main cause of cancer-related mortality globally. Recent reports revealed that long non-coding RNA (lncRNA) of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays a crucial role in tumorigenesis and metastasis development in lung cancer. However, the contribution of MALAT1 genetic variants to the development of LUAD is unclear, especially in epidermal growth factor receptor (EGFR) mutation status. In this study, 272 LADC patients with different EGFR status were recruited to dissect the allelic discrimination of the MALAT1 polymorphisms at rs3200401, rs619586, and rs1194338. The findings of the study showed that MALAT1 polymorphisms rs3200401, rs619586, and rs1194338 were not associated to LUAD susceptibility; however, rs3200401 polymorphisms was significantly correlated to EGFR wild-type status and tumor stages in LUAD patients in dominant model (p=0.016). Further analyses using the datasets from The Cancer Genome Atlas (TCGA) revealed that lower MALAT1 mRNA levels were associated with the advanced stage, and lymph node metastasis in LADC patients. In conclusion, our results showed that MALAT1 rs3200401 polymorphisms dramatically raised the probability of LUAD development.
Collapse
Affiliation(s)
- Shu-Hui Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jeng-Wei Lu
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wang-Ting Hsieh
- The Affiliated High School of Tunghai University, Taichung, Taiwan
- Department of Occupational Therapy, Asia University, Taichung, Taiwan
| | - Ying-Erh Chou
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tzu-Cheng Su
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Tun-Jen Tsai
- The Affiliated High School of Tunghai University, Taichung, Taiwan
| | - Yun-Jung Tsai
- Translational Pathology Core Laboratory, Changhua Christian Hospital, Changhua, Taiwan
| | - Po-Jen Yang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
7
|
An S, Nedumaran B, Koh H, Joo DJ, Lee H, Park CS, Harris RA, Shin KS, Djalilian AR, Kim YD. Enhancement of the SESN2-SHP cascade by melatonin ameliorates hepatic gluconeogenesis by inhibiting the CRBN-BTG2-CREBH signaling pathway. Exp Mol Med 2023; 55:1556-1569. [PMID: 37488285 PMCID: PMC10393991 DOI: 10.1038/s12276-023-01040-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 07/26/2023] Open
Abstract
Melatonin is involved in the regulation of various biological functions. Here, we explored a novel molecular mechanism by which the melatonin-induced sestrin2 (SESN2)-small heterodimer partner (SHP) signaling pathway protects against fasting- and diabetes-mediated hepatic glucose metabolism. Various key gene expression analyses were performed and multiple metabolic changes were assessed in liver specimens and primary hepatocytes of mice and human participants. The expression of the hepatic cereblon (CRBN) and b-cell translocation gene 2 (BTG2) genes was significantly increased in fasting mice, diabetic mice, and patients with diabetes. Overexpression of Crbn and Btg2 increased hepatic gluconeogenesis by enhancing cyclic adenosine monophosphate (cAMP)-responsive element-binding protein H (CREBH), whereas this phenomenon was prominently ablated in Crbn null mice and Btg2-silenced mice. Interestingly, melatonin-induced SESN2 and SHP markedly reduced hepatic glucose metabolism in diabetic mice and primary hepatocytes, and this protective effect of melatonin was strikingly reversed by silencing Sesn2 and Shp. Finally, the melatonin-induced SESN2-SHP signaling pathway inhibited CRBN- and BTG2-mediated hepatic gluconeogenic gene transcription via the competition of BTG2 and the interaction of CREBH. Mitigation of the CRBN-BTG2-CREBH axis by the melatonin-SESN2-SHP signaling network may provide a novel therapeutic strategy to treat metabolic dysfunction due to diabetes.
Collapse
Affiliation(s)
- Seungwon An
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Balachandar Nedumaran
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Hong Koh
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Severance Children's Hospital, Severance Pediatric Liver Disease Research Group, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dong Jin Joo
- Department of Surgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyungjo Lee
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Chul-Seung Park
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute Science and Technology, Gwangju, 61005, Republic of Korea
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Keong Sub Shin
- DUKSAN Institute of Biomedical and Life Science, Gwangmyeong, 14348, Republic of Korea
- Young Sciences, Inc., Bucheon, 14449, Republic of Korea
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yong Deuk Kim
- DUKSAN Institute of Biomedical and Life Science, Gwangmyeong, 14348, Republic of Korea.
- Young Sciences, Inc., Bucheon, 14449, Republic of Korea.
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
8
|
Kim JY, Kim W, Lee KH. The role of microRNAs in the molecular link between circadian rhythm and autism spectrum disorder. Anim Cells Syst (Seoul) 2023; 27:38-52. [PMID: 36860270 PMCID: PMC9970207 DOI: 10.1080/19768354.2023.2180535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Circadian rhythm regulates physiological cycles of awareness and sleepiness. Melatonin production is primarily regulated by circadian regulation of gene expression and is involved in sleep homeostasis. If the circadian rhythm is abnormal, sleep disorders, such as insomnia and several other diseases, can occur. The term 'autism spectrum disorder (ASD)' is used to characterize people who exhibit a certain set of repetitive behaviors, severely constrained interests, social deficits, and/or sensory behaviors that start very early in life. Because many patients with ASD suffer from sleep disorders, sleep disorders and melatonin dysregulation are attracting attention for their potential roles in ASD. ASD is caused by abnormalities during the neurodevelopmental processes owing to various genetic or environmental factors. Recently, the role of microRNAs (miRNAs) in circadian rhythm and ASD have gained attraction. We hypothesized that the relationship between circadian rhythm and ASD could be explained by miRNAs that can regulate or be regulated by either or both. In this study, we introduced a possible molecular link between circadian rhythm and ASD. We performed a thorough literature review to understand their complexity.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Wanil Kim
- Department of Biochemistry, College of Medicine, Gyeongsang National University, Jinju-si, Republic of Korea, Wanil Kim Department of Biochemistry, College of Medicine, Gyeongsang National University, Jinju-si, Gyeongsangnam-do52727, Republic of Korea; Kyung-Ha Lee Department of Molecular Biology, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan46241, Republic of Korea
| | - Kyung-Ha Lee
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea, Wanil Kim Department of Biochemistry, College of Medicine, Gyeongsang National University, Jinju-si, Gyeongsangnam-do52727, Republic of Korea; Kyung-Ha Lee Department of Molecular Biology, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan46241, Republic of Korea
| |
Collapse
|
9
|
Škrlec I. Circadian system microRNAs - Role in the development of cardiovascular diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:225-267. [PMID: 37709378 DOI: 10.1016/bs.apcsb.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Circadian rhythm regulates numerous physiological processes, and disruption of the circadian clock can lead to cardiovascular disease. Cardiovascular disease is the leading cause of morbidity and mortality worldwide. Small non-coding RNAs, microRNAs (miRNAs), are involved in regulating gene expression, both those important for the cardiovascular system and key circadian clock genes. Epigenetic mechanisms based on miRNAs are essential for fine-tuning circadian physiology. Indeed, some miRNAs depend on circadian periodicity, others are under the influence of light, and still others are under the influence of core clock genes. Dysregulation of miRNAs involved in circadian rhythm modulation has been associated with inflammatory conditions of the endothelium and atherosclerosis, which can lead to coronary heart disease and myocardial infarction. Epigenetic processes are reversible through their association with environmental factors, enabling innovative preventive and therapeutic strategies for cardiovascular disease. Here, is a review of recent findings on how miRNAs modulate circadian rhythm desynchronization in cardiovascular disease. In the era of personalized medicine, the possibility of treatment with miRNA antagomirs should be time-dependent to correspond to chronotherapy and achieve the most significant efficacy.
Collapse
Affiliation(s)
- Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
| |
Collapse
|
10
|
Wu D, Zhao W, Xu C, Zhou X, Leng X, Li Y. Melatonin suppresses serum starvation-induced autophagy of ovarian granulosa cells in premature ovarian insufficiency. BMC Womens Health 2022; 22:474. [PMID: 36434569 PMCID: PMC9700896 DOI: 10.1186/s12905-022-02056-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES Premature ovarian insufficiency (POI) refers to the decline and cessation of ovarian functions in women under 40 years of age. Melatonin (MT) acts as a protective for the ovary. This study elucidated the role of MT in autophagy of granulosa cells (GCs) in POI via modulating the phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway. METHODS The expression levels of microRNA (miR)-15a-5p, signal transducer and activator of transcription 3 (Stat3), and relevant hormones in the clinically collected serum samples of POI patients and healthy controls were examined. Human ovarian granulosa-like tumor cells (KGN) underwent serum starvation (SS) treatment to induce POI cell models and then received MT treatment. The expression levels of miR-15a-5p, Stat3, p-PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR in KGN cells were tested via quantitative real-time polymerase chain reaction and Western blotting. KGN cell viability was assessed by MTT assay and the protein levels of autophagy-related markers Beclin-1, microtubule-associated protein light chain 3 II/I, and p62 were detected by Western blotting. The binding relation between miR-15a-5p and Stat3 was verified via the dual-luciferase reporter gene assay. Functional rescue experiments were performed to probe the underlying role of miR-15a-5p/Stat3/the PI3K-Akt-mTOR pathway in KGN cell autophagy. RESULTS miR-15a-5p was increased whilst Stat3 was decreased in the serum of POI patients and SS-induced KGN cells. MT inhibited miR-15a-5p and Stat3, activated the PI3K-Akt-mTOR pathway, and repressed cell autophagy in SS-induced KGN cells. miR-15a-5p targeted and repressed Stat3 expression. Upregulation of miR-15a-5p or downregulation of Stat3 or the PI3K-Akt-mTOR pathway promoted KGN cell autophagy. CONCLUSION MT suppressed miR-15a-5p and activated Stat3 and the PI3K-Akt-mTOR pathway, finally impeding SS-induced autophagy of GCs.
Collapse
Affiliation(s)
- Di Wu
- grid.416966.a0000 0004 1758 1470Department of Reproductive Medicine, Weifang People’s Hospital, No.151 Guangwen Street, Kuiwen DistrictShandong Province, Weifang City, 261041 China
| | - Wenjie Zhao
- grid.416966.a0000 0004 1758 1470Department of Reproductive Medicine, Weifang People’s Hospital, No.151 Guangwen Street, Kuiwen DistrictShandong Province, Weifang City, 261041 China
| | - Chengjuan Xu
- Department of Gynecology, Shouguang People’s Hospital, Weifang, 262700 Shandong China
| | - Xin Zhou
- grid.416966.a0000 0004 1758 1470Quality Management Office of Weifang People’s Hospital, Weifang, 262700 China
| | - Xia Leng
- grid.416966.a0000 0004 1758 1470Department of Reproductive Medicine, Weifang People’s Hospital, No.151 Guangwen Street, Kuiwen DistrictShandong Province, Weifang City, 261041 China
| | - Yanmin Li
- grid.416966.a0000 0004 1758 1470Department of Reproductive Medicine, Weifang People’s Hospital, No.151 Guangwen Street, Kuiwen DistrictShandong Province, Weifang City, 261041 China
| |
Collapse
|
11
|
Chuang CC, Wang K, Yang YS, Kornelius E, Tang CH, Lee CY, Chien HW, Yang SF. Association of Long Noncoding RNA HOTAIR Polymorphism and the Clinical Manifestations of Diabetic Retinopathy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14592. [PMID: 36361470 PMCID: PMC9658836 DOI: 10.3390/ijerph192114592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The aim of the current study is to evaluate the possible correlation between the single-nucleotide polymorphisms (SNP) of HOX transcript antisense intergenic RNA (HOTAIR) and the clinical characteristics of diabetic retinopathy (DR). Four loci of HOTAIR SNPs, including rs920778 (T/C), rs12427129 (C/T), rs4759314 (A/G), and rs1899663 (G/T), were genotyped via the TaqMan allelic discrimination for 276 DR individuals and 452 non-DR patients. The distribution frequency of HOTAIR SNP rs12427129 CT [adjusted odds ratio (AOR): 1.571, 95% CI: 1.025-2.408, p = 0.038], HOTAIR SNP rs12427129 CT+TT (AOR: 1.611, 95% CI: 1.061-2.446, p = 0.025), and HOTAIR SNP rs1899663 TT (AOR: 2.443, 95% CI: 1.066-5.595, p = 0.035) were significantly higher in the DR group. Moreover, the proliferative diabetic retinopathy (PDR) subgroup revealed a significantly higher distribution of HOTAIR SNP rs12427129 CT+TT (AOR: 2.016, 95% CI: 1.096-3.710, p = 0.024) and HOTAIR SNP rs1899663 TT (AOR: 4.693, 95% CI: 1.765-12.479, p = 0.002), and the distribution frequencies of HOTAIR SNP rs12427129 CT (AOR: 3.722, 95% CI: 1.555-8.909, p = 0.003), HOTAIR SNP rs12427129 CT+TT (AOR: 4.070, 95% CI: 1.725-9.600, p = 0.001), and HOTAIR SNP rs1899663 TT (AOR: 11.131, 95% CI: 1.521-81.490, p = 0.018) were significantly higher in the female PDR subgroup. Regarding the clinical characters, the DR patients with HOTAIR SNP rs1899663 GT+TT revealed a significantly shorter duration of diabetes compared to the DR patients with HOTAIR SNP rs1899663 GG (10.54 ± 8.19 versus 12.79 ± 7.73, p = 0.024). In conclusion, HOTAIR SNP rs12427129 and rs1899663 are strongly correlated to the presence of DR, especially for a female with PDR.
Collapse
Affiliation(s)
- Chih-Chun Chuang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Ophthalmology, Changhua Christian Hospital, Changhua 500, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Kai Wang
- Department of Ophthalmology, Cathay General Hospital, Taipei 106, Taiwan
- Departments of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City 221, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yi-Sun Yang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Edy Kornelius
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung 404, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
| | - Chia-Yi Lee
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Ophthalmology, Nobel Eye Institute, Taipei 115, Taiwan
| | - Hsiang-Wen Chien
- Department of Ophthalmology, Cathay General Hospital, Taipei 106, Taiwan
- Departments of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City 221, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
12
|
Yin Z, Deng J, Zhou M, Li M, Zhou E, Liu J, Jia Z, Yang G, Jin Y. Exploration of a Novel Circadian miRNA Pair Signature for Predicting Prognosis of Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14205106. [PMID: 36291889 PMCID: PMC9600995 DOI: 10.3390/cancers14205106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the primary histological subtype of lung cancer with a markedly heterogeneous prognosis. Therefore, there is an urgent need to identify optimal prognostic biomarkers. We aimed to explore the value of the circadian miRNA (cmiRNA) pair in predicting prognosis and guiding the treatment of LUAD. We first retrieved circadian genes (Cgenes) from the CGDB database, based on which cmiRNAs were predicted using the miRDB and mirDIP databases. The sequencing data of Cgenes and cmiRNAs were retrieved from TCGA and GEO databases. Two random cmiRNAs were matched to a single cmiRNA pair. Finally, univariate Cox proportional hazard analysis, LASSO regression, and multivariate Cox proportional hazard analysis were performed to develop a prognostic signature consisting of seven cmiRNA pairs. The signature exhibited good performance in predicting the overall and progression-free survival. Patients in the high-risk group also showed lower IC50 values for several common chemotherapy and targeted medicines. In addition, we constructed a cmiRNA–Cgenes network and performed a corresponding Gene Ontology and Gene Set enrichment analysis. In conclusion, the novel circadian-related miRNA pair signature could provide a precise prognostic evaluation with the potential capacity to guide individualized treatment regimens for LUAD.
Collapse
Affiliation(s)
- Zhengrong Yin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingjing Deng
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mei Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Minglei Li
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - E Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiatong Liu
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhe Jia
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (G.Y.); (Y.J.)
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (G.Y.); (Y.J.)
| |
Collapse
|
13
|
LncRNA LINC02257: A Potential Biomarker for Diagnosis and Prognosis of Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:4330630. [PMID: 36124032 PMCID: PMC9482534 DOI: 10.1155/2022/4330630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer mortality worldwide. However, efficient markers for CRC diagnosis are limited. Accumulating evidence reveals that long noncoding RNAs (lncRNAs) are related to the genesis and developments of many tumors. In this study, we aimed to explore the diagnostic and prognostic value of LINC02257 in CRC patients. TCGA datasets were utilized to examine LINC02257 expression in a variety of human malignancies. The Kaplan–Meier method analysis was then used to study the link between LINC02257 expression and patient prognosis. Multivariate assays were applied for the determination of the associations of the variables and patients' survivals. RT-PCR was used to examine the level of LINC02257 expression in 14 pairs of clinical CRC tissues as well as many distinct CRC cell lines. CCK-8 assay was used to assess cell proliferation. We found that the expression of LINC02257 exhibited variable patterns of upregulation or downregulation in the various forms of cancer. In CRC, LINC02257 expression was distinctly increased in CRC specimens compared with normal specimens. The results of ROC curves revealed that the AUC was 0.886 (0.862 to 0.909, 95% CI, p < 0.001) in a comparison between CRC specimens and matched normal specimens. Survival studies revealed that high LINC02257 expression was associated with shorter overall survival and disease specific survival. More importantly, multivariate assays confirmed that high expression of LINC02257 was an independent prognostic factor for CRC patients. The results of RT-PCR indicated that LINC02257 expression was distinctly overexpressed in both CRC specimens and cell lines. Functionally, silence of LINC02257 distinctly suppressed the proliferation of CRC cells. In conclusion, our research showed that LINC02257 is an intriguing candidate as a diagnostic and prognostic indicator for patients diagnosed with CRC.
Collapse
|
14
|
Chuang CC, Yang YS, Kornelius E, Huang CN, Hsu MY, Lee CY, Yang SF. Impact of Long Noncoding RNA LINC00673 Genetic Variants on Susceptibility to Diabetic Retinopathy. Front Genet 2022; 13:889530. [PMID: 35547254 PMCID: PMC9081725 DOI: 10.3389/fgene.2022.889530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/24/2022] [Indexed: 01/28/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been proven to play critical roles in diabetic retinopathy (DR). This study investigated whether the single nucleotide polymorphism (SNP) of long intergenic noncoding RNA 00673 (LINC00673) affects the clinical characteristics of diabetic retinopathy (DR). A total of three loci of LINC00673 SNPs (rs6501551, rs9914618, and rs11655237) were genotyped using TaqMan allelic discrimination in 276 and 454 individuals with and without DR, respectively. Our results revealed that LINC00673 SNP rs11655237 CT genotype (AOR: 1.592, 95% CI: 1.059–2.395, p = 0.026), CT + TT genotype (AOR: 1.255, 95% CI: 1.029–1.531, p = 0.025), and allele T (AOR: 1.185, 95% CI: 1.004–1.397, p = 0.044) yielded higher ratios in the non-proliferative diabetic retinopathy (NPDR) subgroup than in the non-DR group. Furthermore, the interval of diabetes mellitus (DM) was significantly shorter in the LINC00673 SNP rs11655237 CT + TT variant than that in the LINC00673 SNP rs11655237 wild type (10.44 ± 7.10 vs. 12.98 ± 8.34, p = 0.009). In conclusion, the LINC00673 SNP rs11655237 T allele is associated with a higher probability of NPDR development. Patients with the LINC00673 SNP rs11655237 CT + TT variant exhibited a short DM interval.
Collapse
Affiliation(s)
- Chih-Chun Chuang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Ophthalmology, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Sun Yang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Edy Kornelius
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Ning Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Min-Yen Hsu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Yi Lee
- Department of Ophthalmology, Nobel Eye Institute, Taipei, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
15
|
Wang J, Xia Z, Sheng P, Rui Y, Cao J, Zhang J, Gao M, Wang L, Yu D, Yan BC. Targeting MicroRNA-144/451-AKT-GSK3β Axis Affects the Proliferation and Differentiation of Radial Glial Cells in the Mouse Hippocampal Dentate Gyrus. ACS Chem Neurosci 2022; 13:897-909. [PMID: 35261236 DOI: 10.1021/acschemneuro.1c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
It is well known that aging induces a progressive decline in the proliferation and neural differentiation of radial glial cells (RGCs) in the hippocampal dentate gyrus (DG). The function of miR-144/451 is to activate stress-regulated molecular gene expression switches for cell proliferation and differentiation. We found that the miR-144/451 expression in the hippocampus was significantly reduced in aged mice compared to adult mice. Furthermore, the proliferation and neural differentiation of RGCs in the mouse hippocampal DG was decreased by miR-144/451 knockout (miR-144/451-/-). Antioxidant agents, superoxide dismutases (SODs) and catalase, and the expression of melatonin's receptor in the hippocampus were decreased in the miR-144/451-/- mice. In addition, the (protein kinase B) AKT/(glycogen synthase kinase 3β) GSK3β/(catenin beta-1) β-catenin signaling pathway was weakly activated in the hippocampus of miR-144/451-/- mice, which was related to brain neurogenesis. Melatonin treatment improved the expression of miR-144/451 and antioxidant enzymes and activated the AKT/GSK3β/β-catenin pathway in the hippocampus of miR-144/451-/- mice. When the AKT pathway was inhibited by LY294002, the neurogenerative and antioxidant effects of melatonin were significantly limited in the hippocampus of miR-144/451-/- mice. In brief, our results indicated that miR-144/451 plays crucial roles in the proliferation and neural differentiation of RGCs via the regulation of the antioxidant and AKT/GSK3β/β-catenin pathways.
Collapse
Affiliation(s)
- Jie Wang
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou 225001, PR China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zihao Xia
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou 225001, PR China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Peng Sheng
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou 225001, PR China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Yanggang Rui
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou 225001, PR China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Jianwen Cao
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou 225001, PR China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Jie Zhang
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou 225001, PR China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Manman Gao
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou 225001, PR China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Li Wang
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou 225001, PR China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Duonan Yu
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou 225001, PR China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225009, China
| | - Bing Chun Yan
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou 225001, PR China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| |
Collapse
|
16
|
Wang K, Cai S, Xing Q, Qi Z, Fotopoulos V, Yu J, Zhou J. Melatonin delays dark-induced leaf senescence by inducing miR171b expression in tomato. J Pineal Res 2022; 72:e12792. [PMID: 35174545 DOI: 10.1111/jpi.12792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Abstract
Melatonin functions in multiple aspects of plant growth, development, and stress response. Nonetheless, the mechanism of melatonin in plant carbon metabolism remains largely unknown. In this study, we investigated the influence of melatonin on the degradation of starch in tomato leaves. Results showed that exogenous melatonin attenuated carbon starvation-induced chlorophyll degradation and leaf senescence. In addition, melatonin delayed leaf starch degradation and inhibited the transcription of starch-degrading enzymes after sunset. Interestingly, melatonin-alleviated symptoms of leaf senescence and starch degradation were compromised when the first key gene for starch degradation, α-glucan water dikinase (GWD), was overexpressed. Furthermore, exogenous melatonin significantly upregulated the transcript levels of several microRNAs, including miR171b. Crucially, the GWD gene was identified as a target of miR171b, and the overexpression of miR171b ameliorated the carbon starvation-induced degradation of chlorophyll and starch, and inhibited the expression of the GWD gene. Taken together, these results demonstrate that melatonin promotes plant tolerance against carbon starvation by upregulating the expression of miR171b, which can directly inhibit GWD expression in tomato leaves.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
| | - Shuyu Cai
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
| | - Qufan Xing
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhenyu Qi
- Agricultural Experiment Station, Zhejiang University, Hangzhou, People's Republic of China
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, People's Republic of China
| |
Collapse
|
17
|
Lee CM, Yang YS, Kornelius E, Huang CN, Hsu MY, Lee CY, Peng SY, Yang SF. Association of Long Non-Coding RNA Growth Arrest-Specific 5 Genetic Variants with Diabetic Retinopathy. Genes (Basel) 2022; 13:genes13040584. [PMID: 35456391 PMCID: PMC9029547 DOI: 10.3390/genes13040584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of this work was to appraise the potential associations of single nucleotide polymorphisms (SNPs) of long non-coding RNA growth arrest-specific 5 (GAS5) with diabetic retinopathy (DR) in a diabetes mellitus (DM) population. Two loci of the GAS5 SNPs (rs55829688 and rs145204276) were genotyped via TaqMan allelic discrimination in 449 non-DR patients and 273 DR subjects. The SNP rs145204276 Del/Del showed a significantly higher distribution in the DR group compared to the non-DR group (AOR: 2.487, 95% CI: 1.424–4.344, p = 0.001). During subgroup analyses, the non-proliferative diabetic retinopathy (NPDR) subgroup demonstrated a significantly higher ratio of the SNP rs145204276 Del/Del (AOR: 2.917, 95% CI: 1.574–5.406, p = 0.001) and Ins/Del + Del/Del (AOR: 1.242, 95% CI: 1.016–1.519, p = 0.034) compared to the non-DR population, while the proliferative diabetic retinopathy (PDR) subgroup did not reveal significant differences in either SNP rs145204276 or rs55829688 distributions compared to the non-DR group. Furthermore, patients with a GAS5 SNP rs145204276 Del/Del showed a significantly shorter DM duration than the wild type (Ins/Ins) (p = 0.021). In conclusion, our findings demonstrate that the GAS5 SNP rs145204276 Del/Del variant is associated with an increased susceptibility to DR in DM patients, particularly in those patients with NPDR.
Collapse
Affiliation(s)
- Chee-Ming Lee
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-M.L.); (C.-N.H.); (S.-Y.P.)
- Department of Ophthalmology, Jen-Ai Hospital, Taichung 412, Taiwan
| | - Yi-Sun Yang
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-S.Y.); (E.K.); (M.-Y.H.)
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Edy Kornelius
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-S.Y.); (E.K.); (M.-Y.H.)
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chien-Ning Huang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-M.L.); (C.-N.H.); (S.-Y.P.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-S.Y.); (E.K.); (M.-Y.H.)
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Min-Yen Hsu
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-S.Y.); (E.K.); (M.-Y.H.)
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chia-Yi Lee
- Department of Ophthalmology, Nobel Eye Institute, Taipei 115, Taiwan;
| | - Shu-Yen Peng
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-M.L.); (C.-N.H.); (S.-Y.P.)
- Department of Ophthalmology, Jen-Ai Hospital, Taichung 412, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (C.-M.L.); (C.-N.H.); (S.-Y.P.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence:
| |
Collapse
|
18
|
Exogenous Melatonin Alleviates Skeletal Muscle Wasting by Regulating Hypothalamic Neuropeptides Expression in Endotoxemia Rats. Neurochem Res 2022; 47:885-896. [PMID: 35061163 PMCID: PMC8891201 DOI: 10.1007/s11064-021-03489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 10/25/2022]
Abstract
To investigate whether exogenous melatonin (MLT) could alleviate skeletal muscle wasting by regulating hypothalamic neuropeptides expression. Adult male Sprague Dawley rats were intraperitoneally injected with lipopolysaccharide (LPS) (10 mg/kg), followed by MLT (30 mg/kg/day) or saline for 3 days. Hypothalamic tissues and skeletal muscle were obtained on day 3. Skeletal muscle wasting was measured by the mRNA expression of two E3 ubiquitin ligases, muscle atrophy F-box and muscle ring finger 1 as well as 3-methylhistidine (3-MH) and tyrosine release. Three hypothalamic neuropeptides (POMC, AgRP, CART) expression were detected in all groups. POMC expression knockdown was achieved by ARC injection of lentiviruses containing shRNA against POMC. Two weeks after ARC viruses injection, rats were i.p. injected with LPS (10 mg/kg) followed by MLT (30 mg/kg/day) or saline for 3 days. Brain tissues were harvested for immunostaining. In septic rats, 3-MH, tyrosine release and muscle atrophic gene expression were significantly decreased in MLT treated group. POMC and CART expression were lower while AgRP expression was higher in MLT treated group. Furthermore, in septic rats treated with MLT, muscle wasting in those with lower expression of neuropeptide POMC did not differ from those with normal POMC expression. Exogenous MLT could alleviate skeletal muscle wasting in septic rats by regulating hypothalamic neuropeptides.
Collapse
|
19
|
Su SC, Yeh CM, Lin CW, Hsieh YH, Chuang CY, Tang CH, Lee YC, Yang SF. A novel melatonin-regulated lncRNA suppresses TPA-induced oral cancer cell motility through replenishing PRUNE2 expression. J Pineal Res 2021; 71:e12760. [PMID: 34339541 DOI: 10.1111/jpi.12760] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/20/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022]
Abstract
The inhibitory effect of melatonin on cancer cell dissemination is well established, yet the functional involvement of lncRNAs in melatonin signaling remains poorly understood. In this study, we identified a melatonin-attenuated lncRNA acting as a potential melatonin-regulated oral cancer stimulator (MROS-1). Downregulation of MROS-1 by melatonin suppressed TPA-induced oral cancer migration through replenishing the protein expression of prune homolog 2 (PRUNE2), which functioned as a tumor suppressor in oral cancer. Melatonin-mediated MROS-1/PRUNE2 expression and cell motility in oral cancer were regulated largely through the activation of JAK-STAT pathway. In addition, MROS-1, preferentially localized in the nuclei, promoted oral cancer migration in an epigenetic mechanism in which it modulates PRUNE2 expression by interacting with a member of the DNA methylation machinery, DNA methyltransferase 3A (DNMT3A). Higher methylation levels of PRUNE2 promoter were associated with nodal metastases and inversely correlated with PRUNE2 expression in head and neck cancer. Collectively, these findings suggest that MROS-1, serving as a functional mediator of melatonin signaling, could predispose patients with oral cancer to metastasize and may be implicated as a potential target for antimetastatic therapies.
Collapse
Affiliation(s)
- Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Keelung, Taiwan
- Central Research Laboratory, XiaMen Chang Gung Hospital, XiaMen, China
| | - Chia-Ming Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Yi Chuang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Yi-Chan Lee
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
20
|
Li M, Larsen PA. Primate-specific retrotransposons and the evolution of circadian networks in the human brain. Neurosci Biobehav Rev 2021; 131:988-1004. [PMID: 34592258 DOI: 10.1016/j.neubiorev.2021.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/03/2021] [Accepted: 09/26/2021] [Indexed: 11/26/2022]
Abstract
The circadian rhythm of the human brain is attuned to sleep-wake cycles that entail global alterations in neuronal excitability. This periodicity involves a highly coordinated regulation of gene expression. A growing number of studies are documenting a fascinating connection between primate-specific retrotransposons (Alu elements) and key epigenetic regulatory processes in the primate brain. Collectively, these studies indicate that Alu elements embedded in the human neuronal genome mediate post-transcriptional processes that unite human-specific neuroepigenetic landscapes and circadian rhythm. Here, we review evidence linking Alu retrotransposon-mediated posttranscriptional pathways to circadian gene expression. We hypothesize that Alu retrotransposons participate in the organization of circadian brain function through multidimensional neuroepigenetic pathways. We anticipate that these pathways are closely tied to the evolution of human cognition and their perturbation contributes to the manifestation of human-specific neurological diseases. Finally, we address current challenges and accompanying opportunities in studying primate- and human-specific transposable elements.
Collapse
Affiliation(s)
- Manci Li
- University of Minnesota, St. Paul, MN, 55108, United States
| | - Peter A Larsen
- University of Minnesota, St. Paul, MN, 55108, United States.
| |
Collapse
|
21
|
Maleki M, Khelghati N, Alemi F, Younesi S, Asemi Z, Abolhasan R, Bazdar M, Samadi-Kafil H, Yousefi B. Multiple interactions between melatonin and non-coding RNAs in cancer biology. Chem Biol Drug Des 2021; 98:323-340. [PMID: 33905613 DOI: 10.1111/cbdd.13849] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
The melatonin hormone secreted by the pineal gland is involved in physiological functions such as growth and maturation, circadian cycles, and biological activities including antioxidants, anti-tumor, and anti-ischemia. Melatonin not only interacts with proteins but also has functional effects on regulatory RNAs such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). In this study, we overview various physiological and pathological conditions affecting melatonin through lncRNA and miRNA. The information compiled herein will serve as a solid foundation to formulate ideas for future mechanistic studies on melatonin. It will also provide a chance to more clarify the emerging functions of the non-coding transcriptome.
Collapse
Affiliation(s)
- Masomeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Nafiseh Khelghati
- Department of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Simin Younesi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Zatollah Asemi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia.,Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rozita Abolhasan
- Stem Cell and Regenerative Medicine Institute (SCARM), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahtab Bazdar
- Department of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Gao X, Liu W, Gao P, Li S, Chen Z, Ma F. Melatonin-induced lncRNA LINC01512 prevents Treg/Th17 imbalance by promoting SIRT1 expression in necrotizing enterocolitis. Int Immunopharmacol 2021; 96:107787. [PMID: 34162151 DOI: 10.1016/j.intimp.2021.107787] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Despite the fact that melatonin regulates the expression of long noncoding RNAs (lncRNAs) under different physiological and pathological conditions, it has not been confirmed whether melatonin-induced lncRNAs regulate the differentiation of Treg and Th17 cells. Herein, we show that the expression of LINC01512 is significantly down-regulated and correlates with imbalanced Treg/Th17 ratios in necrotising enterocolitis (NEC) tissues. Through gain- and loss-of-function approaches, we found that LINC01512 promotes the differentiation of Treg cells but interferes with that of Th17 cells. Mechanistically, LINC01512 promotes SIRT1 in Treg and Th17 cells, and subsequently enhances the differentiation of Treg cells and inhibits that of Th17 cells. Furthermore, we demonstrate that melatonin up-regulates the transcription of LINC01512 via the AMPK signalling pathway and that the blockade of AMPK represses LINC01512 expression in Treg and Th17 cells. Overall, our results confirm that SIRT1-regulated differentiation of Treg/Th17 cells is actually modulated by melatonin-induced LINC0512. Moreover, manipulation of the AMPK/LINC01512/SIRT1 axis via melatonin may be a novel therapeutic approach to reduce inflammation.
Collapse
Affiliation(s)
- Xiaoyan Gao
- Department of Neonatology, The Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Wangkai Liu
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pingmin Gao
- Department of Neonatology, The Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaoyu Chen
- Department of Neonatology, The Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Fei Ma
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
23
|
Ezzati M, Velaei K, Kheirjou R. Melatonin and its mechanism of action in the female reproductive system and related malignancies. Mol Cell Biochem 2021; 476:3177-3190. [PMID: 33864572 DOI: 10.1007/s11010-021-04151-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), the main product of pineal gland in vertebrates, is well known for its multifunctional role which has great influences on the reproductive system. Recent studies documented that melatonin is a powerful free radical scavenger that affects the reproductive system function and female infertility by MT1 and MT2 receptors. Furthermore, cancer researches indicate the influence of melatonin on the modulation of tumor cell signaling pathways resulting in growth inhibitor of the both in vivo/in vitro models. Cancer adjuvant therapy can also benefit from melatonin through therapeutic impact and decreasing the side effects of radiation and chemotherapy. This article reviews the scientific evidence about the influence of melatonin and its mechanism of action on the fertility potential, physiological alteration, and anticancer efficacy, during experimental and clinical studies.
Collapse
Affiliation(s)
- Maryam Ezzati
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Immunology Research Center, Tabriz University of Medical Sciences, PO. Box: 51376563833, Tabriz, Iran.
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raziyeh Kheirjou
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Khan HL, Bhatti S, Abbas S, Kaloglu C, Qurat-Ul-Ain Zahra S, Khan YL, Hassan Z, Turhan NÖ, Aydin HH. Melatonin levels and microRNA (miRNA) relative expression profile in the follicular ambient microenvironment in patients undergoing in vitro fertilization process. J Assist Reprod Genet 2021; 38:443-459. [PMID: 33226531 PMCID: PMC7884535 DOI: 10.1007/s10815-020-02010-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Intrafollicular fluid (IFF) melatonin plays a decisive role in maintaining granulosa cells' DNA integrity and protects them against apoptosis. It reduces oxidative stress and improves the oocyte quality with a higher fertilization rate. METHOD This prospective study investigated the antioxidant property of IFF melatonin and its impact on IVF outcome parameters. We also explored the relative expression of five microRNAs (miR-663b, miR-320a, miR-766-3p, miR-132-3p, miR-16-5p) and levels of cell-free DNA (cfDNA) by real-time PCR in unexplained infertile patients. We collected 425 follicular fluid (FF) samples containing mature oocytes from 295 patients undergoing IVF. RESULTS Patients were subgrouped based on IFF melatonin concentration (group A ≤ 30 pg/mL, group B > 70 to ≤ 110 pg/mL, group C > 111 to ≤ 385 pg/mL). Our results showed that patients with ≤ 30 pg/mL IFF melatonin levels have significantly higher oxidative stress markers, cfDNA levels, and lower relative expression of miR-663b, miR-320a, miR-766-3p, miR-132-3p, and miR-16-5p compared to other subgroups (p < 0.001). Similarly, they have a low fertilization rate and a reduced number of high-quality day 3 embryos. CONCLUSION Findings suggest that the therapeutic use of melatonin produces a considerable rise in the number of mature oocytes retrieved, fertilization rate, and good-quality embryo selection. Furthermore, miRNA signature enhances the quality of embryo selection, thus, may allow us to classify them as non-invasive biomarkers to identify good-quality embryos.
Collapse
Affiliation(s)
- Haroon Latif Khan
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, 14-Abu Bakar Block, New Garden Town, Lahore, 54800, Pakistan
| | - Shahzad Bhatti
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, 14-Abu Bakar Block, New Garden Town, Lahore, 54800, Pakistan.
- Department of Human Genetics and Molecular biology, University of Health Sciences, Lahore, 54600, Pakistan.
- Department of Medical Education, Rashid Latif Medical College, Lahore, Pakistan.
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, 54800, Pakistan.
| | - Sana Abbas
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, 14-Abu Bakar Block, New Garden Town, Lahore, 54800, Pakistan
| | - Celal Kaloglu
- Department of Histology and Embryology, Faculty of Medicine, Sivas-Cumhuriyet University, 58140, Sivas, Turkey
| | | | - Yousaf Latif Khan
- Lahore Institute of Fertility and Endocrinology, Hameed Latif Hospital, 14-Abu Bakar Block, New Garden Town, Lahore, 54800, Pakistan
- Department of Gynecology and Obstetrics, Hameed Latif Hospital, 14 - Abu Bakar Block, New Garden Town, Lahore, 54800, Pakistan
| | - Zahira Hassan
- Department of Cellular Pathology, Royal Free Hospital, London, NW3 2QG, UK
| | - Nilgün Öztürk Turhan
- Bayındır Hastanesi, Department of Obstetrics and Gynecology, Nispetiye Mah. Aydın sokak No:8, 34340, Beşiktaş, Istanbul, Turkey
| | - Hikmet Hakan Aydin
- Department of Medical Biochemistry, Ege University School of Medicine, Bornova, Izmir, Turkey
| |
Collapse
|
25
|
Zheng Y, Jiang H, Wang HQ, Guo HX, Han DX, Huang YJ, Gao Y, Yuan B, Zhang JB. Identifying daily changes in circRNAs and circRNA-associated-ceRNA networks in the rat pineal gland. Int J Med Sci 2021; 18:1225-1239. [PMID: 33526984 PMCID: PMC7847611 DOI: 10.7150/ijms.51743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) are a new class of covalently closed circular RNA molecules that are involved in many biological processes. However, information about circRNAs in the pineal gland, particularly that of rats, is limited. To establish resources for the study of the rat pineal gland, we performed transcriptome analysis of the pineal glands during the day and night. In this study, 1413 circRNAs and 1989 miRNAs were identified in the pineal gland of rats during the night and day using the Illumina platform. Forty differentially expressed circRNAs and 93 differentially expressed miRNAs were obtained, among which 20 circRNAs and 37 miRNAs were significantly upregulated during the day and 20 circRNAs and 56 miRNAs were significantly upregulated during the night. As circRNAs have been reported to work as miRNA sponges, we predicted 15940 interactions among 40 circRNAs, 93 miRNAs and 400 mRNAs with differential diurnal expression using miRanda and TargetScan to build a ceRNA regulatory network in the rat pineal gland. The diurnal expression profile of circRNAs in the rat pineal gland may provide additional information about the role of circRNAs in regulating changes in melatonin circadian rhythms. The analyzed data reported in this study will be an important resource for future studies to elucidate the altered physiology of circRNAs in diurnal rhythms.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Hao-Qi Wang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Hai-Xiang Guo
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Dong-Xu Han
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Yi-Jie Huang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Yan Gao
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Bao Yuan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, P.R. China
| |
Collapse
|
26
|
Lu J, Luo Y, Mei S, Fang Y, Zhang J, Chen S. The Effect of Melatonin Modulation of Non-coding RNAs on Central Nervous System Disorders: An Updated Review. Curr Neuropharmacol 2020; 19:3-23. [PMID: 32359338 PMCID: PMC7903498 DOI: 10.2174/1570159x18666200503024700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/06/2020] [Accepted: 04/25/2020] [Indexed: 01/19/2023] Open
Abstract
Melatonin is a hormone produced in and secreted by the pineal gland. Besides its role in regulating circadian rhythms, melatonin has a wide range of protective functions in the central nervous system (CNS) disorders. The mechanisms underlying this protective function are associated with the regulatory effects of melatonin on related genes and proteins. In addition to messenger ribonucleic acid (RNA) that can be translated into protein, an increasing number of non-coding RNAs in the human body are proven to participate in many diseases. This review discusses the current progress of research on the effects of melatonin modulation of non-coding RNAs (ncRNAs), including microRNA, long ncRNA, and circular RNA. The role of melatonin in regulating common pathological mechanisms through these ncRNAs is also summarized. Furthermore, the ncRNAs, currently shown to be involved in melatonin signaling in CNS diseases, are discussed. The information compiled in this review will open new avenues for future research into melatonin mechanisms and provide a further understanding of ncRNAs in the CNS.
Collapse
Affiliation(s)
- Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Shuhao Mei
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| |
Collapse
|
27
|
Chuffa LGDA, Carvalho RF, Justulin LA, Cury SS, Seiva FRF, Jardim-Perassi BV, Zuccari DAPDC, Reiter RJ. A meta-analysis of microRNA networks regulated by melatonin in cancer: Portrait of potential candidates for breast cancer treatment. J Pineal Res 2020; 69:e12693. [PMID: 32910542 DOI: 10.1111/jpi.12693] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022]
Abstract
Melatonin is a ubiquitous molecule with a broad spectrum of functions including widespread anti-cancer activities. Identifying how melatonin intervenes in complex molecular signaling at the gene level is essential to guide proper therapies. Using meta-analysis approach, herein we examined the role of melatonin in regulating the expression of 46 microRNAs (miRNAs) and their target genes in breast, oral, gastric, colorectal, and prostate cancers, and glioblastoma. The deregulated miRNA-associated target genes revealed their involvement in the regulation of cellular proliferation, differentiation, apoptosis, senescence, and autophagy. Melatonin changes the expression of miRNA-associated genes in breast, gastric, and oral cancers. These genes are associated with cellular senescence, the hedgehog signaling pathway, cell proliferation, p53 signaling, and the hippo signaling pathway. Conversely, colorectal and prostate cancers as well as glioblastoma and oral carcinoma present a clear pattern of less pronounced changes in the expression of miRNA-associated genes. Most notably, colorectal cancer displayed a unique molecular change in response to melatonin. Considering breast cancer network complexity, we compared the genes found during the meta-analysis with RNA-Seq data from breast cancer-bearing mice treated with melatonin. Mechanistically, melatonin upregulated genes associated with immune responses and apoptotic processes, whereas it downregulated genes involved in cellular aggressiveness/metastasis (eg, mitosis, telomerase activity, and angiogenesis). We further characterized the expression profile of our gene subsets with human breast cancer and found eight upregulated genes and 16 downregulated genes that were appositively correlated with melatonin. Our results pose a multi-dimension network of tumor-associated genes regulated by miRNAs potentially targeted by melatonin.
Collapse
Affiliation(s)
- Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP - São Paulo State University, Botucatu, Brazil
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP - São Paulo State University, Botucatu, Brazil
| | - Luis Antônio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP - São Paulo State University, Botucatu, Brazil
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP - São Paulo State University, Botucatu, Brazil
| | | | | | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA
| |
Collapse
|
28
|
Wang Y, Han D, Zhou T, Zhang J, Liu C, Cao F, Dong N. Melatonin ameliorates aortic valve calcification via the regulation of circular RNA CircRIC3/miR-204-5p/DPP4 signaling in valvular interstitial cells. J Pineal Res 2020; 69:e12666. [PMID: 32369647 DOI: 10.1111/jpi.12666] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/04/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Calcific aortic valve disease (CAVD) is highly prevalent with marked morbidity and mortality rates and a lack of pharmaceutical treatment options because its mechanisms are unknown. Melatonin is reported to exert atheroprotective effects. However, whether melatonin protects against aortic valve calcification, a disease whose pathogenesis shares many similarities to that of atherosclerosis, and the underlying molecular mechanisms remain unknown. In this study, we found that the intragastric administration of melatonin for 24 weeks markedly ameliorated aortic valve calcification in high cholesterol diet (HCD)-treated ApoE-/- mice, as evidenced by reduced thickness and calcium deposition in the aortic valve leaflets, improved echocardiographic parameters (decreased transvalvular peak jet velocity and increased aortic valve area), and decreased osteogenic differentiation marker (Runx2, osteocalcin, and osterix) expression in the aortic valves. Consistent with these in vivo data, we also confirmed the suppression of in vitro calcification by melatonin in hVICs. Mechanistically, melatonin reduced the level of CircRIC3, a procalcification circular RNA, which functions by acting as a miR-204-5p sponge to positively regulate the expression of the procalcification gene dipeptidyl peptidase-4 (DPP4). Furthermore, CircRIC3 overexpression abolished the inhibitory effects of melatonin on hVIC osteogenic differentiation. Taken together, our results suggest that melatonin ameliorates aortic valve calcification via the regulation of CircRIC3/miR-204-5p/DPP4 signaling in hVICs; therefore, melatonin medication might be considered a novel pharmaceutical strategy for CAVD treatment.
Collapse
Affiliation(s)
- Yongjun Wang
- Department of Cardiovascular Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Han
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jibin Zhang
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Feng Cao
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Reiter RJ, Rosales-Corral S, Sharma R. Circadian disruption, melatonin rhythm perturbations and their contributions to chaotic physiology. Adv Med Sci 2020; 65:394-402. [PMID: 32763813 DOI: 10.1016/j.advms.2020.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/15/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
The aim of this report is to summarize the data documenting the vital nature of well-regulated cellular and organismal circadian rhythms, which are also reflected in a stable melatonin cycle, in supporting optimal health. Cellular fluctuations in physiology exist in most cells of multicellular organisms with their stability relying on the prevailing light:dark cycle, since it regulates, via specialized intrinsically-photoreceptive retinal ganglion cells (ipRGC) and the retinohypothalamic tract, the master circadian oscillator, i.e., the suprachiasmatic nuclei (SCN). The output message of the SCN, as determined by the light:dark cycle, is transferred to peripheral oscillators, so-called slave cellular oscillators, directly via the autonomic nervous system with its limited distribution. and indirectly via the pineal-derived circulating melatonin rhythm, which contacts every cell. Via its regulatory effects on the neuroendocrine system, particularly the hypothalamo-pituitary-adrenal axis, the SCN also has a major influence on the adrenal glucocorticoid rhythm which impacts neurological diseases and psychological behaviors. Moreover, the SCN regulates the circadian production and secretion of melatonin. When the central circadian oscillator is disturbed, such as by light at night, it passes misinformation to all organs in the body. When this occurs the physiology of cells becomes altered and normal cellular functions are compromised. This physiological upheaval is a precursor to pathologies. The deterioration of the SCN/pineal network is often a normal consequence of aging and its related diseases, but in today's societies where manufactured light is becoming progressively more common worldwide, the associated pathologies may also be occurring at an earlier age.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA
| |
Collapse
|
30
|
Guo Y, Cao Y, Gong S, Zhang S, Hou F, Zhang X, Hu J, Yang Z, Yi J, Luo D, Chen X, Song J. Correlation analysis between CARMEN variants and alcohol-induced osteonecrosis of the femoral head in the Chinese population. BMC Musculoskelet Disord 2020; 21:547. [PMID: 32799824 PMCID: PMC7429464 DOI: 10.1186/s12891-020-03553-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/31/2020] [Indexed: 01/18/2023] Open
Abstract
Background Osteonecrosis of the femoral head (ONFH) is a complicated disease associated with trauma, hormone abuse and excessive alcohol consumption. Polymorphisms of long non-coding RNAs have been also linked with the development of ONFH. Our research aimed to explore the relationship between CARMEN (Cardiac Mesoderm Enhancer-Associated Non-Coding RNA) variants and ONFH risk. Methods Our study used Agena MassARRAY Assay to genotype 6 selected single nucleotide polymorphisms (SNPs) in 731 participants (308 alcohol-induced ONFH patients and 423 controls). We used odds ratios (ORs) and 95% confidence intervals (CIs) to calculate the effect of gene polymorphisms on the occurrence of alcohol-induced ONFH by logistic regression analysis and haplotype analysis. Results Our overall analysis illustrated that rs13177623 and rs12654195 had an association with a reduced risk of ONFH after adjustment for age and gender. We also found that rs13177623, rs12654195 and rs11168100 were associated with a decreased susceptibility to alcohol-induced ONFH in people ≤45 years. In addition, the necrotic sites stratification analysis showed that rs12654195 was only found to be related to alcohol-induced ONFH risk in the recessive model. In patients with different clinical stages, rs353300 was observed to be associated with a higher incidence of ONFH. Individuals with different genotypes of rs13177623, rs12654195 and rs11168100 had significantly different clinical parameters (cholinesterase, globulin, percentage of neutrophils and the absolute value of lymphocytes). Conclusions Our data provided new light on the association between CARMEN polymorphisms and alcohol-induced ONFH risk in the Chinese Han population.
Collapse
Affiliation(s)
- Yongchang Guo
- Department of Orthopedics, Zhengzhou Traditional Chinese Hospital of Orthopaedics, #1226 East Hanghang Road, Zhengzhou, 450000, Henan, China
| | - Yuju Cao
- Department of Orthopedics, Zhengzhou Traditional Chinese Hospital of Orthopaedics, #1226 East Hanghang Road, Zhengzhou, 450000, Henan, China.
| | - Shunguo Gong
- Department of Orthopedics, Zhengzhou Traditional Chinese Hospital of Orthopaedics, #1226 East Hanghang Road, Zhengzhou, 450000, Henan, China
| | - Sumei Zhang
- Department of Orthopedics, Zhengzhou Traditional Chinese Hospital of Orthopaedics, #1226 East Hanghang Road, Zhengzhou, 450000, Henan, China
| | - Fengzhi Hou
- Department of Orthopedics, Zhengzhou Traditional Chinese Hospital of Orthopaedics, #1226 East Hanghang Road, Zhengzhou, 450000, Henan, China
| | - Xinjie Zhang
- Department of Orthopedics, Zhengzhou Traditional Chinese Hospital of Orthopaedics, #1226 East Hanghang Road, Zhengzhou, 450000, Henan, China
| | - Jiangeng Hu
- Department of Orthopedics, Zhengzhou Traditional Chinese Hospital of Orthopaedics, #1226 East Hanghang Road, Zhengzhou, 450000, Henan, China
| | - Zhimin Yang
- Department of Orthopedics, Zhengzhou Traditional Chinese Hospital of Orthopaedics, #1226 East Hanghang Road, Zhengzhou, 450000, Henan, China
| | - Juanjuan Yi
- Department of Orthopedics, Zhengzhou Traditional Chinese Hospital of Orthopaedics, #1226 East Hanghang Road, Zhengzhou, 450000, Henan, China
| | - Dan Luo
- Department of Orthopedics, Zhengzhou Traditional Chinese Hospital of Orthopaedics, #1226 East Hanghang Road, Zhengzhou, 450000, Henan, China
| | - Xifeng Chen
- Department of Orthopedics, Zhengzhou Traditional Chinese Hospital of Orthopaedics, #1226 East Hanghang Road, Zhengzhou, 450000, Henan, China
| | - Jingbo Song
- Department of Orthopedics, Zhengzhou Traditional Chinese Hospital of Orthopaedics, #1226 East Hanghang Road, Zhengzhou, 450000, Henan, China
| |
Collapse
|
31
|
Impact of Gene Polymorphisms in GAS5 on Urothelial Cell Carcinoma Development and Clinical Characteristics. Diagnostics (Basel) 2020; 10:diagnostics10050260. [PMID: 32354045 PMCID: PMC7277236 DOI: 10.3390/diagnostics10050260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 01/05/2023] Open
Abstract
Urothelial cell carcinoma (UCC) is the commonest malignant tumor of the urinary tract and the second most common kidney cancer malignancy. Growth arrest-specific 5 (GAS5), a long noncoding RNA, is encoded by the GAS5 gene and plays a critical role in cellular growth arrest and apoptosis. In the current study, two single nucleotide polymorphisms (SNPs) in the GAS5 gene, rs145204276 and rs55829688, were selected to investigate correlations between these single SNPs and susceptibility to UCC. A total of 430 UCC cases and 860 ethnically matched healthy controls were included. SNP rs145204276 and SNP rs55829688 were determined using a TaqMan genotyping assay. Logistic regression models demonstrated that female patients with UCC carrying the rs145204276 GAS5 Ins/Del or Del/Del genotype had a 3.037-fold higher risk of larger tumor status (95% confidence interval 1.259–7.324) than did rs145204276 wild type (Ins/Ins) carriers (p = 0.011). The Cancer Genome Atlas validation cohort analysis demonstrated that the expression of GAS5 in female patients with bladder urothelial carcinoma (BLCA) with larger tumor size was much lower than that in patients with a smaller tumor size (p = 0.041). Kaplan-Meier curve analysis and the log–rank test revealed that female patients with BLCA and lower GAS5 expression had poorer overall survival than those with higher GAS5 expression. In conclusion, genetic variations in GAS5 rs145204276 may serve as a critical predictor of the clinical status of female patients with UCC.
Collapse
|
32
|
Hsieh MJ, Lin CW, Su SC, Reiter RJ, Chen AWG, Chen MK, Yang SF. Effects of miR-34b/miR-892a Upregulation and Inhibition of ABCB1/ABCB4 on Melatonin-Induced Apoptosis in VCR-Resistant Oral Cancer Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:877-889. [PMID: 31982774 PMCID: PMC6994412 DOI: 10.1016/j.omtn.2019.12.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 11/27/2019] [Accepted: 12/19/2019] [Indexed: 12/19/2022]
Abstract
Multidrug resistance (MDR) is the resistance of cells toward various drugs commonly used in tumor treatment. The mechanism of drug resistance in oral cancer is not completely understood. Melatonin is an endogenously produced molecule involved in active biological mechanisms including antiproliferation, oncogene expression modulation, antitumor invasion and migration, and anti-inflammatory, antioxidant, and antiangiogenic effects. Despite these functions, the effects of melatonin on vincristine (VCR)-resistant human oral cancer cells remain largely unknown. This study analyzed the role of melatonin in VCR-resistant human oral cancer cells along with the underlying mechanism. We determined that melatonin induced the apoptosis and autophagy of VCR-resistant oral cancer cells; these actions were mediated by AKT, p38, and c-Jun N-terminal kinase (JNK). Melatonin inhibited ATP-binding cassette B1 (ABCB1) and ABCB4 expression in vitro and in vivo. Melatonin reduced the drug resistance and promoted the apoptosis of VCR-resistant oral cancer cells through the upregulation of microRNA-892a (miR-892a) and miR-34b-5p expressions. The expression of miR-892a and miR-34b-5p was related to melatonin-induced apoptosis, but not autophagy. Therefore, melatonin is a potential novel chemotherapeutic agent for VCR-resistant human oral cancer cell lines.
Collapse
Affiliation(s)
- Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital 402, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 204, Taiwan; Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou, and Keelung 204, Taiwan
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Andy Wei-Ge Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Mu-Kuan Chen
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
33
|
Chang MC, Pan YH, Wu HL, Lu YJ, Liao WC, Yeh CY, Lee JJ, Jeng JH. Stimulation of MMP-9 of oral epithelial cells by areca nut extract is related to TGF-β/Smad2-dependent and -independent pathways and prevented by betel leaf extract, hydroxychavicol and melatonin. Aging (Albany NY) 2019; 11:11624-11639. [PMID: 31831717 PMCID: PMC6932916 DOI: 10.18632/aging.102565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/20/2019] [Indexed: 04/13/2023]
Abstract
BACKGROUND There are 200-600 million betel quid (BQ) chewers in the world. BQ increases oral cancer risk. Matrix metalloproteinase-9 (MMP-9) is responsible for matrix degradation, cancer invasion and metastasis. Whether areca nut extract (ANE), a BQ component, stimulates MMP-9 secretion, and the related signaling pathways awaits investigation. RESULTS ANE (but not arecoline) stimulated MMP-9 production of gingival keratinocytes and SAS cancer epithelial cells. ANE stimulated TGF-β1, p-Smad2, and p-TAK1 protein expression. ANE-induced MMP-9 production/expression in SAS cells can be attenuated by SB431542 (ALK5/Smad2 inhibitor), 5Z-7-Oxozeaenol (TAK1 inhibitor), catalase, PD153035 (EGFR tyrosine kinase inhibitor), AG490 (JAK inhibitor), U0126 (MEK/ERK inhibitor), LY294002 (PI3K/Akt inhibitor), betel leaf (PBL) extract, and hydroxychavicol (HC, a PBL component), and melatonin, but not by aspirin. CONCLUSIONS AN components contribute to oral carcinogenesis by stimulating MMP-9 secretion, thus enhancing tumor invasion/metastasis. These events are related to reactive oxygen species, TGF-β1, Smad2-dependent and -independent signaling, but not COX. These signaling molecules can be biomarkers of BQ carcinogenesis. PBL, HC and melatonin and other targeting therapy can be used for oral cancer treatment. METHODS ANE-induced MMP-9 expression/secretion of oral epithelial cells and related TGF-β1, Smad-dependent and -independent signaling were studied by MTT assay, RT-PCR, western blotting, immunofluorescent staining, and ELISA.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Chang-Gung University of Science and Technology, Kwei-Shan, Taoyuan, Taiwan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Yi-Jie Lu
- Graduate Institute of Oral Biology, National Taiwan University Medical College, Taipei, Taiwan
| | - Wan-Chuen Liao
- School of Dentistry, National Taiwan University Medical College, and Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Yang Yeh
- School of Dentistry, National Taiwan University Medical College, and Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Jang-Jaer Lee
- School of Dentistry, National Taiwan University Medical College, and Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry, National Taiwan University Medical College, and Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
34
|
Stacchiotti A, Grossi I, García-Gómez R, Patel GA, Salvi A, Lavazza A, De Petro G, Monsalve M, Rezzani R. Melatonin Effects on Non-Alcoholic Fatty Liver Disease Are Related to MicroRNA-34a-5p/Sirt1 Axis and Autophagy. Cells 2019; 8:cells8091053. [PMID: 31500354 PMCID: PMC6770964 DOI: 10.3390/cells8091053] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Melatonin, an indole produced by pineal and extrapineal tissues, but also taken with a vegetarian diet, has strong anti-oxidant, anti-inflammatory and anti-obesogenic potentials. Non-alcoholic fatty liver disease (NAFLD) is the hepatic side of the metabolic syndrome. NAFLD is a still reversible phase but may evolve into steatohepatitis (NASH), cirrhosis and carcinoma. Currently, an effective therapy for blocking NAFLD staging is lacking. Silent information regulator 1 (SIRT1), a NAD+ dependent histone deacetylase, modulates the energetic metabolism in the liver. Micro-RNA-34a-5p, a direct inhibitor of SIRT1, is an emerging indicator of NAFLD grading. Thus, here we analyzed the effects of oral melatonin against NAFLD and underlying molecular mechanisms, focusing on steatosis, ER stress, mitochondrial shape and autophagy. Male C57BL/6J (WT) and SIRT1 heterozygous (HET) mice were placed either on a high-fat diet (58.4% energy from lard) (HFD) or on a standard maintenance diet (8.4% energy from lipids) for 16 weeks, drinking melatonin (10 mg/kg) or not. Indirect calorimetry, glucose tolerance, steatosis, inflammation, ER stress, mitochondrial changes, autophagy and microRNA-34a-5p expression were estimated. Melatonin improved hepatic metabolism and steatosis, influenced ER stress and mitochondrial shape, and promoted autophagy in WT HFD mice. Conversely, melatonin was ineffective in HET HFD mice, maintaining NASH changes. Indeed, autophagy was inconsistent in HET HFD or starved mice, as indicated by LC3II/LC3I ratio, p62/SQSTM1 and autophagosomes estimation. The beneficial role of melatonin in dietary induced NAFLD/NASH in mice was related to reduced expression of microRNA-34a-5p and sterol regulatory element-binding protein (SREBP1) but only in the presence of full SIRT1 availability.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartmental University Center of Research "Adaptation and Regeneration of Tissues and Organs (ARTO)", University of Brescia, 25123 Brescia, Italy.
| | - Ilaria Grossi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Raquel García-Gómez
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), 28029 Madrid, Spain.
| | | | - Alessandro Salvi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Antonio Lavazza
- Instituto Zooprofilattico Sperimentale della Lombardia ed Emilia-Romagna (IZSLER), 25124 Brescia, Italy.
| | - Giuseppina De Petro
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), 28029 Madrid, Spain.
| | - Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartmental University Center of Research "Adaptation and Regeneration of Tissues and Organs (ARTO)", University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
35
|
Su CW, Lin CW, Yang WE, Yang SF. TIMP-3 as a therapeutic target for cancer. Ther Adv Med Oncol 2019; 11:1758835919864247. [PMID: 31360238 PMCID: PMC6637839 DOI: 10.1177/1758835919864247] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Tissue inhibitor of metalloproteinase-3 (TIMP-3), a secreted glycoprotein, plays an important role in carcinogenesis. It can bind to many proteinases to suppress their activity and thus protect the extracellular matrix from degradation. TIMP-3 may have many anticancer properties, including apoptosis induction and antiproliferative, antiangiogenic, and antimetastatic activities. This review summarizes the structure, proteinase inhibition ability, genetic and epigenetic regulation, cancer therapy potential, and contribution to cancer development of TIMP-3. Furthermore, in this review we discuss its potential as a biomarker for predicting cancer progression and the current state of drugs that target TIMP-3, either alone or in combination with clinical treatment. In conclusion, TIMP-3 can be a biomarker of cancer and a potential target for cancer therapy. This review article can serve as a basis to understand how to modulate TIMP-3 levels as a drug target of cancers.
Collapse
Affiliation(s)
- Chun-Wen Su
- Institute of Medicine, Chung Shan Medical University, Taichung
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung
| | - Wei-En Yang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, 110 Chien-Kuo N. Road, Section 1, Taichung 402
| |
Collapse
|
36
|
Cao Z, Gao D, Tong X, Xu T, Zhang D, Wang Y, Liu Y, Li Y, Zhang Y, Pu Y. Melatonin improves developmental competence of oocyte-granulosa cell complexes from porcine preantral follicles. Theriogenology 2019; 133:149-158. [PMID: 31100559 DOI: 10.1016/j.theriogenology.2019.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 01/08/2023]
Abstract
Melatonin has been reported to improve the survival rate of mouse and goat preantral follicles cultured in vitro. However, the role of melatonin in the development of oocyte-granulosa cell complexes (OGCs) isolated from preantral follicles remains unclear. Cumulus-oocyte complexes were isolated from OGCs cultured in vitro for 18.5 days and were then maturated in vitro for 42 h. The matured oocytes were parthenogenetically activated and were further cultured up to the blastocyst stage. We found that the developmental capacity of oocytes from in vitro cultured OGCs was significantly inferior to that from in vivo grown counterparts. Additionally, a 10-5 M dose of melatonin added to the medium during in vitro culture of OGCs did not improve oocyte meiotic maturation but enhanced blastocyst rate of parthenogenetically activated embryos. Besides, these beneficial effects could be reversed by luzindole treatment, a melatonin membrane receptor antagonist. mRNA sequencing analysis further revealed that melatonin caused differential expression of 76 genes of which 75 were upregulated and 1 was downregulated in OGCs. Twelve of the 76 genes were identified as potential regulators of metabolic pathways by functional analysis. Taken together, these results indicate that melatonin improves developmental competence of porcine oocyte-granulosa cell complexes.
Collapse
Affiliation(s)
- Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Di Gao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xu Tong
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Tengteng Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Dandan Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yiqing Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ya Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yunsheng Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yong Pu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
37
|
Chao YH, Wu KH, Yeh CM, Su SC, Reiter RJ, Yang SF. The potential utility of melatonin in the treatment of childhood cancer. J Cell Physiol 2019; 234:19158-19166. [PMID: 30945299 DOI: 10.1002/jcp.28566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022]
Abstract
Childhood cancer management has improved considerably, with the overall objective of preventing early-life cancers completely. However, cancer remains a major cause of death in children, with the survivors developing anticancer treatment-specific health problems. Therefore, the anticancer treatment needs further improvement. Melatonin is a effective antioxidant and circadian pacemaker. Through multiple mechanisms, melatonin has significant positive effects on multitude adult cancers by increasing survival and treatment response rates, and slowing disease progression. In addition, melatonin appears to be safe for children. As an appealing therapeutic agent, we herein address several key concerns regarding melatonin's potential for treating children with cancer.
Collapse
Affiliation(s)
- Yu-Hua Chao
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Kang-Hsi Wu
- Division of Pediatric Hematology-Oncology, Children's Hospital, China Medical University, Taichung, Taiwan.,School of Post-baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Ming Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, Texas
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
38
|
Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci 2019; 20:ijms20051223. [PMID: 30862067 PMCID: PMC6429360 DOI: 10.3390/ijms20051223] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Aging and various age-related diseases are associated with reductions in melatonin secretion, proinflammatory changes in the immune system, a deteriorating circadian system, and reductions in sirtuin-1 (SIRT1) activity. In non-tumor cells, several effects of melatonin are abolished by inhibiting SIRT1, indicating mediation by SIRT1. Melatonin is, in addition to its circadian and antioxidant roles, an immune stimulatory agent. However, it can act as either a pro- or anti-inflammatory regulator in a context-dependent way. Melatonin can stimulate the release of proinflammatory cytokines and other mediators, but also, under different conditions, it can suppress inflammation-promoting processes such as NO release, activation of cyclooxygenase-2, inflammasome NLRP3, gasdermin D, toll-like receptor-4 and mTOR signaling, and cytokine release by SASP (senescence-associated secretory phenotype), and amyloid-β toxicity. It also activates processes in an anti-inflammatory network, in which SIRT1 activation, upregulation of Nrf2 and downregulation of NF-κB, and release of the anti-inflammatory cytokines IL-4 and IL-10 are involved. A perhaps crucial action may be the promotion of macrophage or microglia polarization in favor of the anti-inflammatory phenotype M2. In addition, many factors of the pro- and anti-inflammatory networks are subject to regulation by microRNAs that either target mRNAs of the respective factors or upregulate them by targeting mRNAs of their inhibitor proteins.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
39
|
Lin CY, Wang SS, Yang CK, Li JR, Chen CS, Hung SC, Chiu KY, Cheng CL, Ou YC, Yang SF. Impact of GAS5 genetic polymorphism on prostate cancer susceptibility and clinicopathologic characteristics. Int J Med Sci 2019; 16:1424-1429. [PMID: 31673232 PMCID: PMC6818208 DOI: 10.7150/ijms.38080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Down-regulation of Growth arrest-specific 5 (GAS5) is correlated with enhanced cell proliferation and poorer prognosis of prostate cancer. We aimed to investigate the effect of variant rs145204276 of GAS5 on the prostate cancer susceptibility and clinicopathologic characteristics. In this study, 579 prostate cancer patients who underwent robot-assisted radical prostatectomy and 579 healthy controls were included. The frequency of the allele del of rs145204276 were compared between the patients and the controls to evaluate the impact of tumor susceptibility and the correlation of clinicopathological variables. The results shown that patients who carries genotype ins/del or del/del at SNP rs145204276 showed decreased risk of pathological lymph node metastasis disease (OR=0.545, p=0.043) and risk of seminal vesicle invasion (OR=0.632, p=0.022) comparing to with genotype ins/ins. In the subgroup analysis of age, more significant risk reduction effects were noted over lymph node metastasis disease (OR=0.426, p=0.032) and lymphovascular invasion (OR=0.521, p=0.025). In conclusion, the rs145204276 polymorphic genotype of GAS5 can predict the risk of lymph node metastasis. This is the first study to report the correlation between GAS5 gene polymorphism and prostate cancer prognosis.
Collapse
Affiliation(s)
- Chia-Yen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Surgical Critical Care, Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shian-Shiang Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Cheng-Kuang Yang
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jian-Ri Li
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medicine and Nursing, Hungkuang University, Taichung, Taiwan
| | - Chuan-Shu Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Sheng-Chun Hung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kun-Yuan Chiu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Chen-Li Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yen-Chuan Ou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Urology, Tung's Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
40
|
Melatonin restrains angiogenic factors in triple-negative breast cancer by targeting miR-152-3p: In vivo and in vitro studies. Life Sci 2018; 208:131-138. [PMID: 29990486 DOI: 10.1016/j.lfs.2018.07.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 12/22/2022]
Abstract
AIMS Breast cancer represents the second most prevalent tumor-related cause of death among women. Although studies have already been published regarding the association between breast tumors and miRNAs, this field remains unclear. MicroRNAs (miRNAs) are defined as non-coding RNA molecules, and are known to be involved in cell pathways through the regulation of gene expression. Melatonin can regulate miRNAs and genes related with angiogenesis. This hormone is produced naturally by the pineal gland and presents several antitumor effects. The aim of this study was to understand the action of melatonin in the regulation of miRNA-152-3p in vivo and in vitro. MAIN METHODS In order to standardize the melatonin treatment in the MDA-MB-468 cells, we carried out the cell viability assay at different concentrations. PCR Array plates were used to identify the differentiated expression of miRNAs after the treatment with melatonin. The relative quantification of the target gene expression (IGF-IR, HIF-1α and VEGF) was performed by real-time PCR. For the tumor development, MDA-MB-468 cells were implanted in female BALB/c mice, and treated or not treated with melatonin. Moreover, the quantification of the target genes protein expression was performed by immunocytochemistry and immunohistochemistry. KEY FINDINGS Relative quantification shows that the melatonin treatment increases the gene expression of miR-152-3p and the target genes, and decreased protein levels of the genes both in vitro and in vivo. SIGNIFICANCE Our results confirm the action of melatonin on the miR-152-3p regulation known to be involved in the progression of breast cancer.
Collapse
|
41
|
On the Relationships between LncRNAs and Other Orchestrating Regulators: Role of the Circadian System. EPIGENOMES 2018. [DOI: 10.3390/epigenomes2020009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
42
|
Weng SL, Wu WJ, Hsiao YH, Yang SF, Hsu CF, Wang PH. Significant association of long non-coding RNAs HOTAIR genetic polymorphisms with cancer recurrence and patient survival in patients with uterine cervical cancer. Int J Med Sci 2018; 15:1312-1319. [PMID: 30275757 PMCID: PMC6158665 DOI: 10.7150/ijms.27505] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 06/30/2018] [Indexed: 12/17/2022] Open
Abstract
Up to date, no study explores the relationship of single nucleotide polymorphisms (SNPs) of long non-coding RNAs HOTAIR (lncRNAs HOTAIR) with cancer recurrence and patient survival in uterine cervical cancer for Taiwanese women. We therefore designed this study to investigate the clinical roles of lncRNAs HOTAIR SNPs in cervical cancer. One hundred and sixteen patients with cervical invasive cancer and 96 patients with preinvasive lesions as well as 318 control women were consecutively recruited. LncRNAs HOTAIR SNPs rs920778, rs12427129, rs4759314 and rs1899663 were analyzed and their genotypic frequencies were examined by real-time polymerase chain reaction. The results indicated that there were no genotypic differences between patients with cervical neoplasia and normal controls as well as among patients with invasive and invasive cancer, and normal controls. However, genotype GG in lncRNAs HOTAIR SNP rs920778 was demonstrated to be a predictor for poorer cancer recurrence probability [p=0.001, hazard ratio (HR): 7.25, 95% CI: 2.19-23.96]. Furthermore, cervical cancer patients with genotype GG in lncRNAs HOTAIR rs920778 had worse overall survival (p =0.002, HR: 7.22, 95% CI: 2.09-24.92). No significant associations exhibited between lncRNAs HOTAIR SNP rs920778 and clinicopathological parameters. In conclusion, this studied lncRNAs HOTAIR SNPs are not associated with cervical carcinongensis. However, lncRNAs HOTAIR SNP rs920778 may be regarded as an independent predictor of cancer recurrence probability and overall survival in cervical cancer patients.
Collapse
Affiliation(s)
- Shun-Long Weng
- Department of Obstetrics and Gynaecology, Hsinchu Mackay Memorial Hospital, Hsinchu City, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Mackay Junior College of Medicine, Nursing and Management College, Taipei, Taiwan
| | - Wen-Jun Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsuan Hsiao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Fang Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|