1
|
Feng Y, Liu J, Gong L, Han Z, Zhang Y, Li R, Liao H. Inonotus obliquus (Chaga) against HFD/STZ-induced glucolipid metabolism disorders and abnormal renal functions by regulating NOS-cGMP-PDE5 signaling pathway. Chin J Nat Med 2024; 22:619-631. [PMID: 39059831 DOI: 10.1016/s1875-5364(24)60571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Indexed: 07/28/2024]
Abstract
Our prior investigations have established that Inonotus obliquus (Chaga) possesses hypoglycemic effects. Persistent hyperglycemia is known to precipitate renal function abnormalities. The functionality of the kidneys is intricately linked to the levels of cyclic guanosine-3',5'-monophosphate (cGMP), which are influenced by the activities of nitric oxide synthase (NOS) and phosphodiesterase (PDE). Enhanced cGMP levels can be achieved either through the upregulation of NOS activity or the downregulation of PDE activity. The objective of the current study is to elucidate the effects of Chaga on disorders of glucolipid metabolism and renal abnormalities in rats with type 2 diabetes mellitus (T2DM), while concurrently examining the NOS-cGMP-PDE5 signaling pathway. A model of T2DM was developed in rats using a high-fat diet (HFD) combined with streptozotocin (STZ) administration, followed by treatment with Chaga extracts at doses of 50 and 100 mg·kg-1 for eight weeks. The findings revealed that Chaga not only mitigated metabolic dysfunctions, evidenced by improvements in fasting blood glucose, total cholesterol, triglycerides, and insulin resistance, but also ameliorated renal function markers, including serum creatinine, urine creatinine (UCr), blood urea nitrogen, 24-h urinary protein, and estimated creatinine clearance. Additionally, enhancements in glomerular volume, GBM thickness, podocyte foot process width (FPW), and the mRNA and protein expressions of podocyte markers, such as nephrin and wilms tumor-1, were observed. Chaga was found to elevate cGMP levels in both serum and kidney tissues by increasing mRNA and protein expressions of renal endothelial NOS and neural NOS, while simultaneously reducing the expressions of renal inducible NOS and PDE5. In summary, Chaga counteracts HFD/STZ-induced glucolipid metabolism and renal function disturbances by modulating the NOS-cGMP-PDE5 signaling pathway. This research supports the potential application of Chaga in the clinical prevention and treatment of T2DM and diabetic nephropathy (DN), with cGMP serving as a potential therapeutic target.
Collapse
Affiliation(s)
- Yating Feng
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Jing Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Le Gong
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Zhaodi Han
- Drug Clinical Trial Institution, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China
| | - Yan Zhang
- Department of Nephrology, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China
| | - Rongshan Li
- Department of Nephrology, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China
| | - Hui Liao
- Drug Clinical Trial Institution, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan 030012, China.
| |
Collapse
|
2
|
Pretorius E, Kell DB. A Perspective on How Fibrinaloid Microclots and Platelet Pathology May be Applied in Clinical Investigations. Semin Thromb Hemost 2024; 50:537-551. [PMID: 37748515 PMCID: PMC11105946 DOI: 10.1055/s-0043-1774796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Microscopy imaging has enabled us to establish the presence of fibrin(ogen) amyloid (fibrinaloid) microclots in a range of chronic, inflammatory diseases. Microclots may also be induced by a variety of purified substances, often at very low concentrations. These molecules include bacterial inflammagens, serum amyloid A, and the S1 spike protein of severe acute respiratory syndrome coronavirus 2. Here, we explore which of the properties of these microclots might be used to contribute to differential clinical diagnoses and prognoses of the various diseases with which they may be associated. Such properties include distributions in their size and number before and after the addition of exogenous thrombin, their spectral properties, the diameter of the fibers of which they are made, their resistance to proteolysis by various proteases, their cross-seeding ability, and the concentration dependence of their ability to bind small molecules including fluorogenic amyloid stains. Measuring these microclot parameters, together with microscopy imaging itself, along with methodologies like proteomics and imaging flow cytometry, as well as more conventional assays such as those for cytokines, might open up the possibility of a much finer use of these microclot properties in generative methods for a future where personalized medicine will be standard procedures in all clotting pathology disease diagnoses.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Matieland, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Matieland, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
3
|
Choi JW, Kim TH, Park JS, Lee CH. Association between Relative Thrombocytosis and Microalbuminuria in Adults with Mild Fasting Hyperglycemia. J Pers Med 2024; 14:89. [PMID: 38248790 PMCID: PMC10817638 DOI: 10.3390/jpm14010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
An elevated platelet count may contribute to significant thrombotic events and pose a risk for diabetic microvascular complications. Albuminuria, one of the hallmarks of diabetes, is thought to be a risk factor for endothelial dysfunction. In this study, we investigated the association between relative thrombocytosis and an increased urine albumin-to-creatinine ratio in healthy adult participants. Using multivariate analyses on data from the Korea National Health and Nutrition Examination Survey V-VI, 12,525 eligible native Koreans aged ≥ 20 were categorized into platelet count quintiles by sex. The highest platelet count quintile included younger, more obese participants with elevated white blood cell counts, poor lipid profiles, and a better estimated glomerular filtration rate. Restricted cubic spline regression analysis revealed significant associations between platelet count and fasting blood glucose, glycated hemoglobin, and urine albumin-to-creatinine ratio. Adjusted logistic regression models indicated that heightened fasting blood glucose and platelet count were linked to risk of microalbuminuria (fasting blood glucose, odds ratio = 1.026, 95%CI = 1.011-1.042; platelet count, odds ratio = 1.004, 95%CI = 1.002-1.006). Particularly, an increased platelet count was notably associated with microalbuminuria progression in subjects with impaired fasting glucose. These findings suggest that an elevated platelet count, even below diagnostic thrombocytosis levels, independently correlates with an increased risk of vascular endothelial dysfunction in patients with impaired fasting glucose.
Collapse
Affiliation(s)
- Jong Wook Choi
- Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea;
| | - Tae Hoon Kim
- Department of Internal Medicine, CHA Bundang Medical Center, Seongnam 13495, Republic of Korea;
| | - Joon-Sung Park
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Republic of Korea;
| | - Chang Hwa Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Republic of Korea;
| |
Collapse
|
4
|
Katsa ME, Ketselidi K, Kalliostra M, Ioannidis A, Rojas Gil AP, Diamantakos P, Melliou E, Magiatis P, Nomikos T. Acute Antiplatelet Effects of an Oleocanthal-Rich Olive Oil in Type II Diabetic Patients: A Postprandial Study. Int J Mol Sci 2024; 25:908. [PMID: 38255980 PMCID: PMC10815739 DOI: 10.3390/ijms25020908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Postprandial dysmetabolism is a common entity of type 2 diabetes mellitus (T2DM) and may act as a daily stressor of the already dysfunctional diabetic platelets. This study aims to investigate whether oleocanthal-rich olive oils (OO), incorporated into a carbohydrate-rich meal, can affect postprandial dysmetabolism and platelet aggregation. Oleocanthal is a cyclooxygenase inhibitor with putative antiplatelet properties. In this randomized, single-blinded, crossover study, ten T2DM patients consumed five isocaloric meals containing 120 g white bread combined with: (i) 39 g butter, (ii) 39 g butter and 400 mg ibuprofen, (iii) 40 mL OO (phenolic content < 10 mg/Kg), (iv) 40 mL OO with 250 mg/Kg oleocanthal and (v) 40 mL OO with 500 mg/Kg oleocanthal. Metabolic markers along with ex vivo ADP- and thrombin receptor-activating peptide (TRAP)-induced platelet aggregation were measured before and for 4 h after the meals. The glycemic and lipidemic response was similar between meals. However, a sustained (90-240 min) dose-dependent reduction in platelets' sensitivity to both ADP (50-100%) and TRAP (20-50%) was observed after the oleocanthal meals in comparison to OO or butter meals. The antiplatelet effect of the OO containing 500 mg/Kg oleocanthal was comparable to that of the ibuprofen meal. In conclusion, the consumption of meals containing oleocanthal-rich OO can reduce platelet activity during the postprandial period, irrespective of postprandial hyperglycemia and lipidemia.
Collapse
Affiliation(s)
- Maria Efthymia Katsa
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, GR-17676 Athens, Greece; (M.E.K.); (K.K.); (M.K.)
| | - Kleopatra Ketselidi
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, GR-17676 Athens, Greece; (M.E.K.); (K.K.); (M.K.)
| | - Marianna Kalliostra
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, GR-17676 Athens, Greece; (M.E.K.); (K.K.); (M.K.)
| | - Anastasios Ioannidis
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, GR-22100 Tripoli, Greece; (A.I.); (A.P.R.G.)
| | - Andrea Paola Rojas Gil
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, GR-22100 Tripoli, Greece; (A.I.); (A.P.R.G.)
| | - Panagiotis Diamantakos
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, GR-15774 Athens, Greece; (P.D.); (E.M.); (P.M.)
| | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, GR-15774 Athens, Greece; (P.D.); (E.M.); (P.M.)
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, GR-15774 Athens, Greece; (P.D.); (E.M.); (P.M.)
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, GR-17676 Athens, Greece; (M.E.K.); (K.K.); (M.K.)
| |
Collapse
|
5
|
Gupta S, Jain A, Gupta M, Gupta J, Kansal S, Bhansali A, Garg S, Singla M, Gupta A, Gauba K. Influence of periodontitis and diabetes on structure and cytokine content of platelet-rich fibrin. Oral Dis 2023; 29:3620-3629. [PMID: 35699366 DOI: 10.1111/odi.14275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Platelet-rich fibrin (PRF) is a second-generation platelet concentrate with multiple applications in wound healing and regeneration in both periodontitis and diabetes. However, the three dimensional (3-D) structure and cytokine content of PRF might be altered in patients suffering from either/both of the chronic inflammatory conditions, ultimately influencing the efficacy of PRF as a biomaterial for regenerative medicine. AIM The aim of the present study was hence to evaluate the effect of both these chronic inflammatory diseases on the 3-D structure of PRF membrane. An attempt was also made to compare the growth factor content between the plasma and RBC ends of the prepared PRF gel. MATERIALS & METHODS L-PRF was prepared for twenty participants, healthy (5), periodontitis (5), T2DM (5) and T2DM with periodontitis (5). Porosity and fiber diameter of PRF membranes was visualized under FE-SEM and measured using ImageJ Software. PDGF-BB and TGF-β1 levels in PRF gel were assessed by ELISA. RESULTS The average diameter of fibrin fibers under FE-SEM was 0.15 to 0.30 micrometers. Porosity was higher at the plasma end (p = 0.042). Red blood cell (RBC) end of the membrane had thinner fibers arranged in a comparatively more dense and compact structure with smaller porosities. Healthy subjects had the least porous PRF compared to subjects with either/both of the chronic conditions. PDGF-BB levels were similar along all the four groups. TGF-β1 levels were highest in healthy subjects. DISCUSSION 3-D structure and growth factor content of PRF are influenced by a person's periodontal and/or diabetic status. The RBC end of the PRF membrane, as compared to the plasma end, has thinner fibers arranged in a comparatively more dense and compact structure with smaller porosities, and hence should be favored during periodontal regenerative procedures. CONCLUSION Both periodontitis and diabetes have a significant influence on the 3-D structure and growth factor content of PRF produced.
Collapse
Affiliation(s)
- Shipra Gupta
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Akanksha Jain
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mili Gupta
- Department of Biochemistry, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Jyoti Gupta
- Department of Periodontics, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | | | - Anil Bhansali
- Department of Endocrinology, PGIMER, Chandigarh, India
| | - Sukant Garg
- Department of Pathology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Mohita Singla
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Arpit Gupta
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Krishan Gauba
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
6
|
Zhao L, Zeng Y, Sun L, Zhang Z, Yang K, Li Z, Wang M, Zhou X, Yang W. Fibrinogen is Associated with Clinical Adverse Events in Patients with Psoriasis and Coronary Artery Disease. J Inflamm Res 2023; 16:4019-4030. [PMID: 37719941 PMCID: PMC10505029 DOI: 10.2147/jir.s427992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/19/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose The presence of elevated fibrinogen levels is associated with cardiovascular disease. However, whether fibrinogen level is associated with adverse clinical events in patients with psoriasis and coronary artery disease (CAD) is unknown. This study aimed to investigate the relationship between fibrinogen levels and cardiovascular adverse events in these patients. Patients and Methods This retrospective cohort study collected consecutive patients with psoriasis and CAD between January 2017 and May 2022 in our hospital. The clinical records were collected, and comparisons were made between groups. The Cox regression analysis and Kaplan-Meier survival analysis were used to evaluate the association between variables. Results Of the 267 participants, one hundred and forty-seven patients (55.1%) had elevated fibrinogen levels. Compared with patients in low fibrinogen group, white blood cell and platelet counts and high-sensitivity C-reactive protein levels were higher, whereas the left ventricular ejection fraction was lower in patients in high fibrinogen group. After a median follow-up of 35.5 months, the incidence of major adverse cardiovascular events (MACEs) was higher in patients in high fibrinogen group compared with patients in low fibrinogen group (31.4% vs 16.4%, p = 0.013). The Kaplan-Meier survival curves showed the same trend (log rank p = 0.020). Subgroup analysis revealed a positive association between elevated fibrinogen levels and MACEs in patients aged <60 years (log-rank p = 0.013), those with diabetes (log-rank p = 0.027), and those who were not admitted for acute cardiovascular syndrome (log-rank p = 0.015). Conclusion Elevated fibrinogen levels were associated with adverse clinical events in patients with psoriasis and CAD, especially among patients aged <60 years, those with diabetes, and those not admitted for acute cardiovascular syndrome.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yan Zeng
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Lin Sun
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - ZengLei Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - KunQi Yang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - ZuoZhi Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Man Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - XianLiang Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - WeiXian Yang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Wang X, Yang Y, Yu L, Pang C, Sun W, Zang S, Li C. Association between fibrinogen level and length of stay in patients with lower extremity atherosclerotic disease: a retrospective cohort study. Sci Rep 2023; 13:11872. [PMID: 37481624 PMCID: PMC10363167 DOI: 10.1038/s41598-023-39219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 07/21/2023] [Indexed: 07/24/2023] Open
Abstract
The level of fibrinogen in patients with lower extremity atherosclerosis (LEAD) has been widely identified as a risk factor contributing to adverse outcomes. However, some knowledge gaps remain regarding fibrinogen levels and downstream adverse outcomes, such as length of stay (LOS). We conducted this study to examine the association between fibrinogen level and LOS in LEAD patients. The retrospective cohort study included 1428 LEAD patients between January 2014 and November 2021 in China. Several generalized linear models with a negative binomial link function were used to evaluate the association between fibrinogen level and LOS. The area under the curve (AUC) was used to evaluate the predicting effect of fibrinogen level on a LOS greater than 10 days (median LOS). The median age of the patients was 70 years old, and 1153 (80.74%) were males. Fibrinogen level was positively associated with LOS (β = 1.14; 95% CI, 0.42-1.86; p = 0.002) in LEAD patients after controlling for age, gender, number of historical hospitalizations, surgical history, vascular disease history, drinking history, smoking history, insurance type, surgical approach, lesion site, weight loss, Fontaine classification, age-adjusted Charlson comorbidity index, urea, total protein, activated partial thromboplastin time, thrombin time, prothrombin time-international normalized ratio, calcium, triglyceride, albumin/globulin ratio, phosphorus, and D-dimer. The fibrinogen-added prediction model demonstrated good discrimination and calibration, with an AUC value of 0.807. Fibrinogen level was positively associated with LOS in LEAD patients. The fibrinogen level is a widely available and easy-to-measure biochemical indicator, and it could be used as a suitable indicator for the prognosis and prophylaxis of prolonged LOS in patients with LEAD during hospitalization.
Collapse
Affiliation(s)
- Xue Wang
- Department of Community Nursing, School of Nursing, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Yu Yang
- Department of Vascular Surgery, The First Hospital of China Medical University, No.155 Nanjing Bei Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Ling Yu
- Phase I Clinical Trails Center, The First Hospital of China Medical University, No.155 Nanjing Bei Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Chang Pang
- Department of General Practice, The Second Affiliated Hospital of Shenyang Medical College, No. 20 Bei Jiu Road, Heping District, Shenyang, 110002, Liaoning, China
| | - Wei Sun
- Department of Ultrasound, The Second Affiliated Hospital of Shenyang Medical College, No. 20 Bei Jiu Road, Heping District, Shenyang, 110002, Liaoning, China
| | - Shuang Zang
- Department of Community Nursing, School of Nursing, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| | - Cong Li
- Department of Vascular Surgery, The First Hospital of China Medical University, No.155 Nanjing Bei Street, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
8
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
9
|
Hu B, Zhang L, Zhao ZS, Qi YC, Zhou W, Ma YL. The predictive value of Thromboelastography (TEG) parameters in vascular complications in patients with type 2 diabetes mellitus. J Diabetes Complications 2022; 36:108236. [PMID: 35773172 DOI: 10.1016/j.jdiacomp.2022.108236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/14/2022] [Accepted: 06/19/2022] [Indexed: 12/28/2022]
Abstract
AIMS The purpose of this research was to explore the association of TEG parameters (Reaction time, R; Clot kinetics, K; Alpha angle, α-angle; Maximum amplitude, MA) with vascular complications of type 2 diabetes mellitus (T2DM), and assess whether TEG parameters could predict T2DM patients with vascular complications. METHODS A total of 68 healthy controls (HC), 57 T2DM patients without vascular complications (NC), 18 T2DM patients with only microvascular complications (MIC), 196 T2DM patients with only macrovascular complications (MAC), and 94 T2DM patients with both microvascular and macrovascular complications (MIC+MAC) were recruited in this study. Participants' clinical information and TEG parameters were recorded. TEG parameters were analyzed by the Jonckheere-Terpstra trend test, assuming the vascular complication was progressing from HC → NC → MIC → MIC+MAC or HC → NC → MAC → MIC+MAC. Receiver operating characteristic (ROC) was performed to explore the diagnostic accuracy of TEG parameters in T2DM with vascular complications. RESULTS Shorter TEGK, higher TEG-α-angle, and higher TEG-MA were found in T2DM patients with both microvascular and macrovascular complications (MIC+MAC) group compared with healthy controls (HC) group and T2DM patients without vascular complications (NC) group (P < 0.05). Trend analysis showed that TEG-R/K decreased, but TEG-α-angle/MA increased gradually as the vascular complication progressed (P < 0.001). With stratification of urine microalbumin/creatinine ratio (UACR), diabetic nephropathy with macroalbuminuria (grade A3) behaves shorter TEGK, higher TEG-α-angle/MA compared with normal to mildly increased albuminuria (grade A1) and microalbuminuria (grade A2) (P < 0.05). ROC curves implied that TEGK, TEG-α-angle, and TEG-MA have moderate diagnostic values in T2DM without vascular complications (K-AUC: 0.780, α-angle-AUC: 0.773, and MA-AUC: 0.740) as well as T2DM with both microvascular and macrovascular complications (K-AUC: 0.778, α-angle-AUC: 0.757, and MA-AUC: 0.800). CONCLUSION TEG parameters are associated with the progression of vascular complications in T2DM, and it could be a diagnostic indicator for T2DM without vascular complications or with advanced vascular complications.
Collapse
Affiliation(s)
- Bin Hu
- Department of Clinical Laboratory, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Long Zhang
- Department of Endocrinology and Metabolism, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Zhang-Sheng Zhao
- Department of Blood Transfusion, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo, Zhejiang, People's Republic of China.
| | - Yang-Cong Qi
- Department of Blood Transfusion, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Wei Zhou
- Department of Blood Transfusion, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo, Zhejiang, People's Republic of China
| | - You-Li Ma
- Department of Blood Transfusion, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo, Zhejiang, People's Republic of China
| |
Collapse
|
10
|
Huang Y, Yue L, Qiu J, Gao M, Liu S, Wang J. Endothelial Dysfunction and Platelet Hyperactivation in Diabetic Complications Induced by Glycemic Variability. Horm Metab Res 2022; 54:419-428. [PMID: 35835141 PMCID: PMC9282943 DOI: 10.1055/a-1880-0978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The development and progression of the complications of chronic diabetes mellitus are attributed not only to increased blood glucose levels but also to glycemic variability. Therefore, a deeper understanding of the role of glycemic variability in the development of diabetic complications may provide more insight into targeted clinical treatment strategies in the future. Previously, the mechanisms implicated in glycemic variability-induced diabetic complications have been comprehensively discussed. However, endothelial dysfunction and platelet hyperactivation, which are two newly recognized critical pathogenic factors, have not been fully elucidated yet. In this review, we first evaluate the assessment of glycemic variability and then summarise the roles of endothelial dysfunction and platelet hyperactivation in glycemic variability-induced complications of diabetes, highlighting the molecular mechanisms involved and their interconnections.
Collapse
Affiliation(s)
- Ye Huang
- Emergency Department, China Academy of Chinese Medical Sciences Xiyuan
Hospital, Beijing, China
| | - Long Yue
- Emergency Department, China Academy of Chinese Medical Sciences Xiyuan
Hospital, Beijing, China
| | - Jiahuang Qiu
- Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing, China
| | - Ming Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing, China
| | - Sijin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing, China
| | - Jingshang Wang
- Department of Traditional Chinese Medicine, Capital Medical University
Beijing Obstetrics and Gynecology Hospital, Beijing, China
- Correspondence Prof. Jingshang
Wang Capital Medical University Beijing Obstetrics and
Gynecology HospitalDepartment of Traditional Chinese
MedicineBeijingChina 18811213525
| |
Collapse
|
11
|
Johny E, Jala A, Nath B, Alam MJ, Kuladhipati I, Das R, Borkar RM, Adela R. Vitamin D Supplementation Modulates Platelet-Mediated Inflammation in Subjects With Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial. Front Immunol 2022; 13:869591. [PMID: 35720377 PMCID: PMC9205628 DOI: 10.3389/fimmu.2022.869591] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Recently, our group identified increased platelet-mediated inflammation in type 2 diabetes (T2DM) patients, and it is a well-established risk factor for diabetes complications, particularly for the development of cardiovascular diseases (CVD). Furthermore, vitamin D is reported to play an important role in the modulation of platelet hyperactivity and immune function, although the effect of vitamin D on platelet-mediated inflammation is not well studied. Hence, we aimed to investigate the effect of vitamin D supplementation on platelet-mediated inflammation in T2DM patients. Methods After screening a total of 201 subjects, our randomized, double-blind, placebo-controlled trial included 59 vitamin-D-deficient T2DM subjects, and the participants were randomly assigned to placebo (n = 29) or vitamin D3 (n = 30) for 6 months. Serum vitamin D metabolite levels, immunome profiling, platelet activation, and platelet-immune cell aggregate formation were measured at baseline and at the end of the study. Similarly, the serum levels of inflammatory cytokines/chemokines were assessed by a multiplex assay. Results Six months of vitamin D supplementation increases the serum vitamin D3 and total 25(OH)D levels from the baseline (p < 0.05). Vitamin D supplementation does not improve glycemic control, and no significant difference was observed in immune cells. However, platelet activation and platelet immune cell aggregates were altered after the vitamin D intervention (p < 0.05). Moreover, vitamin D reduces the serum levels of IL-18, TNF-α, IFN-γ, CXCL-10, CXCL-12, CCL-2, CCL-5, CCL-11, and PF-4 levels compared to the baseline levels (p < 0.05). Our ex vivo experiment confirms that a sufficient circulating level of vitamin D reduces platelet activation and platelet intracellular reactive oxygen species. Conclusion Our study results provide evidence that vitamin D supportive therapy may help to reduce or prevent the disease progression and cardiovascular risk in T2DM patients by suppressing oxidative stress and platelet-mediated inflammation. Clinical Trial Registration Clinical Trial Registry of India: CTRI/2019/01/016921.
Collapse
Affiliation(s)
- Ebin Johny
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Bishamber Nath
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | | | | | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, India
| |
Collapse
|
12
|
Resveratrol Inhibits Metabolism and Affects Blood Platelet Function in Type 2 Diabetes. Nutrients 2022; 14:nu14081633. [PMID: 35458194 PMCID: PMC9026466 DOI: 10.3390/nu14081633] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic hyperglycemia contributes to vascular complications in diabetes. Resveratrol exerts anti-diabetic and anti-platelet action. This study aimed to evaluate the effects of resveratrol on metabolism and the function of blood platelets under static and in in vitro flow conditions in patients with type 2 diabetes. Blood obtained from 8 healthy volunteers and 10 patients with type 2 diabetes was incubated with resveratrol and perfused over collagen-coated capillaries. Isolated blood platelets were incubated with resveratrol and activated by collagen to assess platelet function, metabolism, ATP release, TXA2 production, lipid peroxidation, and gluthatione content. In the type 2 diabetes group, plasma glucose and fructosamine concentrations were significantly higher than in the healthy group. In in vitro studies, collagen-induced thrombi formation in the blood of diabetic patients was 33% higher than in the healthy group. Resveratrol reduced thrombi by over 50% in the blood of healthy and diabetic patients. TXA2 production was 47% higher in diabetic platelets than in the healthy group. Resveratrol reduced TXA2 release by 38% in healthy platelets and by 79% in diabetic platelets. Resveratrol also reduced the activities of enzymes responsible for glycolysis and oxidative metabolism in the platelets of both groups. These data indicate that the resveratrol-induced inhibition of platelet metabolism and TXA2 release may lead to a reduction of platelet function and thrombus formation in patients with type 2 diabetes. Therefore, resveratrol may be beneficial to prevent vascular complications as a future complementary treatment in aspirin-resistant diabetic patients.
Collapse
|
13
|
Maphumulo SC, Pretorius E. Role of Circulating Microparticles in Type 2 Diabetes Mellitus: Implications for Pathological Clotting. Semin Thromb Hemost 2021; 48:188-205. [PMID: 34959250 DOI: 10.1055/s-0041-1740150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial chronic metabolic disease characterized by chronic hyperglycemia due to insulin resistance and a deficiency in insulin secretion. The global diabetes pandemic relates primarily to T2DM, which is the most prevalent form of diabetes, accounting for over 90% of all cases. Chronic low-grade inflammation, triggered by numerous risk factors, and the chronic activation of the immune system are prominent features of T2DM. Here we highlight the role of blood cells (platelets, and red and white blood cells) and vascular endothelial cells as drivers of systemic inflammation in T2DM. In addition, we discuss the role of microparticles (MPs) in systemic inflammation and hypercoagulation. Although once seen as inert by-products of cell activation or destruction, MPs are now considered to be a disseminated storage pool of bioactive effectors of thrombosis, inflammation, and vascular function. They have been identified to circulate at elevated levels in the bloodstream of individuals with increased risk of atherothrombosis or cardiovascular disease, two significant hallmark conditions of T2DM. There is also general evidence that MPs activate blood cells, express proinflammatory and coagulant effects, interact directly with cell receptors, and transfer biological material. MPs are considered major players in the pathogenesis of many systemic inflammatory diseases and may be potentially useful biomarkers of disease activity and may not only be of prognostic value but may act as novel therapeutic targets.
Collapse
Affiliation(s)
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
14
|
Barale C, Melchionda E, Morotti A, Russo I. Prothrombotic Phenotype in COVID-19: Focus on Platelets. Int J Mol Sci 2021; 22:ijms222413638. [PMID: 34948438 PMCID: PMC8705811 DOI: 10.3390/ijms222413638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 infection is associated with a broad spectrum of presentations, but alveolar capillary microthrombi have been described as a common finding in COVID-19 patients, appearing as a consequence of a severe endothelial injury with endothelial cell membrane disruption. These observations clearly point to the identification of a COVID-19-associated coagulopathy, which may contribute to thrombosis, multi-organ damage, and cause of severity and fatality. One significant finding that emerges in prothrombotic abnormalities observed in COVID-19 patients is that the coagulation alterations are mainly mediated by the activation of platelets and intrinsically related to viral-mediated endothelial inflammation. Beyond the well-known role in hemostasis, the ability of platelets to also release various potent cytokines and chemokines has elevated these small cells from simple cell fragments to crucial modulators in the blood, including their inflammatory functions, that have a large influence on the immune response during infectious disease. Indeed, platelets are involved in the pathogenesis of acute lung injury also by promoting NET formation and affecting vascular permeability. Specifically, the deposition by activated platelets of the chemokine platelet factor 4 at sites of inflammation promotes adhesion of neutrophils on endothelial cells and thrombogenesis, and it seems deeply involved in the phenomenon of vaccine-induced thrombocytopenia and thrombosis. Importantly, the hyperactivated platelet phenotype along with evidence of cytokine storm, high levels of P-selectin, D-dimer, and, on the other hand, decreased levels of fibrinogen, von Willebrand factor, and thrombocytopenia may be considered suitable biomarkers that distinguish the late stage of COVID-19 progression in critically ill patients.
Collapse
Affiliation(s)
| | | | | | - Isabella Russo
- Correspondence: ; Tel.: +39-011-6705447; Fax: +39-011-9038639
| |
Collapse
|
15
|
Das RK, Datta T, Biswas D, Duss R, O'Kennedy N, Duttaroy AK. Evaluation of the equivalence of different intakes of Fruitflow in affecting platelet aggregation and thrombin generation capacity in a randomized, double-blinded pilot study in male subjects. BMC Nutr 2021; 7:80. [PMID: 34865648 PMCID: PMC8647412 DOI: 10.1186/s40795-021-00485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The water-soluble tomato extract, Fruitflow® is a dietary antiplatelet which can be used to lower platelet aggregability in primary preventative settings. We carried out a pilot study to investigate the range of intakes linked to efficacy and to make an initial assessment of variability in response to Fruitflow®. METHODS Platelet response to adenosine diphosphate (ADP) agonist and thrombin generation capacity were monitored at baseline and 24 h after consuming 0, 30, 75, 150 or 300 mg of Fruitflow® in a randomized, double-blinded crossover study in male subjects 30-65 years of age (N = 12). Results were evaluated for equivalence to the standard 150 mg dose. RESULTS Results showed that the changes from baseline aggregation and thrombin generation observed after the 75 mg, 150 mg, and 300 mg supplements were equivalent. Aggregation was reduced from baseline by - 12.9 ± 17.7%, - 12.0 ± 13.9% and - 17.7 ± 15.7% respectively, while thrombin generation capacity fell by - 8.6 ± 4.1%, - 9.2 ± 3.1% and - 11.3 ± 2.3% respectively. Effects observed for 0 mg and 30 mg supplements were non-equivalent to 150 mg and not different from baseline (aggregation changed by 3.0 ± 5.0% and - 0.7 ± 10.2% respectively, while thrombin generation changed by 0.8 ± 3.0% and 0.8 ± 3.1% respectively). CONCLUSIONS The data suggest that the efficacious range for Fruitflow® lies between 75 mg and 300 mg, depending on the individual. It may be pertinent to personalize the daily intake of Fruitflow® depending on individual platelet response. TRIAL REGISTRATION ISRCTN53447583 , 24/02/2021.
Collapse
Affiliation(s)
- Ranjit K Das
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tanushree Datta
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Dipankar Biswas
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ruedi Duss
- DSM Nutritional Products Ltd, 4002, Basel, Switzerland
| | - Niamh O'Kennedy
- Provexis PLC, c/o The University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, UK
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
16
|
Page MJ, Pretorius E. Platelet Behavior Contributes to Neuropathologies: A Focus on Alzheimer's and Parkinson's Disease. Semin Thromb Hemost 2021; 48:382-404. [PMID: 34624913 DOI: 10.1055/s-0041-1733960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The functions of platelets are broad. Platelets function in hemostasis and thrombosis, inflammation and immune responses, vascular regulation, and host defense against invading pathogens, among others. These actions are achieved through the release of a wide set of coagulative, vascular, inflammatory, and other factors as well as diverse cell surface receptors involved in the same activities. As active participants in these physiological processes, platelets become involved in signaling pathways and pathological reactions that contribute to diseases that are defined by inflammation (including by pathogen-derived stimuli), vascular dysfunction, and coagulation. These diseases include Alzheimer's and Parkinson's disease, the two most common neurodegenerative diseases. Despite their unique pathological and clinical features, significant shared pathological processes exist between these two conditions, particularly relating to a central inflammatory mechanism involving both neuroinflammation and inflammation in the systemic environment, but also neurovascular dysfunction and coagulopathy, processes which also share initiation factors and receptors. This triad of dysfunction-(neuro)inflammation, neurovascular dysfunction, and hypercoagulation-illustrates the important roles platelets play in neuropathology. Although some mechanisms are understudied in Alzheimer's and Parkinson's disease, a strong case can be made for the relevance of platelets in neurodegeneration-related processes.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| |
Collapse
|
17
|
Johny E, Bhaskar P, Alam MJ, Kuladhipati I, Das R, Adela R. Platelet Mediated Inflammation in Coronary Artery Disease with Type 2 Diabetes Patients. J Inflamm Res 2021; 14:5131-5147. [PMID: 34675593 PMCID: PMC8504552 DOI: 10.2147/jir.s326716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a well-established risk factor for the development of atherosclerotic coronary artery disease. Platelet hyperactivity and inflammation are associated with the development of coronary artery disease (CAD) in T2DM patients. We investigated the status of immune cells, platelet activation, and platelet-immune cell interactions in T2DM_CAD patients. METHODOLOGY The study population consisted of four groups of subjects, healthy control (CT, n = 20), T2DM (n = 44), CAD (n = 20) and T2DM_CAD (n = 38). Platelet activation, immunome profiling and platelet-immune cell interactions were analysed by flow cytometry. The circulatory levels of inflammatory cytokines/chemokines were assessed using multiplex assay. RESULTS Increased platelet activation and increased platelet-immune cell aggregate formation were observed in T2DM and T2DM_CAD groups compared to the control and CAD groups (p < 0.05). Our immunome profile analysis revealed, altered monocyte subpopulations and dendritic cell populations in T2DM, CAD and T2DM_CAD groups compared to the control group (p < 0.05). Furthermore, significantly increased IL-1β, IL-2, IL-4, IL-6, IL-8, IL12p70, IL-13 IL-18, CCL2, and decreased CXCL1, CCL5 levels were observed in T2DM_CAD group compared to the control group. Our ex-vivo study increased platelet-monocyte aggregate formation was observed upon D-glucose exposure in a time and concentration dependent manner. CONCLUSION Our data suggests that T2DM, CAD and T2DM_CAD are associated with altered immune cell populations. Furthermore, it has been confirmed that hyperglycemia induces platelet activation and forms platelet-immune cell aggregation which may lead to the release of inflammatory cytokines and chemokines and contribute to the complexity of CAD and type 2 diabetes.
Collapse
Affiliation(s)
- Ebin Johny
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, 781101, India
| | - Pathoori Bhaskar
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, 781101, India
| | - Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, 781101, India
| | | | - Rupam Das
- Down Town Hospital, Guwahati, Assam, 781006, India
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, 781101, India
| |
Collapse
|
18
|
Secreted modular calcium-binding protein 1 binds and activates thrombin to account for platelet hyperreactivity in diabetes. Blood 2021; 137:1641-1651. [PMID: 33529332 DOI: 10.1182/blood.2020009405] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Secreted modular calcium-binding protein 1 (SMOC1) is an osteonectin/SPARC-related matricellular protein, whose expression is regulated by microRNA-223 (miR-223). Given that platelets are rich in miR-223, this study investigated the expression of SMOC1 and its contribution to platelet function. Human and murine platelets expressed SMOC1, whereas platelets from SMOC1+/- mice did not present detectable mature SMOC1 protein. Platelets from SMOC1+/- mice demonstrated attenuated responsiveness to thrombin (platelet neutrophil aggregate formation, aggregation, clot formation, Ca2+ increase, and β3 integrin phosphorylation), whereas responses to other platelet agonists were unaffected. SMOC1 has been implicated in transforming growth factor-β signaling, but no link to this pathway was detected in platelets. Rather, the SMOC1 Kazal domain directly bound thrombin to potentiate its activity in vitro, as well as its actions on isolated platelets. The latter effects were prevented by monoclonal antibodies against SMOC1. Platelets from miR-223-deficient mice expressed high levels of SMOC1 and exhibited hyperreactivity to thrombin that was also reversed by preincubation with monoclonal antibodies against SMOC1. Similarly, SMOC1 levels were markedly upregulated in platelets from individuals with type 2 diabetes, and the SMOC1 antibody abrogated platelet hyperresponsiveness to thrombin. Taken together, we have identified SMOC1 as a novel thrombin-activating protein that makes a significant contribution to the pathophysiological changes in platelet function associated with type 2 diabetes. Thus, strategies that target SMOC1 or its interaction with thrombin may be attractive therapeutic approaches to normalize platelet function in diabetes.
Collapse
|
19
|
Ajjan RA, Kietsiriroje N, Badimon L, Vilahur G, Gorog DA, Angiolillo DJ, Russell DA, Rocca B, Storey RF. Antithrombotic therapy in diabetes: which, when, and for how long? Eur Heart J 2021; 42:2235-2259. [PMID: 33764414 PMCID: PMC8203081 DOI: 10.1093/eurheartj/ehab128] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/26/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease remains the main cause of mortality in individuals with diabetes mellitus (DM) and also results in significant morbidity. Premature and more aggressive atherosclerotic disease, coupled with an enhanced thrombotic environment, contributes to the high vascular risk in individuals with DM. This prothrombotic milieu is due to increased platelet activity together with impaired fibrinolysis secondary to quantitative and qualitative changes in coagulation factors. However, management strategies to reduce thrombosis risk remain largely similar in individuals with and without DM. The current review covers the latest in the field of antithrombotic management in DM. The role of primary vascular prevention is discussed together with options for secondary prevention following an ischaemic event in different clinical scenarios including coronary, cerebrovascular, and peripheral artery diseases. Antiplatelet therapy combinations as well as combination of antiplatelet and anticoagulant agents are examined in both the acute phase and long term, including management of individuals with sinus rhythm and those with atrial fibrillation. The difficulties in tailoring therapy according to the variable atherothrombotic risk in different individuals are emphasized, in addition to the varying risk within an individual secondary to DM duration, presence of complications and predisposition to bleeding events. This review provides the reader with an up-to-date guide for antithrombotic management of individuals with DM and highlights gaps in knowledge that represent areas for future research, aiming to improve clinical outcome in this high-risk population.
Collapse
Affiliation(s)
- Ramzi A Ajjan
- The LIGHT Laboratories, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 7JT, UK
| | - Noppadol Kietsiriroje
- The LIGHT Laboratories, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 7JT, UK.,Endocrinology and Metabolism Unit, Internal Medicine Department, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Lina Badimon
- Cardiovascular Program ICCC, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Sant Antoni M. Claret 167, 08025 Barcelona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Sant Antoni M. Claret 167, 08025 Barcelona, Spain.,Cardiovascular Research Chair, Universidad Autónoma Barcelona (UAB), Sant Antoni M. Claret 167, 08025 Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Sant Antoni M. Claret 167, 08025 Barcelona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Sant Antoni M. Claret 167, 08025 Barcelona, Spain
| | - Diana A Gorog
- University of Hertfordshire, College Lane Campus Hatfield, Hertfordshire AL10 9AB, UK.,National Heart and Lung Institute, Guy Scadding Building, Dovehouse St, London SW3 6LY, UK
| | - Dominick J Angiolillo
- Division of Cardiology, University of Florida College of Medicine - Jacksonville, 655 West, 8th Street, Jacksonville, FL 32209, USA
| | - David A Russell
- The LIGHT Laboratories, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 7JT, UK.,Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK
| | - Bianca Rocca
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy
| | - Robert F Storey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
20
|
Dietary Antiplatelets: A New Perspective on the Health Benefits of the Water-Soluble Tomato Concentrate Fruitflow ®. Nutrients 2021; 13:nu13072184. [PMID: 34201950 PMCID: PMC8308204 DOI: 10.3390/nu13072184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Our understanding of platelet functionality has undergone a sea change in the last decade. No longer are platelets viewed simply as regulators of haemostasis; they are now acknowledged to be pivotal in coordinating the inflammatory and immune responses. This expanded role for platelets brings new opportunities for controlling a range of health conditions, targeting platelet activation and their interactions with other vascular cells. Antiplatelet drugs may be of wider utility than ever expected but often cause platelet suppression too strong to be used out of clinical settings. Dietary antiplatelets represent a nutritional approach that can be efficacious while safe for general use. In this review, we discuss potential new uses for dietary antiplatelets outside the field of cardiovascular health, with specific reference to the water-soluble tomato extract Fruitflow®. Its uses in different aspects of inflammation and immune function are discussed, highlighting exercise-induced inflammation, mediating the effects of air pollution, and controlling thrombotic aspects of the immune response. Potential future developments in women’s health, erectile dysfunction, and the allergic response indicate how broad the utility of dietary antiplatelets can be.
Collapse
|
21
|
Pretorius E. Platelets in HIV: A Guardian of Host Defence or Transient Reservoir of the Virus? Front Immunol 2021; 12:649465. [PMID: 33968041 PMCID: PMC8102774 DOI: 10.3389/fimmu.2021.649465] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 01/28/2023] Open
Abstract
The immune and inflammatory responses of platelets to human immunodeficiency virus 1 (HIV-1) and its envelope proteins are of great significance to both the treatment of the infection, and to the comorbidities related to systemic inflammation. Platelets can interact with the HIV-1 virus itself, or with viral membrane proteins, or with dysregulated inflammatory molecules in circulation, ensuing from HIV-1 infection. Platelets can facilitate the inhibition of HIV-1 infection via endogenously-produced inhibitors of HIV-1 replication, or the virus can temporarily hide from the immune system inside platelets, whereby platelets act as HIV-1 reservoirs. Platelets are therefore both guardians of the host defence system, and transient reservoirs of the virus. Such reservoirs may be of particular significance during combination antiretroviral therapy (cART) interruption, as it may drive viral persistence, and result in significant implications for treatment. Both HIV-1 envelope proteins and circulating inflammatory molecules can also initiate platelet complex formation with immune cells and erythrocytes. Complex formation cause platelet hypercoagulation and may lead to an increased thrombotic risk. Ultimately, HIV-1 infection can initiate platelet depletion and thrombocytopenia. Because of their relatively short lifespan, platelets are important signalling entities, and could be targeted more directly during HIV-1 infection and cART.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
22
|
Giannella A, Ceolotto G, Radu CM, Cattelan A, Iori E, Benetti A, Fabris F, Simioni P, Avogaro A, Vigili de Kreutzenberg S. PAR-4/Ca 2+-calpain pathway activation stimulates platelet-derived microparticles in hyperglycemic type 2 diabetes. Cardiovasc Diabetol 2021; 20:77. [PMID: 33812377 PMCID: PMC8019350 DOI: 10.1186/s12933-021-01267-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Background Patients with type 2 diabetes (T2DM) have a prothrombotic state that needs to be fully clarified; microparticles (MPs) have emerged as mediators and markers of this condition. Thus, we investigate, in vivo, in T2DM either with good (HbA1c ≤ 7.0%; GGC) or poor (HbA1c > 7.0%; PGC) glycemic control, the circulating levels of MPs, and in vitro, the molecular pathways involved in the release of MPs from platelets (PMP) and tested their pro-inflammatory effects on THP-1 transformed macrophages. Methods In 59 T2DM, and 23 control subjects with normal glucose tolerance (NGT), circulating levels of CD62E+, CD62P+, CD142+, CD45+ MPs were determined by flow cytometry, while plasma levels of ICAM-1, VCAM-1, IL-6 by ELISA. In vitro, PMP release and activation of isolated platelets from GGC and PGC were investigated, along with their effect on IL-6 secretion in THP-1 transformed macrophages. Results We found that MPs CD62P+ (PMP) and CD142+ (tissue factor-bearing MP) were significantly higher in PGC T2DM than GGC T2DM and NGT. Among MPs, PMP were also correlated with HbA1c and IL-6. In vitro, we showed that acute thrombin exposure stimulated a significantly higher PMP release in PGC T2DM than GGC T2DM through a more robust activation of PAR-4 receptor than PAR-1 receptor. Treatment with PAR-4 agonist induced an increased release of PMP in PGC with a Ca2+-calpain dependent mechanism since this effect was blunted by calpain inhibitor. Finally, the uptake of PMP derived from PAR-4 treated PGC platelets into THP-1 transformed macrophages promoted a marked increase of IL-6 release compared to PMP derived from GGC through the activation of the NF-kB pathway. Conclusions These results identify PAR-4 as a mediator of platelet activation, microparticle release, and inflammation, in poorly controlled T2DM. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-021-01267-w.
Collapse
Affiliation(s)
- Alessandra Giannella
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Giulio Ceolotto
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Claudia Maria Radu
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Arianna Cattelan
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Elisabetta Iori
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Andrea Benetti
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Fabrizio Fabris
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Paolo Simioni
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | - Angelo Avogaro
- Metabolic Disease Unit, Department of Medicine-DIMED, Via Giustiniani, 2, 35128, Padova, Italy
| | | |
Collapse
|
23
|
Nicolas J, Razuk V, Giustino G, Mehran R. Current state-of-the-art antiplatelet and anticoagulation therapy in diabetic patients with coronary artery disease. Future Cardiol 2021; 17:521-534. [PMID: 33728965 DOI: 10.2217/fca-2021-0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus is a complex disease that leads to long-term damage to various organ systems. Among the numerous cardiovascular disease-related complications, thrombotic events frequently occur in patients with diabetes. Although guidelines exist for treating and preventing most diabetes-related co-morbidities, the evidence on antithrombotic therapy in primary and secondary prevention is limited due to the scarcity of randomized trials dedicated to patients with diabetes mellitus. Most of the available data are derived from studies that only included a small proportion of patients with diabetes. The present review provides an overview of the status of knowledge on antiplatelet and anticoagulation therapy in patients with diabetes, focusing on the risk-benefit balance of these therapies and future treatment strategies.
Collapse
Affiliation(s)
- Johny Nicolas
- Department of Cardiology, The Zena & Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Victor Razuk
- Department of Cardiology, The Zena & Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gennaro Giustino
- Department of Cardiology, The Zena & Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roxana Mehran
- Department of Cardiology, The Zena & Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
24
|
Nunes JM, Fillis T, Page MJ, Venter C, Lancry O, Kell DB, Windberger U, Pretorius E. Gingipain R1 and Lipopolysaccharide From Porphyromonas gingivalis Have Major Effects on Blood Clot Morphology and Mechanics. Front Immunol 2020; 11:1551. [PMID: 32793214 PMCID: PMC7393971 DOI: 10.3389/fimmu.2020.01551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
Background:Porphyromonas gingivalis and its inflammagens are associated with a number of systemic diseases, such as cardiovascular disease and type 2 diabetes (T2DM). The proteases, gingipains, have also recently been identified in the brains of Alzheimer's disease patients and in the blood of Parkinson's disease patients. Bacterial inflammagens, including lipopolysaccharides (LPSs) and various proteases in circulation, may drive systemic inflammation. Methods: Here, we investigate the effects of the bacterial products LPS from Escherichia coli and Porphyromonas gingivalis, and also the P. gingivalis gingipain [recombinant P. gingivalis gingipain R1 (RgpA)], on clot architecture and clot formation in whole blood and plasma from healthy individuals, as well as in purified fibrinogen models. Structural analysis of clots was performed using confocal microscopy, scanning electron microscopy, and AFM-Raman imaging. We use thromboelastography® (TEG®) and rheometry to compare the static and dynamic mechanical properties of clots. Results: We found that these inflammagens may interact with fibrin(ogen) and this interaction causes anomalous blood clotting. Conclusions: These techniques, in combination, provide insight into the effects of these bacterial products on cardiovascular health, and particularly clot structure and mechanics.
Collapse
Affiliation(s)
- J Massimo Nunes
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Tristan Fillis
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Martin J Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Chantelle Venter
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Ophélie Lancry
- HORIBA Scientific, HORIBA FRANCE SAS, Villeneuve-d'Ascq, France
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Department of Biochemistry, Faculty of Health and Life Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ursula Windberger
- Decentralised Biomedical Facilities, Centre for Biomedical Research, Medical University Vienna, Vienna, Austria
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
25
|
Grobler C, Maphumulo SC, Grobbelaar LM, Bredenkamp JC, Laubscher GJ, Lourens PJ, Steenkamp J, Kell DB, Pretorius E. Covid-19: The Rollercoaster of Fibrin(Ogen), D-Dimer, Von Willebrand Factor, P-Selectin and Their Interactions with Endothelial Cells, Platelets and Erythrocytes. Int J Mol Sci 2020; 21:ijms21145168. [PMID: 32708334 PMCID: PMC7403995 DOI: 10.3390/ijms21145168] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), also known as coronavirus disease 2019 (COVID-19)-induced infection, is strongly associated with various coagulopathies that may result in either bleeding and thrombocytopenia or hypercoagulation and thrombosis. Thrombotic and bleeding or thrombotic pathologies are significant accompaniments to acute respiratory syndrome and lung complications in COVID-19. Thrombotic events and bleeding often occur in subjects with weak constitutions, multiple risk factors and comorbidities. Of particular interest are the various circulating inflammatory coagulation biomarkers involved directly in clotting, with specific focus on fibrin(ogen), D-dimer, P-selectin and von Willebrand Factor (VWF). Central to the activity of these biomarkers are their receptors and signalling pathways on endothelial cells, platelets and erythrocytes. In this review, we discuss vascular implications of COVID-19 and relate this to circulating biomarker, endothelial, erythrocyte and platelet dysfunction. During the progression of the disease, these markers may either be within healthy levels, upregulated or eventually depleted. Most significant is that patients need to be treated early in the disease progression, when high levels of VWF, P-selectin and fibrinogen are present, with normal or slightly increased levels of D-dimer (however, D-dimer levels will rapidly increase as the disease progresses). Progression to VWF and fibrinogen depletion with high D-dimer levels and even higher P-selectin levels, followed by the cytokine storm, will be indicative of a poor prognosis. We conclude by looking at point-of-care devices and methodologies in COVID-19 management and suggest that a personalized medicine approach should be considered in the treatment of patients.
Collapse
Affiliation(s)
- Corlia Grobler
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
| | - Siphosethu C. Maphumulo
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
| | - L. Mireille Grobbelaar
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
| | - Jhade C. Bredenkamp
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
| | - Gert J. Laubscher
- Elsie du Toit Street, Stellenbosch MediClinic, Stellenbosch 7600, South Africa; (G.J.L.); (P.J.L.)
| | - Petrus J. Lourens
- Elsie du Toit Street, Stellenbosch MediClinic, Stellenbosch 7600, South Africa; (G.J.L.); (P.J.L.)
| | - Janami Steenkamp
- PathCare Laboratories, PathCare Business Centre, Neels Bothma Street, N1 City, Cape Town 7460, South Africa;
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Kemitorve Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Correspondence: (D.B.K.); (E.P.)
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
- Correspondence: (D.B.K.); (E.P.)
| |
Collapse
|
26
|
Xu Y, Jiang H, Li L, Chen F, Liu Y, Zhou M, Wang J, Jiang J, Li X, Fan X, Zhang L, Zhang J, Qiu J, Wu Y, Fang C, Sun H, Liu J. Branched-Chain Amino Acid Catabolism Promotes Thrombosis Risk by Enhancing Tropomodulin-3 Propionylation in Platelets. Circulation 2020; 142:49-64. [DOI: 10.1161/circulationaha.119.043581] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
Branched-chain amino acids (BCAAs), essential nutrients including leucine, isoleucine, and valine, serve as a resource for energy production and the regulator of important nutrient and metabolic signals. Recent studies have suggested that dysfunction of BCAA catabolism is associated with the risk of cardiovascular disease. Platelets play an important role in cardiovascular disease, but the functions of BCAA catabolism in platelets remain unknown.
Methods:
The activity of human platelets from healthy subjects before and after ingestion of BCAAs was measured. Protein phosphatase 2Cm specifically dephosphorylates branched-chain α-keto acid dehydrogenase and thereby activates BCAA catabolism. Protein phosphatase 2Cm–deficient mice were used to elucidate the impacts of BCAA catabolism on platelet activation and thrombus formation.
Results:
We found that ingestion of BCAAs significantly promoted human platelet activity (n=5;
P
<0.001) and arterial thrombosis formation in mice (n=9;
P
<0.05). We also found that the valine catabolite α-ketoisovaleric acid and the ultimate oxidation product propionyl-coenzyme A showed the strongest promotion effects on platelet activation, suggesting that the valine/α-ketoisovaleric acid catabolic pathway plays a major role in BCAA-facilitated platelet activation. Protein phosphatase 2Cm deficiency significantly suppresses the activity of platelets in response to agonists (n=5;
P
<0.05). Our results also suggested that BCAA metabolic pathways may be involved in the integrin αIIbβ3–mediated bidirectional signaling pathway that regulates platelet activation. Mass spectrometry identification and immunoblotting revealed that BCAAs enhanced propionylation of tropomodulin-3 at K255 in platelets or Chinese hamster ovary cells expressing integrin αIIbβ3. The tropomodulin-3 K255A mutation abolished propionylation and attenuated the promotion effects of BCAAs on integrin-mediated cell spreading, suggesting that K255 propionylation of tropomodulin-3 is an important mechanism underlying integrin αIIbβ3–mediated BCAA-facilitated platelet activation and thrombosis formation. In addition, the increased levels of BCAAs and the expression of positive regulators of BCAA catabolism in platelets from patients with type 2 diabetes mellitus are significantly correlated with platelet hyperreactivity. Lowering dietary BCAA intake significantly reduced platelet activity in
ob/ob
mice (n=4;
P
<0.05).
Conclusions:
BCAA catabolism is an important regulator of platelet activation and is associated with arterial thrombosis risk. Targeting the BCAA catabolism pathway or lowering dietary BCAA intake may serve as a novel therapeutic strategy for metabolic syndrome–associated thrombophilia.
Collapse
Affiliation(s)
- Yanyan Xu
- Department of Biochemistry and Molecular Cell Biology (Y.X., H.J., X.F., L.Z., J.L.), Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Haojie Jiang
- Department of Biochemistry and Molecular Cell Biology (Y.X., H.J., X.F., L.Z., J.L.), Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Li Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China (L.L., C.F.)
| | - Fengwu Chen
- The Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China (F.C., Y.W., J.L.)
| | - Yunxia Liu
- Department of Pathophysiology (Y.L., M.Z., J.W., H.S.), Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Meiyi Zhou
- Department of Pathophysiology (Y.L., M.Z., J.W., H.S.), Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Ji Wang
- Department of Pathophysiology (Y.L., M.Z., J.W., H.S.), Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Jingjing Jiang
- Department of Endocrinology and Catabolism, Zhongshan Hospital, Fudan University, Shanghai, China (J.J., X.L.)
| | - Xiaoying Li
- Department of Endocrinology and Catabolism, Zhongshan Hospital, Fudan University, Shanghai, China (J.J., X.L.)
| | - Xuemei Fan
- Department of Biochemistry and Molecular Cell Biology (Y.X., H.J., X.F., L.Z., J.L.), Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Cell Biology (Y.X., H.J., X.F., L.Z., J.L.), Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Junfeng Zhang
- Department of Cardiology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People’s Hospital, China (J.Z.)
| | - Junqiang Qiu
- Sport Science School, Beijing Sport University, China (J.Q.)
| | - Yi Wu
- The Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China (F.C., Y.W., J.L.)
| | - Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China (L.L., C.F.)
| | - Haipeng Sun
- Department of Pathophysiology (Y.L., M.Z., J.W., H.S.), Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology (Y.X., H.J., X.F., L.Z., J.L.), Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
- The Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China (F.C., Y.W., J.L.)
| |
Collapse
|
27
|
Platelets in Healthy and Disease States: From Biomarkers Discovery to Drug Targets Identification by Proteomics. Int J Mol Sci 2020; 21:ijms21124541. [PMID: 32630608 PMCID: PMC7352998 DOI: 10.3390/ijms21124541] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Platelets are a heterogeneous small anucleate blood cell population with a central role both in physiological haemostasis and in pathological states, spanning from thrombosis to inflammation, and cancer. Recent advances in proteomic studies provided additional important information concerning the platelet biology and the response of platelets to several pathophysiological pathways. Platelets circulate systemically and can be easily isolated from human samples, making proteomic application very interesting for characterizing the complexity of platelet functions in health and disease as well as for identifying and quantifying potential platelet proteins as biomarkers and novel antiplatelet therapeutic targets. To date, the highly dynamic protein content of platelets has been studied in resting and activated platelets, and several subproteomes have been characterized including platelet-derived microparticles, platelet granules, platelet releasates, platelet membrane proteins, and specific platelet post-translational modifications. In this review, a critical overview is provided on principal platelet proteomic studies focused on platelet biology from signaling to granules content, platelet proteome changes in several diseases, and the impact of drugs on platelet functions. Moreover, recent advances in quantitative platelet proteomics are discussed, emphasizing the importance of targeted quantification methods for more precise, robust and accurate quantification of selected proteins, which might be used as biomarkers for disease diagnosis, prognosis and therapy, and their strong clinical impact in the near future.
Collapse
|
28
|
Kell DB, Heyden EL, Pretorius E. The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria. Front Immunol 2020; 11:1221. [PMID: 32574271 PMCID: PMC7271924 DOI: 10.3389/fimmu.2020.01221] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Lactoferrin is a nutrient classically found in mammalian milk. It binds iron and is transferred via a variety of receptors into and between cells, serum, bile, and cerebrospinal fluid. It has important immunological properties, and is both antibacterial and antiviral. In particular, there is evidence that it can bind to at least some of the receptors used by coronaviruses and thereby block their entry. Of importance are Heparan Sulfate Proteoglycans (HSPGs) and the host receptor angiotensin-converting enzyme 2 (ACE2), as based on other activities lactoferrin might prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from attaching to the host cells. Lactoferrin (and more specifically enteric-coated LF because of increased bioavailability) may consequently be of preventive and therapeutic value during the present COVID-19 pandemic.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry, Faculty of Health and Life Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | | | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
29
|
Liu SL, Wu NQ, Shi HW, Dong Q, Dong QT, Gao Y, Guo YL, Li JJ. Fibrinogen is associated with glucose metabolism and cardiovascular outcomes in patients with coronary artery disease. Cardiovasc Diabetol 2020; 19:36. [PMID: 32192491 PMCID: PMC7081587 DOI: 10.1186/s12933-020-01012-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Background The present cohort study aims to examine the relationship between fibrinogen (Fib) levels and glucose metabolism [fasting blood glucose (FBG) and hemoglobin A1c (HbA1c)] and investigate the impact of high Fib on cardiovascular outcomes in patients with stable CAD and pre-diabetes mellitus (pre-DM) or diabetes mellitus (DM). Methods This study included 5237 patients from March 2011 to December 2015. Patients were distributed into three groups according to Fib levels (low Fib, median Fib, high Fib) and further categorized by glucose metabolism status [normal glucose regulation (NGR), Pre-DM, DM]. All patients were followed up for the occurrences of major adverse cardiovascular events (MACEs), including cardiovascular mortality, nonfatal MI, stroke, and unplanned coronary revascularization. Results Linear regression analyses showed that FBG and HbA1c levels were positively associated with Fib in overall CAD participants, either with or without DM (all P < 0.001). During an average of 18,820 patient-years of follow-up, 476 MACEs occurred. High Fib was independently associated with MACEs after adjusting for confounding factors [Hazard Ratio (HR): 1.57, 95% confidence interval (CI) 1.26–1.97, P < 0.001]. Furthermore, DM but not pre-DM was a significant predictor of MACEs (P < 0.001 and P > 0.05, respectively). When patients were stratified by both glucose metabolism status and Fib levels, high Fib was associated with a higher risk of MACEs in pre-DM (HR 1.66, 95% CI 1.02–2.71, P < 0.05). Medium and high Fib levels were associated with an even higher risk of MACEs in DM (HR 1.86, 95% CI 1.14–3.05 and HR 2.28, 95% CI 1.42–3.66, all P < 0.05). After adding the combination of Fib and glucose status to the Cox model, the C-statistic was increased by 0.015 (0.001–0.026). Conclusions The present study suggested that Fib levels were associated with FBG and HbA1c in stable CAD patients. Moreover, elevated Fib was independently associated with MACEs in CAD patients, especially among those with pre-DM and DM, suggesting that Fib may provide incremental value in the cardiovascular risk stratification of pre-DM and DM patients.
Collapse
Affiliation(s)
- Shuo-Lin Liu
- Endocrinology & Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Na-Qiong Wu
- Endocrinology & Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China.
| | - Hui-Wei Shi
- Endocrinology & Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Qian Dong
- Endocrinology & Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Qiu-Ting Dong
- Endocrinology & Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Ying Gao
- Endocrinology & Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Yuan-Lin Guo
- Endocrinology & Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Jian-Jun Li
- Endocrinology & Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| |
Collapse
|
30
|
Rocca B, Patrono C. Aspirin in the primary prevention of cardiovascular disease in diabetes mellitus: A new perspective. Diabetes Res Clin Pract 2020; 160:108008. [PMID: 31926190 DOI: 10.1016/j.diabres.2020.108008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
Although the improved control of hyperglycaemia and other cardiovascular risk factors was associated with a parallel decline of atherosclerotic cardiovascular disease (ASCVD) and death in both type 1 (T1) and type 2 (T2) diabetes mellitus (DM), the burden of death and hospitalization for ASCVD remains significantly higher by about 2-fold versus the matched non-DM population. Life style interventions, such as physical activity and healthy diet, and drugs, such as statins and low-dose aspirin, may have beneficial effects by targeting one or multiple pathways responsible for accelerated atherosclerosis and its thrombotic complications. The debate on the benefit-risk balance of primary cardiovascular prevention with aspirin has been especially vivacious over the past two years, following the publication of three large randomized, placebo-controlled, primary prevention trials in different settings, spanning from healthy elderly to DM subjects. The aim of this review is to discuss the pathophysiological, pharmacological and clinical evidence supporting the appropriate use of low-dose aspirin in DM, within the context of the current multifactorial approach to primary cardiovascular prevention.
Collapse
Affiliation(s)
- Bianca Rocca
- Institute of Pharmacology, Catholic University School of Medicine, and Fondazione Policlinico Universitario "A. Gemelli" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.
| | - Carlo Patrono
- Institute of Pharmacology, Catholic University School of Medicine, and Fondazione Policlinico Universitario "A. Gemelli" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|