1
|
Albini A, La Vecchia C, Magnoni F, Garrone O, Morelli D, Janssens JP, Maskens A, Rennert G, Galimberti V, Corso G. Physical activity and exercise health benefits: cancer prevention, interception, and survival. Eur J Cancer Prev 2025; 34:24-39. [PMID: 38920329 DOI: 10.1097/cej.0000000000000898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Physical activity (PA) has an established role in the promotion of health and fitness and the prevention of disease. Expected overall benefits include reduction of all-cause morbidity and death, weight control, improved quality of life, improved bone health and decreased falls of elderly subjects, , deeper cognition, and reduced risk of depression, anxiety, and sleeplessness. Currently, PA is a mainstay in the management of cardiovascular diseases, metabolic syndrome, diabetes, and bone health. Recently, the perception of its role in primary and secondary prevention, interception, and treatment of cancer, however, is also gaining importance. Regular walking, the simplest type of PA, is associated with reduced all-cause and cardiovascular disease mortality, and a role in cancer prevention is of increasing interest. Furthermore, PA improves the quality of life of cancer patients, attenuating side effects of chemotherapy, decreasing sarcopenia, increasing fitness, and inhibiting the recurrence and progression of some cancer types. It promotes emotional and psychological benefits in patients, inducing positive changes. While mechanisms, effective levels and useful amount of PA practice are well established in cardiology, they are yet to be fully determined in oncology. Nevertheless, PA is recommended to reduce cancer risk in the general population, and it has been introduced in programs for the prevention of second cancers. In perspective, it will help as integrative therapy in cancer patients and for cancer survivors. The number of beneficial effects in the cancer continuum is highlighted in this review.
Collapse
Affiliation(s)
- Adriana Albini
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan
| | - Francesca Magnoni
- Division of Breast Surgery, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)
| | - Ornella Garrone
- Department of Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
| | - Danilo Morelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica
| | | | - Alain Maskens
- European Cancer Prevention Organization (ECP), Milan, Italy
| | - Gad Rennert
- Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Viviana Galimberti
- Division of Breast Surgery, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)
| | - Giovanni Corso
- Division of Breast Surgery, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Cheng X, Zhang S, An J, Jia C, Zhang X, Li P, Guan Y, Yan Y, Zhao Z, Liu Y, Jing T, Huang S, He M. Association between phthalates exposure and all-cause mortality among diabetic cases: A prospective study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125008. [PMID: 39307341 DOI: 10.1016/j.envpol.2024.125008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/14/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
The aim of this study was to explore the association between phthalates (PAEs) exposure and all-cause mortality among diabetic cases, and potential molecular mechanisms of the effect. We followed 2806 diabetes cases from 2008 to the end of 2018 based on the Dongfeng-Tongji study, of which 446 cases died. We measured serum levels of six PAEs (DMP, DEP, DiBP, DnBP, BBP, and DEHP). Cox models were used to investigate the associations between PAEs and all-cause mortality. Genes related to PAEs are obtained from the Comparative Toxicogenomics Database. We constructed polygenic scores for sex hormone-binding globulin (SHBG) and testosterone, and functional SNPs for IL-6, PPARG, and GPX1 from genotyping data, and further analyzed the environment-gene interactions. The positive associations of PAEs (DMP, DiBP, DnBP, DEHP) with mortality were only observed in males but not in females. Comparing with the extreme quartile 1, the HRs (95% CI) for quartile 4 were 1.63 (0.17, 2.26) for DMP, 1.82 (1.29, 2.56) for DiBP, 1.68 (1.18, 2.40) for DnBP, 1.66 (1.17, 2.36) for DEHP. Enrichment analysis showed that PAEs-related genes were mainly associated with hormones and IL-6-related pathways. Genetic variants of SHBG, testosterone, and IL-6 modified the association between PAEs mixture and all-cause mortality. PAEs exposure are associated with all-cause mortality among diabetic cases, and PAE exposure increases the risk of all-cause mortality only in males. Effects on the hormonal system and IL6-related pathways may be potential mechanisms.
Collapse
Affiliation(s)
- Xu Cheng
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun An
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengyong Jia
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peiwen Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Youbing Guan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Yan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuoya Zhao
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuenan Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Jing
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Suli Huang
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Durmanova V, Mikolaskova I, Zsemlye E, Ocenasova A, Bandzuchova H, Suchankova M, Kollarik B, Palacka P, Zvarik M, Bucova M, Hunakova L. Association of HLA-G Expression, Its Genetic Variants and Related Neuro-Immunomodulation with Characteristics of Bladder Carcinoma. Cancers (Basel) 2024; 16:3877. [PMID: 39594832 PMCID: PMC11593171 DOI: 10.3390/cancers16223877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Human leukocyte antigen G (HLA-G) is an immune checkpoint molecule with immunosuppressive and anti-inflammatory activities. It belongs to class I non-classical major histocompatibility complex molecules and has been upregulated in various cancer types. In bladder cancer (BC) tumors, the association of HLA-G with cancer progression has to be explained. METHODS A total of 89 BC patients and 74 control subjects were genotyped for the HLA-G 14 bp ins/del polymorphism. In urine cell samples, HLA-G mRNA expression was analyzed using real-time PCR. Soluble HLA-G (sHLA-G) serum levels were measured by ELISA. The associations between the HLA-G 14 bp ins/del polymorphism, HLA-G mRNA expression, and/or sHLA-G levels and selected variables including tumor grade, disease stage, body mass index, and heart rate variability (HRV) parameters were evaluated. RESULTS The protective HLA-G 14 bp ins/ins genotype under the recessive genetic model was associated with lower HLA-G mRNA expression in the BC group (p = 0.049). Significantly higher HLA-G mRNA expression was detected in patients with pT2 + pT3 as compared to those with pTa + pT1 stages (p = 0.0436). Furthermore, higher HLA-G mRNA expression was observed in high-grade muscle-infiltrating BC (MIBC) than in the low-grade non-MIBC group (p = 0.0365). Patients with a level of sHLA-G above 29 U/mL had shorter disease-free survival than patients with lower sHLA-G levels. Furthermore, the opposite HRV correlations with sHLA-G levels in BC patients as compared to controls probably reflect the different roles of HLA-G in health and cancer. CONCLUSIONS Our results suggest the impact of the HLA-G 14 bp ins/del variant, HLA-G expression, and autonomic nervous system imbalance on advanced stages of BC.
Collapse
Affiliation(s)
- Vladimira Durmanova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (V.D.); (I.M.); (A.O.); (M.S.); (M.B.)
| | - Iveta Mikolaskova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (V.D.); (I.M.); (A.O.); (M.S.); (M.B.)
| | - Eszter Zsemlye
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (V.D.); (I.M.); (A.O.); (M.S.); (M.B.)
| | - Agata Ocenasova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (V.D.); (I.M.); (A.O.); (M.S.); (M.B.)
| | | | - Magda Suchankova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (V.D.); (I.M.); (A.O.); (M.S.); (M.B.)
| | - Boris Kollarik
- Department of Urology, Saints Cyril and Methodius Hospital, University Hospital Bratislava, 851 07 Bratislava, Slovakia
| | - Patrik Palacka
- 2nd Department of Oncology, Faculty of Medicine and National Cancer Institute, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia;
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 814 39 Bratislava, Slovakia
| | - Milan Zvarik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Computer Science, Comenius University in Bratislava, 842 48 Bratislava, Slovakia;
| | - Maria Bucova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (V.D.); (I.M.); (A.O.); (M.S.); (M.B.)
| | - Luba Hunakova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia; (V.D.); (I.M.); (A.O.); (M.S.); (M.B.)
| |
Collapse
|
4
|
Marroquin-Muciño M, Benito-Lopez JJ, Perez-Medina M, Aguilar-Cazares D, Galicia-Velasco M, Chavez-Dominguez R, Meza-Toledo SE, Meneses-Flores M, Camarena A, Lopez-Gonzalez JS. SOCS1 Inhibits IL-6-Induced CD155 Overexpression in Lung Adenocarcinoma. Int J Mol Sci 2024; 25:12141. [PMID: 39596207 PMCID: PMC11595078 DOI: 10.3390/ijms252212141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
CD155, also known as the poliovirus receptor (PVR), is a crucial molecule in the development and progression of cancer, as its overexpression favors immune evasion and resistance to immunotherapy. However, little is known about the mechanisms that regulate its overexpression. Proinflammatory factors produced by various cellular components of the tumor microenvironment (TME) have been associated with CD155 expression. We analyzed the effect of interleukin (IL)-6 on CD155 expression in lung adenocarcinoma. We found a positive relationship between mRNA and protein levels. This correlation was also observed in bioinformatics analysis and in biopsies and serum from patients with lung adenocarcinoma. Interestingly, lung adenocarcinoma cell lines expressing suppressor of cytokine signaling 1 (SOCS1) did not show increased CD155 levels upon IL-6 stimulation, and SOCS1 silencing reverted this effect. IL-6 and SOCS1 are critical regulators of CD155 expression in lung adenocarcinoma. Further basic and clinical studies are needed to define the role of these molecules during tumor development and to improve their clinical impact as biomarkers and targets for predicting the efficacy of immunotherapies. This study deepens the understanding of the intricate regulation of the immune checkpoints mediated by soluble factors and allows us to devise new ways to combine conventional treatments with the most innovative anticancer options.
Collapse
Affiliation(s)
- Mario Marroquin-Muciño
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City 11340, Mexico;
| | - Jesus J. Benito-Lopez
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Mario Perez-Medina
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City 11340, Mexico;
| | - Dolores Aguilar-Cazares
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
| | - Miriam Galicia-Velasco
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
| | - Rodolfo Chavez-Dominguez
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
| | - Sergio E. Meza-Toledo
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City 11340, Mexico;
| | - Manuel Meneses-Flores
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
- Departamento de Patologia, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico
| | - Angel Camarena
- Laboratorio de Inmunobiologia y Genetica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico;
| | - Jose S. Lopez-Gonzalez
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
| |
Collapse
|
5
|
Maddipati KR. Distinct etiology of chronic inflammation - implications on degenerative diseases and cancer therapy. Front Immunol 2024; 15:1460302. [PMID: 39555057 PMCID: PMC11563979 DOI: 10.3389/fimmu.2024.1460302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Acute inflammation is elicited by lipid and protein mediators in defense of the host following sterile or pathogen-driven injury. A common refrain is that chronic inflammation is a result of incomplete resolution of acute inflammation and behind the etiology of all chronic diseases, including cancer. However, mediators that participate in inflammation are also essential in homeostasis and developmental biology but without eliciting the clinical symptoms of inflammation. This non-inflammatory physiological activity of the so called 'inflammatory' mediators, apparently under the functional balance with anti-inflammatory mediators, is defined as unalamation (un-ala-mation). Inflammation in the absence of injury is a result of perturbance in unalamation due to a decrease in the anti-inflammatory mediators rather than an increase in the inflammatory mediators and leads to chronic inflammation. This concept on the etiology of chronic inflammation suggests that treatment of chronic diseases is better achieved by stimulating the endogenous anti-inflammatory mediators instead of inhibiting the 'inflammatory' mediator biosynthesis with Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). Furthermore, both 'inflammatory' and anti-inflammatory mediators are present at higher concentrations in the tumor microenvironment compared to normal tissue environments. Since cancer is a proliferative disorder rather than a degenerative disease, it is proposed that heightened unalamation, rather than chronic inflammation, drives tumor growth. This understanding helps explain the inefficacy of NSAIDs as anticancer agents. Finally, inhibition of anti-inflammatory mediator biosynthesis in tumor tissues could imbalance unalamation toward local acute inflammation triggering an immune response to restore homeostasis and away from tumor growth.
Collapse
|
6
|
Fan H, Liang X, Tang Y. Neuroscience in peripheral cancers: tumors hijacking nerves and neuroimmune crosstalk. MedComm (Beijing) 2024; 5:e784. [PMID: 39492832 PMCID: PMC11527832 DOI: 10.1002/mco2.784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer neuroscience is an emerging field that investigates the intricate relationship between the nervous system and cancer, gaining increasing recognition for its importance. The central nervous system governs the development of the nervous system and directly affects brain tumors, and the peripheral nervous system (PNS) shapes the tumor microenvironment (TME) of peripheral tumors. Both systems are crucial in cancer initiation and progression, with recent studies revealing a more intricate role of the PNS within the TME. Tumors not only invade nerves but also persuade them through remodeling to further promote malignancy, creating a bidirectional interaction between nerves and cancers. Notably, immune cells also contribute to this communication, forming a triangular relationship that influences protumor inflammation and the effectiveness of immunotherapy. This review delves into the intricate mechanisms connecting the PNS and tumors, focusing on how various immune cell types influence nerve‒tumor interactions, emphasizing the clinical relevance of nerve‒tumor and nerve‒immune dynamics. By deepening our understanding of the interplay between nerves, cancer, and immune cells, this review has the potential to reshape tumor biology insights, inspire innovative therapies, and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Hua‐Yang Fan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin‐Hua Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ya‐Ling Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral PathologyWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
7
|
Tsai SH, Cheng HC, Little JP, Islam H, Liu HW. Elevated Plasma IL-6 Coincides with Activation of STAT3 in PBMC After Acute Resistance Exercise. Med Sci Sports Exerc 2024; 56:2117-2124. [PMID: 39475859 DOI: 10.1249/mss.0000000000003503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
INTRODUCTION Changes in plasma concentrations of anti-inflammatory cytokines, such as interleukin-6 (IL-6) and IL-10, after acute resistance exercise (RE) have been widely explored. Whether observed changes in plasma cytokine concentration correspond to the activation of anti-inflammatory signaling pathways in immune cells after acute RE is unknown. This study aimed to determine if changes in plasma cytokines after acute RE resulted in the activation of anti-inflammatory signaling pathways in peripheral blood mononuclear cells (PBMC). METHODS Healthy young males (N = 16; age = 23.5 ± 2.7 yr; BMI = 22.4 ± 1.7 kg·m-2) participated in a single session of whole-body RE (4 sets of 4 different exercises at 70% 1-repetition maximum with the last set to failure) and a sedentary control (CON) condition in a randomized crossover design. Blood samples were collected at several time points before and after the exercise bout. RESULTS Higher plasma IL-6, IL-10, and IL-1 RA concentrations were observed after RE compared with CON. Phosphorylation of STAT3 and protein expression of SOCS3 in PBMC were increased in RE compared with CON. The elevation of plasma IL-6, but not IL-10, coincided with the activation of STAT3 signaling in PBMC. CONCLUSIONS These results highlight a potential mechanism by which RE may exert anti-inflammatory actions in circulating immune cells.
Collapse
Affiliation(s)
- Shun-Hsi Tsai
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, TAIWAN
| | - Hao-Chien Cheng
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, TAIWAN
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, CANADA
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, CANADA
| | - Hung-Wen Liu
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, TAIWAN
| |
Collapse
|
8
|
Chen Y, Jin Y, Wang W, Zhang Y, Sun H, Wu A, Zhu H, Gong Y, Wang X, Tian L, Pan J. Preparation and antitumor activity of selenium nanocomposite stabilized by AAGL from Agerocybe aegerita. Int J Biol Macromol 2024; 282:137002. [PMID: 39476918 DOI: 10.1016/j.ijbiomac.2024.137002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024]
Abstract
Selenium nanoparticles (SeNPs) have limited bioavailability because of their poor stability in aqueous solutions. AAGL, a naturally active protein, extracted from Agrocybe aegerita has strong antitumor activity. However, whether AAGL can been used to stabilize SeNPs, and exerts anti-lung cancer effects remains unknown. In this study, a novel nanocomposite, AAGL-SeNPs, was prepared using AAGL-encapsulated SeNPs. The particle size of the AAGL-SeNPs was approximately 206.1 nm, which was uniform and well dispersed in aqueous solution and showed satisfactory stability. AAGL-SeNPs was non-toxic and reduced the hepatotoxicity of AAGL in mice. Importantly, AAGL-SeNPs inhibited the proliferation of lung cancer cells and suppressed tumor growth in tumor-bearing mice. AAGL-SeNPs enhanced the cytotoxic effects on lung cancer cells by stimulating immune cells. In addition, the combination of AAGL-SeNPs and osimertinib inhibited lung cancer, and AAGL-SeNPs reversed osimertinib resistance in H1975 cells. Mechanistically, Krüppel-like transcriptional factor 4 (KLF4) was identified by data-independent acquisition mass spectrometry (DIA-MS), and its expression levels in lung cancer increased after AAGL-SeNPs treatment. This study demonstrated that nanocomposite AAGL-SeNPs is stable, safe, and has excellent antitumor efficacy, which will be a potential therapeutic drug for lung cancer treatment.
Collapse
Affiliation(s)
- Ying Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Yanxia Jin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China.
| | - Weidong Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Yueyang Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Hui Sun
- College of Life Sciences, Wuhan University, Wuhan 435002, China
| | - Aobo Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Haibo Zhu
- Key Laboratory of Molecular Diagnosis and Individualized Treatment in Huangshi City, Huangshi Aikang Hospital affiliated of Hubei Polytechnic University, Huangshi 435001, China
| | - Yongsheng Gong
- Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China
| | - Xiaoyu Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Leyi Tian
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Jicheng Pan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
9
|
Zaha VG. Insights Into Cardiovascular Risks of Chimeric Antigen Receptor T-Cell Therapy-From Peril to Promise. JAMA Netw Open 2024; 7:e2437157. [PMID: 39374023 DOI: 10.1001/jamanetworkopen.2024.37157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Affiliation(s)
- Vlad G Zaha
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas
- Cardio-Oncology Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
10
|
Feng Y, Feng X, Wan R, Luo Z, Qu L, Wang Q. Impact of exercise on cancer: mechanistic perspectives and new insights. Front Immunol 2024; 15:1474770. [PMID: 39346906 PMCID: PMC11427289 DOI: 10.3389/fimmu.2024.1474770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
This review critically evaluates the substantial role of exercise in enhancing cancer prevention, treatment, and patient quality of life. It conclusively demonstrates that regular physical activity not only reduces cancer risk but also significantly mitigates side effects of cancer therapies. The key findings include notable improvements in fatigue management, reduction of cachexia symptoms, and enhancement of cognitive functions. Importantly, the review elucidates the profound impact of exercise on tumor behavior, modulation of immune responses, and optimization of metabolic pathways, advocating for the integration of exercise into standard oncological care protocols. This refined abstract encourages further exploration and application of exercise as a pivotal element of cancer management.
Collapse
Affiliation(s)
- Ye Feng
- School of Stomatology, Xuzhou Medical University, Xuzhou,
Jiangsu, China
| | - Xingting Feng
- Department of Sports Medicine, Huashan Hospital, Fudan University,
Shanghai, China
| | - Renwen Wan
- Department of Sports Medicine, Huashan Hospital, Fudan University,
Shanghai, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University,
Shanghai, China
| | - Lijun Qu
- Department of Orthopaedics, Kunshan Hospital of Chinese Medicine,
Kunshan, Jiangsu, China
| | - Qing Wang
- Department of Orthopaedics, Kunshan Hospital of Chinese Medicine,
Kunshan, Jiangsu, China
| |
Collapse
|
11
|
Dogan NO, Suadiye E, Wrede P, Lazovic J, Dayan CB, Soon RH, Aghakhani A, Richter G, Sitti M. Immune Cell-Based Microrobots for Remote Magnetic Actuation, Antitumor Activity, and Medical Imaging. Adv Healthc Mater 2024; 13:e2400711. [PMID: 38885528 DOI: 10.1002/adhm.202400711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/17/2024] [Indexed: 06/20/2024]
Abstract
Translating medical microrobots into clinics requires tracking, localization, and performing assigned medical tasks at target locations, which can only happen when appropriate design, actuation mechanisms, and medical imaging systems are integrated into a single microrobot. Despite this, these parameters are not fully considered when designing macrophage-based microrobots. This study presents living macrophage-based microrobots that combine macrophages with magnetic Janus particles coated with FePt nanofilm for magnetic steering and medical imaging and bacterial lipopolysaccharides for stimulating macrophages in a tumor-killing state. The macrophage-based microrobots combine wireless magnetic actuation, tracking with medical imaging techniques, and antitumor abilities. These microrobots are imaged under magnetic resonance imaging and optoacoustic imaging in soft-tissue-mimicking phantoms and ex vivo conditions. Magnetic actuation and real-time imaging of microrobots are demonstrated under static and physiologically relevant flow conditions using optoacoustic imaging. Further, macrophage-based microrobots are magnetically steered toward urinary bladder tumor spheroids and imaged with a handheld optoacoustic device, where the microrobots significantly reduce the viability of tumor spheroids. The proposed approach demonstrates the proof-of-concept feasibility of integrating macrophage-based microrobots into clinic imaging modalities for cancer targeting and intervention, and can also be implemented for various other medical applications.
Collapse
Affiliation(s)
- Nihal Olcay Dogan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Eylül Suadiye
- Materials Central Scientific Facility, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Paul Wrede
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Jelena Lazovic
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Cem Balda Dayan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Ren Hao Soon
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Amirreza Aghakhani
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569, Stuttgart, Germany
| | - Gunther Richter
- Materials Central Scientific Facility, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul, 34450, Turkey
| |
Collapse
|
12
|
Cheng Z, Cui X, Li S, Liang Y, Yang W, Ouyang J, Wei M, Yan Z, Yu W. Harnessing cytokines to optimize chimeric antigen receptor-T cell therapy for gastric cancer: Current advances and innovative strategies. Biomed Pharmacother 2024; 178:117229. [PMID: 39096620 DOI: 10.1016/j.biopha.2024.117229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
Enormous patients with gastric cancer (GC) are insensitive to chemotherapy and targeted therapy without the chance of radical surgery, so immunotherapy may supply a novel choice for them. Chimeric antigen receptor (CAR)-T cell therapy has the advantages of higher specificity, stronger lethality, and longer-lasting efficacy, and it has the potential for GC in the future. However, its application still faces numerous obstacles in terms of accuracy, efficacy, and safety. Cytokines can mediate the migration, proliferation, and survival of immune cells, regulate the duration and strength of immune responses, and are involved in the occurrence of severe side effects in CAR-T cell therapy. The expression levels of specific cytokines are associated with the genesis, invasion, metastasis, and prognosis of GC. Applications of cytokines and their receptors in CAR-T cell therapy have emerged, and various cytokines and their receptors have contributed to improving CAR-T cell anti-tumor capabilities. Large amounts of central cytokines in this therapy include chemokines, interleukins (ILs), transforming growth factor-β (TGF-β), and colony-stimulating factors (CSFs). Meanwhile, researchers have explored the combination therapy in treating GC, and several approaches applied to other malignancies can also be considered as references. Therefore, our review comprehensively outlines the biological functions and clinical significance of cytokines and summarizes current advances and innovative strategies for harnessing cytokines to optimize CAR-T cell therapy for GC.
Collapse
Affiliation(s)
- Zewei Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaohan Cui
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Song Li
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yize Liang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenshuo Yang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Ouyang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meng Wei
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhibo Yan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenbin Yu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
13
|
Llorente A, Brokāne A, Mlynska A, Puurand M, Sagini K, Folkmane S, Hjorth M, Martin‐Gracia B, Romero S, Skorinkina D, Čampa M, Cešeiko R, Romanchikova N, Kļaviņa A, Käämbre T, Linē A. From sweat to hope: The role of exercise-induced extracellular vesicles in cancer prevention and treatment. J Extracell Vesicles 2024; 13:e12500. [PMID: 39183543 PMCID: PMC11345496 DOI: 10.1002/jev2.12500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/03/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
The benefits of regular physical exercise on cancer prevention, as well as reducing fatigue, treatment side effects and recurrence, and improving quality of life and overall survival of cancer patients, are increasingly recognised. Initial studies showed that the concentration of extracellular vesicles (EVs) increases during physical activity and that EVs carry biologically active cargo. These EVs are released by blood cells, skeletal muscle and other organs involved in exercise, thus suggesting that EVs may mediate tissue crosstalk during exercise. This possibility triggered a great interest in the study of the roles of EVs in systemic adaptation to exercise and in their potential applications in the prevention and treatment of various diseases, including cancer. This review presents studies exploring the concentration and molecular cargo of EVs released during exercise. Furthermore, we discuss putative stimuli that may trigger EV release from various cell types, the biological functions and the impact of exercise-induced EVs on cancer development and progression. Understanding the interplay between exercise, EVs, and cancer biology may offer insights into novel therapeutic strategies and preventive measures for cancer.
Collapse
Affiliation(s)
- Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway
- Department for Mechanical, Electronics and Chemical EngineeringOslo Metropolitan UniversityOsloNorway
| | - Agnese Brokāne
- Cancer Biomarker groupLatvian Biomedical Research and Study CentreRigaLatvia
| | - Agata Mlynska
- Laboratory of ImmunologyNational Cancer InstituteVilniusLithuania
- Department of Chemistry and BioengineeringVilnius Gediminas Technical UniversityVilniusLithuania
| | - Marju Puurand
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
| | - Krizia Sagini
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway
| | - Signe Folkmane
- Cancer Biomarker groupLatvian Biomedical Research and Study CentreRigaLatvia
| | - Marit Hjorth
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Beatriz Martin‐Gracia
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway
| | - Silvana Romero
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway
| | - Diana Skorinkina
- Cancer Biomarker groupLatvian Biomedical Research and Study CentreRigaLatvia
| | - Mārtiņš Čampa
- Latvian Academy of Sport Education, Riga Stradins UniversityRigaLatvia
| | - Rūdolfs Cešeiko
- Latvian Academy of Sport Education, Riga Stradins UniversityRigaLatvia
| | | | - Aija Kļaviņa
- Latvian Academy of Sport Education, Riga Stradins UniversityRigaLatvia
- Department of Health Promotion and RehabilitationLithuanian Sports UniversityKaunasLithuania
| | - Tuuli Käämbre
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
| | - Aija Linē
- Cancer Biomarker groupLatvian Biomedical Research and Study CentreRigaLatvia
| |
Collapse
|
14
|
Miaskowski C, Conley YP, Levine JD, Cooper BA, Paul SM, Hammer MJ, Oppegaard K, Harris C, Shin J, Abrams G, Asakitogum D, Fu MR, Alismal S. Chronic Decrements in Energy in Women with Breast Cancer are Associated with Cytokine Gene Polymorphisms. Semin Oncol Nurs 2024; 40:151652. [PMID: 38834449 DOI: 10.1016/j.soncn.2024.151652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 06/06/2024]
Abstract
OBJECTIVES Decrements in energy were found in 67% of women who underwent breast cancer surgery. However, no information is available on chronic decrements in energy and associations with inflammation. Purposes were to identify latent classes of patients with distinct average energy profiles from prior to through 12 months after breast cancer surgery; evaluate for differences in demographic and clinical characteristics between the two extreme average energy classes; and evaluate for polymorphisms for cytokine genes associated with membership in the Low energy class. METHODS Women (n = 397) completed assessments of energy prior to and for 12 months following breast cancer surgery. Growth mixture modeling was used to identify classes of patients with distinct average energy profiles. Eighty-two single nucleotide polymorphisms (SNPs) among 15 cytokine genes were evaluated. RESULTS Three distinct energy profiles were identified (ie, Low [27.0%], Moderate [54.4%], Changing [18.6%]). Data from patients in the Low and Moderate energy classes were used in the candidate gene analyses. Five SNPs and one haplotype in six different genes remained significant in logistic regression analyses (ie, interleukin [IL]-1β rs1143623, IL1 receptor 1 rs3917332 IL4 rs2243263, IL6 HapA1 [that consisted of rs1800795, rs2069830, rs2069840, rs1554606, rs2069845, rs2069849, and rs2069861], nuclear factor kappa beta subunit 1 rs170731, tumor necrosis factor rs1799964). For several SNPs for IL6, expression quantitative trait locis were identified in subcutaneous and visceral adipose tissue and thyroid tissue. In addition, skeletal muscle was identified as an expression quantitative trait loci for nuclear factor kappa beta subunit 1. CONCLUSIONS Findings suggest that cytokine genes are involved in the mechanisms that underlie chronic decrements in energy in women following breast cancer surgery. Given the roles of subcutaneous and visceral adipose and thyroid tissues in metabolism and energy balance, the findings related to IL6 suggest that these polymorphisms may have a functional role in the development and maintenance of chronic decrements in energy.
Collapse
Affiliation(s)
- Christine Miaskowski
- School of Nursing, University of California, San Francisco; School of Medicine, University of California, San Francisco.
| | | | - Jon D Levine
- School of Medicine, University of California, San Francisco
| | - Bruce A Cooper
- School of Nursing, University of California, San Francisco
| | - Steven M Paul
- School of Nursing, University of California, San Francisco
| | | | | | - Carolyn Harris
- School of Nursing, University of Pittsburgh, Pittsburgh, PA
| | | | - Gary Abrams
- School of Medicine, University of California, San Francisco
| | | | - Mei R Fu
- University of Missouri, Kansas City
| | - Sarah Alismal
- Beckman Research Institute, City of Hope, Duarte, CA
| |
Collapse
|
15
|
Zhou R, Yu H, Sheng T, Wu Y, Chen Y, You J, Yang Y, Luo B, Zhao S, Zheng Y, Li H, Zhang Y, Guo Y, Gu Z, Yu J. Grooved Microneedle Patch Augments Adoptive T Cell Therapy Against Solid Tumors via Diverting Regulatory T Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401667. [PMID: 38843541 DOI: 10.1002/adma.202401667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/21/2024] [Indexed: 06/13/2024]
Abstract
The efficacy of adoptive T cell therapy (ACT) for the treatment of solid tumors remains challenging. In addition to the poor infiltration of effector T (Teff) cells limited by the physical barrier surrounding the solid tumor, another major obstacle is the extensive infiltration of regulatory T (Treg) cells, a major immunosuppressive immune cell subset, in the tumor microenvironment. Here, this work develops a grooved microneedle patch for augmenting ACT, aiming to simultaneously overcome physical and immunosuppressive barriers. The microneedles are engineered through an ice-templated method to generate the grooved structure for sufficient T-cell loading. In addition, with the surface modification of chemokine CCL22, the MNs could not only directly deliver tumor-specific T cells into solid tumors through physical penetration, but also specifically divert Treg cells from the tumor microenvironment to the surface of the microneedles via a cytokine concentration gradient, leading to an increase in the ratio of Teff cells/Treg cells in a mouse melanoma model. Consequently, this local delivery strategy of both T cell receptor T cells and chimeric antigen receptor T cells via the CCL22-modified grooved microneedles as a local niche could significantly enhance the antitumor efficacy and reduce the on-target off-tumor toxicity of ACT.
Collapse
Affiliation(s)
- Ruyi Zhou
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Hao Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Sheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingke Wu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingxin Chen
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Advanced Magnetic Materials and International Research Center for EM Metamaterials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jiahuan You
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yinxian Yang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bowen Luo
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng Zhao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Zheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongjun Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yuqi Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yugang Guo
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jicheng Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| |
Collapse
|
16
|
Lanng KRB, Lauridsen EL, Jakobsen MR. The balance of STING signaling orchestrates immunity in cancer. Nat Immunol 2024; 25:1144-1157. [PMID: 38918609 DOI: 10.1038/s41590-024-01872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Over the past decade, it has become clear that the stimulator of interferon genes (STING) pathway is critical for a variety of immune responses. This endoplasmic reticulum-anchored adaptor protein has regulatory functions in host immunity across a spectrum of conditions, including infectious diseases, autoimmunity, neurobiology and cancer. In this Review, we outline the central importance of STING in immunological processes driven by expression of type I and III interferons, as well as inflammatory cytokines, and we look at therapeutic options for targeting STING. We also examine evidence that challenges the prevailing notion that STING activation is predominantly beneficial in combating cancer. Further exploration is imperative to discern whether STING activation in the tumor microenvironment confers true benefits or has detrimental effects. Research in this field is at a crossroads, as a clearer understanding of the nuanced functions of STING activation in cancer is required for the development of next-generation therapies.
Collapse
|
17
|
Kerkis I, da Silva ÁP, Araldi RP. The impact of interleukin-6 (IL-6) and mesenchymal stem cell-derived IL-6 on neurological conditions. Front Immunol 2024; 15:1400533. [PMID: 39015561 PMCID: PMC11249726 DOI: 10.3389/fimmu.2024.1400533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/04/2024] [Indexed: 07/18/2024] Open
Abstract
Interleukin-6 (IL-6) is a versatile cytokine crucial for immune response modulation, inflammation regulation, and various physiological processes in the body. Its wide-ranging functions underscore its importance in maintaining health. Dysregulated IL-6 is closely associated with many diseases, making it a key research and therapeutic target. Elevated IL-6 levels in the central nervous system worsen neuroinflammation in neurodegenerative diseases by activating microglia and astrocytes and releasing pro-inflammatory cytokines and neurotoxic molecules. Moreover, dysregulated IL-6 weakens the blood-brain barrier, exacerbating neuroinflammation and neuronal damage by allowing peripheral immune cells and inflammatory mediators to enter the brain. Mesenchymal stem cells (MSCs) show promise in modulating neuroinflammation by regulating IL-6 levels. They effectively suppress pro-inflammatory cytokines, including IL-6, while promoting anti-inflammatory factors. This therapeutic approach highlights the importance of targeting IL-6 and other inflammatory mediators to alleviate neuroinflammation and its adverse effects on neurological disorders. This review provides a comprehensive overview of IL-6's involvement in neurological disorders, examining endogenous IL-6 and IL-6 derived from MSCs. We explore IL-6's mechanisms affecting neuronal function, survival, and immune modulation in the central nervous system. Additionally, we discuss the potential of MSC-derived IL-6 in neuroregeneration and neuroprotection. By elucidating IL-6's interplay with neurological pathologies, this review offers insights into novel therapeutic strategies targeting IL-6 signaling pathways for neurological disorders.
Collapse
Affiliation(s)
- Irina Kerkis
- Genetics Laboratory, Center of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - Álvaro Prieto da Silva
- Genetics Laboratory, Center of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - Rodrigo Pinheiro Araldi
- BioDecision Analytics Ltda., São Paulo, Brazil
- Post-graduation Program in Structural and Functional Biology, Paulista School of Medicine Escola Paulista de Medicina (EPM), Federal University of São Paulo Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
18
|
Kump DS. Mechanisms Underlying the Rarity of Skeletal Muscle Cancers. Int J Mol Sci 2024; 25:6480. [PMID: 38928185 PMCID: PMC11204341 DOI: 10.3390/ijms25126480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Skeletal muscle (SKM), despite comprising ~40% of body mass, rarely manifests cancer. This review explores the mechanisms that help to explain this rarity, including unique SKM architecture and function, which prohibits the development of new cancer as well as negates potential metastasis to SKM. SKM also presents a unique immune environment that may magnify the anti-tumorigenic effect. Moreover, the SKM microenvironment manifests characteristics such as decreased extracellular matrix stiffness and altered lactic acid, pH, and oxygen levels that may interfere with tumor development. SKM also secretes anti-tumorigenic myokines and other molecules. Collectively, these mechanisms help account for the rarity of SKM cancer.
Collapse
Affiliation(s)
- David S Kump
- Department of Biological Sciences, Winston-Salem State University, 601 Martin Luther King Jr. Dr., Winston-Salem, NC 27110, USA
| |
Collapse
|
19
|
Song M, Tang Y, Cao K, Qi L, Xie K. Unveiling the role of interleukin-6 in pancreatic cancer occurrence and progression. Front Endocrinol (Lausanne) 2024; 15:1408312. [PMID: 38828409 PMCID: PMC11140100 DOI: 10.3389/fendo.2024.1408312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Pancreatic cancer is difficult to diagnose early and progresses rapidly. Researchers have found that a cytokine called Interleukin-6 (IL-6) is involved in the entire course of pancreatic cancer, promoting its occurrence and development. From the earliest stages of pancreatic intraepithelial neoplasia to the invasion and metastasis of pancreatic cancer cells and the appearance of tumor cachexia, IL-6 drives oncogenic signal transduction pathways and immune escape that accelerate disease progression. IL-6 is considered a biomarker for pancreatic cancer diagnosis and prognosis, as well as a potential target for treatment. IL-6 antibodies are currently being explored as a hot topic in oncology. This article aims to systematically explain how IL-6 induces the deterioration of normal pancreatic cells, with the goal of finding a breakthrough in pancreatic cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Meihui Song
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People’s Hospital, The Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Ying Tang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Kaimei Cao
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People’s Hospital, The Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
- School of Pharmaceutical Sciences, Dali University, Dali, Yunnan, China
| | - Ling Qi
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People’s Hospital, The Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Keping Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Farhana A, Alsrhani A, Alghsham RS, Derafa W, Khan YS, Rasheed Z. Gold Nanoparticles Downregulate IL-6 Expression/Production by Upregulating microRNA-26a-5p and Deactivating the RelA and NF-κBp50 Transcription Pathways in Activated Breast Cancer Cells. Int J Mol Sci 2024; 25:1404. [PMID: 38338683 PMCID: PMC10855246 DOI: 10.3390/ijms25031404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024] Open
Abstract
MicroRNAs (miRNAs) are involved in the modulation of pathogenic genes by binding to their mRNA sequences' 3' untranslated regions (3'UTR). Interleukin-6 (IL-6) is known to promote cancer progression and treatment resistance. In this study, we aimed to explore the therapeutic effects of gold nanoparticles (GNP) against IL-6 overexpression and the modulation of miRNA-26a-5p in breast cancer (BC) cells. GNP were synthesized using the trisodium citrate method and characterized through UV-Vis spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM). To predict the binding of miR-26a-5p in the IL-6 mRNA's 3'UTR, we utilized bioinformatics algorithms. Luciferase reporter clone assays and anti-miRNA-26a-5p transfection were employed to validate the binding of miR26a-5p in the IL-6 mRNA's 3'UTR. The activity of RelA and NF-κBp50 was assessed and confirmed using Bay 11-7082. The synthesized GNP were spherical with a mean size of 28.3 nm, exhibiting high stability, and were suitable for BC cell treatment. We found that miR-26a-5p directly regulated IL-6 overexpression in MCF-7 cells activated with PMA. Treatment of MCF-7 cells with GNP resulted in the inhibition of IL-6 overexpression and secretion through the increase of miR26a-5p. Furthermore, GNP deactivated NF-κBp65/NF-κBp50 transcription activity. The newly engineered GNP demonstrated safety and showed promise as a therapeutic approach for reducing IL-6 overexpression. The GNP suppressed IL-6 overexpression and secretion by deactivating NF-κBp65/NF-κBp50 transcription activity and upregulating miR-26a-5p expression in activated BC cells. These findings suggest that GNP have potential as a therapeutic intervention for BC by targeting IL-6 expression and associated pathways.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Ruqaih S. Alghsham
- Department of Pathology, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia; (R.S.A.); (Z.R.)
| | - Wassila Derafa
- Department of Chemistry, College of Science, Jouf University, Aljouf 72388, Saudi Arabia;
| | - Yusuf Saleem Khan
- Department of Anatomy, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia; (R.S.A.); (Z.R.)
| |
Collapse
|
21
|
Zhang H, Liu Y, Liu J, Chen J, Wang J, Hua H, Jiang Y. cAMP-PKA/EPAC signaling and cancer: the interplay in tumor microenvironment. J Hematol Oncol 2024; 17:5. [PMID: 38233872 PMCID: PMC10792844 DOI: 10.1186/s13045-024-01524-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex disease resulting from abnormal cell growth that is induced by a number of genetic and environmental factors. The tumor microenvironment (TME), which involves extracellular matrix, cancer-associated fibroblasts (CAF), tumor-infiltrating immune cells and angiogenesis, plays a critical role in tumor progression. Cyclic adenosine monophosphate (cAMP) is a second messenger that has pleiotropic effects on the TME. The downstream effectors of cAMP include cAMP-dependent protein kinase (PKA), exchange protein activated by cAMP (EPAC) and ion channels. While cAMP can activate PKA or EPAC and promote cancer cell growth, it can also inhibit cell proliferation and survival in context- and cancer type-dependent manner. Tumor-associated stromal cells, such as CAF and immune cells, can release cytokines and growth factors that either stimulate or inhibit cAMP production within the TME. Recent studies have shown that targeting cAMP signaling in the TME has therapeutic benefits in cancer. Small-molecule agents that inhibit adenylate cyclase and PKA have been shown to inhibit tumor growth. In addition, cAMP-elevating agents, such as forskolin, can not only induce cancer cell death, but also directly inhibit cell proliferation in some cancer types. In this review, we summarize current understanding of cAMP signaling in cancer biology and immunology and discuss the basis for its context-dependent dual role in oncogenesis. Understanding the precise mechanisms by which cAMP and the TME interact in cancer will be critical for the development of effective therapies. Future studies aimed at investigating the cAMP-cancer axis and its regulation in the TME may provide new insights into the underlying mechanisms of tumorigenesis and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hongying Zhang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jieya Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinzhu Chen
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yangfu Jiang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
22
|
Ji ZZ, Chan MKK, Chan ASW, Leung KT, Jiang X, To KF, Wu Y, Tang PMK. Tumour-associated macrophages: versatile players in the tumour microenvironment. Front Cell Dev Biol 2023; 11:1261749. [PMID: 37965573 PMCID: PMC10641386 DOI: 10.3389/fcell.2023.1261749] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Tumour-Associated Macrophages (TAMs) are one of the pivotal components of the tumour microenvironment. Their roles in the cancer immunity are complicated, both pro-tumour and anti-cancer activities are reported, including not only angiogenesis, extracellular matrix remodeling, immunosuppression, drug resistance but also phagocytosis and tumour regression. Interestingly, TAMs are highly dynamic and versatile in solid tumours. They show anti-cancer or pro-tumour activities, and interplay between the tumour microenvironment and cancer stem cells and under specific conditions. In addition to the classic M1/M2 phenotypes, a number of novel dedifferentiation phenomena of TAMs are discovered due to the advanced single-cell technology, e.g., macrophage-myofibroblast transition (MMT) and macrophage-neuron transition (MNT). More importantly, emerging information demonstrated the potential of TAMs on cancer immunotherapy, suggesting by the therapeutic efficiency of the checkpoint inhibitors and chimeric antigen receptor engineered cells based on macrophages. Here, we summarized the latest discoveries of TAMs from basic and translational research and discussed their clinical relevance and therapeutic potential for solid cancers.
Collapse
Affiliation(s)
- Zoey Zeyuan Ji
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaohua Jiang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|