1
|
Mazumder R, Ichudaule, Ghosh A, Deb S, Ghosh R. Significance of Chalcone Scaffolds in Medicinal Chemistry. Top Curr Chem (Cham) 2024; 382:22. [PMID: 38937401 DOI: 10.1007/s41061-024-00468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024]
Abstract
Chalcone is a simple naturally occurring α,β-unsaturated ketone with biological importance, which can also be easily synthesized in laboratories by reaction between two aromatic scaffolds. In plants, chalcones occur as polyphenolic compounds of different frameworks which are bioactive molecules that have been in traditional medicinal practice for many years. Chalcone-based lead molecules have been developed, possessing varied potentials such as antimicrobial, antiviral, anti-inflammatory, anticancer, anti-oxidant, antidiabetic, antihyperurecemic, and anti-ulcer effects. Chalcones contribute considerable fragments to give important heterocyclic molecules with therapeutic utilities targeting various diseases. These characteristic features have made chalcone a topic of interest among researchers and have attracted investigations into this widely applicable structure. This review highlights the extensive exploration carried out on the synthesis, biotransformations, chemical reactions, hybridization, and pharmacological potentials of chalcones, and aims to provide an extensive, thorough, and critical review of their importance, with emphasis on their properties, chemistry, and biomedical applications to boost future investigations into this potential scaffold in medicinal chemistry.
Collapse
Affiliation(s)
- Rishav Mazumder
- Laboratory of Developing Drug Candidates, Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Ichudaule
- Laboratory of Developing Drug Candidates, Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Ashmita Ghosh
- Department of Microbiology and Biotechnology, School of Natural Sciences, Techno India University Tripura, Maheshkhola, Anandanagar, Agartala, Tripura, 799004, India
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA.
| | - Rajat Ghosh
- Laboratory of Developing Drug Candidates, Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India.
| |
Collapse
|
2
|
Yang QQ, Yang YF, Chen XQ, Li RT, Zhang ZJ. Flavonoids From the Aerial Parts of Sophora tonkinensis and Their Potential Anti-Inflammatory Activities. Chem Biodivers 2024; 21:e202400399. [PMID: 38634752 DOI: 10.1002/cbdv.202400399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
Four undescribed prenylated flavonoids, sophoratones A-D (1-4), and 17 known flavonoids, were obtained from the aerial parts of Sophora tonkinensis. Their structures with absolute configurations were elucidated by detailed interpretation of NMR spectroscopy, mass spectrometry, and ECD calculations. Meanwhile, the ability of these compounds to inhibit the release of nitric oxide (NO) by a lipopolysaccharide induced mouse in RAW 264.7 cells was assayed. The results indicated that some compounds exhibited clear inhibitory effects, with IC50 ranging from 19.91±1.08 to 35.72±2.92 μM. These results suggest that prenylated flavonoids from the aerial parts of S. tonkinensis could potentially be used as a latent source of anti-inflammatory agents.
Collapse
Affiliation(s)
- Qing-Qing Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, P. R. China
| | - Yan-Fei Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, P. R. China
| | - Xuan-Qin Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, P. R. China
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, P. R. China
| | - Zhi-Jun Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, P. R. China
| |
Collapse
|
3
|
Godara R, Kaushik P, Tripathi K, Kumar R, Rana VS, Kumar R, Mandal A, Shanmugam V, Pankaj, Shakil NA. Green synthesis, structure-activity relationships, in silico molecular docking, and antifungal activities of novel prenylated chalcones. Front Chem 2024; 12:1389848. [PMID: 38746019 PMCID: PMC11093228 DOI: 10.3389/fchem.2024.1389848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
A series of 16 novel prenylated chalcones (5A-5P) was synthesized by microwave-assisted green synthesis using 5-prenyloxy-2-hydroxyacetophenone and different benzaldehydes. Comparisons were also performed between the microwave and conventional methods in terms of the reaction times and yields of all compounds, where the reaction times in the microwave and conventional methods were 1-4 min and 12-48 h, respectively. The synthesized compounds were characterized using different spectroscopic techniques, including IR, 1H-NMR, 13C-NMR, and LC-HRMS. The antifungal activities of all compounds were evaluated against Sclerotium rolfsii and Fusarium oxysporum under in vitro conditions and were additionally supported by structure-activity relationship (SAR) and molecular docking studies. Out of the 16 compounds screened, 2'-hydroxy-4-benzyloxy-5'-O-prenylchalcone (5P) showed the highest activity against both S. rolfsii and F. oxysporum, with ED50 of 25.02 and 31.87 mg/L, respectively. The molecular docking studies of the prenylated chalcones within the active sites of the EF1α and RPB2 gene sequences and FoCut5a sequence as the respective receptors for S. rolfsii and F. oxysporum revealed the importance of the compounds, where the binding energies of the docked molecules ranged from -38.3538 to -26.6837 kcal/mol for S. rolfsii and -43.400 to -23.839 kcal/mol for F. oxysporum. Additional docking parameters showed that these compounds formed stable complexes with the protein molecules.
Collapse
Affiliation(s)
- Rajni Godara
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Parshant Kaushik
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kailashpati Tripathi
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-National Research Centre on Seed Spices, Ajmer, Rajasthan, India
| | - Rakesh Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Central Inland Fisheries Research Institute, Guwahati, Assam, India
| | - Virendra Singh Rana
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajesh Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Abhishek Mandal
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - V Shanmugam
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pankaj
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Najam Akhtar Shakil
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
4
|
Ardino C, Sannio F, Poli G, Galati S, Dreassi E, Botta L, Docquier JD, D'Agostino I. An update on antibacterial AlkylGuanidino Ureas: Design of new derivatives, synergism with colistin and data analysis of the whole library. Eur J Med Chem 2024; 270:116362. [PMID: 38574637 DOI: 10.1016/j.ejmech.2024.116362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Antimicrobial resistance (AMR) represents one of the most challenging global Public Health issues, with an alarmingly increasing rate of attributable mortality. This scenario highlights the urgent need for innovative medicinal strategies showing activity on resistant isolates (especially, carbapenem-resistant Gram-negative bacteria, methicillin-resistant S. aureus, and vancomycin-resistant enterococci) yielding new approaches for the treatment of bacterial infections. We previously reported AlkylGuanidino Ureas (AGUs) with broad-spectrum antibacterial activity and a putative membrane-based mechanism of action. Herein, new tetra- and mono-guanidino derivatives were designed and synthesized to expand the structure-activity relationships (SARs) and, thereby, tested on the same panel of Gram-positive and Gram-negative bacteria. The membrane-active mechanism of selected compounds was then investigated through molecular dynamics (MD) on simulated bacterial membranes. In the end, the newly synthesized series, along with the whole library of compounds (more than 70) developed in the last decade, was tested in combination with subinhibitory concentrations of the last resort antibiotic colistin to assess putative synergistic or additive effects. Moreover, all the AGUs were subjected to cheminformatic and machine learning analyses to gain a deeper knowledge of the key features required for bioactivity.
Collapse
Affiliation(s)
- Claudia Ardino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy
| | - Filomena Sannio
- Department of Medical Biotechnologies, University of Siena, Viale Mario Bracci 16, I-53100, Siena, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, I-56126, Pisa, Italy
| | - Salvatore Galati
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, I-56126, Pisa, Italy
| | - Elena Dreassi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy
| | - Lorenzo Botta
- Lead Discovery Siena s.r.l., Via Vittorio Alfieri 31, I-53019, Castelnuovo Berardenga, Italy; Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, I-01100, Viterbo, Italy
| | - Jean-Denis Docquier
- Department of Medical Biotechnologies, University of Siena, Viale Mario Bracci 16, I-53100, Siena, Italy; Lead Discovery Siena s.r.l., Via Vittorio Alfieri 31, I-53019, Castelnuovo Berardenga, Italy
| | - Ilaria D'Agostino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy; Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, I-56126, Pisa, Italy.
| |
Collapse
|
5
|
Wang S, Li C, Zhang L, Sun B, Cui Y, Sang F. Isolation and biological activity of natural chalcones based on antibacterial mechanism classification. Bioorg Med Chem 2023; 93:117454. [PMID: 37659218 DOI: 10.1016/j.bmc.2023.117454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Bacterial infection, which is still one of the leading causes of death in humans, poses an enormous threat to the worldwide public health system. Antibiotics are the primary medications used to treat bacterial diseases. Currently, the discovery of antibiotics has reached an impasse, and due to the abuse of antibiotics resulting in bacterial antibiotic resistance, researchers have a critical desire to develop new antibacterial agents in order to combat the deteriorating antibacterial situation. Natural chalcones, the flavonoids consisting of two phenolic rings and a three-carbon α, β-unsaturated carbonyl system, possess a variety of biological and pharmacological properties, including anti-cancer, anti-inflammatory, antibacterial, and so on. Due to their potent antibacterial properties, natural chalcones possess the potential to become a new treatment for infectious diseases that circumvents existing antibiotic resistance. Currently, the majority of research on natural chalcones focuses on their synthesis, biological and pharmacological activities, etc. A few studies have been conducted on their antibacterial activity and mechanism. Therefore, this review focuses on the antibacterial activity and mechanisms of seventeen natural chalcones. Firstly, seventeen natural chalcones have been classified based on differences in antibacterial mechanisms. Secondly, a summary of the isolation and biological activity of seventeen natural chalcones was provided, with a focus on their antibacterial activity. Thirdly, the antibacterial mechanisms of natural chalcones were summarized, including those that act on bacterial cell membranes, biological macromolecules, biofilms, and quorum sensing systems. This review aims to lay the groundwork for the discovery of novel antibacterial agents based on chalcones.
Collapse
Affiliation(s)
- Sinan Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Chuang Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Liyan Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Bingxia Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Yuting Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China.
| | - Feng Sang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China.
| |
Collapse
|
6
|
Huang YJ, Zhong XL, Zang YP, Yang MH, Lin J, Chen WM. 3-Hydroxy-pyridin-4(1H)-ones as siderophores mediated delivery of isobavachalcone enhances antibacterial activity against pathogenic Pseudomonas aeruginosa. Eur J Med Chem 2023; 257:115454. [PMID: 37210837 DOI: 10.1016/j.ejmech.2023.115454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023]
Abstract
The natural prenylated chalcone isobavachalcone (IBC) shows good antibacterial activity against Gram-positive bacteria but is ineffective against Gram-negative bacteria, most likely due to the outer membrane barrier of Gram-negative bacteria. The Trojan horse strategy has been shown to be an effective strategy to overcome the reduction in the permeability of the outer membrane of Gram-negative bacteria. In this study, eight different 3-hydroxy-pyridin-4(1H)-one-isobavachalcone conjugates were designed and synthesized based on the siderophore Trojan horse strategy. The conjugates exhibited 8- to 32-fold lower minimum inhibitory concentrations (MICs) and 32- to 177-fold lower half-inhibitory concentrations (IC50s) against Pseudomonas aeruginosa PAO1 as well as clinical multidrug-resistant (MDR) strains compared to the parent IBC under iron limitation. Further studies showed that the antibacterial activity of the conjugates was regulated by the bacterial iron uptake pathway under different iron concentration conditions. Studies on the antibacterial mechanism of conjugate 1b showed that it exerts antibacterial activity by disrupting cytoplasmic membrane integrity and inhibiting cell metabolism. Finally, conjugate 1b showed a lower cytotoxic effects on Vero cells than IBC and a positive therapeutic effect in the treatment of bacterial infections caused by Gram-negative bacteria PAO1. Overall, this work demonstrates that IBC can be delivered to Gram-negative bacteria when combined with 3-hydroxy-pyridin-4(1H)-ones as siderophores and provides a scientific basis for the development of effective antibacterial agents against Gram-negative bacteria.
Collapse
Affiliation(s)
- Yong-Jun Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China
| | - Xiao-Lin Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China
| | - Yi-Peng Zang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China
| | - Ming-Han Yang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China
| | - Jing Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China.
| | - Wei-Min Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 511400, China.
| |
Collapse
|
7
|
Lu Y, Gao Y, Yang H, Hu Y, Li X. Nanomedicine-boosting icaritin-based immunotherapy of advanced hepatocellular carcinoma. Mil Med Res 2022; 9:69. [PMID: 36503490 PMCID: PMC9743634 DOI: 10.1186/s40779-022-00433-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Traditional treatments for advanced hepatocellular carcinoma (HCC), such as surgical resection, transplantation, radiofrequency ablation, and chemotherapy are unsatisfactory, and therefore the exploration of powerful therapeutic strategies is urgently needed. Immunotherapy has emerged as a promising strategy for advanced HCC treatment due to its minimal side effects and long-lasting therapeutic memory effects. Recent studies have demonstrated that icaritin could serve as an immunomodulator for effective immunotherapy of advanced HCC. Encouragingly, in 2022, icaritin soft capsules were approved by the National Medical Products Administration (NMPA) of China for the immunotherapy of advanced HCC. However, the therapeutic efficacy of icaritin in clinical practice is impaired by its poor bioavailability and unfavorable in vivo delivery efficiency. Recently, functionalized drug delivery systems including stimuli-responsive nanocarriers, cell membrane-coated nanocarriers, and living cell-nanocarrier systems have been designed to overcome the shortcomings of drugs, including the low bioavailability and limited delivery efficiency as well as side effects. Taken together, the development of icaritin-based nanomedicines is expected to further improve the immunotherapy of advanced HCC. Herein, we compared the different preparation methods for icaritin, interpreted the HCC immune microenvironment and the mechanisms underlying icaritin for treatment of advanced HCC, and discussed both the design of icaritin-based nanomedicines with high icaritin loading and the latest progress in icaritin-based nanomedicines for advanced HCC immunotherapy. Finally, the prospects to promote further clinical translation of icaritin-based nanomedicines for the immunotherapy of advanced HCC were proposed.
Collapse
Affiliation(s)
- Yi Lu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Yue Gao
- DWI-Leibniz-Institute for Interactive Materials e.V., 52056 Aachen, Germany
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 China
| | - Huan Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
| | - Xin Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
- DWI-Leibniz-Institute for Interactive Materials e.V., 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
8
|
Zhai J, Sun B, Sang F. Progress of isolation, chemical synthesis and biological activities of natural chalcones bearing 2-hydroxy-3-methyl-3-butenyl group. Front Chem 2022; 10:964089. [PMID: 36046729 PMCID: PMC9420912 DOI: 10.3389/fchem.2022.964089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Chalcones have a three-carbon α,β-unsaturated carbonyl system composed of two phenolic rings. Many chalcones have shown broad spectrum of biological activities with clinical potentials against various diseases. They are usually abundant in seeds, fruit skin, bark and flowers of most edible plants. Among them, chalcones bearing 2-hydroxy-3-methyl-3-butenyl (HMB) group have been reported several times in the past few decades due to their novel scaffolds and numerous interesting biological activities. In this paper, we reviewed the isolation of twelve natural chalcones and a natural chalcone-type compound bearing 2-hydroxy-3-methyl-3-butenyl group discovered so far, and reviewed their synthesis methods and biological activities reported in the literature. We anticipate that this review will inspire further research of natural chalcones.
Collapse
Affiliation(s)
- Jiadai Zhai
- Research Center of Chemical Biology and Pharmaceutical Chemistry, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Bingxia Sun
- Research Center of Chemical Biology and Pharmaceutical Chemistry, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Feng Sang
- Research Center of Chemical Biology and Pharmaceutical Chemistry, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- *Correspondence: Feng Sang,
| |
Collapse
|
9
|
A new reduced chalcone-derivative affects the membrane permeability and electric potential of multidrug-resistant Enterococcus faecalis. Chem Biol Interact 2022; 365:110086. [DOI: 10.1016/j.cbi.2022.110086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022]
|
10
|
Chalcones from Angelica keiskei (ashitaba) inhibit key Zika virus replication proteins. Bioorg Chem 2022; 120:105649. [PMID: 35124513 PMCID: PMC9187613 DOI: 10.1016/j.bioorg.2022.105649] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 12/25/2022]
Abstract
Zika virus (ZIKV) is a dangerous human pathogen and no antiviral drugs have been approved to date. The chalcones are a group of small molecules that are found in a number of different plants, including Angelica keiskei Koidzumi, also known as ashitaba. To examine chalcone anti-ZIKV activity, three chalcones, 4-hydroxyderricin (4HD), xanthoangelol (XA), and xanthoangelol-E (XA-E), were purified from a methanol-ethyl acetate extract from A. keiskei. Molecular and ensemble docking predicted that these chalcones would establish multiple interactions with residues in the catalytic and allosteric sites of ZIKV NS2B-NS3 protease, and in the allosteric site of the NS5 RNA-dependent RNA-polymerase (RdRp). Machine learning models also predicted 4HD, XA and XA-E as potential anti-ZIKV inhibitors. Enzymatic and kinetic assays confirmed chalcone inhibition of the ZIKV NS2B-NS3 protease allosteric site with IC50s from 18 to 50 µM. Activity assays also revealed that XA, but not 4HD or XA-E, inhibited the allosteric site of the RdRp, with an IC50 of 6.9 µM. Finally, we tested these chalcones for their anti-viral activity in vitro with Vero cells. 4HD and XA-E displayed anti-ZIKV activity with EC50 values of 6.6 and 22.0 µM, respectively, while XA displayed relatively weak anti-ZIKV activity with whole cells. With their simple structures and relative ease of modification, the chalcones represent attractive candidates for hit-to-lead optimization in the search of new anti-ZIKV therapeutics.
Collapse
|
11
|
Antibacterial Activity of Isobavachalcone (IBC) Is Associated with Membrane Disruption. MEMBRANES 2022; 12:membranes12030269. [PMID: 35323743 PMCID: PMC8950343 DOI: 10.3390/membranes12030269] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023]
Abstract
Isobavachalcone (IBC) is a natural prenylated chalcone with a broad spectrum of pharmacological properties. In this work, we newly synthesized and investigated the antibacterial activity of IBC against Gram-positive, Gram-negative and mycobacterial species. IBC was active against Gram-positive bacteria, mainly against Methicillin-Susceptible Staphylococcus aureus (MSSA) and Methicillin-Resistant Staphylococcus aureus (MRSA), with minimum inhibitory concentration (MIC) values of 1.56 and 3.12 µg/mL, respectively. On the other hand, IBC was not able to act against Gram-negative species (MIC > 400 µg/mL). IBC displayed activity against mycobacterial species (MIC = 64 µg/mL), including Mycobacterium tuberculosis, Mycobacterium avium and Mycobacterium kansasii. IBC was able to inhibit more than 50% of MSSA and MRSA biofilm formation at 0.78 µg/mL. Its antibiofilm activity was similar to vancomycin, which was active at 0.74 µg/mL. In order to study the mechanism of the action by fluorescence microscopy, the propidium iodide (PI) and SYTO9 fluorophores indicated that IBC disrupted the membrane of Bacillus subtilis. Toxicity assays using human keratinocytes (HaCaT cell line) showed that IBC did not have the capacity to reduce the cell viability. These results suggested that IBC is a promising antibacterial agent with an elucidated mode of action and potential applications as an antibacterial drug and a medical device coating.
Collapse
|
12
|
Xiao Y, Lee IS. Effects of Microbial Transformation on the Biological Activities of Prenylated Chalcones from Angelica keiskei. Foods 2022; 11:543. [PMID: 35206019 PMCID: PMC8871312 DOI: 10.3390/foods11040543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
Microbial transformation is an alternative method for structural modification. The current study aimed at application of microbial transformation for discovering new derivatives and investigating the structure-activity relationship of isobavachalcone (1), 4-hydroxyderricin (2), and xanthoangelol (3) isolated from the herb Angelica keiskei. In the initial screening process, 1-3 were incubated with microbes using a two-stage fermentation method and analyzed through TLC monitoring. The screening results showed that Rhizopus oryzae and Mucor hiemalis were able to transform 1 and 2, respectively. Additionally, M. hiemalis and Mortierella ramanniana var. angulispora were able to transform 3. Following scale-up fermentation, four new (4, 5, 7, and 10) and five known (6, 8, 9, 11, and 12) metabolites were produced. Cytotoxicity of all the compounds (1-12) was investigated using three human cancer cell lines including A375P, HT-29, and MCF-7 by MTT method. Meanwhile, the tyrosinase inhibitory activity of 1-12 was evaluated using l-tyrosine as a substrate. Overall, 1 and 3 displayed the highest cytotoxicity, and 5 and 7 exhibited the most potent tyrosinase inhibitory activity with relatively low cytotoxicity. This allowed us to postulate that the introduction of 4'-O-glucopyranosyl group led to the reduction in cytotoxicity and improvement in tyrosinase inhibitory activity.
Collapse
Affiliation(s)
| | - Ik-Soo Lee
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea;
| |
Collapse
|
13
|
Zhang J, Xiong W, Wen Y, Fu X, Lu X, Zhang G, Wang C. Magnesium dicarboxylates promote the prenylation of phenolics that is extended to the total synthesis of icaritin. Org Biomol Chem 2022; 20:1117-1124. [PMID: 35040468 DOI: 10.1039/d1ob02228h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The prenylation of phenolic substrates promoted by magnesium dicarboxylates was developed. An investigation of the scope demonstrated that substrates with electron-donating group(s) gave better yields than those with electron-withdrawing group(s). Although the conversions of all substrates were higher in MeCN than in DMF, DMF was still the favorable solvent for polyphenolic substrates since MeCN would cause the generation of cyclized by-products (6) and reduce the yield of 3. The regio-selectivity of ortho- vs. para-prenylation (3'vs.3'') for those para-unoccupied substrates was also solvent dependant. DMF produced mainly ortho-products but with poor conversions. On the other hand, MeCN generated mainly para-products, along with minor ortho-products. Mechanistic study of the prenylation provided evidence for the nucleophilic addition/substitution of the phenolic substrate to the alkyl halide in the presence of the magnesium dicarboxylates. The proto application of this method in the total synthesis of icaritin through the prenylation of 2,4,6-trihydroxyacetophenone, followed by the reaction with benzaldehyde to afford the flavonol, was successful, with a total yield of 33%.
Collapse
Affiliation(s)
- Jichao Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Xiong
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Yongju Wen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Xuewen Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Xiaoxia Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Guolin Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Chun Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
14
|
Karaca H, Kazancı S. The metal sensing applications of chalcones: The synthesis, characterization and theoretical calculations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Rudrapal M, Khan J, Dukhyil AAB, Alarousy RMII, Attah EI, Sharma T, Khairnar SJ, Bendale AR. Chalcone Scaffolds, Bioprecursors of Flavonoids: Chemistry, Bioactivities, and Pharmacokinetics. Molecules 2021; 26:7177. [PMID: 34885754 PMCID: PMC8659147 DOI: 10.3390/molecules26237177] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/20/2023] Open
Abstract
Chalcones are secondary metabolites belonging to the flavonoid (C6-C3-C6 system) family that are ubiquitous in edible and medicinal plants, and they are bioprecursors of plant flavonoids. Chalcones and their natural derivatives are important intermediates of the flavonoid biosynthetic pathway. Plants containing chalcones have been used in traditional medicines since antiquity. Chalcones are basically α,β-unsaturated ketones that exert great diversity in pharmacological activities such as antioxidant, anticancer, antimicrobial, antiviral, antitubercular, antiplasmodial, antileishmanial, immunosuppressive, anti-inflammatory, and so on. This review provides an insight into the chemistry, biosynthesis, and occurrence of chalcones from natural sources, particularly dietary and medicinal plants. Furthermore, the pharmacological, pharmacokinetics, and toxicological aspects of naturally occurring chalcone derivatives are also discussed herein. In view of having tremendous pharmacological potential, chalcone scaffolds/chalcone derivatives and bioflavonoids after subtle chemical modification could serve as a reliable platform for natural products-based drug discovery toward promising drug lead molecules/drug candidates.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Pune 411019, India
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (J.K.); (R.M.I.I.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Abdul Aziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (J.K.); (R.M.I.I.A.)
| | - Randa Mohammed Ibrahim Ismail Alarousy
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia; (J.K.); (R.M.I.I.A.)
- Department of Microbiology and Immunology, Division of Veterinary Researches, National Research Center, Giza 12622, Egypt
| | - Emmanuel Ifeanyi Attah
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria;
| | - Tripti Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751003, India;
| | | | | |
Collapse
|
16
|
Davidones F and G, Two Novel Flavonoids from Sophora davidii (Franch.) Skeels. Molecules 2021; 26:molecules26144182. [PMID: 34299455 PMCID: PMC8306354 DOI: 10.3390/molecules26144182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
An unprecedented novel flavanone davidone F (1) with a seven-membered ring side chain, and a novel flavanonol davidone G (2), along with 11 known flavonoids, were isolated from the ethyl acetate fraction of Sophora davidii (Franch.) Skeels. Their planar structures were established by UV, IR, HRESIMS, 1D and 2D NMR data. The relative configurations of 1 and 2 were determined by calculation of NMR chemical shift values, the absolute configuration of 1 and 2 were assigned by comparing their experimental and calculated electronic circular dichroism (ECD) spectra. Moreover, compounds 1–13 were screened for the translocation activity of glucose transporter 4 (GLUT-4), and the fluorescence intensity was increased to the range of 1.56 and 2.79 folds. Compounds 1 and 2 showed moderate GLUT-4 translocation activity with 1.64 and 1.79 folds enhancement, respectively, at a concentration of 20 μg/mL.
Collapse
|
17
|
Rong Y, Gu X, Li D, Chen L, Zhang Y, Wang Z. Characterization of aroma, sensory and taste properties of Angelica keiskei tea. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Kobayashi S, Tamura T, Koshishiba M, Yasumoto T, Shimizu S, Kintaka T, Nagai K. Total Synthesis, Structure Revision, and Neuroprotective Effect of Hericenones C-H and Their Derivatives. J Org Chem 2021; 86:2602-2620. [PMID: 33492133 DOI: 10.1021/acs.joc.0c02681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first total syntheses of hericenones C-H and "putative 3-hydroxyhericenone F" were achieved. Highlights of the synthesis include the straightforward construction of the resorcinol core and geranyl side chain, assembly of the natural product skeleton by sequential O-geranylation and a clay/zeolite-mediated O → C rearrangement reaction, and a biomimetic cyclization to form a variety of bicyclic natural hericenones and their congeners. The structure of the "putative 3-hydroxyhericenone F" was revised as the 5-exo cyclization product (named: hericenone Z) of epoxyhericenone C through in-depth analyses of the cyclization modes in addition to NMR spectroscopic studies. To gain insights into the biological functions of geranyl-resorcinols in Hericium erinaceus, potential neuroprotective effects against endoplasmic reticulum (ER) stress-dependent cell death were evaluated systematically to clarify a fundamental structure-activity relationship. Among the compounds assayed, the linoleate-containing hericenone analogue, i.e., the regioisomer of hericene D, was found to possess the most potent neuroprotective effect against tunicamycin and thapsigargin-induced ER stress-dependent cell death.
Collapse
Affiliation(s)
- Shoji Kobayashi
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoki Tamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
| | - Mizuho Koshishiba
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
| | - Takeshi Yasumoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
| | - Satoshi Shimizu
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoki Kintaka
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
| | - Kaoru Nagai
- Department of Food and Nutrition, Faculty of Human Life Science, Senri Kinran University, 5-25-1 Fujishirodai, Suita, Osaka 565-0873, Japan
| |
Collapse
|
19
|
Pollo LAE, Martin EF, Machado VR, Cantillon D, Wildner LM, Bazzo ML, Waddell SJ, Biavatti MW, Sandjo LP. Search for Antimicrobial Activity Among Fifty-Two Natural and Synthetic Compounds Identifies Anthraquinone and Polyacetylene Classes That Inhibit Mycobacterium tuberculosis. Front Microbiol 2021; 11:622629. [PMID: 33537021 PMCID: PMC7847937 DOI: 10.3389/fmicb.2020.622629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
Drug-resistant tuberculosis threatens to undermine global control programs by limiting treatment options. New antimicrobial drugs are required, derived from new chemical classes. Natural products offer extensive chemical diversity and inspiration for synthetic chemistry. Here, we isolate, synthesize and test a library of 52 natural and synthetic compounds for activity against Mycobacterium tuberculosis. We identify seven compounds as antimycobacterial, including the natural products isobavachalcone and isoneorautenol, and a synthetic chromene. The plant-derived secondary metabolite damnacanthal was the most active compound with the lowest minimum inhibitory concentration of 13.07 μg/mL and a favorable selectivity index value. Three synthetic polyacetylene compounds demonstrated antimycobacterial activity, with the lowest MIC of 17.88 μg/mL. These results suggest new avenues for drug discovery, expanding antimicrobial compound chemistries to novel anthraquinone and polyacetylene scaffolds in the search for new drugs to treat drug-resistant bacterial diseases.
Collapse
Affiliation(s)
- Luiz A E Pollo
- Programa de Pós-Graduação em Farmácia, CCS, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Erlon F Martin
- Programa de Pós-Graduação em Farmácia, CCS, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Vanessa R Machado
- Programa de Pós-Graduação em Farmácia, CCS, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Daire Cantillon
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Leticia Muraro Wildner
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Maria Luiza Bazzo
- Programa de Pós-Graduação em Farmácia, CCS, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Maique W Biavatti
- Programa de Pós-Graduação em Farmácia, CCS, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Louis P Sandjo
- Programa de Pós-Graduação em Química, CFM, Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
20
|
Pereira D, Gonçalves C, Martins BT, Palmeira A, Vasconcelos V, Pinto M, Almeida JR, Correia-da-Silva M, Cidade H. Flavonoid Glycosides with a Triazole Moiety for Marine Antifouling Applications: Synthesis and Biological Activity Evaluation. Mar Drugs 2020; 19:5. [PMID: 33374188 PMCID: PMC7823860 DOI: 10.3390/md19010005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 01/28/2023] Open
Abstract
Over the last decades, antifouling coatings containing biocidal compounds as active ingredients were used to prevent biofouling, and eco-friendly alternatives are needed. Previous research from our group showed that polymethoxylated chalcones and glycosylated flavones obtained by synthesis displayed antifouling activity with low toxicity. In this work, ten new polymethoxylated flavones and chalcones were synthesized for the first time, including eight with a triazole moiety. Eight known flavones and chalcones were also synthesized and tested in order to construct a quantitative structure-activity relationship (QSAR) model for these compounds. Three different antifouling profiles were found: three compounds (1b, 11a and 11b) exhibited anti-settlement activity against a macrofouling species (Mytilus galloprovincialis), two compounds (6a and 6b) exhibited inhibitory activity against the biofilm-forming marine bacteria Roseobacter litoralis and one compound (7b) exhibited activity against both mussel larvae and microalgae Navicula sp. Hydrogen bonding acceptor ability of the molecule was the most significant descriptor contributing positively to the mussel larvae anti-settlement activity and, in fact, the triazolyl glycosylated chalcone 7b was the most potent compound against this species. The most promising compounds were not toxic to Artemia salina, highlighting the importance of pursuing the development of new synthetic antifouling agents as an ecofriendly and sustainable alternative for the marine industry.
Collapse
Affiliation(s)
- Daniela Pereira
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.P.); (B.T.M.); (A.P.); (M.P.); (H.C.)
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.G.); (V.V.)
| | - Catarina Gonçalves
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.G.); (V.V.)
| | - Beatriz T. Martins
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.P.); (B.T.M.); (A.P.); (M.P.); (H.C.)
| | - Andreia Palmeira
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.P.); (B.T.M.); (A.P.); (M.P.); (H.C.)
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.G.); (V.V.)
| | - Vitor Vasconcelos
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.G.); (V.V.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.P.); (B.T.M.); (A.P.); (M.P.); (H.C.)
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.G.); (V.V.)
| | - Joana R. Almeida
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.G.); (V.V.)
| | - Marta Correia-da-Silva
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.P.); (B.T.M.); (A.P.); (M.P.); (H.C.)
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.G.); (V.V.)
| | - Honorina Cidade
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.P.); (B.T.M.); (A.P.); (M.P.); (H.C.)
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.G.); (V.V.)
| |
Collapse
|
21
|
Wang J, Wu G, Chu H, Wu Z, Sun J. Paeonol Derivatives and Pharmacological Activities: A Review of Recent Progress. Mini Rev Med Chem 2020; 20:466-482. [PMID: 31644406 DOI: 10.2174/1389557519666191015204223] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/04/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022]
Abstract
Paeonol, 2-hydroxy-4-methoxy acetophenone, is one of the main active ingredients of traditional Chinese medicine such as Cynanchum paniculatum, Paeonia suffruticosa Andr and Paeonia lactiflora Pall. Modern medical research has shown that paeonol has a wide range of pharmacological activities. In recent years, a large number of studies have been carried out on the structure modification of paeonol and the mechanism of action of paeonol derivatives has been studied. Some paeonol derivatives exhibit good pharmacological activities in terms of antibacterial, anti-inflammatory, antipyretic analgesic, antioxidant and other pharmacological effects. Herein, the research progress on paeonol derivatives and their pharmacological activities were systematically reviewed.
Collapse
Affiliation(s)
- Jilei Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Guiying Wu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Haiping Chu
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Biotech-Drugs Ministry of Health, Jinan, China.,Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| | - Zhongyu Wu
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Biotech-Drugs Ministry of Health, Jinan, China.,Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| | - Jingyong Sun
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Biotech-Drugs Ministry of Health, Jinan, China.,Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| |
Collapse
|
22
|
Crystal structures, Hirshfeld surface analysis and PIXEL calculations of four (E)-1-(2-hydroxyphenyl)-3-phenylprop-2-en-1-one derivatives, containing methoxy substituents. The importance of π interactions. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Son JL, Kim AJ, Oh S, Bae JM. Inhibitory effects on Streptococcus mutans of antibacterial agents mixed with experimental fluoride varnish. Dent Mater J 2020; 39:690-695. [PMID: 32522914 DOI: 10.4012/dmj.2020-016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We investigated the inhibitory effect of antibacterial agents mixed with experimental fluoride varnish (EFV) on Streptococcus mutans. The antibacterial agents used were (1 and 10) mM of xanthorrhizol, bakuchiol, bavachalcone, isobavachromene, and bavachromene. Agar diffusion tests were performed on S. mutans (1.1×1010 CFU/mL), using antibacterial agents without and with EFV. Bavachalcone showed the highest inhibition zone without and with EFV at both (1 and 10) mM (p<0.05). All EFV with antibacterial agents showed greater inhibition and semi-inhibition zones than EFV alone (p<0.05). The cell viability of each antibacterial agent was not significantly different from the vehicle controls (p>0.05), except xanthorrhizol and bakuchiol at 1 mM. All antibacterial agents were effective, while antibacterial agents with EFV co-formulations were more effective than EFV alone. Bavachalcone was the most effective agent against S. mutans, indicating its potential usefulness with fluoride varnish in preventing dental caries.
Collapse
Affiliation(s)
- Ju-Lee Son
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University
| | - Ah-Jin Kim
- Department of Dental Hygiene, Sorabol College
| | - Seunghan Oh
- Dental Biomaterials and Institute of Biomaterials · Implant, College of Dentistry, Wonkwang University
| | - Ji-Myung Bae
- Dental Biomaterials and Institute of Biomaterials · Implant, College of Dentistry, Wonkwang University
| |
Collapse
|
24
|
Sugamoto K, Yoshifuji T, Soejima S, Honda Y. Synthesis of chalcones bearing 2-hydroperoxy-3-methyl-3-butenyl or 2-hydroxy-3-methyl-3-butenyl group from prenylated chalcones. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1745242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Toru Yoshifuji
- Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Shuhei Soejima
- Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Yoshihiro Honda
- Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
25
|
A concise total synthesis and PPAR activation activity of hericerin from Hericium erinaceum. J Antibiot (Tokyo) 2020; 73:646-649. [PMID: 32269298 DOI: 10.1038/s41429-020-0303-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/12/2020] [Accepted: 03/09/2020] [Indexed: 02/03/2023]
Abstract
Hericerin is an isoindolinone meroterpenoid alkaloid isolated from medicinal mushroom Hericium erinaceum with some bioactivities. Herein, a concise total synthesis of hericerin was described, with four steps and 30% overall yield starting from commercially available methyl 3-hydroxy-5-methoxybenzoate and geranyl bromide. A comprehensive effect of hericerin on HepG2 cell line was observed and confirmed by transcriptomic analysis. Furthermore, hericerin was found to be a new PPARγ agonist.
Collapse
|
26
|
Recent developments of chalcones as potential antibacterial agents in medicinal chemistry. Eur J Med Chem 2020; 187:111980. [DOI: 10.1016/j.ejmech.2019.111980] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022]
|
27
|
O-geranylchalcones: synthesis and metabolic inhibition against Leishmania mexicana and Trypanosoma cruzi. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Anti-inflammatory flavonoids from root bark of Broussonetia papyrifera in LPS-stimulated RAW264.7 cells. Bioorg Chem 2019; 92:103233. [DOI: 10.1016/j.bioorg.2019.103233] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/23/2019] [Accepted: 08/28/2019] [Indexed: 02/02/2023]
|
29
|
|
30
|
Lee JH, Mei HC, Kuo IC, Lee TH, Chen YH, Lee CK. Characterizing Tyrosinase Modulators from the Roots of Angelica keiskei Using Tyrosinase Inhibition Assay and UPLC-MS/MS as the Combinatorial Novel Approach. Molecules 2019; 24:molecules24183297. [PMID: 31510069 PMCID: PMC6767278 DOI: 10.3390/molecules24183297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, an in vitro tyrosinase inhibition assay in combination with ultra performance liquid chromatography-orbitrap mass spectrometry (UPLC-orbitrap-MS) was developed for the rapid screening and identification of tyrosinase modulators from roots of Angelica keiskei. Of the 15 candidates considered, nine chalcones, xanthoangelols (1), B (2), D (3), E (4), G (5), H (6), 4-hydroxyderricin (7), xanthokeismin B (8) and (2E)-1-[4-hydroxy-2-(2-hydroxy-2-propanyl)-2,3-dihydro-1-benzofuran-7-yl]-3-(4-hydroxyphenyl)-2-propen-1-one (9), five coumarins, umbelliferone (10), selinidin (11), isopimpinellin (12), phellopterin (13) and xanthyletin (14), and one other compound, ashitabaol A (15), were distinguished between the test samples and the controls with statistical significance, and the structure of each compound was determined by comparing with in-house standards and the literature. Among these, six compounds, xanthoangelol (1), xanthoangelol D (3), xanthoangelol H (6), 4-hydroxyderricin (7), laserpitin (16) and isolaserpitin (17), were isolated from roots of A. keiskei. Of the compounds isolated, compounds 1, 7 and 16 were subjected to tyrosinase inhibitory assay, and the IC50 values were 15.87 ± 1.21, 60.14 ± 2.29 and >100 μM, respectively. The present study indicated that the combination of in vitro tyrosinase inhibition assay coupled with UPLC-MS/MS could be widely applied to the rapid screening of active substances from various natural resources.
Collapse
Affiliation(s)
- Jia-Hao Lee
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Hui-Ching Mei
- Department of Science Education, National Taipei University of Education, Taipei 10671, Taiwan.
| | - I-Chih Kuo
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Yu-Hsin Chen
- Taichung District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Taichung 42081, Taiwan.
| | - Ching-Kuo Lee
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
31
|
Xu M, Wu P, Shen F, Ji J, Rakesh KP. Chalcone derivatives and their antibacterial activities: Current development. Bioorg Chem 2019; 91:103133. [PMID: 31374524 DOI: 10.1016/j.bioorg.2019.103133] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/27/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022]
Abstract
The increase in antibiotic resistance due to various factors has encouraged the look for novel compounds which are active against multidrug-resistant pathogens. In this framework, chalcone-based compounds showed a diversity of pharmacological properties, and its derivatives possess a high degree of structural diversity, and it is helpful for the discovery of new therapeutic agents. The growing resistance to antibiotics worldwide has endangered their efficacy. This has led to a surging interest in the discovery of new antibacterial agents. Thus, there is an urgent need for new antibacterial drug candidates with increased strength, new targets, low cost, superior pharmacokinetic properties, and minimum side effects. The present review concluded and focuses on the recent developments in the area of medicinal chemistry to explore the diverse chemical structures of potent antibacterial agents and also describes its structure-activity relationships studies. The various synthetic structures leading to this class of neutral protective compound is common and additional structural optimization is promising for potential drug discovery and development.
Collapse
Affiliation(s)
- Man Xu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Piye Wu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Fan Shen
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Jiayou Ji
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - K P Rakesh
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China.
| |
Collapse
|
32
|
Zhang C, Wu W, Li X, Xin X, Liu D. Daily Supplementation with Fresh
Angelica keiskei
Juice Alleviates High‐Fat Diet‐Induced Obesity in Mice by Modulating Gut Microbiota Composition. Mol Nutr Food Res 2019; 63:e1900248. [DOI: 10.1002/mnfr.201900248] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/05/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Chengcheng Zhang
- Food Science InstituteZhejiang Academy of Agricultural Sciences Hangzhou 310021 China
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province Hangzhou 310021 China
| | - Weicheng Wu
- Food Science InstituteZhejiang Academy of Agricultural Sciences Hangzhou 310021 China
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province Hangzhou 310021 China
| | - Xiaoqiong Li
- Food Science InstituteZhejiang Academy of Agricultural Sciences Hangzhou 310021 China
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province Hangzhou 310021 China
| | - Xiaoting Xin
- Food Science InstituteZhejiang Academy of Agricultural Sciences Hangzhou 310021 China
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province Hangzhou 310021 China
| | - Daqun Liu
- Food Science InstituteZhejiang Academy of Agricultural Sciences Hangzhou 310021 China
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province Hangzhou 310021 China
| |
Collapse
|
33
|
Du J, Hu Z, Dong WJ, Wang Y, Wu S, Bai Y. Biosynthesis of large-sized silver nanoparticles using Angelica keiskei extract and its antibacterial activity and mechanisms investigation. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Zhai J, Fu L, Li Y, Zhao R, Wang R, Deng H, Liu H, Kong L, Chen Z, Sang F. Synthesis and biological activities evaluation of sanjuanolide and its analogues. Bioorg Med Chem Lett 2019; 29:326-328. [PMID: 30472027 DOI: 10.1016/j.bmcl.2018.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 11/19/2022]
Abstract
Sanjuanolide, psorachalcone A and its seven new analogues were synthesized via a combinatorial strategy by aldol reaction. In order to investigate the effect between electron density in π-conjugated systems and biological activities, several electron-withdrawing and electron-donating groups were introduced at C-4 and the phenolic hydroxyl groups of sanjuanolide. The two natural products and its seven new analogues were investigated for their inhibitory effects against five cancer cell lines. Moreover, the hydroxyisoprenyl group may be important to maintain the biological activities of sanjuanolide.
Collapse
Affiliation(s)
- Jiadai Zhai
- School of Life Science, Shandong University of Technology, Zibo 255049, PR China; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Lin Fu
- School of Life Science, Shandong University of Technology, Zibo 255049, PR China
| | - Yuanyuan Li
- School of Life Science, Shandong University of Technology, Zibo 255049, PR China
| | - Rui Zhao
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Rui Wang
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Hongkuan Deng
- School of Life Science, Shandong University of Technology, Zibo 255049, PR China
| | - Hongliang Liu
- School of Life Science, Shandong University of Technology, Zibo 255049, PR China
| | - Ling Kong
- School of Life Science, Shandong University of Technology, Zibo 255049, PR China
| | - Zhiwei Chen
- School of Life Science, Shandong University of Technology, Zibo 255049, PR China
| | - Feng Sang
- School of Life Science, Shandong University of Technology, Zibo 255049, PR China.
| |
Collapse
|
35
|
Mizar P, Arya R, Kim T, Cha S, Ryu KS, Yeo WS, Bae T, Kim DW, Park KH, Kim KK, Lee SS. Total Synthesis of Xanthoangelol B and Its Various Fragments: Toward Inhibition of Virulence Factor Production of Staphylococcus aureus. J Med Chem 2018; 61:10473-10487. [PMID: 30388007 PMCID: PMC6326535 DOI: 10.1021/acs.jmedchem.8b01012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
As
an alternative strategy to fight antibiotic resistance, two-component
systems (TCSs) have emerged as novel targets. Among TCSs, master virulence
regulators that control the expression of multiple virulence factors
are considered as excellent antivirulence targets. In Staphylococcus
aureus, virulence factor expression is tightly regulated
by a few master regulators, including the SaeRS TCS. In this study,
we used a SaeRS GFP-reporter system to screen natural compound inhibitors
of SaeRS, and identified xanthoangelol B 1, a prenylated
chalcone from Angelica keiskei as a hit. We have
synthesized 1 and its derivative PM-56 and
shown that 1 and PM-56 both had excellent
inhibitory potency against the SaeRS TCS, as demonstrated by various in vitro and in vivo experiments. As a
mode of action, 1 and PM-56 were shown to
bind directly to SaeS and inhibit its histidine kinase activity, which
suggests a possibility of a broad spectrum inhibitor of histidine
kinases.
Collapse
Affiliation(s)
- Pushpak Mizar
- Chemistry, Highfield Campus , University of Southampton , Southampton , SO17 1BJ , U.K
| | - Rekha Arya
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance and Therapeutics, Samsung Medical Center , Sungkyunkwan University School of Medicine , Suwon 16419 , Republic of Korea
| | - Truc Kim
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance and Therapeutics, Samsung Medical Center , Sungkyunkwan University School of Medicine , Suwon 16419 , Republic of Korea
| | - Soyoung Cha
- Protein Structure Research Group , Korea Basic Science Institute , 162 Yeongudanji-Ro, Ochang-Eup , Cheongju-Si , Chungcheongbuk-Do 28119 , Republic of Korea
| | - Kyoung-Seok Ryu
- Protein Structure Research Group , Korea Basic Science Institute , 162 Yeongudanji-Ro, Ochang-Eup , Cheongju-Si , Chungcheongbuk-Do 28119 , Republic of Korea
| | - Won-Sik Yeo
- Department of Microbiology and Immunology , Indiana University-School of Medicine-Northwest , Gary , Indiana 46408 , United States
| | - Taeok Bae
- Department of Microbiology and Immunology , Indiana University-School of Medicine-Northwest , Gary , Indiana 46408 , United States
| | - Dae Wook Kim
- Division of Applied Life Science (BK21 Plus), IALS , Gyeongsang National University , Jinju 52828 , Republic of Korea
| | - Ki Hun Park
- Division of Applied Life Science (BK21 Plus), IALS , Gyeongsang National University , Jinju 52828 , Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance and Therapeutics, Samsung Medical Center , Sungkyunkwan University School of Medicine , Suwon 16419 , Republic of Korea
| | - Seung Seo Lee
- Chemistry, Highfield Campus , University of Southampton , Southampton , SO17 1BJ , U.K
| |
Collapse
|
36
|
Arslan T. Synthesis and Characterisation of New Sulfonamide Chalcones Containing an azo Group. JOURNAL OF CHEMICAL RESEARCH 2018. [DOI: 10.3184/174751918x15269091219930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The synthesis and characterisation of a new type of chalcone bearing a –N=N– bond is reported using an environmentally benign approach. The synthesis consists of two steps. ( E)-4-((5-acetyl-2-hydroxyphenyl)diazenyl)benzenesulfonamide was synthesised by an easy structural modification of sulfanilamide. The key step then involved the solvent-free Claisen–Schmidt condensation of benzaldehydes to form the chalcones. The structures of all compounds were confirmed by FTIR, NMR and MS spectroscopy.
Collapse
Affiliation(s)
- Tayfun Arslan
- Department of Chemistry, Art and Science Faculty, Giresun University, 28200-Giresun, Turkey Department of Textile, Technical Sciences Vocational School, Giresun University, 28049-Giresun, Turkey
| |
Collapse
|
37
|
Song HS, Jang S, Kang SC. Bavachalcone from Cullen corylifolium induces apoptosis and autophagy in HepG2 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 40:37-47. [PMID: 29496173 DOI: 10.1016/j.phymed.2017.12.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/16/2017] [Accepted: 12/26/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Cullen corylifolium is a plant widely used in traditional Chinese medicine for its stomachic, anthelmintic, and diuretic properties. Bavachalcone, which is known as a component of C. corylifolium has been reported to inhibit osteoclast differentiation. However, the anticancer efficacy and mechanism of C. corylifolium and bavachalcone have not been studied. HYPOTHESIS/PURPOSE Our aim is to determine whether C. corylifolium has an anticancer effect and to identify the apoptosis and autophagy mechanism of bavachalcone. STUDY DESIGN/METHOD The anti-proliferative activity of C. corylifolium and bavachalcone was measured with MTT assay. Apoptosis was analyzed using Annexin V and propidium iodide staining. The expression of apoptosis, cell cycle and autophagy related gene was evaluated by western blot. Cell cycle stage was investigated with TaliⓇ image-based cytometer. Autophagic activity was assessed using monodansylcadaverine (MDC) staining. RESULT C. corylifolium exhibited potent effect on apoptosis in HepG2 cells. To identify which compound in C. corylifolium is responsible for this effect, we determined the effects of psoralen, psoralidin, bavachalcone, and isobavachalcone on the activity of bid, caspase 3, and PARP. Of all the studied compounds, bavachalcone was the most potent inducer of apoptosis and acted via crosstalk between the intrinsic and extrinsic pathways. In addition, bavachalcone caused cell cycle arrest and decreased the levels of early cell cycle regulatory proteins such as CDK 4 and CDK 2, whereas p21 and p27 levels were increased. We also investigated the extent to which bavachalcone-induced autophagy and apoptosis were related. Phosphorylation and expression of Akt and mTOR were decreased, while the LC3 Ⅱ to LC3Ⅰ ratio was increased in bavachalcone-treated cells. These results suggest that bavachalcone has anticancer activity by promoting both autophagy and apoptosis in HepG2 cells. CONCLUSION C. corylifolium has an anticancer effect. Especially, bavachalcone has excellent anticancer ability among other components of C. corylifolium by inducing apoptosis and autophagy.
Collapse
Affiliation(s)
- Hae Seong Song
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Sunphil Jang
- GENENCELL Co., Ltd., Suite #2201, UTOWER, 120, Heungdeokjungang-ro, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
38
|
Du J, Wang CH, Yang J, He X, Han XL, Li CC, Chai X, Wang YF, Zhu Y, Li Z. Chemical constituents from the fruits of Psoralea corylifolia and their protective effects on ionising radiation injury. Nat Prod Res 2017; 33:673-680. [DOI: 10.1080/14786419.2017.1405407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jie Du
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chun-Hua Wang
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Yang
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin He
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Xiao-Liang Han
- Department of Anesthesiology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Cong-Cong Li
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Chai
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue-Fei Wang
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
39
|
Mohamed EI, Zaki MA, Chaurasiya ND, Owis AI, AbouZid S, Wang YH, Avula B, Seida AA, Tekwani BL, Ross SA. Monoamine oxidases inhibitors from Colvillea racemosa: Isolation, biological evaluation, and computational study. Fitoterapia 2017; 124:217-223. [PMID: 29154867 DOI: 10.1016/j.fitote.2017.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
Bioassay-guided fractionation and chemical investigation of Colvillea racemosa stems led to identification of two new α, β-dihydroxydihydrochalcones, colveol A (1) and colveol B (2) along with fifteen known compounds. The structures were elucidated via interpretation of spectroscopic data. The absolute configurations of the dihydrochalcones 1 and 2 were assigned by a combination of chemical modification and electronic circular dichroism data. The isolated compounds were evaluated for their inhibition activity toward recombinant human monoamine oxidases (rhMAO-A and -B). Compound 1 demonstrated preferential inhibition against hMAO-A isoenzyme (IC50 0.62μM, SIA/B 0.02) while S-naringenin (13) and isoliquiritigein (15) demonstrated preferential hMAO-B inhibition (IC50 0.27 and 0.51μM, SIA/B 31.77 and 44.69, respectively). Fisetin (11) showed inhibition against hMAO-A with IC50 value of 4.62μM and no inhibitory activity toward hMAO-B up to 100μM. Molecular docking studies for the most active compounds were conducted to demonstrate the putative binding modes. It suggested that 1 interacts with Gln215, Ala111, Phe352, and Phe208 amino acid residues which have a role in the orientation and stabilization of the inhibitor binding to hMAO-A, while S-naringenin (13) occupies both entrance and substrate cavities and interacts with Tyr326, a critical residue in inhibitor recognition in hMAO-B.
Collapse
Affiliation(s)
- Enas I Mohamed
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, MS 38677, United States; Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed A Zaki
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, MS 38677, United States; Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Narayan D Chaurasiya
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, MS 38677, United States
| | - Asmaa I Owis
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Sameh AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Yan-Hong Wang
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, MS 38677, United States
| | - Bharathi Avula
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, MS 38677, United States
| | - Ahmed A Seida
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Babu L Tekwani
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, MS 38677, United States; Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, MS 38677, United States.
| | - Samir A Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, MS 38677, United States; Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, MS 38677, United States.
| |
Collapse
|
40
|
Chen CH, Hwang TL, Chen LC, Chang TH, Wei CS, Chen JJ. Isoflavones and anti-inflammatory constituents from the fruits of Psoralea corylifolia. PHYTOCHEMISTRY 2017; 143:186-193. [PMID: 28825980 DOI: 10.1016/j.phytochem.2017.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 05/18/2023]
Abstract
The fruits of Psoralea corylifolia, known as Psoraleae Fructus (Buguzhi in Chinese), are traditionally used for the treatment of spermatorrhea, nephritis, asthma, pollakiuria, and various inflammatory diseases. Three previously undescribed isoflavone derivatives, 7-O-methylcorylifol A, 7-O-isoprenylcorylifol A, and 7-O-isoprenylneobavaisoflavone, have been isolated from the fruits of P. corylifolia, together with 9 known compounds. The structures of these compounds were determined through spectroscopic and MS analyses. Among the isolated compounds, 7-O-methylcorylifol A and psoralen exhibited potent inhibition (IC50 values ≤ 10.89 μM) of superoxide anion generation by human neutrophils in response to N-formyl-L-methionyl-L-leucyl-L-phenylalanine/cytochalasin B (fMLP/CB). 7-O-Isoprenylcorylifol A, 7-O-isoprenylneobavaisoflavone, and 12,13-dihydro-12,13-epoxybakuchiol inhibited fMLP/CB-induced elastase release with IC50 values ≤ 14.30 μM. In addition, 7-O-isoprenylcorylifol A, bakuchiol, 12,13-dihydro-12,13-epoxybakuchiol, and psoralidin showed potent inhibition with IC50 values ≤ 36.65 μM, against lipopolysaccharide (LPS)-induced nitric oxide (NO) generation.
Collapse
Affiliation(s)
- Chiang-Hsiang Chen
- Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, 112, Taiwan; Department of Pharmacy, Tajen University, Pingtung, 907, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Li-Chai Chen
- Department of Pharmacy, Tajen University, Pingtung, 907, Taiwan; Department of Pharmacy, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, 813, Taiwan
| | - Tsung-Hsien Chang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
| | - Chun-Sheng Wei
- Department of Pharmacy, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, 813, Taiwan
| | - Jih-Jung Chen
- Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, 112, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
41
|
Hansch’s analysis application to chalcone synthesis by Claisen–Schmidt reaction based in DFT methodology. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0316-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Krawczyk P, Czeleń P, Szefler B, Cysewski P. Theoretical studies on the interaction between chalcone dyes and Concanavalin A—The reactive group effects on the photophysical and biological properties of the fluorescence probe. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Zhou D, An L, Xia Y, Wang Y, Li X. Quantitative bioanalysis of bavachalcone in rat plasma by LC-MS/MS and its application in a pharmacokinetics study. Biomed Chromatogr 2017; 31. [PMID: 28618051 DOI: 10.1002/bmc.4031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/24/2017] [Accepted: 06/13/2017] [Indexed: 11/12/2022]
Abstract
This study aims to develop and validate a simple and sensitive liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for investigating the pharmacokinetic characteristics of bavachalcone. Liquid-liquid extraction was used to prepare plasma sample. Chromatographic separation of bavachalcone and IS was achieved using a Venusil ASB C18 (2.1 × 50 mm, 5 μm) column with a mobile phase of methanol (A)-water (B) (70:30, v/v). The detection and quantification of analytes was performed in selected-reaction monitoring mode using precursor → product ion combinations of m/z 323.1 → 203.2 for bavachalcone, and m/z 373.0 → 179.0 for IS. Linear calibration plots were achieved in the range of 1-1000 ng/mL for bavachalcone (r2 > 0.99) in rat plasma. The recovery of bavachalcone ranged from 84.1 to 87.0%. The method was precise, accurate and reliable. It was fully validated and successfully applied to pharmacokinetic study of bavachalcone.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Pediatrics, the Second Hospital of Jilin University, Changchun, China
| | - Lianhua An
- Department of Science and Education, the First Hospital of Jilin University, Changchun, China
| | - Yan Xia
- Department of Gastroenterology, the First Hospital of Jilin University, Changchun, China
| | - Yuanyi Wang
- Department of Spine, the First Hospital of Jilin University, Changchun, China
| | - Xingliang Li
- Department of Emergency, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
44
|
Tanabe G, Tsutsui N, Shibatani K, Marumoto S, Ishikawa F, Ninomiya K, Muraoka O, Morikawa T. Total syntheses of the aromatase inhibitors, mammeasins C and D, from Thai medicinal plant Mammea siamensis. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
45
|
Escobar B, Montenegro I, Villena J, Werner E, Godoy P, Olguín Y, Madrid A. Hemi-Synthesis and Anti-Oomycete Activity of Analogues of Isocordoin. Molecules 2017; 22:molecules22060968. [PMID: 28604594 PMCID: PMC6152731 DOI: 10.3390/molecules22060968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 11/29/2022] Open
Abstract
An efficient synthesis of a series of 4′-oxyalkyl-isocordoin analogues (2–8) is reported for the first time. Their structures were confirmed by 1H-NMR, 13C-NMR, and HRMS. Their anti-oomycete activity was evaluated by mycelium and spores inhibition assay against two selected pathogenic oomycetes strains: Saprolegnia parasitica and Saprolegnia australis. The entire series of isocordoin derivatives (except compound 7) showed high inhibitory activity against these oomycete strains. Among them, compound 2 exhibited strong activity, with minimum inhibitory concentration (MIC) and minimum oomyceticidal concentration (MOC) values of 50 µg/mL and 75 µg/mL, respectively. The results showed that 4′-oxyalkylated analogues of isocordoin could be potential anti-oomycete agents.
Collapse
Affiliation(s)
- Beatriz Escobar
- Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile.
| | - Iván Montenegro
- Escuela de Obstetricia y Puericultura, Facultad de medicina, Campus de la Salud, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile.
- Centro de Investigaciones Biomédicas (CIB), Escuela de Medicina, Universidad de Valparaíso, Av. Hontaneda Nº 2664, Valparaíso 2340000, Chile.
| | - Joan Villena
- Centro de Investigaciones Biomédicas (CIB), Escuela de Medicina, Universidad de Valparaíso, Av. Hontaneda Nº 2664, Valparaíso 2340000, Chile.
| | - Enrique Werner
- Departamento De Ciencias Básicas, Campus Fernando May Universidad del Biobío. Avda. Andrés Bello s/n casilla 447, Chillán 3780000, Chile.
| | - Patricio Godoy
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Los Laureles s/n, Isla Teja, Valdivia 5090000, Chile.
| | - Yusser Olguín
- Center for Integrative Medicine and Innovative Science (CIMIS), Facultad de Medicina, Universidad Andrés Bello, Santiago 8320000, Chile.
| | - Alejandro Madrid
- Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile.
| |
Collapse
|
46
|
Kil YS, Pham ST, Seo EK, Jafari M. Angelica keiskei, an emerging medicinal herb with various bioactive constituents and biological activities. Arch Pharm Res 2017; 40:655-675. [PMID: 28439780 PMCID: PMC7090720 DOI: 10.1007/s12272-017-0892-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/30/2017] [Indexed: 01/14/2023]
Abstract
Angelica keiskei (Miq.) Koidz. (Umbelliferae) has traditionally been used to treat dysuria, dyschezia, and dysgalactia as well as to restore vitality. Recently, the aerial parts of A. keiskei have been consumed as a health food. Various flavonoids, coumarins, phenolics, acetylenes, sesquiterpene, diterpene, and triterpenes were identified as the constituents of A. keiskei. The crude extracts and pure constituents were proven to inhibit tumor growth and ameliorate inflammation, obesity, diabetics, hypertension, and ulcer. The extract also showed anti-thrombotic, anti-oxidative, anti-hyperlipidemic, anti-viral, and anti-bacterial activities. This valuable herb needs to be further studied and developed not only to treat these human diseases but also to improve human health. Currently A. keiskei is commercialized as a health food and additives in health drinks. This article presents a comprehensive review of A. keiskei and its potential place in the improvement of human health.
Collapse
Affiliation(s)
- Yun-Seo Kil
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Sally T Pham
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| | - Mahtab Jafari
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
47
|
Novel 3',5'-diprenylated chalcones inhibited the proliferation of cancer cells in vitro by inducing cell apoptosis and arresting cell cycle phase. Eur J Med Chem 2017; 133:227-239. [PMID: 28390228 DOI: 10.1016/j.ejmech.2017.03.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/03/2017] [Accepted: 03/30/2017] [Indexed: 12/12/2022]
Abstract
A double Claisen rearrangements synthetic strategy was established for the total synthesis of 4,4'-dimethyl medicagenin (compound 6c). A series of its analogs also were prepared, including two novel 3',5'-diprenylated chalcones, in which ring B was replaced by azaheterocycle. The structures of the twenty-two newly synthesized compounds were confirmed by 1H NMR, 13C NMR and ESI-MS. In vitro, the cytotoxicity of the target compounds was evaluated using cancer cells. Noticeably, compound 10 exhibited broad-spectrum cytotoxicity on PC3 prostate cancer cells, MDA-MB-231 breast cancer cells (MDA), HEL and K562 erythroleukemia cells with IC50 values of 2.92, 3.14, 1.85 and 2.64 μM, respectively. Further studies indicated that compound 10 induced apoptosis and arrested the cell cycle phase of the above mentioned four cancer cell lines. By contrast, compound 6g selectively displayed potent inhibitory activity against the proliferation of HEL cells with an IC50 value of 4.35 μM. Compound 6g slightly induced apoptosis and arrested cell cycle phase of HEL cells. Preliminary structure-activity relationship studies indicated that, in all cancer cell lines evaluated, the 3-pyridinyl group was essential for cytotoxicity.
Collapse
|
48
|
Du G, Zhao Y, Feng L, Yang Z, Shi J, Huang C, Li B, Guo F, Zhu W, Li Y. Design, Synthesis, and Structure-Activity Relationships of Bavachinin Analogues as Peroxisome Proliferator-Activated Receptor γ Agonists. ChemMedChem 2016; 12:183-193. [DOI: 10.1002/cmdc.201600554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/02/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Guoxin Du
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; 1200 Cailun Road Shanghai 201203 China
| | - Yuanyuan Zhao
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; 1200 Cailun Road Shanghai 201203 China
| | - Li Feng
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; 1200 Cailun Road Shanghai 201203 China
| | - Zhuo Yang
- Key Laboratory of Receptor Research & Drug Discovery and Design Center; Shanghai Institute of Materia Medica, Chinese Academy of Sciences; 555 Zuchongzhi Road Shanghai 201203 China
| | - Jiye Shi
- Informatics Department; UCB Pharma; 216 Bath Road Slough SL1 4EN UK
| | - Cheng Huang
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; 1200 Cailun Road Shanghai 201203 China
| | - Bo Li
- Key Laboratory of Receptor Research & Drug Discovery and Design Center; Shanghai Institute of Materia Medica, Chinese Academy of Sciences; 555 Zuchongzhi Road Shanghai 201203 China
| | - Fujiang Guo
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; 1200 Cailun Road Shanghai 201203 China
| | - Weiliang Zhu
- Key Laboratory of Receptor Research & Drug Discovery and Design Center; Shanghai Institute of Materia Medica, Chinese Academy of Sciences; 555 Zuchongzhi Road Shanghai 201203 China
| | - Yiming Li
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; 1200 Cailun Road Shanghai 201203 China
| |
Collapse
|
49
|
Morita C, Kobayashi Y, Saito Y, Miyake K, Tokuda H, Suzuki N, Ichiishi E, Lee KH, Nakagawa-Goto K. Total Synthesis and in Vitro Anti-Tumor-Promoting Activities of Racemic Acetophenone Monomers from Acronychia trifoliolata. JOURNAL OF NATURAL PRODUCTS 2016; 79:2890-2897. [PMID: 27933896 PMCID: PMC5503185 DOI: 10.1021/acs.jnatprod.6b00646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Six acetophenone derivatives, acronyculatins I (1), J (2), K (3), L (4), N (5), and O (6), were recently isolated from Acronychia trifoliolata, and the structure of the known acronyculatin B (7) was revised. Because of the limited quantities of isolated products as well as their structure similarity, racemic acronyculatins I-L, N, O, and B (1-7) were synthesized to confirm their structures and to obtain sufficient material for biological evaluation. Trihydroxyacetophenone was converted to the target compounds by various sequences of hydroxy group protection, allylation or prenylation, and epoxidation followed by cyclization. C-Prenylations were carried out by direct addition of a prenyl group or through 1,3- or 3,3-sigmatropic rearrangement. The synthesized racemic compounds were evaluated in an anti-tumor-promoting assay using the Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate in Raji cells. All tested compounds significantly inhibited EBV-EA activation. Especially, racemic acronyculatin I (1) displayed the most potent inhibitory effects, with an IC50 value of 7.3 μM.
Collapse
Affiliation(s)
- Chihiro Morita
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yukiko Kobayashi
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yohei Saito
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsunori Miyake
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Harukuni Tokuda
- Organic Chemistry in Life Science, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Nobutaka Suzuki
- Department of Complementary and Alternative Medicine, Clinical R&D, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Eiichiro Ichiishi
- International Health & Welfare University Hospital, Nasushiobara, Tochigi 329-2763, Japan
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7568, United States
- Chinese Medicine Research and Development Center, China Medical University and Hospital, 2 Yuh-Der Road, Taichung, 40447, Taiwan
| | - Kyoko Nakagawa-Goto
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7568, United States
| |
Collapse
|
50
|
Snow Setzer M, Sharifi-Rad J, Setzer WN. The Search for Herbal Antibiotics: An In-Silico Investigation of Antibacterial Phytochemicals. Antibiotics (Basel) 2016; 5:E30. [PMID: 27626453 PMCID: PMC5039526 DOI: 10.3390/antibiotics5030030] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/14/2016] [Accepted: 08/26/2016] [Indexed: 01/12/2023] Open
Abstract
Recently, the emergence and spread of pathogenic bacterial resistance to many antibiotics (multidrug-resistant strains) have been increasing throughout the world. This phenomenon is of great concern and there is a need to find alternative chemotherapeutic agents to combat these antibiotic-resistant microorganisms. Higher plants may serve as a resource for new antimicrobials to replace or augment current therapeutic options. In this work, we have carried out a molecular docking study of a total of 561 antibacterial phytochemicals listed in the Dictionary of Natural Products, including 77 alkaloids (17 indole alkaloids, 27 isoquinoline alkaloids, 4 steroidal alkaloids, and 28 miscellaneous alkaloids), 99 terpenoids (5 monoterpenoids, 31 sesquiterpenoids, 52 diterpenoids, and 11 triterpenoids), 309 polyphenolics (87 flavonoids, 25 chalcones, 41 isoflavonoids, 5 neoflavonoids, 12 pterocarpans, 10 chromones, 7 condensed tannins, 11 coumarins, 30 stilbenoids, 2 lignans, 5 phenylpropanoids, 13 xanthones, 5 hydrolyzable tannins, and 56 miscellaneous phenolics), 30 quinones, and 46 miscellaneous phytochemicals, with six bacterial protein targets (peptide deformylase, DNA gyrase/topoisomerase IV, UDP-galactose mutase, protein tyrosine phosphatase, cytochrome P450 CYP121, and NAD⁺-dependent DNA ligase). In addition, 35 known inhibitors were docked with their respective targets for comparison purposes. Prenylated polyphenolics showed the best docking profiles, while terpenoids had the poorest. The most susceptible protein targets were peptide deformylases and NAD⁺-dependent DNA ligases.
Collapse
Affiliation(s)
- Mary Snow Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
- Department of Pharmacognosy, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|