1
|
He S, Hou T, Zhou J, Yu B, Cai J, Luo F, Xu J, Xing J. Implication of CXCR2-Src axis in the angiogenic and osteogenic effects of FP-TEB. NPJ Regen Med 2024; 9:24. [PMID: 39304660 DOI: 10.1038/s41536-024-00364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
Application of tissue-engineered bones (TEBs) is hindered by challenges associated with incorporated viable cells. Previously, we employed freeze-drying techniques on TEBs to devitalize mesenchymal stem cells (MSCs) while preserving functional proteins, yielding functional proteins-based TEBs (FP-TEBs). Here, we aimed to elucidate their in vivo angiogenic and osteogenic capabilities and the mechanisms. qPCR arrays were employed to evaluate chemokines and receptors governing EC migration. Identified C-X-C chemokine receptors (CXCRs) were substantiated using shRNAs, and the pivotal role of CXCR2 was validated via conditional knockout mice. Finally, signaling molecules downstream of CXCR2 were identified. Additionally, Src, MAP4K4, and p38 MAPK were identified indispensable for CXCR2 function. Further investigations revealed that regulation of p38 MAPK by Src was mediated by MAP4K4. In conclusion, FP-TEBs promoted EC migration, angiogenesis, and osteogenesis via the CXCR2-Src-Map4k4-p38 MAPK axis.
Collapse
Affiliation(s)
- Sihao He
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Tianyong Hou
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Jiangling Zhou
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Bo Yu
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Juan Cai
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Fei Luo
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China
| | - Jianzhong Xu
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China.
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China.
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China.
| | - Junchao Xing
- Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, the Third Military Medical University, Chongqing, China.
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China.
- Tissue Engineering Laboratory of Chongqing City, Chongqing, China.
| |
Collapse
|
2
|
Brüser L, Teichmann E, Hinz B. Effect of Flavonoids on MCP-1 Expression in Human Coronary Artery Endothelial Cells and Impact on MCP-1-Dependent Migration of Human Monocytes. Int J Mol Sci 2023; 24:16047. [PMID: 38003237 PMCID: PMC10671372 DOI: 10.3390/ijms242216047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
The monocyte chemoattractant protein-1 (MCP-1), also known as chemokine (CC motif) ligand 2 (CCL2), is involved in the formation, progression, and destabilization of atheromatous plaques. Flavonoids, found in fruits and vegetables, have been associated with various health-promoting properties, including antioxidant, anti-inflammatory, and cardioprotective effects. In the present study, the flavonoids quercetin, kaempferol, and luteolin, but not cannflavin A, were shown to substantially inhibit interleukin (IL)-1β-induced MCP-1 mRNA and protein expression in human coronary artery endothelial cells (HCAEC). At the functional level, conditioned medium (CM) from IL-1β-stimulated HCAEC caused an increase in the migration of THP-1 monocytes compared with CM from unstimulated HCAEC. However, this induction was suppressed when IL-1β-treated HCAEC were coincubated with quercetin, kaempferol, or luteolin. The functional importance of MCP-1 in IL-1β-induced monocyte migration was supported by experiments showing that neutralization of MCP-1 in the CM of IL-1β-treated HCAEC led to a significant inhibition of migration. In addition, a concentration-dependent induction of monocyte migration in the presence of recombinant MCP-1 was demonstrated. Collectively, the flavonoids quercetin, kaempferol, and luteolin were found to exert potential antiatherogenic effects in HCAEC, challenging further studies with these compounds.
Collapse
Affiliation(s)
| | | | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (L.B.); (E.T.)
| |
Collapse
|
3
|
Emamat H, Zahedmehr A, Asadian S, Nasrollahzadeh J. The effect of purple-black barberry (Berberis integerrima) on blood pressure in subjects with cardiovascular risk factors: a randomized controlled trial. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115097. [PMID: 35150818 DOI: 10.1016/j.jep.2022.115097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/27/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberis integerrima commonly known as "barberry" belongs to the Berberidaceae family and has been used as a medicinal plant in Iranian traditional medicine. AIM OF THE STUDY Our aim in this study was to investigate the effects of barberry consumption on blood pressure (BP). MATERIALS AND METHODS Eighty-four medicated hypertensive patients were selected and randomly allocated to barberry and placebo groups. The barberry group received 10 g/day dried purple-black barberry powder, once daily, for 2-months. Systolic, diastolic, and mean arterial BP was assessed through 24-h ambulatory BP monitoring before and after 2-month treatment. The estimation of sodium and potassium intake was done through measurement of sodium and potassium in 24-h urinary samples. Plasma and urinary nitrite, and nitrate (NOx) levels, as well as plasma angiotensin-converting enzyme (ACE) activity, were also determined. RESULTS Seventy-eight participants with an average age of 54.12 ± 10.32 years and BMI of 27.93 ± 2.22 kg/m2 completed the study. There was no significant difference in body weight, physical activity, and the 24-h urinary sodium and potassium excretion between the two groups before and after the study. After adjusting for baseline values and changes in sodium intake, systolic, and mean arterial BP decreased significantly in the barberry group compared to the placebo group (p = 0.015 and p = 0.008, respectively). Plasma NOx levels and ACE activity were not different between the two groups, but urinary NOx was increased significantly in the barberry group compared to the placebo group (p = 0.008). CONCLUSIONS In patients treated with antihypertensive drugs, daily consumption of purple-black barberry can be effective in improving systolic BP control.
Collapse
Affiliation(s)
- Hadi Emamat
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Zahedmehr
- Cardiovascular Intervention Research Center, Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Sanaz Asadian
- Department of Radiology, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Javad Nasrollahzadeh
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Behl T, Rana T, Alotaibi GH, Shamsuzzaman M, Naqvi M, Sehgal A, Singh S, Sharma N, Almoshari Y, Abdellatif AAH, Iqbal MS, Bhatia S, Al-Harrasi A, Bungau S. Polyphenols inhibiting MAPK signalling pathway mediated oxidative stress and inflammation in depression. Biomed Pharmacother 2021; 146:112545. [PMID: 34922112 DOI: 10.1016/j.biopha.2021.112545] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Depression is one of the most debilitating psychiatric disorders affecting people of all ages worldwide. Despite significant heterogeneity between studies, increased inflammation and oxidative stress have been found in depression. Oxidative stress and inflammation are involved in the pathogenesis of depression. In the current review, we discussed the markers of oxidative stress and inflammation in depressive disorder and the association between these markers and the antidepressant treatment. The role of natural polyphenols in regulating various cell signaling pathways related to oxidative stress and inflammation has also been reviewed. The inhibitory effect of polyphenols on several cell signaling pathways reveals the vital role of polyphenols in the prevention and treatment of depressive disorder. Understanding the mechanism of polyphenols implicated in the regulation of cell signaling pathways is essential for the identification of lead compounds and the development of novel effective compounds for the prevention and treatment of depressive disorder.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Ghallab H Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Kingdom of Saudi Arabia
| | - Md Shamsuzzaman
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Kingdom of Saudi Arabia
| | - Maaz Naqvi
- Central Research Laboratory, Department of Pharmacology, HIMSR, Jamia Hamdard, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania.
| |
Collapse
|
5
|
Martin BR, Richardson J. An exploratory review of Potential Adjunct Therapies for the Treatment of Coronavirus Infections. J Chiropr Med 2021; 20:199-217. [PMID: 34924893 PMCID: PMC8664662 DOI: 10.1016/j.jcm.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 10/31/2022] Open
Abstract
Objective The purpose of this exploratory review c, including vitamin D, zinc, vitamin A, elderberry (S nigra), garlic (A sativum), licorice (G glabra), stinging nettle (U dioica), N-acetylcysteine, quercetin and selenium as potential adjunct therapies for the treatment of coronavirus infections. Methods A search of PubMed was performed for articles published from 2005 to 2021. Key words searched were zinc, vitamin A, vitamin D, Sambucus nigra, Allium sativum, Glycyrrhiza glabra, Urtica dioica, N-Acetylcysteine, quercetin, selenium and coronavirus. Results There were 47 articles selected for this review. Findings included that vitamin D, zinc, vitamin A, S nigra, A sativum, G glabra, U dioica, N-acetylcysteine, quercetin and selenium have been shown to produce anti-inflammatory, immunostimulatory or antiviral effects that may enhance the actions of standard therapeutics for the treatment of CoV infections. We found only research articles related to the effects of vitamin D, zinc, G glabra, quercetin and selenium against COVID-19. Conclusion We identified non-pharmaceutical supplements (Vitamin D, zinc, vitamin A, S nigra, A sativum, G glabra and U dioica) which may have potential to provide support for those with coronavirus infections. However, rigorous clinical studies need to be performed before any clinical recommendations can be made at this time.
Collapse
Affiliation(s)
- Brett R Martin
- National University of Health Sciences Basic Science Department, Pinellas Park, Fl, USA
| | | |
Collapse
|
6
|
Ruskovska T, Massaro M, Carluccio MA, Arola-Arnal A, Muguerza B, Vanden Berghe W, Declerck K, Bravo FI, Calabriso N, Combet E, Gibney ER, Gomes A, Gonthier MP, Kistanova E, Krga I, Mena P, Morand C, Nunes Dos Santos C, de Pascual-Teresa S, Rodriguez-Mateos A, Scoditti E, Suárez M, Milenkovic D. Systematic bioinformatic analysis of nutrigenomic data of flavanols in cell models of cardiometabolic disease. Food Funct 2021; 11:5040-5064. [PMID: 32537624 DOI: 10.1039/d0fo00701c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavanol intake positively influences several cardiometabolic risk factors in humans. However, the specific molecular mechanisms of action of flavanols, in terms of gene regulation, in the cell types relevant to cardiometabolic disease have never been systematically addressed. On this basis, we conducted a systematic literature review and a comprehensive bioinformatic analysis of genes whose expression is affected by flavanols in cells defining cardiometabolic health: hepatocytes, adipocytes, endothelial cells, smooth muscle cells and immune cells. A systematic literature search was performed using the following pre-defined criteria: treatment with pure compounds and metabolites (no extracts) at low concentrations that are close to their plasma concentrations. Differentially expressed genes were analyzed using bioinformatics tools to identify gene ontologies, networks, cellular pathways and interactions, as well as transcriptional and post-transcriptional regulators. The systematic literature search identified 54 differentially expressed genes at the mRNA level in in vitro models of cardiometabolic disease exposed to flavanols and their metabolites. Global bioinformatic analysis revealed that these genes are predominantly involved in inflammation, leukocyte adhesion and transendothelial migration, and lipid metabolism. We observed that, although the investigated cells responded differentially to flavanol exposure, the involvement of anti-inflammatory responses is a common mechanism of flavanol action. We also identified potential transcriptional regulators of gene expression: transcriptional factors, such as GATA2, NFKB1, FOXC1 or PPARG, and post-transcriptional regulators: miRNAs, such as mir-335-5p, let-7b-5p, mir-26b-5p or mir-16-5p. In parallel, we analyzed the nutrigenomic effects of flavanols in intestinal cells and demonstrated their predominant involvement in the metabolism of circulating lipoproteins. In conclusion, the results of this systematic analysis of the nutrigenomic effects of flavanols provide a more comprehensive picture of their molecular mechanisms of action and will support the future setup of genetic studies to pave the way for individualized dietary recommendations.
Collapse
Affiliation(s)
- Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | | | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Begoña Muguerza
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Francisca Isabel Bravo
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Nadia Calabriso
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | - Emilie Combet
- Human Nutrition, School of Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Eileen R Gibney
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Ireland
| | - Andreia Gomes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal and Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Marie-Paule Gonthier
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Irena Krga
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia and Université Clermont Auvergne, INRAe, UNH, F-63000 Clermont-Ferrand, France.
| | - Pedro Mena
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food and Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Christine Morand
- Université Clermont Auvergne, INRAe, UNH, F-63000 Clermont-Ferrand, France.
| | - Claudia Nunes Dos Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal and Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal and CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 10, 28040 Madrid, Spain
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | - Manuel Suárez
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAe, UNH, F-63000 Clermont-Ferrand, France. and Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California 95616, USA
| |
Collapse
|
7
|
Basu A, Izuora K, Betts NM, Kinney JW, Salazar AM, Ebersole JL, Scofield RH. Dietary Strawberries Improve Cardiometabolic Risks in Adults with Obesity and Elevated Serum LDL Cholesterol in a Randomized Controlled Crossover Trial. Nutrients 2021; 13:1421. [PMID: 33922576 PMCID: PMC8145532 DOI: 10.3390/nu13051421] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
Background and aims: Dietary berries, such as strawberries, are rich in bioactive compounds and have been shown to lower cardiometabolic risk. We examined the effects of two dietary achievable doses of strawberries on glycemic control and lipid profiles in obese adults with elevated serum LDL cholesterol (LDL-C). Methods: In this 14-week randomized controlled crossover study, participants were assigned to one of the three arms for four weeks separated by a one-week washout period: control powder, one serving (low dose: 13 g strawberry powder/day), or two-and-a -half servings (high dose: 32 g strawberry powder/day). Participants were instructed to follow their usual diet and lifestyle while refraining from consuming other berries and related products throughout the study interval. Blood samples, anthropometric measures, blood pressure, and dietary and physical activity data were collected at baseline and at the end of each four-week phase of intervention. Results: In total, 33 participants completed all three phases of the trial [(mean ± SD): Age: 53 ± 13 y; BMI: 33 ± 3.0 kg/m2). Findings revealed significant reductions in fasting insulin (p = 0.0002) and homeostatic model of assessment of insulin resistance (p = 0.0003) following the high dose strawberry phase when compared to the low dose strawberry and control phases. Glucose and conventional lipid profiles did not differ among the phases. Nuclear magnetic resonance-determined particle concentrations of total VLDL and chylomicrons, small VLDL, and total and small LDL were significantly decreased after the high dose strawberry phase, compared to control and low dose phases (all p < 0.0001). Among the biomarkers of inflammation and adipokines measured, only serum PAI-1 showed a decrease after the high dose strawberry phase (p = 0.002). Conclusions: These data suggest that consuming strawberries at two-and-a-half servings for four weeks significantly improves insulin resistance, lipid particle profiles, and serum PAI-1 in obese adults with elevated serum LDL-C.
Collapse
Affiliation(s)
- Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Kenneth Izuora
- Section of Endocrinology, School of Medicine, University of Nevada, Las Vegas, NV 89154, USA;
| | - Nancy M. Betts
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Jefferson W. Kinney
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA; (J.W.K.); (A.M.S.)
| | - Arnold M. Salazar
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA; (J.W.K.); (A.M.S.)
| | | | - R. Hal Scofield
- Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
8
|
Hussain T, Murtaza G, Yang H, Kalhoro MS, Kalhoro DH. Exploiting Anti-Inflammation Effects of Flavonoids in Chronic Inflammatory Diseases. Curr Pharm Des 2020; 26:2610-2619. [PMID: 32268861 DOI: 10.2174/1381612826666200408101550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/08/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Inflammation is a complex response of the host defense system to different internal and external stimuli. It is believed that persistent inflammation may lead to chronic inflammatory diseases such as, inflammatory bowel disease, neurological and cardiovascular diseases. Oxidative stress is the main factor responsible for the augmentation of inflammation via various molecular pathways. Therefore, alleviating oxidative stress is effective a therapeutic option against chronic inflammatory diseases. METHODS This review article extends the knowledge of the regulatory mechanisms of flavonoids targeting inflammatory pathways in chronic diseases, which would be the best approach for the development of suitable therapeutic agents against chronic diseases. RESULTS Since the inflammatory response is initiated by numerous signaling molecules like NF-κB, MAPK, and Arachidonic acid pathways, their encountering function can be evaluated with the activation of Nrf2 pathway, a promising approach to inhibit/prevent chronic inflammatory diseases by flavonoids. Over the last few decades, flavonoids drew much attention as a potent alternative therapeutic agent. Recent clinical evidence has shown significant impacts of flavonoids on chronic diseases in different in-vivo and in-vitro models. CONCLUSION Flavonoid compounds can interact with chronic inflammatory diseases at the cellular level and modulate the response of protein pathways. A promising approach is needed to overlook suitable alternative compounds providing more therapeutic efficacy and exerting fewer side effects than commercially available antiinflammatory drugs.
Collapse
Affiliation(s)
- Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB), P.O. Box: 128, Jhang Road, Faisalabad, 38000, Pakistan,Pakistan Institute of Engineering and Applied Sciences (PIEAS) Nilore, Islamabad, Pakistan
| | - Ghulam Murtaza
- Shaheed Benazir Bhutto University of Veterinary & Animal Sciences (SBBUVAS), Sakrand, 67210, Sindh, Pakistan
| | - Huansheng Yang
- Hunan International Joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Muhammad S Kalhoro
- Food Engineering and Bioprocess Technology, Asian Institute of Technology, Bangkok, 12120, Thailand
| | - Dildar H Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh
Agriculture University, Tandojam, Sindh, 70050, Pakistan
| |
Collapse
|
9
|
Subcritical water extraction, identification, antioxidant and antiproliferative activity of polyphenols from lotus seedpod. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Magrone T, Magrone M, Russo MA, Jirillo E. Recent Advances on the Anti-Inflammatory and Antioxidant Properties of Red Grape Polyphenols: In Vitro and In Vivo Studies. Antioxidants (Basel) 2019; 9:E35. [PMID: 31906123 PMCID: PMC7022464 DOI: 10.3390/antiox9010035] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/20/2022] Open
Abstract
In this review, special emphasis will be placed on red grape polyphenols for their antioxidant and anti-inflammatory activities. Therefore, their capacity to inhibit major pathways responsible for activation of oxidative systems and expression and release of proinflammatory cytokines and chemokines will be discussed. Furthermore, regulation of immune cells by polyphenols will be illustrated with special reference to the activation of T regulatory cells which support a tolerogenic pathway at intestinal level. Additionally, the effects of red grape polyphenols will be analyzed in obesity, as a low-grade systemic inflammation. Also, possible modifications of inflammatory bowel disease biomarkers and clinical course have been studied upon polyphenol administration, either in animal models or in clinical trials. Moreover, the ability of polyphenols to cross the blood-brain barrier has been exploited to investigate their neuroprotective properties. In cancer, polyphenols seem to exert several beneficial effects, even if conflicting data are reported about their influence on T regulatory cells. Finally, the effects of polyphenols have been evaluated in experimental models of allergy and autoimmune diseases. Conclusively, red grape polyphenols are endowed with a great antioxidant and anti-inflammatory potential but some issues, such as polyphenol bioavailability, activity of metabolites, and interaction with microbiota, deserve deeper studies.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, 70124 Bari, Italy; (M.M.); (E.J.)
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, 70124 Bari, Italy; (M.M.); (E.J.)
| | - Matteo Antonio Russo
- MEBIC Consortium, San Raffaele Open University of Rome and IRCCS San Raffaele Pisana of Rome, 00166 Rome, Italy;
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, 70124 Bari, Italy; (M.M.); (E.J.)
| |
Collapse
|
11
|
Khan H, Sureda A, Belwal T, Çetinkaya S, Süntar İ, Tejada S, Devkota HP, Ullah H, Aschner M. Polyphenols in the treatment of autoimmune diseases. Autoimmun Rev 2019; 18:647-657. [PMID: 31059841 PMCID: PMC6588481 DOI: 10.1016/j.autrev.2019.05.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023]
Abstract
In addition to protecting body from infections and diseases, the immune system produces auto-antibodies that can cause complex autoimmune disorders, such as Type I diabetes, primary biliary cirrhosis, rheumatoid arthritis, and multiple sclerosis, to name a few. In such cases, the immune system fails to recognize between foreign agents and its own body cells. Different factors, such as genetic factors (CD25, STAT4), epigenetic factors (DNA methylation, histone modifications) and environmental factors (xenobiotics, drugs, hormones) trigger autoimmunity. Glucocorticoids, non-steroidal anti-inflammatory drugs (NSAIDs), immunosuppressive and biological agents are currently used to manage autoimmune diseases of different origins. However, complete cure remains elusive. Many dietary and natural products including polyphenols have been widely studied as possible alternative treatment strategies for the management of autoimmune disorders. Polyphenols possess a wide-range of pharmacological and therapeutic properties, including antioxidant and anti-inflammatory activities. As immunomodulatory agents, polyphenols are emerging pharmaceutical tools for management of various autoimmune disorders including vitiligo, ulcerative colitis and multiple sclerosis (MS). Polyphenols activate intracellular pathways such as arachidonic acid dependent pathway, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway, mitogen-activated protein kinases (MAPKs) pathway, phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway and epigenetic modulation, which regulate the host's immune response. This timely review discusses putative points of action of polyphenols in autoimmune diseases, characterizing their efficacy and safety as therapeutic agents in managing autoimmune disorders.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, KPK, Pakistan; University of Balearic Islands, E-07122 Palma de Mallorca, Spain.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Tarun Belwal
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, India
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, 06330, Yenimahalle, Ankara, Turkey
| | - İpek Süntar
- Department of Pharmacognosy Faculty of Pharmacy Gazi University, 06330 Etiler Ankara, Turkey
| | - Silvia Tejada
- Laboratory of neurophysiology, Biology Department & CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Hari Prasad Devkota
- School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo ku, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools, Health life science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, Kumamoto, Japan
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, KPK, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
12
|
Qu G, Chen J, Guo X. The beneficial and deleterious role of dietary polyphenols on chronic degenerative diseases by regulating gene expression. Biosci Trends 2018; 12:526-536. [PMID: 30606977 DOI: 10.5582/bst.2018.01172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dietary polyphenols, a natural component in many kinds of foods such as fruits and vegetables, play essential roles in a wide range of plant functions. Importantly, the discovery of the functions of polyphenols including anti-oxidant, anti-carcinogenic and anti-inflammatory has been appealing to researchers' attentions. Dietary polyphenols have shown protective effects on chronic degenerative diseases (CDD) such as cardiovascular diseases, cancers, and neurodegenerative diseases by regulating gene expression. Dietary polyphenols also affect the composition and activity of gut microbiota, in reverse, gut microbiota influences the bioavailability and physiological activity of dietary polyphenols. However, not all kinds of dietary polyphenols are beneficial for human health. The potential deleterious effects of several dietary polyphenols have been reported by inducing DNA damage and gene mutants. This review summarizes the potential therapeutic effects of dietary polyphenols on chronic degeneration diseases, the polyphenols-gut microbiota interactions, and the potential dangers of individual dietary polyphenols on human health.
Collapse
Affiliation(s)
- Guojing Qu
- Shandong University Taishan College (Biological Research Training Program for Top-notch Students)
| | - Jinhua Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University
| | - Xiuli Guo
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University
| |
Collapse
|
13
|
Yahfoufi N, Alsadi N, Jambi M, Matar C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018; 10:E1618. [PMID: 30400131 PMCID: PMC6266803 DOI: 10.3390/nu10111618] [Citation(s) in RCA: 889] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023] Open
Abstract
This review offers a systematic understanding about how polyphenols target multiple inflammatory components and lead to anti-inflammatory mechanisms. It provides a clear understanding of the molecular mechanisms of action of phenolic compounds. Polyphenols regulate immunity by interfering with immune cell regulation, proinflammatory cytokines' synthesis, and gene expression. They inactivate NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and modulate mitogen-activated protein Kinase (MAPk) and arachidonic acids pathways. Polyphenolic compounds inhibit phosphatidylinositide 3-kinases/protein kinase B (PI3K/AkT), inhibitor of kappa kinase/c-Jun amino-terminal kinases (IKK/JNK), mammalian target of rapamycin complex 1 (mTORC1) which is a protein complex that controls protein synthesis, and JAK/STAT. They can suppress toll-like receptor (TLR) and pro-inflammatory genes' expression. Their antioxidant activity and ability to inhibit enzymes involved in the production of eicosanoids contribute as well to their anti-inflammation properties. They inhibit certain enzymes involved in reactive oxygen species ROS production like xanthine oxidase and NADPH oxidase (NOX) while they upregulate other endogenous antioxidant enzymes like superoxide dismutase (SOD), catalase, and glutathione (GSH) peroxidase (Px). Furthermore, they inhibit phospholipase A2 (PLA2), cyclooxygenase (COX) and lipoxygenase (LOX) leading to a reduction in the production of prostaglandins (PGs) and leukotrienes (LTs) and inflammation antagonism. The effects of these biologically active compounds on the immune system are associated with extended health benefits for different chronic inflammatory diseases. Studies of plant extracts and compounds show that polyphenols can play a beneficial role in the prevention and the progress of chronic diseases related to inflammation such as diabetes, obesity, neurodegeneration, cancers, and cardiovascular diseases, among other conditions.
Collapse
Affiliation(s)
- Nour Yahfoufi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H8L1, Canada.
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H8L1, Canada.
| | - Majed Jambi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H8L1, Canada.
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H8L1, Canada.
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H8L1, Canada.
| |
Collapse
|
14
|
Polyphenols and Oxidative Stress in Atherosclerosis-Related Ischemic Heart Disease and Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8526438. [PMID: 29317985 PMCID: PMC5727797 DOI: 10.1155/2017/8526438] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/15/2022]
Abstract
Good nutrition could maintain health and life. Polyphenols are common nutrient mainly derived from fruits, vegetables, tea, coffee, cocoa, mushrooms, beverages, and traditional medicinal herbs. They are potential substances against oxidative-related diseases, for example, cardiovascular disease, specifically, atherosclerosis-related ischemic heart disease and stroke, which are health and economic problems recognized worldwide. In this study, we reviewed the risk factors for atherosclerosis, including hypertension, diabetes mellitus, hyperlipidemia, obesity, and cigarette smoking as well as the antioxidative activity of polyphenols, which could prevent the pathology of atherosclerosis, including endothelial dysfunction, low-density lipoprotein oxidation, vascular smooth muscle cell proliferation, inflammatory process by monocytes, macrophages or T lymphocytes, and platelet aggregation. The strong radical-scavenging properties of polyphenols would exhibit antioxidative and anti-inflammation effects. Polyphenols reduce ROS production by inhibiting oxidases, reducing the production of superoxide, inhibiting OxLDL formation, suppressing VSMC proliferation and migration, reducing platelet aggregation, and improving mitochondrial oxidative stress. Polyphenol consumption also inhibits the development of hypertension, diabetes mellitus, hyperlipidemia, and obesity. Despite the numerous in vivo and in vitro studies, more advanced clinical trials are necessary to confirm the efficacy of polyphenols in the treatment of atherosclerosis-related vascular diseases.
Collapse
|
15
|
Levy-Ontman O, Huleihel M, Hamias R, Wolak T, Paran E. An anti-inflammatory effect of red microalga polysaccharides in coronary artery endothelial cells. Atherosclerosis 2017; 264:11-18. [DOI: 10.1016/j.atherosclerosis.2017.07.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/28/2017] [Accepted: 07/14/2017] [Indexed: 01/25/2023]
|
16
|
Ohkura N, Ando K, Takata Y, Kanai S, Ishibashi K, Taniguchi M, Tatefuji T, Atsumi GI. Positions of Hydroxyl Groups in Chrysin are Critical for Inhibiting Plasminogen Activator Inhibitor-1 Release from Human Umbilical Vein Endothelial Cells. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chrysin suppresses the TNFa-induced increase in the secretion of plasma plasminogen activator inhibitor 1 (PAI-1), a risk factor for thrombotic diseases, from human umbilical vein endothelial cells (HUVECs). The present study aimed to determine the association between the location of the hydroxyl groups in chrysin to levels of PAI-1 in the medium of HUVEC stimulated with TNFα, We cultured HUVEC for 3 h in medium containing chrysin or various flavonoids and then stimulated them with TNFα (10 ng/mL) for 12 h. Levels of PAI-1 antigen measured using ELISA showed that chrysin significantly inhibited the PAI-1 increase with an IC50 of 15.6 μM. The flavones, galangin, baicalein, 5-hydroxyflavone, 6-hydroxyflavone, 7-hydroxyflavone and quercetin did not significantly inhibit the PAI-1 increase. Apigenin and luteolin were cytotoxic and thus their ability to inhibit PAI-1 production could not be evaluated. Chrysin also inhibited PAI-1 mRNA expression whereas the other compounds did not. Hydroxyl groups located in the A-5 and A-7 positions were essential for the inhibitory activity, which along with cytotoxicity, was significantly influenced by adding a third hydroxyl group.
Collapse
Affiliation(s)
- Naoki Ohkura
- Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Kumiko Ando
- Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Yuko Takata
- Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Shiho Kanai
- Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Kenichi Ishibashi
- Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Masahiko Taniguchi
- Department of Pharmacognosy, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Tomoki Tatefuji
- Institute for Bee Products and Health Science, Yamada Apiculture Center, Inc, 1281-1, Kagami, Kagamino, Tomata, Okayama, 708-0312, Japan
| | - Gen-ichi Atsumi
- Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| |
Collapse
|
17
|
Krga I, Milenkovic D, Morand C, Monfoulet LE. An update on the role of nutrigenomic modulations in mediating the cardiovascular protective effect of fruit polyphenols. Food Funct 2016; 7:3656-76. [PMID: 27538117 DOI: 10.1039/c6fo00596a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polyphenols are plant food microconstituents that are widely distributed in the human diet, with fruits and fruit-derived products as one of the main dietary sources. Epidemiological studies have shown an inverse relationship between the intake of different classes of polyphenols and the risk of myocardial infarction or cardiovascular disease (CVD) mortality. These compounds have been associated with the promotion of cardiovascular health as evidenced by clinical studies reporting beneficial effects of polyphenol-rich fruit consumption on intermediate markers of cardiovascular diseases. Additionally, animal and in vitro studies have indicated positive roles of polyphenols in preventing dysfunctions associated with the development of cardiovascular diseases. However, the mechanisms of action underlying their beneficial effects appear complex and are not fully understood. This review aims to provide an update on the nutrigenomic effects of different groups of polyphenols from fruits and especially focuses on their cardiovascular protective effects in cell and animal studies.
Collapse
Affiliation(s)
- I Krga
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France.
| | | | | | | |
Collapse
|
18
|
Starr CR, Villazana ET, Chapleau RR, Masserang DL. Optimizing the Roche LightCycler(R) for Single-Tube Multiplexed RT-PCR Assays. J Clin Diagn Res 2015; 9:DM01-3. [PMID: 25737991 DOI: 10.7860/jcdr/2015/9819.5361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 08/07/2014] [Indexed: 11/24/2022]
Affiliation(s)
- Clarise R Starr
- Applied Technology & Genomics Center, United States Air Force School of Aerospace Medicine , 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB OH
| | - Elia T Villazana
- Applied Technology & Genomics Center, United States Air Force School of Aerospace Medicine , 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB OH
| | - Richard R Chapleau
- Applied Technology & Genomics Center, United States Air Force School of Aerospace Medicine , 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB OH
| | - David L Masserang
- Applied Technology & Genomics Center, United States Air Force School of Aerospace Medicine , 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB OH
| |
Collapse
|
19
|
Wei T, Xiong FF, Wang SD, Wang K, Zhang YY, Zhang QH. Flavonoid ingredients of Ginkgo biloba leaf extract regulate lipid metabolism through Sp1-mediated carnitine palmitoyltranferase 1A up-regulation. J Biomed Sci 2014; 21:87. [PMID: 25183267 PMCID: PMC4428510 DOI: 10.1186/s12929-014-0087-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/21/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Lipid accumulation is the primary evidence of non-alcoholic fatty liver disease (NAFLD). Ginkgo biloba extract (GBE) and its flavonoid ingredients (quercetin, kaempferol, and isorhamnetin) could lessen the lipid accumulation associated with up-regulation of the rate-limiting enzyme, carnitine palmitoyltransferase 1A (CPT1A), in the β-oxidation of long-chain fatty acids. In this study, we investigated the mechanisms by which GBE and its flavonoids induced expression of CPT1A. RESULTS CPT1A inhibition with RNAi resulted in triglyceride accumulation in HepG2 cells. Through deletion and mutation analysis of CPT1A's promoter combined with electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) experiments, the CPT1A promoter region (-50 to -5 nt) was determined to contain two putative Sp1 binding sites, namely Sp1a and Sp1b, which might act as the GBE regulation response DNA element. Sp1 might be induced to transfer from cytoplasma to nucleus to bind the promoter region of -50 to -5 nt by GBE. The regulatory effects of GBE on CPT1A were also verified on the flavonoid ingredients quercetin, kaempferol, and isorhamnetin. CONCLUSION Sp1 was crucial in regulating CPT1A expression with GBE and its flavonoid ingredients, and the -50 to -5 nt region of CPT1A promoter played important roles in Sp1 binding.
Collapse
Affiliation(s)
- Ting Wei
- Research Center for Traditional Chinese Medicine and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Engineering Center for Biochip at Shanghai, Shanghai, China.
| | - Fei-fei Xiong
- School of Life Science and Technology, Tongji University, Shanghai, China.
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Engineering Center for Biochip at Shanghai, Shanghai, China.
| | - Shi-dong Wang
- Research Center for Traditional Chinese Medicine and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Engineering Center for Biochip at Shanghai, Shanghai, China.
| | - Ke Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Engineering Center for Biochip at Shanghai, Shanghai, China.
| | - Yong-yu Zhang
- Research Center for Traditional Chinese Medicine and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Qing-hua Zhang
- Research Center for Traditional Chinese Medicine and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- School of Life Science and Technology, Tongji University, Shanghai, China.
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, National Engineering Center for Biochip at Shanghai, Shanghai, China.
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Wyganowska-Świątkowska M, Surdacka A, Skrzypczak-Jankun E, Jankun J. The plasminogen activation system in periodontal tissue (Review). Int J Mol Med 2014; 33:763-8. [PMID: 24535478 DOI: 10.3892/ijmm.2014.1653] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/28/2014] [Indexed: 11/05/2022] Open
Abstract
The plasminogen activation system (PAS) plays an essential role in tissue proteolysis in physiological and pathological processes. Periodontitis is a chronic infection associated with increased proteolysis driven by plasminogen activation. In this comprehensive review, we summarise the effects of PAS in wound healing, tissue remodelling, inflammation, bacterial infection, and in the initiation and progression of periodontal disease. Specifically, we discuss the role of plasminogen activators (PAs), including urokinase PA (uPA), tissue-type PA (tPA), PA inhibitor type 1 (PAI-1) and 2 (PAI-2) and activated plasminogen in periodontal tissue, where their concentrations can reach much higher values than those found in other parts of the body. We also discuss whether PA deficiencies can have effects on periodontal tissue. We conclude that in periodontal disease, PAS is unbalanced and equalizing its function can improve the clinical periodontal tissue condition.
Collapse
Affiliation(s)
| | - Anna Surdacka
- Department of Conservative Dentistry and Periodontology, Poznań University of Medical Sciences, Poznań 60-820, Poland
| | - Ewa Skrzypczak-Jankun
- Urology Research Center, Department of Urology, College of Medicine, University of Toledo, Toledo, OH 43614, USA
| | - Jerzy Jankun
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
21
|
Moodley R, Koorbanally NA, Shahidul Islam M, Jonnalagadda SB. Structure and antioxidant activity of phenolic compounds isolated from the edible fruits and stem bark of Harpephyllum caffrum. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2014; 49:938-944. [PMID: 25310809 DOI: 10.1080/03601234.2014.951578] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Antioxidant activity in edible fruits is an important characteristic in the choice of fruits for human consumption, and has profound influence on nutrition and health. Two pharmacologically active triterpenoids, β-sitosterol and lupeol, and the powerful flavan-3-ol antioxidant, (+)-catechin, were isolated from the edible fruits of Harpephyllum caffrum while a mixture of cardanols, an alkyl p-coumaric acid ester, and (+)-catechin were isolated from the stem bark. This is the first report of these compounds being isolated from this plant. The antioxidant capacity of (+)-catechin was higher than the other isolated compounds as well as the known antioxidant, ascorbic acid.
Collapse
Affiliation(s)
- Roshila Moodley
- a School of Chemistry and Physics , University of KwaZulu-Natal (UKZN) , Durban , South Africa
| | | | | | | |
Collapse
|
22
|
Kelley DS, Adkins Y, Reddy A, Woodhouse LR, Mackey BE, Erickson KL. Sweet bing cherries lower circulating concentrations of markers for chronic inflammatory diseases in healthy humans. J Nutr 2013; 143:340-4. [PMID: 23343675 DOI: 10.3945/jn.112.171371] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A limited number of studies have demonstrated that some modulators of inflammation can be altered by the consumption of sweet cherries. We have taken a proteomics approach to determine the effects of dietary cherries on targeted gene expression. The purpose was then to determine changes caused by cherry consumption in the plasma concentrations of multiple biomarkers for several chronic inflammatory diseases in healthy humans with modestly elevated C-reactive protein (CRP; range, 1-14 mg/L; mean, 3.5 mg/L; normal, <1.0 mg/L). Eighteen men and women (45-61 y) supplemented their diets with Bing sweet cherries (280 g/d) for 28 d. Fasting blood samples were taken before the start of consuming the cherries (study d 7), 28 d after the initiation of cherry supplementation (d 35), and 28 d after the discontinuation (d 63). Of the 89 biomarkers assessed, cherry consumption for 28 d altered concentrations of 9, did not change those of 67, and the other 13 were below the detection limits. Cherry consumption decreased (P < 0.05) plasma concentrations of extracellular newly identified ligand for the receptor for advanced glycation end products (29.0%), CRP (20.1%), ferritin (20.3%), plasminogen activator inhibitor-1 (19.9%), endothelin-1 (13.7%), epidermal growth factor (13.2%), and IL-18 (8.1%) and increased that of IL-1 receptor antagonist (27.9%) compared with corresponding values on study d 7. The ferritin concentration continued to decrease between d 35 and 63 and it was significantly lower on d 63 than on d 7. Because the participants in this study were healthy, no clinical pathology end points were measured. However, results from the present study demonstrate that cherry consumption selectively reduced several biomarkers associated with inflammatory diseases.
Collapse
Affiliation(s)
- Darshan S Kelley
- Western Human Nutrition Research Center, Agricultural Research Service, USDA, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Zhang X, Xu F, Gao Y, Wu J, Sun Y, Zeng X. Optimising the extraction of tea polyphenols, (−)-epigallocatechin gallate and theanine from summer green tea by using response surface methodology. Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2012.03082.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
González R, Ballester I, López-Posadas R, Suárez MD, Zarzuelo A, Martínez-Augustin O, Sánchez de Medina F. Effects of flavonoids and other polyphenols on inflammation. Crit Rev Food Sci Nutr 2011; 51:331-62. [PMID: 21432698 DOI: 10.1080/10408390903584094] [Citation(s) in RCA: 364] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavonoids are a family of polyphenolic compounds which are widespread in nature (vegetables) and are consumed as part of the human diet in significant amounts. There are other types of polyphenols, including, for example, tannins and resveratrol. Flavonoids and related polyphenolic compounds have significant antiinflammatory activity, among others. This short review summarizes the current knowledge on the effects of flavonoids and related polyphenolic compounds on inflammation, with a focus on structural requirements, the mechanisms involved, and pharmacokinetic considerations. Different molecular (cyclooxygenase, lipoxygenase) and cellular targets (macrophages, lymphocytes, epithelial cells, endothelium) have been identified. In addition, many flavonoids display significant antioxidant/radical scavenging properties. There is substantial structural variation in these compounds, which is bound to have an impact on their biological profile, and specifically on their effects on inflammatory conditions. However, in general terms there is substantial consistency in the effects of these compounds despite considerable structural variations. The mechanisms have been studied mainly in myeloid cells, where the predominant effect is an inhibition of NF-κB signaling and the downregulation of the expression of proinflammatory markers. At present there is a gap in knowledge of in vitro and in vivo effects, although the pharmacokinetics of flavonoids has advanced considerably in the last decade. Many flavonoids have been studied for their intestinal antiinflammatory activity which is only logical, since the gastrointestinal tract is naturally exposed to them. However, their potential therapeutic application in inflammation is not restricted to this organ and extends to other sites and conditions, including arthritis, asthma, encephalomyelitis, and atherosclerosis, among others.
Collapse
Affiliation(s)
- R González
- Department of Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Sinkovic A, Suran D, Lokar L, Fliser E, Skerget M, Novak Z, Knez Z. Rosemary extracts improve flow-mediated dilatation of the brachial artery and plasma PAI-1 activity in healthy young volunteers. Phytother Res 2011; 25:402-7. [PMID: 20734322 DOI: 10.1002/ptr.3276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 06/08/2010] [Accepted: 06/16/2010] [Indexed: 11/08/2022]
Abstract
Polyphenol antioxidants decrease the risk of atherosclerosis. The study aimed to evaluate prospectively in healthy young participants the effect of oral rosemary extracts (RE), consisting of diphenols, upon endothelial dysfunction (ED), preceding structural atherosclerosis. Nineteen healthy young volunteers were studied prospectively, who received oral RE (77.7 mg) for 21 days, consisting of active substances carnosol (0.97 mg), carnosic (8.60 mg) and rosmarinic acid (10.30 mg). Before and after RE treatment, the study evaluated fasting serum levels of plasminogen-activator-inhibitor-1 (PAI-1), vascular cell adhesion molecule 1 (VCAM-1), inter-cellular adhesion molecule 1 (ICAM-1), superoxide dismutase (SOD), glutathione peroxidase (GPX), fibrinogen, high-sensitivity capsular reactive protein (hs-CRP), tumor-necrosis factor α (TNF-α), the lipid profile and ED, characterized as flow-mediated dilatation (FMD) in the brachial artery of < 4.5%, estimated by ultrasound measurements. After 21 days, any side effects were registered, the mean FMD increased nonsignificantly (6.51 ± 5.96% vs 7.78 ± 4.56%, p = 0.546) and ED decreased significantly (66.6% vs 16.6%, p = 0.040). Among the serum markers, only the mean PAI-1 level decreased significantly (4.25 ± 1.46 U/mL vs 3.0 ± 0.61 U/mL, p = 0.012) after 21-day RE supplementation. It is concluded that oral RE supplementation has the potential to improve serum PAI-1 activity and ED in young and healthy individuals.
Collapse
Affiliation(s)
- Andreja Sinkovic
- Department of Medical Research, University Medical Centre Maribor, Maribor, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
26
|
Olave NC, Grenett MH, Cadeiras M, Grenett HE, Higgins PJ. Upstream stimulatory factor-2 mediates quercetin-induced suppression of PAI-1 gene expression in human endothelial cells. J Cell Biochem 2011; 111:720-6. [PMID: 20626032 DOI: 10.1002/jcb.22760] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The polyphenol quercetin (Quer) represses expression of the cardiovascular disease risk factor plasminogen activator inhibitor-1 (PAI-1) in cultured endothelial cells (ECs). Transfection of PAI-1 promoter-luciferase reporter deletion constructs identified a 251-bp fragment (nucleotides -800 to -549) responsive to Quer. Two E-box motifs (CACGTG), at map positions -691 (E-box1) and -575 (E-box2), are platforms for occupancy by several members of the c-MYC family of basic helix-loop-helix leucine zipper (bHLH-LZ) proteins. Promoter truncation and electrophoretic mobility shift/supershift analyses identified upstream stimulatory factor (USF)-1 and USF-2 as E-box1/E-box2 binding factors. ECs co-transfected with a 251 bp PAI-1 promoter fragment containing the two E-box motifs (p251/luc) and a USF-2 expression vector (pUSF-2/pcDNA) exhibited reduced luciferase activity versus p251/luc alone. Overexpression of USF-2 decreased, while transfection of a dominant-negative USF construct increased, EC growth consistent with the known anti-proliferative properties of USF proteins. Quer-induced decreases in PAI-1 expression and reduced cell proliferation may contribute, at least in part, to the cardioprotective benefit associated with daily intake of polyphenols.
Collapse
Affiliation(s)
- Nélida C Olave
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | | | | | | | | |
Collapse
|
27
|
Ellis CL, Edirisinghe I, Kappagoda T, Burton-Freeman B. Attenuation of Meal-Induced Inflammatory and Thrombotic Responses in Overweight Men and Women After 6-Week Daily Strawberry (Fragaria) Intake. J Atheroscler Thromb 2011; 18:318-27. [DOI: 10.5551/jat.6114] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
28
|
Cale JM, Li SH, Warnock M, Su EJ, North PR, Sanders KL, Puscau MM, Emal CD, Lawrence DA. Characterization of a novel class of polyphenolic inhibitors of plasminogen activator inhibitor-1. J Biol Chem 2010; 285:7892-902. [PMID: 20061381 DOI: 10.1074/jbc.m109.067967] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor type 1, (PAI-1) the primary inhibitor of the tissue-type (tPA) and urokinase-type (uPA) plasminogen activators, has been implicated in a wide range of pathological processes, making it an attractive target for pharmacologic inhibition. Currently available small-molecule inhibitors of PAI-1 bind with relatively low affinity and do not inactivate PAI-1 in the presence of its cofactor, vitronectin. To search for novel PAI-1 inhibitors with improved potencies and new mechanisms of action, we screened a library selected to provide a range of biological activities and structural diversity. Five potential PAI-1 inhibitors were identified, and all were polyphenolic compounds including two related, naturally occurring plant polyphenols that were structurally similar to compounds previously shown to provide cardiovascular benefit in vivo. Unique second generation compounds were synthesized and characterized, and several showed IC(50) values for PAI-1 between 10 and 200 nm. This represents an enhanced potency of 10-1000-fold over previously reported PAI-1 inactivators. Inhibition of PAI-1 by these compounds was reversible, and their primary mechanism of action was to block the initial association of PAI-1 with a protease. Consistent with this mechanism and in contrast to previously described PAI-1 inactivators, these compounds inactivate PAI-1 in the presence of vitronectin. Two of the compounds showed efficacy in ex vivo plasma and one blocked PAI-1 activity in vivo in mice. These data describe a novel family of high affinity PAI-1-inactivating compounds with improved characteristics and in vivo efficacy, and suggest that the known cardiovascular benefits of dietary polyphenols may derive in part from their inactivation of PAI-1.
Collapse
Affiliation(s)
- Jacqueline M Cale
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-0644, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Puchau B, Zulet MA, de Echávarri AG, Hermsdorff HHM, Martínez JA. Dietary total antioxidant capacity is negatively associated with some metabolic syndrome features in healthy young adults. Nutrition 2009; 26:534-41. [PMID: 19783122 DOI: 10.1016/j.nut.2009.06.017] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 06/03/2009] [Accepted: 06/14/2009] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Oxidative stress has been related to the development of obesity and other features accompanying chronic diseases. Furthermore, dietary antioxidant intake has been suggested to protect against oxidative damage and related clinical complications. Therefore, the aim of this study was to assess the potential associations among dietary total antioxidant capacity (TAC) and several early metabolic syndrome manifestations in healthy young adults. METHODS Anthropometric variables and blood pressure from 153 healthy subjects (20.8+/-2.7 y old) were measured. Dietary intake was assessed by a validated food-frequency questionnaire and a 3-d record, which were also used to calculate TAC and to adjust by daily energy intake. Fasting blood samples were collected for measuring biochemical markers. RESULTS Dietary TAC showed positive and significant associations with fiber, folic acid, vitamin A and C, magnesium, selenium, and zinc intakes, after adjusting by sex and daily energy intake. Interestingly, systolic blood pressure, serum glucose, and free fatty acids were also found to be negatively associated with dietary TAC independently of sex and daily energy intake. Also, a relevant relation was found between body mass index and TAC values. Interestingly, after adjusting by sex and daily energy intake, complement factor-3 circulating levels appeared to be negatively and significantly associated with dietary TAC, whereas blood plasminogen activator inhibitor-1 and homocysteine concentrations showed an inverse marginally statistical trend. CONCLUSIONS These data suggest that dietary TAC may be also a potential early estimate of the risk to develop metabolic syndrome features and that dietary TAC could be a useful research tool in assessing antioxidant intake.
Collapse
Affiliation(s)
- Blanca Puchau
- Department of Nutrition, Food Science, Physiology and Toxicology, University of Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
30
|
Jaulmes A, Sansilvestri-Morel P, Rolland-Valognes G, Bernhardt F, Gaertner R, Lockhart BP, Cordi A, Wierzbicki M, Rupin A, Verbeuren TJ. Nox4 mediates the expression of plasminogen activator inhibitor-1 via p38 MAPK pathway in cultured human endothelial cells. Thromb Res 2009; 124:439-46. [PMID: 19540572 DOI: 10.1016/j.thromres.2009.05.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 04/15/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Plasminogen Activator Inhibitor-1 (PAI-1) is the most potent endogenous inhibitor of fibrinolysis which is implicated in the pathogenesis of myocardial infarction and metabolic syndrome. The formation of reactive oxygen species (ROS) plays an important role in the pathology of vascular disorders and has been shown to increase PAI-1 expression by endothelial cells. Growing evidence indicates that NADPH oxidase and in particular the constitutively active Nox4-p22(phox) complexes are major sources of ROS in endothelial cells. The aim of the present study was to characterize the role of NADPH oxidase and in particular Nox4 in the regulation of PAI-1 expression in cultured Human Umbilical Venous Endothelial Cells (HUVECs). METHODS AND RESULTS N-acetylcysteine (NAC, scavenger of ROS), diphenylene iodonium chloride (DPI, inhibitor of flavoproteins), M40403 (superoxyde dismutase mimic) and S17834 (inhibitor of NADPH oxidase) inhibited PAI-1 release and promoter activity in HUVECs. Specific knock down of Nox4 mRNA by siRNA caused a decrease in ROS production and NADPH oxidase activity. Moreover, Nox4 silencing decreased PAI-1 expression, release and activity as well as p38 MAPK pathways and NFkappaB activation. These signalling pathways are also involved in PAI-1 release. CONCLUSIONS The NADPH oxidase inhibitors DPI and S 17834 as well as Nox4 silencing decreased PAI-1 synthesis in human cultured endothelial cells demonstrating the involvement of the constitutively active Nox4-containing NADPH oxidase in ROS-mediated PAI-1 transcription via p38 MAPK pathways. NADPH oxidase targeting with inhibitors such as S17834 could be an interesting strategy to decrease both oxidative stress and PAI-1 synthesis.
Collapse
Affiliation(s)
- Amandine Jaulmes
- Division of Angiology, Servier Research Institute, 11 rue des Moulineaux, Suresnes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Crozier A, Jaganath IB, Clifford MN. Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 2009; 26:1001-43. [PMID: 19636448 DOI: 10.1039/b802662a] [Citation(s) in RCA: 1199] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is much epidemiological evidence that diets rich in fruit and vegetables can reduce the incidence of non-communicable diseases such as cardiovascular diseases, diabetes, cancer and stroke. These protective effects are attributed, in part, to phenolic secondary metabolites. This review summarizes the chemistry, biosynthesis and occurrence of the compounds involved, namely the C6-C3-C6 flavonoids-anthocyanins, dihydrochalcones, flavan-3-ols, flavanones, flavones, flavonols and isoflavones. It also includes tannins, phenolic acids, hydroxycinnamates and stilbenes and the transformation of plant phenols associated with food processing (for example, production of black tea, roasted coffee and matured wines), these latter often being the major dietary sources. Events that occur following ingestion are discussed, in particular, the deglycosylation, glucuronidation, sulfation and methylation steps that occur at various points during passage through the wall of the small intestine into the circulatory system and subsequent transport to the liver in the portal vein.We also summarise the fate of compounds that are not absorbed in the small intestine, but which pass into the large intestine where they are degraded by the colonic microflora to phenolic acids, which can be absorbed into the circulatory system and subjected to phase II metabolism prior to excretion. Initially, the protective effect of dietary phenolics was thought to be due to their antioxidant properties which resulted in a lowering of the levels of free radicals within the body.However, there is now emerging evidence that themetabolites of dietary phenolics,which appear in the circulatory systemin nmol/L to low mmol/L concentrations, exertmodulatory effects in cells through selective actions on different components of the intracellular signalling cascades vital for cellular functions such as growth, proliferation and apoptosis. In addition, the intracellular concentrations required to affect cell signalling pathways are considerably lower than those required to impact on antioxidant capacity. The mechanisms underlying these processes are discussed.
Collapse
Affiliation(s)
- Alan Crozier
- Graham Kerr Building, Division of Ecology and Evolutionary Biology, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
32
|
Halappanavar S, Stampfli MR, Berndt-Weis L, Williams A, Douglas GR, Yauk CL. Toxicogenomic analysis of mainstream tobacco smoke-exposed mice reveals repression of plasminogen activator inhibitor-1 gene in heart. Inhal Toxicol 2009; 21:78-85. [PMID: 18925475 PMCID: PMC2607137 DOI: 10.1080/08958370802209165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tobacco smoking is associated with cardiovascular pathology. However, the molecular mechanisms of tobacco smoke exposure that lead to initiation or exacerbation of cardiovascular disease are unclear. In this study, the effects of mainstream tobacco smoke (MTS) on global transcription in the heart were investigated. Male C57B1/CBA mice were exposed to MTS from 2 cigarettes daily, 5 days/wk for 6 or 12 wk. Mice were sacrificed immediately, or 6 wk following the last cigarette. High-density DNA microarrays were used to characterize global gene expression changes in whole heart. Fifteen genes were significantly differentially expressed following exposure to MTS. Among these genes, cytochrome P-450 1A1 (Cyp1A1) was upregulated by 12-fold, and Serpine-1 (plasminogen activator inhibitor-1, PAI-1) was downregulated by 1.7-fold. Concomitant increase in Cyp1A1 protein levels and decrease in total and active PAI-1 protein was observed in tissue extracts by Western blot assay and enzyme-linked immunosorbent assay (ELISA), respectively. Observed changes were transient and were partially reversed during break periods. Thus, gene expression profiling of heart tissue revealed a novel cardiovascular mechanism operating in response to MTS. Our results suggest a potential role for PAI-1 in MTS-induced cardiovascular pathology.
Collapse
Affiliation(s)
- Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Tunney's Pasture, 50 Columbine Driveway, Ottawa, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
33
|
Hu B, Wang L, Zhou B, Zhang X, Sun Y, Ye H, Zhao L, Hu Q, Wang G, Zeng X. Efficient procedure for isolating methylated catechins from green tea and effective simultaneous analysis of ten catechins, three purine alkaloids, and gallic acid in tea by high-performance liquid chromatography with diode array detection. J Chromatogr A 2009; 1216:3223-31. [PMID: 19246045 DOI: 10.1016/j.chroma.2009.02.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 02/03/2009] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
Monomers of (-)-epigallocatechin (EGC), (-)-epigallocatechin gallate (EGCG), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3''Me) and (-)-3-O-methyl epicatechin gallate (ECG3'Me) (purity, >97%) were successfully prepared from extract of green tea by two-time separation with Toyopearl HW-40S column chromatography eluted by 80% ethanol. In addition, monomers of (-)-catechin (C), (-)-gallocatechin (GC), (-)-gallocatechin gallate (GCG), and (-)-catechin gallate (CG) (purity, >98%) were prepared from EC, EGC, EGCG, and ECG by heat-epimerization and semi-preparative HPLC chromatography. With the prepared catechin standards, an effective and simultaneous HPLC method for the analysis of gallic acid, tea catechins, and purine alkaloids in tea was developed in the present study. Using an ODS-100Z C(18) reversed-phase column, fourteen compounds were rapidly separated within 15min by a linear gradient elution of formic acid solution (pH 2.5) and methanol. A 2.5-7-fold reduction in HPLC analysis time was obtained from existing analytical methods (40-105min) for gallic acid, tea catechins including O-methylated catechins and epimers of epicatechins, as well as purine alkaloids. Detection limits were generally on the order of 0.1-1.0ng for most components at the applied wavelength of 280nm. Method replication generally resulted in intraday and interday peak area variation of <6% for most tested components in green, Oolong, black, and pu-erh teas. Recovery rates were generally within the range of 92-106% with RSDs less than 4.39%. Therefore, advancement has been readily achievable with commonly used chromatography equipments in the present study, which will facilitate the analytical, clinical, and other studies of tea catechins.
Collapse
Affiliation(s)
- Bing Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pan W, Chang MJ, Booyse FM, Grenett HE, Bradley KM, Wolkowicz PE, Shang Q, Tabengwa EM. Quercetin induced tissue-type plasminogen activator expression is mediated through Sp1 and p38 mitogen-activated protein kinase in human endothelial cells. J Thromb Haemost 2008; 6:976-85. [PMID: 18419748 DOI: 10.1111/j.1538-7836.2008.02977.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Wine polyphenol quercetin upregulates tissue-type plasminogen activator (t-PA) transcription in cultured human umbilical cord vein endothelial cells (HUVECs). However, the regulatory elements and signaling pathways involved in this regulation are unknown. OBJECTIVES We aimed to localize quercetin-responsive t-PA promoter elements, identify the proteins that bind these elements, and decipher signaling pathways involved in the regulation of t-PA. METHODS To localize quercetin-responsive elements, HUVECs were transiently transfected with various t-PA promoter-reporter constructs. Element functionality was evaluated by mutational analysis. Nuclear protein-t-PA element interactions were evaluated by electrophoretic mobility shift assays (EMSAs) and chromatin immunoprecipitation (ChIP) analysis. Mitogen-activated protein kinase (MAPK) inhibitors were used to determine the signaling pathways involved in t-PA regulation. MAPK inhibition effects were evaluated by real-time PCR, immunoblotting analysis, and transfections. Coimmunoprecipitation was used to evaluate MAPK and transcription factor interaction. RESULTS Deletion of the t-PA promoter region - 288 to - 250 resulted in loss of quercetin responsiveness. This region contains putative Sp1-binding elements, which we termed Sp1a and Sp1b. Sp1b mutation abolished the quercetin-inducible response, whereas Sp1a mutation had no effect. EMSA and ChIP analysis demonstrated quercetin-enhanced Sp1 binding to Sp1b. Inhibition of p38 MAPK abrogated basal and quercetin-induced t-PA expression and promoter activity, as well as quercetin-induced Sp1 binding to Sp1b. Quercetin enhanced p38 MAPK and Sp1 physical association, which was similarly diminished by p38 MAPK inhibition. CONCLUSIONS We showed, for the first time, the presence of a functional Sp1-binding element in the t-PA promoter controlling quercetin induction via the p38 MAPK pathway. Understanding these mechanisms may provide new insights into polyphenol cardioprotective effects.
Collapse
Affiliation(s)
- W Pan
- The Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 34194-2170, USA
| | | | | | | | | | | | | | | |
Collapse
|