1
|
Syed Mohammed RD, Gutierrez Luque L, Maurer MC. Factor XIII Activation Peptide Residues Play Important Roles in Stability, Activation, and Transglutaminase Activity. Biochemistry 2024; 63:2830-2841. [PMID: 39422351 DOI: 10.1021/acs.biochem.4c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A subunit of factor XIII (FXIII-A) contains a unique activation peptide (AP) that protects the catalytic triad and prevents degradation. In plasma, FXIII is activated proteolytically (FXIII-A*) by thrombin and Ca2+ cleaving AP, while in cytoplasm, it is activated nonproteolytically (FXIII-A°) with increased Ca2+ concentrations. This study aimed to elucidate the role of individual parts of the FXIII-A AP in protein stability, thrombin activation, and transglutaminase activity. Recombinant FXIII-A AP variants were expressed, and SDS-PAGE was used to monitor thrombin hydrolysis at the AP cleavage sites R37-G38. Transglutaminase activities were assessed by cross-linking lysine mimics to Fbg αC (233-425, glutamine-substrate) and monitoring reactions by mass spectrometry and in-gel fluorescence assays. FXIII-A AP variants, S19P, E23K, and D24V, degraded during purification, indicating their vital role in FXIII-A2 stability. Mutation of P36 to L36/F36 abolished the proteolytic cleavage of AP and thus prevented activation. FXIII-A N20S and P27L exhibited slower thrombin activation, likely due to the loss of key interdomain H-bonding interactions. Except N20S and P15L/P16L, all activatable FXIII-A* variants (P15L, P16L, S19A, and P27L) showed similar cross-linking activity to WT. By contrast, FXIII-A° P15L, P16L, and P15L/P16L had significantly lower cross-linking activity than FXIII-A° WT, suggesting that loss of these prolines had a greater structural impact. In conclusion, FXIII-A AP residues that play crucial roles in FXIII-A stability, activation, and activity were identified. The interactions between these AP amino acid residues and other domains control the stability and activity of FXIII.
Collapse
Affiliation(s)
- Rameesa D Syed Mohammed
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Lianay Gutierrez Luque
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Muriel C Maurer
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
2
|
Fan HL, Han ZT, Gong XR, Wu YQ, Fu YJ, Zhu TM, Li H. Macrophages in CRSwNP: Do they deserve more attention? Int Immunopharmacol 2024; 134:112236. [PMID: 38744174 DOI: 10.1016/j.intimp.2024.112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Chronic rhinosinusitis (CRS) represents a heterogeneous disorder primarily characterized by the persistent inflammation of the nasal cavity and paranasal sinuses. The subtype known as chronic rhinosinusitis with nasal polyposis (CRSwNP) is distinguished by a significantly elevated recurrence rate and augmented challenges in the management of nasal polyps. The pathogenesis underlying this subtype remains incompletely understood. Macrophages play a crucial role in mediating the immune system's response to inflammatory stimuli. These cells exhibit remarkable plasticity and heterogeneity, differentiating into either the pro-inflammatory M1 phenotype or the anti-inflammatory and reparative M2 phenotype depending on the surrounding microenvironment. In CRSwNP, macrophages demonstrate reduced production of Interleukin 10 (IL-10), compromised phagocytic activity, and decreased autophagy. Dysregulation of pro-resolving mediators may occur during the inflammatory resolution process, which could potentially hinder the adequate functioning of anti-inflammatory macrophages in facilitating resolution. Collectively, these factors may contribute to the prolonged inflammation observed in CRSwNP. Additionally, macrophages may enhance fibrin cross-linking through the release of factor XIII-A (FAXIII), promoting fibrin deposition and plasma protein retention. Macrophages also modulate vascular permeability by releasing Vascular endothelial growth factor (VEGF). Moreover, they may disrupt the balance between Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of Metalloproteinases (TIMPs), which favors extracellular matrix (ECM) degradation, edema formation, and pseudocyst development. Accumulating evidence suggests a close association between macrophage infiltration and CRSwNP; however, the precise mechanisms underlying this relationship warrant further investigation. In different subtypes of CRSwNP, different macrophage phenotypic aggregations trigger different types of inflammatory features. Increasing evidence suggests that macrophage infiltration is closely associated with CRSwNP, but the mechanism and the relationship between macrophage typing and CRSwNP endophenotyping remain to be further explored. This review discusses the role of different types of macrophages in the pathogenesis of different types of CRSwNP and their contribution to polyp formation, in the hope that a better understanding of the role of macrophages in specific CRSwNP will contribute to a precise and individualized understanding of the disease.
Collapse
Affiliation(s)
- Hong-Li Fan
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhou-Tong Han
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xin-Ru Gong
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu-Qi Wu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi-Jie Fu
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, China
| | - Tian-Min Zhu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Hui Li
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Mohammed RDS, Piell KM, Maurer MC. Identification of Factor XIII β-Sandwich Residues Mediating Glutamine Substrate Binding and Activation Peptide Cleavage. Thromb Haemost 2024; 124:408-422. [PMID: 38040030 DOI: 10.1055/a-2220-7544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
BACKGROUND Factor XIII (FXIII) forms covalent crosslinks across plasma and cellular substrates and has roles in hemostasis, wound healing, and bone metabolism. FXIII activity is implicated in venous thromboembolism (VTE) and is a target for developing pharmaceuticals, which requires understanding FXIII - substrate interactions. Previous studies proposed the β-sandwich domain of the FXIII A subunit (FXIII-A) exhibits substrate recognition sites. MATERIAL AND METHODS Recombinant FXIII-A proteins (WT, K156E, F157L, R158Q/E, R171Q, and R174E) were generated to identify FXIII-A residues mediating substrate recognition. Proteolytic (FXIII-A*) and non-proteolytic (FXIII-A°) forms were analyzed for activation and crosslinking activities toward physiological substrates using SDS-PAGE and MALDI-TOF MS. RESULTS All FXIII-A* variants displayed reduced crosslinking abilities compared to WT for Fbg αC (233 - 425), fibrin, and actin. FXIII-A* WT activity was greater than A°, suggesting the binding site is more exposed in FXIII-A*. With Fbg αC (233 - 425), FXIII-A* variants R158Q/E, R171Q, and R174E exhibited decreased activities approaching those of FXIII-A°. However, with a peptide substrate, FXIII-A* WT and variants showed similar crosslinking suggesting the recognition site is distant from the catalytic site. Surprisingly, FXIII-A R158E and R171Q displayed slower thrombin activation than WT, potentially due to loss of crucial H-bonding with neighboring activation peptide (AP) residues. CONCLUSION In conclusion, FXIII-A residues K156, F157, R158, R171, and R174 are part of a binding site for physiological substrates [fibrin (α and γ) and actin]. Moreover, R158 and R171 control AP cleavage during thrombin activation. These investigations provide new molecular details on FXIII - substrate interactions that control crosslinking abilities.
Collapse
Affiliation(s)
| | - Kellianne M Piell
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Muriel C Maurer
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States
| |
Collapse
|
4
|
Simonin EM, Wagner B. IgE-binding monocytes upregulate the coagulation cascade in allergic horses. Genes Immun 2023:10.1038/s41435-023-00207-w. [PMID: 37193769 DOI: 10.1038/s41435-023-00207-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
IgE-binding monocytes are a rare peripheral immune cell type involved in the allergic response through binding of IgE on their surface. IgE-binding monocytes are present in both healthy and allergic individuals. We performed RNA sequencing to ask how the function of IgE-binding monocytes differs in the context of allergy. Using a large animal model of allergy, equine Culicoides hypersensitivity, we compared the transcriptome of IgE-binding monocytes in allergic and non-allergic horses at two seasonal timepoints: (i) when allergic animals were clinical healthy, in the winter "Remission Phase", and (ii) during chronic disease, in the summer "Clinical Phase". Most transcriptional differences between allergic and non-allergic horses occurred only during the "Remission Phase", suggesting principal differences in monocyte function even in the absence of allergen exposure. F13A1, a subunit of fibrinoligase, was significantly upregulated at both timepoints in allergic horses. This suggested a role for increased fibrin deposition in the coagulation cascade to promote allergic inflammation. IgE-binding monocytes also downregulated CCR10 expression in allergic horses during the "Clinical Phase", suggesting a defect in maintenance of skin homeostasis, which further promotes allergic inflammation. Together, this transcriptional analysis provides valuable clues into the mechanisms used by IgE-binding monocytes in allergic individuals.
Collapse
Affiliation(s)
- Elisabeth M Simonin
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Bazzan E, Casara A, Radu CM, Tinè M, Biondini D, Faccioli E, Pezzuto F, Bernardinello N, Conti M, Balestro E, Calabrese F, Simioni P, Rea F, Turato G, Spagnolo P, Cosio MG, Saetta M. Macrophages-derived Factor XIII links coagulation to inflammation in COPD. Front Immunol 2023; 14:1131292. [PMID: 37180121 PMCID: PMC10166842 DOI: 10.3389/fimmu.2023.1131292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Background The local, extravascular, activation of the coagulation system in response to injury is a key factor mediating the resulting inflammatory response. Coagulation Factor XIIIA (FXIIIA) found in alveolar macrophages (AM) and dendritic cells (DC), by influencing fibrin stability, might be an inflammatory modifier in COPD. Aims To study the expression of FXIIIA in AM and Langerin+DC (DC-1) and their relation to the inflammatory response and disease progression in COPD. Methods In 47 surgical lungs, 36 from smokers (22 COPD and 14 no-COPD) and 11 from non-smokers we quantified by immunohistochemistry FXIIIA expression in AM and DC-1 along with numbers of CD8+Tcells and CXCR3 expression in lung parenchyma and airways. Lung function was measured prior to surgery. Results The percentage of AM expressing FXIII (%FXIII+AM) was higher in COPD than no-COPD and non-smokers. DC-1 expressed FXIIIA and their numbers were higher in COPD than no-COPD and non-smokers. DC-1 positively correlated with %FXIII+AM (r=0.43; p<0.018). CD8+Tcells, which were higher in COPD than in no-COPD, were correlated with DC-1 (p<0.01) and %FXIII+AM. CXCR3+ cells were increased in COPD and correlated with %FXIII+AM (p<0.05). Both %FXIII+AM (r=-0.6; p=0.001) and DC-1 (r=-0.7; p=0.001) correlated inversely with FEV1. Conclusion FXIIIA, an important link between the extravascular coagulation cascade and inflammatory response, is significantly expressed in alveolar macrophages and dendritic cells of smokers with COPD, suggesting that it could play an important role in the adaptive inflammatory reaction characteristic of the disease.
Collapse
Affiliation(s)
- Erica Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Alvise Casara
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | | | - Mariaenrica Tinè
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Davide Biondini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
| | - Eleonora Faccioli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Federica Pezzuto
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Nicol Bernardinello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Maria Conti
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elisabetta Balestro
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Fiorella Calabrese
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Paolo Simioni
- Department of Medicine, University of Padova, Padova, Italy
| | - Federico Rea
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Graziella Turato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Paolo Spagnolo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Manuel G. Cosio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Meakins-Christie Laboratories, Respiratory Division, McGill University, Montreal, QC, Canada
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Coagulation Factor XIII Val34Leu Polymorphism in the Prediction of Premature Cardiovascular Events-The Results of Two Meta-Analyses. J Clin Med 2022; 11:jcm11123454. [PMID: 35743524 PMCID: PMC9225267 DOI: 10.3390/jcm11123454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Polymorphisms within the gene that encodes for coagulation factor XIII (FXIII) have been suggested to be involved in the pathogeneses of ischemic stroke (IS) and myocardial infarction (MI). The Val34Leu polymorphism is one of the most commonly analysed FXIII polymorphisms. However, studies on the role of the Val34Leu polymorphism in the aetiology of vascular diseases often show contradictory results. In the present meta-analysis, we aimed to pool data from available articles to assess the relationship between the FXIII Val34Leu polymorphism and the susceptibilities to IS of undetermined source and premature MI in patients aged below 55 years. Methods: We searched databases (PubMed, Embase, Google Scholar, SciELO, and Medline) using specific keywords (the last search was in January 2022). Eventually, 18 studies (627 cases and 1639 controls for IS; 2595 cases and 4255 controls for MI) met the inclusion criteria. Data were analysed using RevMan 5.4 and StatsDirect 3 link software. The relation between Val34Leu polymorphism and disease was analysed in five genetic models, i.e., dominant, recessive, additive, heterozygous, and allelic. Results: No relation between Val34Leu polymorphism and IS in young adults was observed in all analysed genetic models. For premature MI, significant pooled OR was found between the carrier state of the Leu allele (Val/Leu + Leu/Leu vs. Val/Val) and a lack of MI, suggesting its protective role (OR = 0.80 95%CI 0.64–0.99, p = 0.04). A similar finding was observed for the heterozygous model in MI (Val/Leu vs. Val/Val) (OR = 0.77 95%CI 0.61–0.98, p = 0.03). No relation was found for the recessive, additive, and allelic models in MI. Conclusions: In the population of young adults, no positive correlation was found between the FXIII Val34Leu polymorphism and IS of undetermined source in any of the analysed genetic models. In turn, the carrier state of the 34Leu allele as well as FXIII heterozygotes themselves were found to play a protective role in relation to premature MI.
Collapse
|
7
|
Porembskaya O, Zinserling V, Tomson V, Toropova Y, Starikova EA, Maslei VV, Bulavinova NI, Kirik OV, Syrtsova MA, Laberko L, Galchenko MI, Kravchuk V, Saiganov S, Brill A. Neutrophils Mediate Pulmonary Artery Thrombosis In Situ. Int J Mol Sci 2022; 23:ijms23105829. [PMID: 35628637 PMCID: PMC9144243 DOI: 10.3390/ijms23105829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 01/27/2023] Open
Abstract
Pulmonary embolism is a life-threatening condition, which can result in respiratory insufficiency and death. Blood clots occluding branches of the pulmonary artery (PA) are traditionally considered to originate from thrombi in deep veins (usually in legs). However, growing evidence suggests that occlusion of the vessels in the lungs can develop without preceding deep vein thrombosis (DVT). In this work, we used an inferior vena cava (IVC) complete ligation model of DVT in Wistar rats to explore the possibility and mechanisms of PA thrombosis under the conditions where all routes of thrombotic mass migration from peripheral veins are blocked. We demonstrate that rats both with normal and reduced neutrophil counts developed thrombi in the IVC, although, neutropenia caused a substantial decrease in thrombus size and a shift from fresh fibrin toward mature fibrin and connective tissue inside the thrombus. Massive fibrin deposition was found in the PA branches in the majority of DVT rats with normal neutrophil counts, but in none of the neutropenic animals. Neutrophil ablation also abolished macroscopic signs of lung damage. Altogether, the results demonstrate that thrombi in the lung vasculature can form in situ by mechanisms that require local neutrophil recruitment taking place in the DVT setting.
Collapse
Affiliation(s)
- Olga Porembskaya
- Cardio-Vascular Department, Mechnikov North-Western State Medical University, 191015 Saint Petersburg, Russia; (O.P.); (V.K.); (S.S.)
| | - Vsevolod Zinserling
- Institute of Experimental Medicine, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia; (V.Z.); (Y.T.); (V.V.M.); (N.I.B.)
| | - Vladimir Tomson
- Scientific and Research Center, Pavlov University, 197022 Saint Petersburg, Russia;
| | - Yana Toropova
- Institute of Experimental Medicine, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia; (V.Z.); (Y.T.); (V.V.M.); (N.I.B.)
| | - Eleonora A. Starikova
- Department of Immunology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (E.A.S.); (O.V.K.)
| | - Vitaliy V. Maslei
- Institute of Experimental Medicine, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia; (V.Z.); (Y.T.); (V.V.M.); (N.I.B.)
| | - Nika I. Bulavinova
- Institute of Experimental Medicine, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia; (V.Z.); (Y.T.); (V.V.M.); (N.I.B.)
| | - Olga V. Kirik
- Department of Immunology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (E.A.S.); (O.V.K.)
| | | | - Leonid Laberko
- Department of General Surgery and Radiology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Maxim I. Galchenko
- Department of Electrical Engineering and Electrical Equipment, State Agrarian University, 196601 Saint Petersburg, Russia;
| | - Vyacheslav Kravchuk
- Cardio-Vascular Department, Mechnikov North-Western State Medical University, 191015 Saint Petersburg, Russia; (O.P.); (V.K.); (S.S.)
| | - Sergey Saiganov
- Cardio-Vascular Department, Mechnikov North-Western State Medical University, 191015 Saint Petersburg, Russia; (O.P.); (V.K.); (S.S.)
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence: ; Tel.: +44-12-1415-8679
| |
Collapse
|
8
|
Ahmad F, Kannan M, Ansari AW. Role of SARS-CoV-2 -induced cytokines and growth factors in coagulopathy and thromboembolism. Cytokine Growth Factor Rev 2022; 63:58-68. [PMID: 34750061 PMCID: PMC8541834 DOI: 10.1016/j.cytogfr.2021.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/08/2023]
Abstract
Severe COVID-19 patients frequently present thrombotic complications which commonly lead to multiorgan failure and increase the risk of death. Severe SARS-CoV-2 infection induces the cytokine storm and is often associated with coagulation dysfunction. D-dimer, a hallmark of venous thromboembolism (VTE), is observed at a higher level in the majority of hospitalized COVID-19 patients. The precise molecular mechanism of the disproportionate effect of SARS-CoV-2 infection on the coagulation system is largely undefined. SARS-CoV-2 -induced endotheliopathy and, induction of cytokines and growth factors (GFs) most likely play important roles in platelet activation, coagulopathy, and VTE. Generally, viral infections lead to systemic inflammation and induction of numerous cytokines and GFs and many of them are reported to be associated with increased VTE. Most importantly, platelets play key thromboinflammatory roles linking coagulation to immune mediators in a variety of infections including response to viral infection. Since the pathomechanism of coagulopathy and VTE in COVID-19 is largely undefined, herein we highlight the association of dysregulated inflammatory cytokines and GFs with thrombotic complications and coagulopathy in COVID-19.
Collapse
Affiliation(s)
- Firdos Ahmad
- College of Medicine, University of Sharjah, Sharjah 27272, UAE; Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE.
| | - Meganathan Kannan
- Blood and Vascular Biology Research Lab, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610005, India
| | - Abdul W Ansari
- Dermatology Institute, Translational Research Institute, Academic Health Systems, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| |
Collapse
|
9
|
Anitua E, Zalduendo M, Troya M, Tierno R, Alkhraisat MH. The inclusion of leukocytes into platelet rich plasma reduces scaffold stability and hinders extracellular matrix remodelling. Ann Anat 2021; 240:151853. [PMID: 34767933 DOI: 10.1016/j.aanat.2021.151853] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/14/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Scaffolds should have controllable degradation rate and allow cells to produce their own extracellular matrix. Platelet rich plasma (PRP) is a source of autologous growth factors and proteins embedded in a 3D fibrin scaffold. There is no consensus regarding the obtaining conditions and composition of PRPs. The aim of this study was to evaluate how the inclusion of leukocytes (L-PRP) in plasma rich in growth factors (PRGF) may alter the process of fibrinolysis. The effect of different combinations of cellular phenotypes with PRGF and L-PRP clots on both the fibrinolysis and matrix deposition process was also determined. METHODS PRGF and L-PRP clots were incubated for 14 days and D-dimer and type I collagen were determined in their conditioned media to evaluate clots' stability. For remodelling assays, gingival fibroblasts, alveolar osteoblasts and human umbilical vein endothelial cells (HUVEC) were seeded onto the two types of clots for 14 days. D-dimer, type I collagen, and laminin α4 were measured by ELISA kits in their conditioned media. Morphological and histological analysis were also performed. Cell proliferation was additionally determined RESULTS: PRGF clots preserved their stability as shown by the low levels of both D-dimer and collagen type I compared to those obtained for L-PRP clots. The inclusion of both gingival fibroblasts and alveolar osteoblasts stimulated a higher fibrinolysis in the PRGF clots. In contrast to this, the degradation rates of both PRGF and L-PRP clots remained unchanged after culturing with the endothelial cells. In all cases, type I collagen and laminin α4 levels were in line with the degree of clots' degradation. In all phenotypes, cell proliferation was significantly higher in PRGF than in L-PRP clots. CONCLUSION The inclusion of leukocytes in PRGF scaffolds reduced their stability, decreased cell number and slowed down cell remodelling.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| | - Mar Zalduendo
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | | | - Roberto Tierno
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Mohammad H Alkhraisat
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| |
Collapse
|
10
|
Andersen SL, Nielsen KK, Kristensen SR. The interrelationship between pregnancy, venous thromboembolism, and thyroid disease: a hypothesis-generating review. Thyroid Res 2021; 14:12. [PMID: 34034778 PMCID: PMC8146627 DOI: 10.1186/s13044-021-00102-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022] Open
Abstract
Pregnancy induces physiological changes that affect the risk of thrombosis and thyroid disease. In this hypothesis-generating review, the physiological changes in the coagulation system and in thyroid function during a normal pregnancy are described, and the incidence of venous thromboembolism (VTE) and thyroid disease in and after a pregnancy are compared and discussed. Furthermore, evidence regarding the association between thyroid disease and VTE in non-pregnant individuals is scrutinized. In conclusion, a normal pregnancy entails hormonal changes, which influence the onset of VTE and thyroid disease. Current evidence suggests an association between thyroid disease and VTE in non-pregnant individuals. This review proposes the hypothesis that maternal thyroid disease associates with VTE in pregnant women and call for future research studies on this subject. If an association exists in pregnant women specifically, such findings may have clinical implications regarding strategies for thyroid function testing and potential thromboprophylaxis in selected individuals.
Collapse
Affiliation(s)
- Stine Linding Andersen
- Department of Clinical Biochemistry, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark. .,Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000 Aalborg, 9000, Aalborg, Denmark.
| | - Kasper Krogh Nielsen
- Department of Clinical Biochemistry, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000 Aalborg, 9000, Aalborg, Denmark
| | - Søren Risom Kristensen
- Department of Clinical Biochemistry, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000 Aalborg, 9000, Aalborg, Denmark
| |
Collapse
|
11
|
Factor XIII Activity Might Already Be Impaired before Veno-Venous ECMO in ARDS Patients: A Prospective, Observational Single-Center Cohort Study. J Clin Med 2021; 10:jcm10061203. [PMID: 33799338 PMCID: PMC7999955 DOI: 10.3390/jcm10061203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Direct complications in patients receiving extracorporeal (veno-venous) membrane oxygenation (vvECMO) are mainly either due to bleeding or thromboembolism. We aimed to evaluate the course of routine coagulation parameters and the activity of different coagulation factors—with special focus on factor XIII (F XIII)—before, during and after vvECMO in acute respiratory distress syndrome (ARDS) patients. The activity of coagulation factors and rotational thrombelastometry were analyzed in 20 ECMO patients before (T-1) and 6 h (T0), one (T1), three (T3) and seven days (T7) after the implantation, as well as one and three days after the termination of ECMO. F XIII activity was already severely decreased to 37% (30/49) before ECMO. F XIII activity was the only coagulation factor continuously declining during vvECMO, being significantly decreased at T3 (31% (26/45) vs. 24% (18/42), p = 0.0079) and T7 (31% (26/45) vs. 23% (17/37), p = 0.0037) compared to T0. Three days after termination of vvECMO, platelet count and fibrinogen nearly doubled and factors II, V, XI and XIII showed spontaneous significant increases. Severe ARDS patients showed a considerably diminished factor XIII activity before vvECMO initiation and its activity continuously declined later on. Thus, incorporation of F XIII monitoring into the regular hemostaseologic routine during vvECMO therapy seems advisable. Due to the potential development of a hypercoagulatory state after the termination of vvECMO, tight hemostasiologic monitoring should persist in the initial phase after ECMO termination.
Collapse
|
12
|
Formation of nasal polyps: The roles of innate type 2 inflammation and deposition of fibrin. J Allergy Clin Immunol 2020; 145:740-750. [PMID: 32145873 DOI: 10.1016/j.jaci.2020.01.027] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/28/2022]
Abstract
Chronic rhinosinusitis (CRS) is one of the most common chronic diseases worldwide. It is a heterogeneous disease, and geographical or ethnic differences in inflammatory pattern in nasal mucosa are major issues. Tissue eosinophilia in CRS is highly associated with extensive sinus disease, recalcitrance, and a higher nasal polyp (NP) recurrence rate after surgery. The prevalence of eosinophilic CRS (ECRS) is increasing in Asian countries within the last 2 decades, and this trend appears to be occurring across the world. International consensus criteria for ECRS are required for the accurate understanding of disease pathology and precision medicine. In a multicenter large-scale epidemiological survey, the "Japanese Epidemiological Survey of Refractory Eosinophilic Chronic Rhinosinusitis study," ECRS was definitively defined when the eosinophil count in nasal mucosa is greater than or equal to 70 eosinophils/hpf (magnification, ×400), and this study proposed an algorithm that classifies CRS into 4 groups according to disease severity. The main therapeutic goal with ECRS is to eliminate or diminish the bulk of NP tissue. NPs are unique abnormal lesions that grow from the lining of the nasal and paranasal sinuses, and type 2 inflammation plays a critical role in NP development in patients with ECRS. An imbalance between protease and endogenous protease inhibitors might play a pivotal role in the initiation and exacerbation of type 2 inflammation in ECRS. Intraepithelial mast cells in NPs, showing a tryptase+, chymase- phenotype, may also enhance type 2 inflammation. Intense edema and reduced fibrosis are important histological features of eosinophilic NPs. Mucosal edema mainly consists of exuded plasma protein, and excessive fibrin deposition would be expected to contribute to the retention of proteins from capillaries and thereby perpetuate mucosal edema that may play an etiological role in NPs. Upregulation of the coagulation cascade and downregulation of fibrinolysis strongly induce abnormal fibrin deposition in nasal mucosa, and type 2 inflammation plays a central role in the imbalance of coagulation and fibrinolysis.
Collapse
|
13
|
F13A1 transglutaminase expression in human adipose tissue increases in acquired excess weight and associates with inflammatory status of adipocytes. Int J Obes (Lond) 2020; 45:577-587. [PMID: 33221826 DOI: 10.1038/s41366-020-00722-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/10/2020] [Accepted: 11/05/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVE F13A1/FXIII-A transglutaminase has been linked to adipogenesis in cells and to obesity in humans and mice, however, its role and associated molecular pathways in human acquired excess weight have not been explored. METHODS We examined F13A1 expression and association to human weight gain in weight-discordant monozygotic twins (Heavy-Lean difference (ΔWeight, 16.8 kg ± 7.16 for n = 12). The twin pairs were examined for body composition (by dual-energy X-ray absorptiometry), abdominal body fat distribution (by magnetic resonance imaging), liver fat content (by magnetic resonance spectroscopy), circulating adipocytokines, leptin and adiponectin, as well as serum lipids. Affymetrix full transcriptome mRNA analysis was performed from adipose tissue and adipocyte-enriched fractions from subcutaneous abdominal adipose tissue biopsies. F13A1 differential expression between the heavy and lean co-twins was examined and its correlation transcriptome changes between co-twins were performed. RESULTS F13A1 mRNA showed significant increase in adipose tissue (p < 0.0001) and an adipocyte-enriched fraction (p = 0.0012) of the heavier co-twin. F13A1 differential expression in adipose tissue (Heavy-Lean ΔF13A1) showed significant negative correlation with circulating adiponectin (p = 0.0195) and a positive correlation with ΔWeight (p = 0.034), ΔBodyFat (0.044) and ΔAdipocyte size (volume, p = 0.012;) in adipocyte-enriched fraction. A whole transcriptome-wide association study (TWAS) on ΔF13A1 vs weight-correlated ΔTranscriptome identified 182 F13A1-associated genes (r > 0.7, p = 0.05) with functions in several biological pathways including cell stress, inflammatory response, activation of cells/leukocytes, angiogenesis and extracellular matrix remodeling. F13A1 did not associate with liver fat accumulation. CONCLUSIONS F13A1 levels in adipose tissue increase with acquired excess weight and associate with pro-inflammatory, cell stress and tissue remodeling pathways. This supports its role in expansion and inflammation of adipose tissue in obesity.
Collapse
|
14
|
Kaartinen MT, Arora M, Heinonen S, Rissanen A, Kaprio J, Pietiläinen KH. Transglutaminases and Obesity in Humans: Association of F13A1 to Adipocyte Hypertrophy and Adipose Tissue Immune Response. Int J Mol Sci 2020; 21:E8289. [PMID: 33167412 PMCID: PMC7663854 DOI: 10.3390/ijms21218289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/11/2022] Open
Abstract
Transglutaminases TG2 and FXIII-A have recently been linked to adipose tissue biology and obesity, however, human studies for TG family members in adipocytes have not been conducted. In this study, we investigated the association of TGM family members to acquired weight gain in a rare set of monozygotic (MZ) twins discordant for body weight, i.e., heavy-lean twin pairs. We report that F13A1 is the only TGM family member showing significantly altered, higher expression in adipose tissue of the heavier twin. Our previous work linked adipocyte F13A1 to increased weight, body fat mass, adipocyte size, and pro-inflammatory pathways. Here, we explored further the link of F13A1 to adipocyte size in the MZ twins via a previously conducted TWA study that was further mined for genes that specifically associate to hypertrophic adipocytes. We report that differential expression of F13A1 (ΔHeavy-Lean) associated with 47 genes which were linked via gene enrichment analysis to immune response, leucocyte and neutrophil activation, as well as cytokine response and signaling. Our work brings further support to the role of F13A1 in the human adipose tissue pathology, suggesting a role in the cascade that links hypertrophic adipocytes with inflammation.
Collapse
Affiliation(s)
- Mari T. Kaartinen
- Faculty of Medicine (Experimental Medicine), McGill University, Montreal, QC H3A 0J7, Canada;
- Faculty of Dentistry (Biomedical Sciences), McGill University, Montreal, QC H3A 0J7, Canada
| | - Mansi Arora
- Faculty of Medicine (Experimental Medicine), McGill University, Montreal, QC H3A 0J7, Canada;
| | - Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.H.); (A.R.); (K.H.P.)
| | - Aila Rissanen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.H.); (A.R.); (K.H.P.)
| | - Jaakko Kaprio
- Department of Public Health, University of Helsinki, 00100 Helsinki, Finland;
| | - Kirsi H. Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.H.); (A.R.); (K.H.P.)
- Abdominal Center, Obesity Center, Endocrinology, University of Helsinki and Helsinki University Central Hospital, 00014 Helsinki, Finland
| |
Collapse
|
15
|
Cai R, Li Y, Wang W, Feng Q. A novel Cys328-terminator mutant implicated in severe coagulation factor XIII deficiency: a case report. BMC MEDICAL GENETICS 2020; 21:175. [PMID: 32883222 PMCID: PMC7650518 DOI: 10.1186/s12881-020-01111-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Factor XIII (FXIII) deficiency is an extremely rare bleeding disorder that is commonly due to mutations in the FXIIIA subunit gene (F13A1), and it has been reported to have a prevalence of one per 2 million. We describe a new genetic variant in the F13A1 gene that caused a patient to suffer from lifelong hemorrhagic diathesis. CASE PRESENTATION We evaluated a 20-year-old female with umbilical cord bleeding after birth, an intracerebral hemorrhage at age 6, and other bleeding episodes, including hematuria and cephalohematoma, who suffered from a lifelong hemorrhagic diathesis. The clot solubility test showed that the clot of the patient was dissolved in urea solution at 10 h. Genetic testing identified a novel homozygous mutation, c.984C > A(p. Cys328stop), resulting in a premature stop codon in exon 8 of the F13A1 gene. The results obtained with ClusterX software showed that Cys328 of exon 8 in the F13A1 gene is highly conserved among species. CONCLUSION We reported a novel homozygous mutation in the F13A1 gene in a factor XIII (FXIII)-deficient patient, which adds a new point mutation to the mutant library. In this paper, we discuss other aspects of the disease, including laboratory examination, homogeneous sequence alignment and molecular modeling.
Collapse
Affiliation(s)
- Ruimin Cai
- Department of Clinical Laboratory, Taian City Central Hospital, No. 29, Longtan Road, Taishan District, Taian, 271000, Shandong Province, China
| | - Yi Li
- Department of Clinical Laboratory, Taian City Central Hospital, No. 29, Longtan Road, Taishan District, Taian, 271000, Shandong Province, China
| | - Wenyang Wang
- Department of Clinical Laboratory, Taian City Central Hospital, No. 29, Longtan Road, Taishan District, Taian, 271000, Shandong Province, China
| | - Qiang Feng
- Department of Clinical Laboratory, Taian City Central Hospital, No. 29, Longtan Road, Taishan District, Taian, 271000, Shandong Province, China.
| |
Collapse
|
16
|
Al-Horani RA, Kar S. Factor XIIIa inhibitors as potential novel drugs for venous thromboembolism. Eur J Med Chem 2020; 200:112442. [PMID: 32502864 PMCID: PMC7513741 DOI: 10.1016/j.ejmech.2020.112442] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
Human factor XIIIa (FXIIIa) is a multifunctional transglutaminase with a significant role in hemostasis. FXIIIa catalyzes the last step in the coagulation process. It stabilizes the blood clot by cross-linking the α- and γ-chains of fibrin. It also protects the newly formed clot from plasmin-mediated fibrinolysis, primarily by cross-linking α2-antiplasmin to fibrin. Furthermore, FXIIIa is a major determinant of clot size and clot's red blood cells content. Therefore, inhibitors targeting FXIIIa have been considered to develop a new generation of anticoagulants to prevent and/or treat venous thromboembolism. Several inhibitors of FXIIIa have been discovered or designed including active site and allosteric site small molecule inhibitors as well as natural and modified polypeptides. This work reviews the structural, biochemical, and pharmacological aspects of FXIIIa inhibitors so as to advance their molecular design to become more clinically relevant.
Collapse
Affiliation(s)
- Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, 70125, USA.
| | - Srabani Kar
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, 70125, USA
| |
Collapse
|
17
|
Mortensen LA, Svane AM, Burton M, Bistrup C, Thiesson HC, Marcussen N, Beck HC. Proteomic Analysis of Renal Biomarkers of Kidney Allograft Fibrosis-A Study in Renal Transplant Patients. Int J Mol Sci 2020; 21:ijms21072371. [PMID: 32235494 PMCID: PMC7177439 DOI: 10.3390/ijms21072371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
Renal transplantation is the preferred treatment of end stage renal disease, but allograft survival is limited by the development of interstitial fibrosis and tubular atrophy in response to various stimuli. Much effort has been put into identifying new protein markers of fibrosis to support the diagnosis. In the present work, we performed an in-depth quantitative proteomics analysis of allograft biopsies from 31 prevalent renal transplant patients and correlated the quantified proteins with the volume fraction of fibrosis as determined by a morphometric method. Linear regression analysis identified four proteins that were highly associated with the degree of interstitial fibrosis, namely Coagulation Factor XIII A chain (estimate 18.7, adjusted p < 0.03), Uridine Phosphorylase 1 (estimate 19.4, adjusted p < 0.001), Actin-related protein 2/3 subunit 2 (estimate 34.2, adjusted p < 0.05) and Cytochrome C Oxidase Assembly Factor 6 homolog (estimate -44.9, adjusted p < 0.002), even after multiple testing. Proteins that were negatively associated with fibrosis (p < 0.005) were primarily related to normal metabolic processes and respiration, whereas proteins that were positively associated with fibrosis (p < 0.005) were involved in catabolic processes, cytoskeleton organization and the immune response. The identified proteins may be candidates for further validation with regards to renal fibrosis. The results support the notion that cytoskeleton organization and immune responses are prevalent processes in renal allograft fibrosis.
Collapse
Affiliation(s)
- Line Aas Mortensen
- Department of Nephrology, Odense University Hospital, DK-5000 Odense, Denmark; (L.A.M.); (C.B.); (H.C.T.)
| | - Anne Marie Svane
- Department of Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, DK-5000 Odense, Denmark;
| | - Mark Burton
- Department of Clinical Genetics, Odense University Hospital, DK-5000 Odense, Denmark;
| | - Claus Bistrup
- Department of Nephrology, Odense University Hospital, DK-5000 Odense, Denmark; (L.A.M.); (C.B.); (H.C.T.)
| | - Helle Charlotte Thiesson
- Department of Nephrology, Odense University Hospital, DK-5000 Odense, Denmark; (L.A.M.); (C.B.); (H.C.T.)
| | - Niels Marcussen
- Department of Pathology, Odense University Hospital, DK-5000 Odense, Denmark;
| | - Hans Christian Beck
- Department of Clinical Biochemistry and Pharmacology, Centre for Clinical Proteomics, Odense University Hospital, DK-5000 Odense, Denmark
- Correspondence:
| |
Collapse
|
18
|
Shirai S, Yamauchi Y, Yokote F, Sakai T, Saito Y, Sakao Y, Kawamura M. Dynamics of coagulation factor XIII activity after video-assisted thoracoscopic lobectomy for non-small cell lung cancer. J Thorac Dis 2020; 11:5382-5389. [PMID: 32030256 DOI: 10.21037/jtd.2019.12.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background The present study was performed to investigate the perioperative dynamics of coagulation factor XIII (FXIII) in patients with non-small cell lung cancer undergoing video-assisted thoracoscopic surgery (VATS) lobectomy compared with open lobectomy. Methods Perioperative coagulation factors including FXIII were analyzed in 30 patients who underwent VATS lobectomy and 10 patients who underwent open lobectomy at Teikyo University Hospital from December 2017 to April 2019. Results Patients in the VATS lobectomy group showed higher FXIII activity on postoperative day (POD) 5 than patients in the open lobectomy group (P=0.028). The FXIII activity was significantly lower on POD3, POD5, and POD7 than that in the preoperative period and on POD1, even in patients who had undergone VATS lobectomy (P<0.001). No factors were found to affect the maintenance of FXIII in the VATS lobectomy group. Conclusion The postoperative decrease of FXIII activity differed between patients who underwent VATS lobectomy and those who underwent open lobectomy. Based on the characteristics of FXIII, the FXIII activity may be a good marker of the invasiveness of VATS lobectomy versus open lobectomy.
Collapse
Affiliation(s)
- Suguru Shirai
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshikane Yamauchi
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Fumi Yokote
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Takashi Sakai
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Yuichi Saito
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Yukinori Sakao
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Masafumi Kawamura
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Supsrisunjai C, Hsu CK, Michael M, Duval C, Lee JYW, Yang HS, Huang HY, Chaikul T, Onoufriadis A, Steiner RA, Ariëns RAS, Sarig O, Sprecher E, Eskin-Schwartz M, Samlaska C, Simpson MA, Calonje E, Parsons M, McGrath JA. Coagulation Factor XIII-A Subunit Missense Mutation in the Pathobiology of Autosomal Dominant Multiple Dermatofibromas. J Invest Dermatol 2019; 140:624-635.e7. [PMID: 31493396 DOI: 10.1016/j.jid.2019.08.441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/26/2019] [Accepted: 08/06/2019] [Indexed: 01/16/2023]
Abstract
Dermatofibromas are common benign skin lesions, the etiology of which is poorly understood. We identified two unrelated pedigrees in which there was autosomal dominant transmission of multiple dermatofibromas. Whole exome sequencing revealed a rare shared heterozygous missense variant in the F13A1 gene encoding factor XIII subunit A (FXIII-A), a transglutaminase involved in hemostasis, wound healing, tumor growth, and apoptosis. The variant (p.Lys679Met) has an allele frequency of 0.0002 and is predicted to be a damaging mutation. Recombinant human Lys679Met FXIII-A demonstrated reduced fibrin crosslinking activity in vitro. Of note, the treatment of fibroblasts with media containing Lys679Met FXIII-A led to enhanced adhesion, proliferation, and type I collagen synthesis. Immunostaining revealed co-localization between FXIII-A and α4β1 integrins, more prominently for Lys679Met FXIII-A than the wild type. In addition, both the α4β1 inhibitors and the mutation of the FXIII-A Isoleucine-Leucine-Aspartate-Threonine (ILDT) motif prevented Lys679Met FXIII-A-dependent proliferation and collagen synthesis of fibroblasts. Our data suggest that the Lys679Met mutation may lead to a conformational change in the FXIII-A protein that enhances α4-integrin binding and provides insight into an unexpected role for FXIII-A in the pathobiology of familial dermatofibroma.
Collapse
Affiliation(s)
- Chavalit Supsrisunjai
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom; Institute of Dermatology, Ministry of Public Health, Bangkok, Thailand
| | - Chao-Kai Hsu
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom; Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Magdalene Michael
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, United Kingdom
| | - Cédric Duval
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - John Y W Lee
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Hsing-San Yang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Yu Huang
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Thitiwat Chaikul
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Alexandros Onoufriadis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Roberto A Steiner
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, United Kingdom
| | - Robert A S Ariëns
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Ofer Sarig
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Curt Samlaska
- Academic Dermatology of Nevada, University of Nevada School of Medicine, Reno, Nevada
| | - Michael A Simpson
- Department of Genetics, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Eduardo Calonje
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom; Department of Dermatopathology, St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, United Kingdom
| | - John A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.
| |
Collapse
|
20
|
A novel activation mechanism of cellular Factor XIII in zebrafish retina after optic nerve injury. Biochem Biophys Res Commun 2019; 517:57-62. [PMID: 31296382 DOI: 10.1016/j.bbrc.2019.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 11/27/2022]
Abstract
Cellular Factor XIII (cFXIII) mRNA is rapidly upregulated in the fish retina after optic nerve injury (ONI). Here, we investigated the molecular mechanism of cFXIII gene activation using genetic information from the A-subunit of cFXIII (cFXIII-A). Real-time PCR that amplified the active site (exons 7-8) of cFXIII-A showed increased cFXIII-A mRNA in the retina after ONI, whereas the PCR that amplified the activation peptide (exons 1-2) showed no change. RT-PCR analysis that amplified exons 1-8 showed two bands, a faint long band in the control retina and a dense short band in the injured retina. Therefore, we conclude that activated cFXIII-A mRNA after ONI is shorter than that of the control retina. Western blot analysis also confirmed an active form of 65 kDa cFXIII-A protein in the injured retina compared to the control 84 kDa protein. 5'-RACE analysis using injured retina revealed that the short cFXIII-A mRNA lacked exons 1, 2 and part of exon 3. Exon 3 has two sites of heat shock factor 1 (HSF-1) binding consensus sequence. Intraocular injection of HSF inhibitor suppressed the expression of cFXIII-A mRNA in the retina 1 day after ONI to 40% of levels normally seen after ONI. Chromatin immunoprecipitation provides direct evidence of enrichment of cFXIII-A genomic DNA bound with HSF-1. The present data indicate that rapid HSF-1 binding to the cFXIII-A gene results in cleavage of activation peptide and an active form of short cFXIII-A mRNA and protein in the zebrafish retina after ONI without thrombin.
Collapse
|
21
|
Sun H, Kaartinen MT. Transglutaminases in Monocytes and Macrophages. ACTA ACUST UNITED AC 2018; 6:medsci6040115. [PMID: 30545030 PMCID: PMC6313455 DOI: 10.3390/medsci6040115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022]
Abstract
Macrophages are key players in various inflammatory disorders and pathological conditions via phagocytosis and orchestrating immune responses. They are highly heterogeneous in terms of their phenotypes and functions by adaptation to different organs and tissue environments. Upon damage or infection, monocytes are rapidly recruited to tissues and differentiate into macrophages. Transglutaminases (TGs) are a family of structurally and functionally related enzymes with Ca2+-dependent transamidation and deamidation activity. Numerous studies have shown that TGs, particularly TG2 and Factor XIII-A, are extensively involved in monocyte- and macrophage-mediated physiological and pathological processes. In the present review, we outline the current knowledge of the role of TGs in the adhesion and extravasation of monocytes, the expression of TGs during macrophage differentiation, and the regulation of TG2 expression by various pro- and anti-inflammatory mediators in macrophages. Furthermore, we summarize the role of TGs in macrophage phagocytosis and the understanding of the mechanisms involved. Finally, we review the roles of TGs in tissue-specific macrophages, including monocytes/macrophages in vasculature, alveolar and interstitial macrophages in lung, microglia and infiltrated monocytes/macrophages in central nervous system, and osteoclasts in bone. Based on the studies in this review, we conclude that monocyte- and macrophage-derived TGs are involved in inflammatory processes in these organs. However, more in vivo studies and clinical studies during different stages of these processes are required to determine the accurate roles of TGs, their substrates, and the mechanisms-of-action.
Collapse
Affiliation(s)
- Huifang Sun
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada.
| | - Mari T Kaartinen
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada.
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
22
|
Horváth E, Huțanu A, Chiriac L, Dobreanu M, Orădan A, Nagy EE. Ischemic damage and early inflammatory infiltration are different in the core and penumbra lesions of rat brain after transient focal cerebral ischemia. J Neuroimmunol 2018; 324:35-42. [DOI: 10.1016/j.jneuroim.2018.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 01/16/2023]
|
23
|
Sun H, Kaartinen MT. Transglutaminase activity regulates differentiation, migration and fusion of osteoclasts via affecting actin dynamics. J Cell Physiol 2018; 233:7497-7513. [PMID: 29663380 DOI: 10.1002/jcp.26603] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/16/2018] [Indexed: 12/18/2022]
Abstract
Osteoclasts, bone resorbing cells, derive from monocyte/macrophage cell lineage. Increased osteoclast activity is responsible for bone destruction in diseases such as osteoporosis, periodontitis and rheumatoid arthritis. Transglutaminases (TGs), protein crosslinking enzymes, were recently found involved in osteoclastogenesis in vivo, however their mechanisms of action have remained unknown. In this study, we have investigated the role of TG activity in osteoclastogenesis in vitro using four TG inhibitors, NC9, Z006, T101, and monodansyl cadaverine. Our results showed that all TG inhibitors were capable of blocking the entire osteoclastogenesis process. The most potent of the inhibitors, NC9 when added to cultures at different phases of osteoclastogenesis, inhibited differentiation, migration, and fusion of pre-osteoclasts as well as resorption activity of mature osteoclasts. Further investigation into the mechanisms revealed that NC9 increased RhoA levels and blocked podosome belt formation suggesting that TG activity regulates actin dynamics in pre-osteoclasts. The inhibitory effect of NC9 on osteoclastogenesis as well as podosome belt formation was completely reversed with a Rho-family inhibitor Exoenzyme C3. Microtubule architecture, acetylation, and detyrosination of α-tubulin were not affected. Finally, we demonstrated that macrophages and osteoclasts expressed mRNA of three TGs:TG1, TG2, and Factor XIII-A which were all differentially regulated in these cells during differentiation. Immunofluoresence microscopic analysis showed that all three enzymes co-localized to podosomes in osteoclasts. Taken together, our data suggests that TG activity regulates differentiation, migration and fusion of osteoclasts via affecting actin dynamics and that this may involve contribution from all three TG enzymes.
Collapse
Affiliation(s)
- Huifang Sun
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Mari T Kaartinen
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.,Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Factor XIII in plasma, but not in platelets, mediates red blood cell retention in clots and venous thrombus size in mice. Blood Adv 2018; 2:25-35. [PMID: 29344582 DOI: 10.1182/bloodadvances.2017011890] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 01/08/2023] Open
Abstract
The transglutaminase factor XIII (FXIII) stabilizes clots against mechanical and biochemical disruption and is essential for hemostasis. In vitro and in vivo models of venous thrombosis demonstrate that FXIII mediates clot size by promoting red blood cell (RBC) retention. However, the key source of FXIII and whether FXIII activity can be reduced to suppress thrombosis without imposing deleterious hemostatic consequences are 2 critical unresolved questions. FXIII is present in multiple compartments, including plasma (FXIIIplasma) as a heterotetramer of A2 and B2 subunits and platelets (FXIIIplt) as an A2 homodimer. We determined the role of the FXIII compartment and level in clot contraction, composition, and size in vitro and using in vivo models of hemostasis and venous thrombosis. Reducing overall FXIII levels decreased whole blood clot weight but did not alter thrombin generation or contraction of platelet-rich plasma clots. In reconstituted platelet-rich plasma and whole blood clot contraction assays, FXIIIplasma, but not FXIIIplt, produced high-molecular-weight fibrin crosslinks, promoted RBC retention, and increased clot weights. Genetically imposed reduction of FXIII delayed FXIII activation and fibrin crosslinking, suggesting FXIII levels mediate the kinetics of FXIII activation and activity and that the timing of these processes is a critical determinant of RBC retention during clot formation and contraction. A 50% reduction in FXIIIplasma produced significantly smaller venous thrombi but did not increase bleeding in tail transection or saphenous vein puncture models in vivo. Collectively, these findings suggest that partial FXIII reduction may be a therapeutic strategy for reducing venous thrombosis.
Collapse
|
25
|
Expression of Coagulation Factor XIII Subunit A Correlates with Outcome in Childhood Acute Lymphoblastic Leukemia. Pathol Oncol Res 2017; 24:345-352. [PMID: 28523449 DOI: 10.1007/s12253-017-0236-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 04/23/2017] [Indexed: 12/15/2022]
Abstract
Previously we identified B-cell lineage leukemic lymphoblasts as a new expression site for subunit A of blood coagulation factor XIII (FXIII-A). On the basis of FXIII-A expression, various subgroups of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) can be identified. Fifty-five children with BCP-ALL were included in the study. Bone marrow samples were obtained by aspiration and the presence of FXIII-A was detected by flow cytometry. G-banding and fluorescent in situ hybridization was performed according to standard procedures. The 10-year event-free survival (EFS) and overall survival (OS) rate of FXIII-A-positive and FXIII-A-negative patients showed significant differences (EFS: 84% vs. 61%, respectively; p = 0.031; OS: 89% vs. 61%; p = 0.008). Of all the parameters examined, there was correlation only between FXIII-A expression and 'B-other' genetic subgroup. Further multivariate Cox regression analysis of FXIII-subtype and genetic group or 'B-other' subgroup identified the FXIII-A negative characteristic as an independent factor associated with poor outcome in BCP-ALL. We found an excellent correlation between long-term survival and the FXIII-A-positive phenotype of BCP lymphoblasts at presentation. The results presented seem to be convincing enough to suggest a possible role for FXIII-A expression in the prognostic grouping of childhood BCP-ALL patients.
Collapse
|
26
|
Görög A, Németh K, Szabó L, Mayer B, Silló P, Kolev K, Kárpáti S. Decreased fibrinolytic potential and morphological changes of fibrin structure in dermatitis herpetiformis. J Dermatol Sci 2016; 84:17-23. [DOI: 10.1016/j.jdermsci.2016.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/12/2016] [Accepted: 07/06/2016] [Indexed: 01/27/2023]
|
27
|
Soendergaard C, Kvist PH, Seidelin JB, Pelzer H, Nielsen OH. Systemic and intestinal levels of factor XIII-A: the impact of inflammation on expression in macrophage subtypes. J Gastroenterol 2016; 51:796-807. [PMID: 26660730 DOI: 10.1007/s00535-015-1152-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/25/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Subunit A of coagulation factor XIII (FXIII-A) is important for clot stability and acts in the subsequent wound healing process. Loss of plasma FXIII-A has been reported after surgery, sepsis, and inflammatory conditions. In the intestinal mucosa, FXIII-A is expressed by macrophages and cellular FXIII-A has been associated with phagocytosis and migration of macrophages. The objective was to evaluate the consequences of intestinal inflammation on resident mucosal macrophages, focusing on the level and distribution of FXIII-A. METHODS Plasma and colonic biopsies were collected from 67 patients with ulcerative colitis and controls. Intestinal samples were stained using immunohistochemistry for FXIII-A and macrophages (CD68, CD163 and iNOS). In situ hybridization were used to assess the intestinal expression of FXIII-A. FXIII-A antigen and activity levels were measured in plasma. RESULTS Increased infiltration of CD68 positive macrophages in the inflamed mucosa coincided with increased extracellular deposited FXIII-A and decreased expression and intracellular protein levels of FXIII-A. A decreased proportion of FXIII-A/CD68/CD163 triple-positive macrophages was observed in inflamed mucosa, indicating a reduction of the M2 phenotype with consequent loss of FXIII-A. No induction of iNOS positive macrophages was observed. Stimulation of naïve monocytes with physiological concentrations of pro-inflammatory mediators negatively affected the expression of FXIII-A. Measurements in plasma confirmed the loss of both FXIII antigen and activity during active disease. CONCLUSIONS Intestinal inflammation in UC induces loss of M2 macrophages with subsequent loss of FXIII-A synthesis. The loss of cellular FXIII-A may impact migration and phagocytosis, and hence limit pathogen eradication in UC.
Collapse
Affiliation(s)
- Christoffer Soendergaard
- Department of Gastroenterology 54O3, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark. .,Department of Histology and Bioimaging, Novo Nordisk A/S, Maaloev, Denmark.
| | | | - Jakob Benedict Seidelin
- Department of Gastroenterology 54O3, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Hermann Pelzer
- Department of Research Bioanalysis, Novo Nordisk A/S, Maaloev, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology 54O3, Medical Section, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
| |
Collapse
|
28
|
Shubin NJ, Glukhova VA, Clauson M, Truong P, Abrink M, Pejler G, White NJ, Deutsch GH, Reeves SR, Vaisar T, James RG, Piliponsky AM. Proteome analysis of mast cell releasates reveals a role for chymase in the regulation of coagulation factor XIIIA levels via proteolytic degradation. J Allergy Clin Immunol 2016; 139:323-334. [PMID: 27302551 DOI: 10.1016/j.jaci.2016.03.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/03/2016] [Accepted: 03/17/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Mast cells are significantly involved in IgE-mediated allergic reactions; however, their roles in health and disease are incompletely understood. OBJECTIVE We aimed to define the proteome contained in mast cell releasates on activation to better understand the factors secreted by mast cells that are relevant to the contribution of mast cells in diseases. METHODS Bone marrow-derived cultured mast cells (BMCMCs) and peritoneal cell-derived mast cells were used as "surrogates" for mucosal and connective tissue mast cells, respectively, and their releasate proteomes were analyzed by mass spectrometry. RESULTS Our studies showed that BMCMCs and peritoneal cell-derived mast cells produced substantially different releasates following IgE-mediated activation. Moreover, we observed that the transglutaminase coagulation factor XIIIA (FXIIIA) was one of the most abundant proteins contained in the BMCMC releasates. Mast cell-deficient mice exhibited increased FXIIIA plasma and activity levels as well as reduced bleeding times, indicating that mast cells are more efficient in their ability to downregulate FXIIIA than in contributing to its amounts and functions in homeostatic conditions. We found that human chymase and mouse mast cell protease-4 (the mouse homologue of human chymase) had the ability to reduce FXIIIA levels and function via proteolytic degradation. Moreover, we found that chymase deficiency led to increased FXIIIA amounts and activity, as well as reduced bleeding times in homeostatic conditions and during sepsis. CONCLUSIONS Our study indicates that the mast cell protease content can shape its releasate proteome. Moreover, we found that chymase plays an important role in the regulation of FXIIIA via proteolytic degradation.
Collapse
Affiliation(s)
- Nicholas J Shubin
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Veronika A Glukhova
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Morgan Clauson
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Phuong Truong
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Magnus Abrink
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University for Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Nathan J White
- Division of Emergency Medicine, Department of Medicine, University of Washington, Seattle, Wash
| | - Gail H Deutsch
- Department of Laboratories, Seattle Children's Research Institute, Seattle, Wash
| | - Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash; Department of Pediatrics, University of Washington, Seattle, Wash
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Wash
| | - Richard G James
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Adrian M Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash; Department of Pediatrics, University of Washington, Seattle, Wash.
| |
Collapse
|
29
|
Dorgalaleh A, Tabibian S, Hosseini MS, Farshi Y, Roshanzamir F, Naderi M, Kazemi A, Zaker F, Aghideh AN, Shamsizadeh M. Diagnosis of factor XIII deficiency. Hematology 2016; 21:430-9. [DOI: 10.1080/10245332.2015.1101975] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Akbar Dorgalaleh
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Shadi Tabibian
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Hosseini
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Yadolla Farshi
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Roshanzamir
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Naderi
- Department of Pediatrics Hematology & Oncology, Ali Ebn-e Abitaleb Hospital Research Center for Children and Adolescents Health [RCCAH], Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ahmad Kazemi
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Zaker
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Noroozi Aghideh
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Shamsizadeh
- School of Nursing and Midwifery, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
30
|
Andersson C, Kvist PH, McElhinney K, Baylis R, Gram LK, Pelzer H, Lauritzen B, Holm TL, Hogan S, Wu D, Turpin B, Miller W, Palumbo JS. Factor XIII Transglutaminase Supports the Resolution of Mucosal Damage in Experimental Colitis. PLoS One 2015; 10:e0128113. [PMID: 26098308 PMCID: PMC4476663 DOI: 10.1371/journal.pone.0128113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/23/2015] [Indexed: 02/07/2023] Open
Abstract
The thrombin-activated transglutaminase factor XIII (FXIII) that covalently crosslinks and stablizes provisional fibrin matrices is also thought to support endothelial and epithelial barrier function and to control inflammatory processes. Here, gene-targeted mice lacking the FXIII catalytic A subunit were employed to directly test the hypothesis that FXIII limits colonic pathologies associated with experimental colitis. Wildtype (WT) and FXIII-/- mice were found to be comparable in their initial development of mucosal damage following exposure to dextran sulfate sodium (DSS) challenge. However, unlike FXIII-sufficient mice, FXIII-deficient cohorts failed to efficiently resolve colonic inflammatory pathologies and mucosal damage following withdrawal of DSS. Consistent with prior evidence of ongoing coagulation factor activation and consumption in individuals with active colitis, plasma FXIII levels were markedly decreased in colitis-challenged WT mice. Treatment of colitis-challenged mice with recombinant human FXIII-A zymogen significantly mitigated weight loss, intestinal bleeding, and diarrhea, regardless of whether cohorts were FXIII-sufficient or were genetically devoid of FXIII. Similarly, both qualitative and quantitative microscopic analyses of colonic tissues revealed that exogenous FXIII improved the resolution of multiple colitis disease parameters in both FXIII-/- and WT mice. The most striking differences were seen in the resolution of mucosal ulceration, the most severe histopathological manifestation of DSS-induced colitis. These findings directly demonstrate that FXIII is a significant determinant of mucosal healing and clinical outcome following inflammatory colitis induced mucosal injury and provide a proof-of-principle that clinical interventions supporting FXIII activity may be a means to limit colitis pathology and improve resolution of mucosal damage.
Collapse
Affiliation(s)
| | - Peter H. Kvist
- Novo Nordisk A/S, Biopharmaceutical Research Unit, Copenhagen, Denmark
| | - Kathryn McElhinney
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Richard Baylis
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Luise K. Gram
- Novo Nordisk A/S, Biopharmaceutical Research Unit, Copenhagen, Denmark
| | - Hermann Pelzer
- Novo Nordisk A/S, Biopharmaceutical Research Unit, Copenhagen, Denmark
| | - Brian Lauritzen
- Novo Nordisk A/S, Biopharmaceutical Research Unit, Copenhagen, Denmark
| | - Thomas L. Holm
- Novo Nordisk A/S, Biopharmaceutical Research Unit, Copenhagen, Denmark
| | - Simon Hogan
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - David Wu
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Brian Turpin
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Whitney Miller
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Joseph S. Palumbo
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- * E-mail:
| |
Collapse
|
31
|
Kim DY, Cho SH, Takabayashi T, Schleimer RP. Chronic Rhinosinusitis and the Coagulation System. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:421-30. [PMID: 26122502 PMCID: PMC4509654 DOI: 10.4168/aair.2015.7.5.421] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/02/2015] [Indexed: 12/16/2022]
Abstract
Chronic rhinosinusitis (CRS) is one of the most common chronic diseases in adults and severely affects quality of life in patients. Although various etiologic and pathogenic mechanisms of CRS have been proposed, the causes of CRS remain uncertain. Abnormalities in the coagulation cascade may play an etiologic role in many diseases, such as asthma and other inflammatory conditions. While studies on the relationship between asthma and dysregulated coagulation have been reported, the role of the coagulation system in the pathogenesis of CRS has only been considered following recent reports. Excessive fibrin deposition is seen in nasal polyp (NP) tissue from patients with chronic rhinosinusitis with nasal polyp (CRSwNP) and is associated with activation of thrombin, reduction of tissue plasminogen activator (t-PA) and upregulation of coagulation factor XIII-A (FXIII-A), all events that can contribute to fibrin deposition and crosslinking. These findings were reproduced in a murine model of NP that was recently established. Elucidation of the mechanisms of fibrin deposition may enhance our understanding of tissue remodeling in the pathophysiology of NP and provide new targets for the treatment of CRSwNP.
Collapse
Affiliation(s)
- Dong Young Kim
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seong H Cho
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.; Division of Rheumatology, Department of Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Tetsuji Takabayashi
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.; Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Fukui, Japan
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
32
|
Abstract
Chronic rhinosinusitis (CRS) is a heterogeneous disease characterized by local inflammation of the upper airways and sinuses which persists for at least 12 weeks. CRS can be divided into two phenotypes dependent on the presence of nasal polyps (NPs); CRS with NPs (CRSwNP) and CRS without NPs (CRSsNP). Immunological patterns in the two diseases are known to be different. Inflammation in CRSsNP is rarely investigated and limited studies show that CRSsNP is characterized by type 1 inflammation. Inflammation in CRSwNP is well investigated and CRSwNP in Western countries shows type 2 inflammation and eosinophilia in NPs. In contrast, mixed inflammatory patterns are found in CRSwNP in Asia and the ratio of eosinophilic NPs and non-eosinophilic NPs is almost 50:50 in these countries. Inflammation in eosinophilic NPs is mainly controlled by type 2 cytokines, IL-5 and IL-13, which can be produced from several immune cells including Th2 cells, mast cells and group 2 innate lymphoid cells (ILC2s) that are all elevated in eosinophilic NPs. IL-5 strongly induces eosinophilia. IL-13 activates macrophages, B cells and epithelial cells to induce recruitment of eosinophils and Th2 cells, IgE mediated reactions and remodeling. Epithelial derived cytokines, TSLP, IL-33 and IL-1 can directly and indirectly control type 2 cytokine production from these cells in eosinophilic NPs. Recent clinical trials showed the beneficial effect on eosinophilic NPs and/or asthma by monoclonal antibodies against IL-5, IL-4Rα, IgE and TSLP suggesting that they can be therapeutic targets for eosinophilic CRSwNP.
Collapse
Affiliation(s)
- Atsushi Kato
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
33
|
Dickneite G, Herwald H, Korte W, Allanore Y, Denton CP, Matucci Cerinic M. Coagulation factor XIII: a multifunctional transglutaminase with clinical potential in a range of conditions. Thromb Haemost 2015; 113:686-97. [PMID: 25652913 DOI: 10.1160/th14-07-0625] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/27/2014] [Indexed: 12/28/2022]
Abstract
Coagulation factor XIII (FXIII), a plasma transglutaminase, is best known as the final enzyme in the coagulation cascade, where it is responsible for cross-linking of fibrin. However, a growing body of evidence has demonstrated that FXIII targets a wide range of additional substrates that have important roles in health and disease. These include antifibrinolytic proteins, with cross-linking of α2-antiplasmin to fibrin, and potentially fibrinogen, being the principal mechanism(s) whereby plasmin-mediated clot degradation is minimised. FXIII also acts on endothelial cell VEGFR-2 and αvβ3 integrin, which ultimately leads to downregulation of the antiangiogenic protein thrombospondin-1, promoting angiogenesis and neovascularisation. Under infectious disease conditions, FXIII cross-links bacterial surface proteins to fibrinogen, resulting in immobilisation and killing, while during wound healing, FXIII induces cross-linking of the provisional matrix. The latter process has been shown to influence the interaction of leukocytes with the provisional extracellular matrix and promote wound healing. Through these actions, there are good rationales for evaluating the therapeutic potential of FXIII in diseases in which tissue repair is dysregulated or perturbed, including systemic sclerosis (scleroderma), invasive bacterial infections, and tissue repair, for instance healing of venous leg ulcers or myocardial injuries. Adequate levels of FXIII are also required in patients undergoing surgery to prevent or treat perioperative bleeding, and its augmentation in patients with/at risk for perioperative bleeding may also have potential clinical benefit. While there are preclinical and/or clinical data to support the use of FXIII in a range of settings, further clinical evaluation in these underexplored applications is warranted.
Collapse
Affiliation(s)
- Gerhard Dickneite
- Prof. Dr Gerhard Dickneite, Preclinical R&D, CSL Behring, PO Box 1230, 35002 Marburg, Germany, Tel.: +49 6421 392306, Fax: +49 6421 394663, E-mail:
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
AbstractFactor XIII (FXIII) is a unique clotting factor activated in the last stage of the coagulation cascade, with multiple other plasmatic and cellular functions, outside of the traditional homeostasis. Literature data show that FXIII is expressed in skin lesions in the course of various inflammatory skin disorders. Dermis contains a series of macrophages and dendritic cells, which express different phenotypes including FXIII. Increased levels of FXIII-positive cells are present in specific cutaneous inflammatory and fibrotic conditions. The aim of this review is to provide the relationship between FXIII and the development of the inflammatory skin lesions.
Collapse
|
35
|
Djabir Y, Letson HL, Dobson GP. Adenosine, lidocaine, and Mg2+ (ALM™) increases survival and corrects coagulopathy after eight-minute asphyxial cardiac arrest in the rat. Shock 2014; 40:222-32. [PMID: 23846412 DOI: 10.1097/shk.0b013e3182a03566] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION No drug therapy has demonstrated improved survival following cardiac arrest (CA) of cardiac or noncardiac origin. In an effort to translate the cardiorescue properties of Adenocaine (adenosine and lidocaine) and magnesium sulfate (ALM) from cardiac surgery and hemorrhagic shock to resuscitation, we examined the effect of ALM on hemodynamic rescue and coagulopathy following asphyxial-induced CA in the rat. METHODS Nonheparinized animals (400-500 g, n = 39) were randomly assigned to 0.9% saline (n = 12) and 0.9% saline ALM (n = 10) groups. After baseline data were acquired, the animal was surface cooled (33°C-34°C) and the ventilator line clamped for 8 min inducing CA; 0.5 mL of solution was injected intravenously followed by 60-s chest compressions (300/min), and rats were rewarmed. Return of spontaneous circulation (ROSC), mean arterial pressure, heart rate, and rectal temperature were recorded for 2 h. Additional rats were randomized for rotation thromboelastometry measurements (n = 17). RESULTS Rats treated with ALM had a significant survival benefit (100% ALM vs. 67% controls achieved ROSC) and generated a higher mean arterial pressure than did controls after 75 min (81 vs. 72 mmHg at 120 min, P < 0.05). In all rats, rotation thromboelastometry lysis index decreased during CA, implying hyperfibrinolysis. Control ROSC survivors displayed hypocoagulopathy (prolonged EXTEM/INTEM clotting time, clot formation time, prothrombin time, activated partial thromboplastin time), decreased maximal clot firmness, lowered elasticity, and lowered clot amplitudes but no change in lysis index. These coagulation abnormalities were corrected by ALM at 120 min after ROSC. CONCLUSIONS Small bolus of 0.9% NaCl ALM improved survival and hemodynamics following nonhemorrhagic, asphyxial CA and corrected prolonged clot times and clot retraction compared with controls.
Collapse
Affiliation(s)
- Yulia Djabir
- Heart and Trauma Research Laboratory, Physiology and Pharmacology, James Cook University, Queensland, Australia
| | | | | |
Collapse
|
36
|
Soendergaard C, Kvist PH, Seidelin JB, Nielsen OH. Tissue-regenerating functions of coagulation factor XIII. J Thromb Haemost 2013; 11:806-16. [PMID: 23406195 DOI: 10.1111/jth.12169] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 02/04/2013] [Indexed: 12/13/2022]
Abstract
The protransglutaminase factor XIII (FXIII) has recently attracted attention within the field of tissue regeneration, as it has been found that FXIII significantly influences wound healing by exerting a multitude of functions. It supports hemostasis by enhancing platelet adhesion to damaged endothelium, and by its cross-linking activity it stabilizes the formed fibrin clot. Furthermore, FXIII limits bacterial dissemination from the wound and incorporates macromolecules of importance for cellular infiltration, supporting cell migration and survival. FXIII-mediated complex formation of the vascular endothelial growth factor receptor 2 and αV β3 integrin is important for angiogenesis, supporting the formation of granulation tissue. Chronic inflammatory conditions involving bleeding and activation of the coagulation cascade have been shown to lead to reduced FXIII levels in plasma. Of particular importance for this review is the fact that patients suffering from inflammatory bowel disease (IBD) have reduced FXIII antigen levels and activity. Furthermore, these patients show impaired mucosal healing, which supports the inflammatory state of the disease. This review summarizes the role of FXIII in the healing of wounds, and briefly summarizes the previous use of FXIII in clinical settings. Moreover, it addresses the potential role for FXIII as a therapeutic agent in the healing of persistent wounds during chronic conditions, with an emphasis on IBD.
Collapse
Affiliation(s)
- C Soendergaard
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
37
|
Takabayashi T, Kato A, Peters AT, Hulse KE, Suh LA, Carter R, Norton J, Grammer LC, Tan BK, Chandra RK, Conley DB, Kern RC, Fujieda S, Schleimer RP. Increased expression of factor XIII-A in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2013; 132:584-592.e4. [PMID: 23541322 DOI: 10.1016/j.jaci.2013.02.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 01/31/2013] [Accepted: 02/07/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND Profound edema or formation of a pseudocyst containing plasma proteins is a prominent characteristic of nasal polyps (NP). However, the mechanisms underlying NP retention of plasma proteins in the submucosa remain unclear. Recently, we reported that impairment of fibrinolysis causes excessive fibrin deposition in NP and this might be involved in the retention of plasma proteins. Although the coagulation cascade plays a critical role in fibrin clot formation at extravascular sites, the expression and role of coagulation factors in NP remain unclear. OBJECTIVE The objective of this study was to investigate the expression of coagulation factors in patients with chronic rhinosinusitis (CRS). METHODS Sinonasal tissues were collected from patients with CRS and control subjects. We assayed mRNA for factor XIII-A (FXIII-A) by using real-time PCR and measured FXIII-A protein by means of ELISA, immunohistochemistry, and immunofluorescence. RESULTS FXIII-A mRNA levels were significantly increased in NP tissue from patients with CRS with NP (P < .001) compared with uncinate tissue from patients with CRS or control subjects. Similarly, FXIII-A protein levels were increased in NP. Immunofluorescence analysis revealed that FXIII-A expression in inflammatory cells and FXIII-A(+) cell numbers were significantly increased in NP. Most FXIII-A staining was observed within CD68(+)/CD163(+) M2 macrophages in NP. Levels of FXIII-A correlated with markers of M2 macrophages, suggesting that M2 macrophages are major FXIIIA-producing cells in NP. CONCLUSION Overproduction of FXIII-A by M2 macrophages might contribute to the excessive fibrin deposition in the submucosa of NP, which might contribute to the tissue remodeling and pathogenesis of CRS with NP.
Collapse
Affiliation(s)
- Tetsuji Takabayashi
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Fukui, Japan
| | - Atsushi Kato
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Anju T Peters
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kathryn E Hulse
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Lydia A Suh
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Roderick Carter
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - James Norton
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Leslie C Grammer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce K Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Rakesh K Chandra
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - David B Conley
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert C Kern
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Fukui, Japan
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
38
|
Abstract
Coagulation factor (F)XIII is best known for its role in fibrin stabilization and cross-linking of antifibrinolytic proteins to the fibrin clot. From patients with congenital FXIII deficiency, it is known that FXIII also has important functions in wound healing and maintaining pregnancy. Over the last decade more and more research groups with different backgrounds have studied FXIII and have unveiled putative novel functions for FXIII. FXIII, with its unique role as a transglutaminase among the other serine protease coagulation factors, is now recognized as a multifunctional protein involved in regulatory mechanisms and construction and repair processes beyond hemostasis with possible implications in many areas of medicine. The aim of this review was to give an overview of exciting novel findings and to highlight the remarkable diversity of functions attributed to FXIII. Of course, more research into the underlying mechanisms and (patho-)physiological relevance of the many described functions of FXIII is needed. It will be exciting to observe future developments in this area and to see if and how these interesting findings may be translated into clinical practice in the future.
Collapse
Affiliation(s)
- V Schroeder
- University Clinic of Hematology and Central Hematology Laboratory, University Hospital and University of Bern, Bern, Switzerland.
| | | |
Collapse
|
39
|
Miller JW. Age-related macular degeneration revisited--piecing the puzzle: the LXIX Edward Jackson memorial lecture. Am J Ophthalmol 2013; 155:1-35.e13. [PMID: 23245386 DOI: 10.1016/j.ajo.2012.10.018] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 12/11/2022]
Abstract
PURPOSE To present the current understanding of age-related macular degeneration (AMD) pathogenesis, based on clinical evidence, epidemiologic data, histopathologic examination, and genetic data; to provide an update on current and emerging therapies; and to propose an integrated model of the pathogenesis of AMD. DESIGN Review of published clinical and experimental studies. METHODS Analysis and synthesis of clinical and experimental data. RESULTS We are closer to a complete understanding of the pathogenesis of AMD, having progressed from clinical observations to epidemiologic observations and clinical pathologic correlation. More recently, modern genetic and genomic studies have facilitated the exploration of molecular pathways. It seems that AMD is a complex disease that results from the interaction of genetic susceptibility with aging and environmental factors. Disease progression also seems to be driven by a combination of genetic and environmental factors. CONCLUSIONS Therapies based on pathophysiologic features have changed the paradigm for treating neovascular AMD. With improved understanding of the underlying genetic susceptibility, we can identify targets to halt early disease and to prevent progression and vision loss.
Collapse
|