1
|
Glukhov E, Kalitin D, Stepanenko D, Zhu Y, Nguyen T, Jones G, Patsahan T, Simmerling C, Mitchell JC, Vajda S, Dill KA, Padhorny D, Kozakov D. MHC-Fine: Fine-tuned AlphaFold for precise MHC-peptide complex prediction. Biophys J 2024; 123:2902-2909. [PMID: 38751115 PMCID: PMC11393670 DOI: 10.1016/j.bpj.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/13/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024] Open
Abstract
The precise prediction of major histocompatibility complex (MHC)-peptide complex structures is pivotal for understanding cellular immune responses and advancing vaccine design. In this study, we enhanced AlphaFold's capabilities by fine-tuning it with a specialized dataset consisting of exclusively high-resolution class I MHC-peptide crystal structures. This tailored approach aimed to address the generalist nature of AlphaFold's original training, which, while broad-ranging, lacked the granularity necessary for the high-precision demands of class I MHC-peptide interaction prediction. A comparative analysis was conducted against the homology-modeling-based method Pandora as well as the AlphaFold multimer model. Our results demonstrate that our fine-tuned model outperforms others in terms of root-mean-square deviation (median value for Cα atoms for peptides is 0.66 Å) and also provides enhanced predicted local distance difference test scores, offering a more reliable assessment of the predicted structures. These advances have substantial implications for computational immunology, potentially accelerating the development of novel therapeutics and vaccines by providing a more precise computational lens through which to view MHC-peptide interactions.
Collapse
Affiliation(s)
- Ernest Glukhov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Dmytro Kalitin
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York; Faculty of Applied Science, Ukrainian Catholic University, Lviv, Ukraine
| | - Darya Stepanenko
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Yimin Zhu
- Department of Computer Science, Stony Brook University, Stony Brook, New York; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Thu Nguyen
- Department of Computer Science, Stony Brook University, Stony Brook, New York; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - George Jones
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Taras Patsahan
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, Lviv, Ukraine; Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, Lviv, Ukraine
| | - Carlos Simmerling
- Department of Chemistry, Stony Brook University, Stony Brook, New York; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Julie C Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Ken A Dill
- Department of Chemistry, Stony Brook University, Stony Brook, New York; Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Dzmitry Padhorny
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York.
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York.
| |
Collapse
|
2
|
Rojas M, Acosta-Ampudia Y, Heuer LS, Zang W, M Monsalve D, Ramírez-Santana C, Anaya JM, M Ridgway W, A Ansari A, Gershwin ME. Antigen-specific T cells and autoimmunity. J Autoimmun 2024; 148:103303. [PMID: 39141985 DOI: 10.1016/j.jaut.2024.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Autoimmune diseases (ADs) showcase the intricate balance between the immune system's protective functions and its potential for self-inflicted damage. These disorders arise from the immune system's erroneous targeting of the body's tissues, resulting in damage and disease. The ability of T cells to distinguish between self and non-self-antigens is pivotal to averting autoimmune reactions. Perturbations in this process contribute to AD development. Autoreactive T cells that elude thymic elimination are activated by mimics of self-antigens or are erroneously activated by self-antigens can trigger autoimmune responses. Various mechanisms, including molecular mimicry and bystander activation, contribute to AD initiation, with specific triggers and processes varying across the different ADs. In addition, the formation of neo-epitopes could also be implicated in the emergence of autoreactivity. The specificity of T cell responses centers on the antigen recognition sequences expressed by T cell receptors (TCRs), which recognize peptide fragments displayed by major histocompatibility complex (MHC) molecules. The assortment of TCR gene combinations yields a diverse array of T cell populations, each with distinct affinities for self and non-self antigens. However, new evidence challenges the traditional notion that clonal expansion solely steers the selection of higher-affinity T cells. Lower-affinity T cells also play a substantial role, prompting the "two-hit" hypothesis. High-affinity T cells incite initial responses, while their lower-affinity counterparts perpetuate autoimmunity. Precision treatments that target antigen-specific T cells hold promise for avoiding widespread immunosuppression. Nevertheless, detection of such antigen-specific T cells remains a challenge, and multiple technologies have been developed with different sensitivities while still harboring several drawbacks. In addition, elements such as human leukocyte antigen (HLA) haplotypes and validation through animal models are pivotal for advancing these strategies. In brief, this review delves into the intricate mechanisms contributing to ADs, accentuating the pivotal role(s) of antigen-specific T cells in steering immune responses and disease progression, as well as the novel strategies for the identification of antigen-specific cells and their possible future use in humans. Grasping the mechanisms behind ADs paves the way for targeted therapeutic interventions, potentially enhancing treatment choices while minimizing the risk of systemic immunosuppression.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA; Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luke S Heuer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Weici Zang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | | | - William M Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Aftab A Ansari
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
3
|
Glukhov E, Kalitin D, Stepanenko D, Zhu Y, Nguyen T, Jones G, Simmerling C, Mitchell JC, Vajda S, Dill KA, Padhorny D, Kozakov D. MHC-Fine: Fine-tuned AlphaFold for Precise MHC-Peptide Complex Prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569310. [PMID: 38077000 PMCID: PMC10705405 DOI: 10.1101/2023.11.29.569310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The precise prediction of Major Histocompatibility Complex (MHC)-peptide complex structures is pivotal for understanding cellular immune responses and advancing vaccine design. In this study, we enhanced AlphaFold's capabilities by fine-tuning it with a specialized dataset comprised by exclusively high-resolution MHC-peptide crystal structures. This tailored approach aimed to address the generalist nature of AlphaFold's original training, which, while broad-ranging, lacked the granularity necessary for the high-precision demands of MHC-peptide interaction prediction. A comparative analysis was conducted against the homology-modeling-based method Pandora [13], as well as the AlphaFold multimer model [8]. Our results demonstrate that our fine-tuned model outperforms both in terms of RMSD (median value is 0.65 Å) but also provides enhanced predicted lDDT scores, offering a more reliable assessment of the predicted structures. These advances have substantial implications for computational immunology, potentially accelerating the development of novel therapeutics and vaccines by providing a more precise computational lens through which to view MHC-peptide interactions.
Collapse
Affiliation(s)
- Ernest Glukhov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, 11794, NY, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Dmytro Kalitin
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, 11794, NY, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Darya Stepanenko
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, 11794, NY, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Yimin Zhu
- Department of Computer Science, Stony Brook University, Stony Brook, 11794, NY, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Thu Nguyen
- Department of Computer Science, Stony Brook University, Stony Brook, 11794, NY, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, 11794, NY, USA
| | - George Jones
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, 11794, NY, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Carlos Simmerling
- Department of Chemistry, Stony Brook University, Stony Brook, 11794, NY, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Julie C. Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, 02215, MA, USA
| | - Ken A. Dill
- Department of Chemistry, Stony Brook University, Stony Brook, 11794, NY, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, 11794, NY, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Dzmitry Padhorny
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, 11794, NY, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, 11794, NY, USA
| |
Collapse
|
4
|
Parham KA, Tan XXS, Morelli DM, Chowdhury L, Craig HC, Kerfoot SM. Pre–Germinal Center Interactions with T Cells Are Natural Checkpoints to Limit Autoimmune B Cell Responses. THE JOURNAL OF IMMUNOLOGY 2022; 209:1703-1712. [DOI: 10.4049/jimmunol.2200534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022]
|
5
|
Levi R, Louzoun Y. Two Step Selection for Bias in β Chain V-J Pairing. Front Immunol 2022; 13:906217. [PMID: 35911711 PMCID: PMC9330483 DOI: 10.3389/fimmu.2022.906217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The β chain rearrangement in T cells is a two-step process where first Dβ and Jβ bind, and only then Vβ is joined to the complex. We here show that the frequency of human and mouse Vβ
Jβ combinations deviates from the one expected based on each gene usage frequency. This bias is observed mainly in functional (F) rearrangements, but also slightly in non-functional (NF) rearrangements. Preferred Vβ
Jβ combinations in F clones are shared between donors and samples, suggesting a common structural mechanism for these biases in addition to any host-specific antigen-induced peripheral selection. The sharing holds even in clones with Jβ1 that share the same Dβ1 gene. Vβ
Jβ usage is correlated with the Molecular Weight and Isoelectric Point in F clones. The pairing is also observed in the Double Positive cells in mice thymocytes, suggesting that the selection leading to such a pairing occurs before thymic selection. These results suggest an additional structural checkpoint in the beta chain development prior to thymic selection during the T cell receptor expression. Understanding this structural selection is important for the distinction between normal and aberrant T cell development, and crucial for the design of engineered TCRs.
Collapse
|
6
|
Krovi SH, Kuchroo VK. Activation pathways that drive CD4 + T cells to break tolerance in autoimmune diseases . Immunol Rev 2022; 307:161-190. [PMID: 35142369 PMCID: PMC9255211 DOI: 10.1111/imr.13071] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases are characterized by dysfunctional immune systems that misrecognize self as non-self and cause tissue destruction. Several cell types have been implicated in triggering and sustaining disease. Due to a strong association of major histocompatibility complex II (MHC-II) proteins with various autoimmune diseases, CD4+ T lymphocytes have been thoroughly investigated for their roles in dictating disease course. CD4+ T cell activation is a coordinated process that requires three distinct signals: Signal 1, which is mediated by antigen recognition on MHC-II molecules; Signal 2, which boosts signal 1 in a costimulatory manner; and Signal 3, which helps to differentiate the activated cells into functionally relevant subsets. These signals are disrupted during autoimmunity and prompt CD4+ T cells to break tolerance. Herein, we review our current understanding of how each of the three signals plays a role in three different autoimmune diseases and highlight the genetic polymorphisms that predispose individuals to autoimmunity. We also discuss the drawbacks of existing therapies and how they can be addressed to achieve lasting tolerance in patients.
Collapse
Affiliation(s)
- Sai Harsha Krovi
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
A previously unappreciated polymorphism in the beta chain of I-A s expressed in autoimmunity-prone SJL mice: Combined impact on antibody, CD4 T cell recognition and MHC class II dimer structural stability. Mol Immunol 2022; 143:17-26. [PMID: 34995990 PMCID: PMC9261112 DOI: 10.1016/j.molimm.2021.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/13/2021] [Accepted: 12/26/2021] [Indexed: 01/14/2023]
Abstract
In the process of structure-function studies on the MHC class II molecule expressed in autoimmunity prone SJL mice, I-As, we discovered a disparity from the reported sequence of the MHC class II beta chain. The variant is localized at a highly conserved site of the beta chain, at residue 58. Our studies revealed that this single amino acid substitution of Pro for Ala at this residue, found in I-As, changes the structure of the MHC class II molecule, as evidenced by a loss of recognition by two monoclonal antibodies, and elements of MHC class II conformational stability identified through molecular dynamics simulation. Two other rare polymorphisms in I-As involved in hydrogen bonding potential between the alpha chain and the peptide main chain are located at the same end of the MHC class II binding pocket, studied in parallel may impact the consequences of the β chain variant. Despite striking changes in MHC class II structure, CD4 T cell recognition of influenza-derived peptides was preserved. These disparate findings were reconciled by discovering, through monoclonal antibody blocking approaches, that CD4 T cell recognition by I-As restricted CD4 T cells focused more on the region of MHC class II at the peptide's amino terminus. These studies argue that the conformational variability or flexibility of the MHC class II molecule in that region of I-As select a CD4 T cell repertoire that deviates from the prototypical docking mode onto MHC class II peptide complexes. Overall, our results are consistent with the view that naturally occurring MHC class II molecules can possess polymorphisms that destabilize prototypical features of the MHC class II molecule but that can maintain T cell recognition of the MHC class II:peptide ligand via alternate docking modes.
Collapse
|
8
|
Frommer L, Kahaly GJ. Type 1 Diabetes and Autoimmune Thyroid Disease-The Genetic Link. Front Endocrinol (Lausanne) 2021; 12:618213. [PMID: 33776915 PMCID: PMC7988207 DOI: 10.3389/fendo.2021.618213] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) and autoimmune thyroid disease (AITD) are the most frequent chronic autoimmune diseases worldwide. Several autoimmune endocrine and non-endocrine disorders tend to occur together. T1D and AITD often cluster in individuals and families, seen in the formation of autoimmune polyendocrinopathy (AP). The close relationship between these two diseases is largely explained by sharing a common genetic background. The HLA antigens DQ2 (DQA1*0501-DQB1*0201) and DQ8 (DQA1*0301-DQB1*0302), tightly linked with DR3 and DR4, are the major common genetic predisposition. Moreover, functional single nucleotide polymorphisms (or rare variants) of various genes, such as the cytotoxic T-lymphocyte- associated antigen (CTLA4), the protein tyrosine phosphatase non-receptor type 22 (PTPN22), the interleukin-2 Receptor (IL2Ra), the Vitamin D receptor (VDR), and the tumor-necrosis-factor-α (TNF) that are involved in immune regulation have been identified to confer susceptibility to both T1D and AITD. Other genes including cluster of differentiation 40 (CD40), the forkhead box P3 (FOXP3), the MHC Class I Polypeptide-Related Sequence A (MICA), insulin variable number of tandem repeats (INS-VNTR), the C-Type Lectin Domain Containing 16A (CLEC16A), the Erb-B2 Receptor Tyrosine Kinase 3 (ERBB3) gene, the interferon-induced helicase C domain-containing protein 1 (IFIH1), and various cytokine genes are also under suspicion to increase susceptibility to T1D and AITD. Further, BTB domain and CNC homolog 2 (BACH2), C-C motif chemokine receptor 5 (CCR5), SH2B adaptor protein 3 (SH2B3), and Rac family small GTPase 2 (RAC2) are found to be associated with T1D and AITD by various independent genome wide association studies and overlap in our list, indicating a strong common genetic link for T1D and AITD. As several susceptibility genes and environmental factors contribute to the disease aetiology of both T1D and AITD and/or AP subtype III variant (T1D+AITD) simultaneously, all patients with T1D should be screened for AITD, and vice versa.
Collapse
|
9
|
Junghans V, Chouliara M, Santos AM, Hatherley D, Petersen J, Dam T, Svensson LM, Rossjohn J, Davis SJ, Jönsson P. Effects of a local auxiliary protein on the two-dimensional affinity of a TCR-peptide MHC interaction. J Cell Sci 2020; 133:jcs245985. [PMID: 32591485 DOI: 10.1242/jcs.245985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
The affinity of T-cell receptors (TCRs) for major histocompatibility complex molecules (MHCs) presenting cognate antigens likely determines whether T cells initiate immune responses, or not. There exist few measurements of two-dimensional (2D) TCR-MHC interactions, and the effect of auxiliary proteins on binding is unexplored. Here, Jurkat T-cells expressing the MHC molecule HLA-DQ8-glia-α1 and the ligand of an adhesion protein (rat CD2) were allowed to bind supported lipid bilayers (SLBs) presenting fluorescently labelled L3-12 TCR and rat CD2, allowing measurements of binding unconfounded by cell signaling effects or co-receptor binding. The 2D Kd for L3-12 TCR binding to HLA-DQ8-glia-α1, of 14±5 molecules/μm2 (mean±s.d.), was only marginally influenced by including CD2 up to ∼200 bound molecules/μm2 but higher CD2 densities reduced the affinity up to 1.9-fold. Cell-SLB contact size increased steadily with ligand density without affecting binding for contacts at up to ∼20% of total cell area, but beyond this lamellipodia appeared, giving an apparent increase in bound receptors of up to 50%. Our findings show how parameters other than the specific protein-protein interaction can influence binding behavior at cell-cell contacts.
Collapse
Affiliation(s)
| | - Manto Chouliara
- Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Ana Mafalda Santos
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford; and Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, OX3 9DS Oxford, UK
| | - Deborah Hatherley
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford; and Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, OX3 9DS Oxford, UK
| | - Jan Petersen
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Tommy Dam
- Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Lena M Svensson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden; and School of Medical Sciences, Örebro University, 701 82 Örebro, Sweden
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Simon J Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford; and Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, OX3 9DS Oxford, UK
| | - Peter Jönsson
- Department of Chemistry, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
10
|
Autoreactive, Low-Affinity T Cells Preferentially Drive Differentiation of Short-Lived Memory B Cells at the Expense of Germinal Center Maintenance. Cell Rep 2019; 25:3342-3355.e5. [PMID: 30566861 DOI: 10.1016/j.celrep.2018.11.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/04/2018] [Accepted: 11/16/2018] [Indexed: 01/06/2023] Open
Abstract
B cell fate decisions within a germinal center (GC) are critical to determining the outcome of the immune response to a given antigen. Here, we characterize GC kinetics and B cell fate choices in a response to the autoantigen myelin oligodendrocyte glycoprotein (MOG) and compare the response with a standard model foreign antigen. Both antigens generate productive primary responses, as evidenced by GC development, circulating antigen-specific antibodies, and differentiation of memory B cells. However, in the MOG response, the status of the cognate T cell partner drives preferential B cell differentiation to a memory phenotype at the expense of GC maintenance, resulting in a truncated GC. Reduced plasma cell differentiation is largely independent of T cell influence. Interestingly, memory-phenotype B cells formed in the MOG GC are not long lived, resulting in a failure of the B cell response to secondary challenge.
Collapse
|
11
|
Banerjee R, Roy S, Samanta M, Das S. Molecular cloning, characterization and expression analysis of MHCI and chemokines CXCR3 and CXCR4 gene from freshwater carp, Catla catla. Microbiol Immunol 2019; 63:379-391. [PMID: 31310013 DOI: 10.1111/1348-0421.12728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/24/2019] [Accepted: 07/08/2019] [Indexed: 12/01/2022]
Abstract
The immune system with large number of molecules protects the host against a plethora of continuously evolving microbes. Major histocompatibility complex (MHC) molecules serve as cardinal elements of the adaptive immune system responsible for the activation of the adaptive immunity in the host. The present study reports MHCI molecule in freshwater carp, Catla catla, and its differential expression in immunologically relevant tissues post-infection with Gram-negative and Gram-positive bacteria. The MHCI sequence of C. catla had 502 bp nucleotides encoding putative 146 amino acids. The phylogenetic analysis exhibited its evolutionary conservation within the Cyprinidae family and formed a different clade with the higher vertebrates. Simultaneously, CXCR3 and CXCR4 chemokines were cloned and characterized for their expression in infected tissues. Analysis of immunologically relevant tissues of the infected fish exhibited an increase of MHCI gene expression and the down-regulation of CXCR3 and CXCR4 chemokines, indicating a tricky interaction between the innate and adaptive immune system. It was found that intestine, skin and spleen played a crucial role in the contribution of the defense activity which instigated the self-immunity. These immune activities can provide useful information to understand the interaction of self and non-self- immune system in freshwater fish, Catla catla.
Collapse
Affiliation(s)
- Rajanya Banerjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sudeshna Roy
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Mrinal Samanta
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| |
Collapse
|
12
|
Biondi B, Kahaly GJ, Robertson RP. Thyroid Dysfunction and Diabetes Mellitus: Two Closely Associated Disorders. Endocr Rev 2019; 40:789-824. [PMID: 30649221 PMCID: PMC6507635 DOI: 10.1210/er.2018-00163] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022]
Abstract
Thyroid dysfunction and diabetes mellitus are closely linked. Several studies have documented the increased prevalence of thyroid disorders in patients with diabetes mellitus and vice versa. This review critically discusses the different underlying mechanisms linking type 1 and 2 diabetes and thyroid dysfunction to demonstrate that the association of these two common disorders is unlikely a simple coincidence. We assess the current state of knowledge on the central and peripheral control of thyroid hormone on food intake and glucose and lipid metabolism in target tissues (such as liver, white and brown adipose tissue, pancreatic β cells, and skeletal muscle) to explain the mechanism linking overt and subclinical hypothyroidism to type 2 diabetes and metabolic syndrome. We also elucidate the common susceptibility genes and the pathogenetic mechanisms contributing to the autoimmune mechanism involved in the onset of type 1 diabetes mellitus and autoimmune thyroid disorders. An untreated thyroid dysfunction can impair the metabolic control of diabetic patients, and this association can have important repercussions on the outcome of both of these disorders. Therefore, we offer recommendations for the diagnosis, management, and screening of thyroid disorders in patients with diabetes mellitus, including the treatment of diabetic patients planning a pregnancy. We also discuss the major causes of failure to achieve an optimal management of thyroid dysfunction in diabetic patients and provide recommendations for assessing and treating these disorders during therapy with antidiabetic drugs. An algorithm for a correct approach of these disorders when linked is also provided.
Collapse
Affiliation(s)
- Bernadette Biondi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - George J Kahaly
- Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - R Paul Robertson
- Department of Medicine, Division of Endocrinology and Metabolism, University of Washington School of Medicine, Seattle, Washington.,Department of Pharmacology, University of Washington, Seattle, Washington
| |
Collapse
|
13
|
Xu J, Jo J. Broad cross-reactivity of the T-cell repertoire achieves specific and sufficiently rapid target searching. J Theor Biol 2019; 466:119-127. [PMID: 30699327 DOI: 10.1016/j.jtbi.2019.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/20/2018] [Accepted: 01/24/2019] [Indexed: 11/29/2022]
Abstract
The molecular recognition of T-cell receptors is the hallmark of the adaptive immunity. Given the finiteness of the T-cell repertoire, individual T-cell receptors are necessary to be cross-reactive to multiple antigenic peptides. In this study, we quantify the variability of the cross-reactivity by using a string model that estimates the binding affinity between two sequences of amino acids. We examine sequences of 10,000 human T-cell receptors and 10,000 antigenic peptides, and obtain a full spectrum of cross-reactivity of the receptor-peptide binding. Then, we find that the cross-reactivity spectrum is broad. Some T-cells are reactive to 1000 peptides, but some T-cells are reactive to only one or two peptides. Since the degree of cross-reactivity has a correlation with the (un)binding affinity of receptors, we further investigate how the broad cross-reactivity affects the target searching of T-cells. High cross-reactive T-cells may not require many trials for searching correct targets, but they may spend long time to unbind from incorrect targets. In contrast, low cross-reactive T-cells may not spend long time to ignore incorrect targets, but they require many trials for screening correct targets. We evaluate this hypothesis, and show that the broad cross-reactivity of the natural T-cell repertoire can balance the trade-off between the rapid screening and unbinding penalty.
Collapse
Affiliation(s)
- Jin Xu
- Asia Pacific Center for Theoretical Physics (APCTP), 67 Cheongam-ro, Pohang, 37673, South Korea; Department of Physics, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, South Korea
| | - Junghyo Jo
- Asia Pacific Center for Theoretical Physics (APCTP), 67 Cheongam-ro, Pohang, 37673, South Korea; Department of Physics, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, 37673, South Korea; School of Computational Sciences, Korea Institute for Advanced Study (KIAS), 85 Hoegiro, Seoul, 02455, South Korea; Department of Statistics, Keimyung University, 1095 Dalgubeol-daero, Daegu, 42601, South Korea.
| |
Collapse
|
14
|
Nyambura LW, Jarmalavicius S, Walden P. Impact of Leishmania donovani infection on the HLA I self peptide repertoire of human macrophages. PLoS One 2018; 13:e0200297. [PMID: 30001391 PMCID: PMC6042751 DOI: 10.1371/journal.pone.0200297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/23/2018] [Indexed: 02/07/2023] Open
Abstract
Macrophages are specialized antigen-presenting cells that process and present self-antigens for induction of tolerance, and foreign antigens to initiate T cell-mediated immunity. Despite this, Leishmania donovani (LD) are able to parasitize the macrophages and persist. The impact of this parasitizing and persistence on antigen processing and presentation by macrophages remains poorly defined. To gain insight into this, we analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) and compared the HLA-I self-peptidomes, proteasome compositions, HLA expression and activation states of non-infected and LD-infected THP1-derived macrophages. We found that, though both HLA-I peptidomes were dominated by nonapeptides, they were heterogeneous and individualized, with differences in HLA binding affinities and anchor residues. Non-infected and LD-infected THP1-derived macrophages were able to sample peptides from source proteins of almost all subcellular locations and involved in various cellular functions, but in different proportions. In the infected macrophages, there was increased sampling of plasma membrane and extracellular proteins, and those involved in immune responses, cell communication/signal transduction and metabolism/energy pathways, and decreased sampling of nuclear and cytoplasmic proteins and those involved in protein metabolism, RNA binding and cell growth and/or maintenance. Though the activation state of infected macrophages was unchanged, their proteasome composition was altered.
Collapse
Affiliation(s)
- Lydon Wainaina Nyambura
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Clinical Research Group 'Tumor Immunology', Berlin, Germany
- Humboldt Universität zu Berlin, Lebenswissenschaftliche Fakultät, Institut für Biologie, Berlin, Germany
| | - Saulius Jarmalavicius
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Clinical Research Group 'Tumor Immunology', Berlin, Germany
| | - Peter Walden
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Clinical Research Group 'Tumor Immunology', Berlin, Germany
- * E-mail:
| |
Collapse
|
15
|
Čierny D, Lehotský J, Kantorová E, Sivák Š, Javor J, Kurča E, Dobrota D, Michalik J. The HLA-DRB1 and HLA-DQB1 alleles are associated with multiple sclerosis disability progression in Slovak population. Neurol Res 2018; 40:607-614. [PMID: 29619906 DOI: 10.1080/01616412.2018.1456711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of our present study was to analyse the association of HLA-DRB1 and -DQB1 alleles and genotypes with Multiple Sclerosis (MS) disability progression in a cohort of Central European Slovak population. METHODS The allele and genotype variants were analyzed in 282 non-related MS patients. Rate of disease disability progression was evaluated using EDSS score in the 5th, 7th, 10th, and 15th year of disease duration, time to reach EDSS score 3 and 5, and MSSS score. Genotyping was performed by polymerase chain reaction with sequence-specific primers. RESULTS We found that carriers of homozygous genotype for alleles DRB1*15 and DQB1*03 reached EDSS score 3 significantly earlier than non-carriers of these alleles (p = 0.0172; p = 0.00183, respectively). Genotype DQB1*03/03 carriage was also associated with significantly reduced time to reach EDSS score 5 (p = 0.00316). Lower EDSS score in the 5th year of disease duration was found in carriers of DRB1*07 allele (p cor = 0.028). When MSSS score was used, genotype DRB1*15/15 was found to be less frequent in slow progressing MS patients, when compared to MS patients with mid-rate and rapid disease disability progression (p cor = 0.0305). DISCUSSION We showed for the first time that HLA-DRB1 and -DQB1 genotypes are genetic markers associated with disability progression in Slovak MS patients. Genotypes DRB1*15/15 and DQB1*03/*03 were identified as short-term clinical negative prognostic factors, while allele DRB1*07 carriage appeared to be a positive prognostic marker of better MS outcome.
Collapse
Affiliation(s)
- Daniel Čierny
- a Jessenius Faculty of Medicine, Department of Clinical Biochemistry , Comenius University in Bratislava and University Hospital Martin , Martin , Slovak Republic
| | - Ján Lehotský
- b Jessenius Faculty of Medicine in Martin, Department of Medical Biochemistry and BioMed , Comenius University in Bratislava , Martin , Slovak Republic
| | - Ema Kantorová
- c Jessenius Faculty of Medicine, Clinic of Neurology , Comenius University in Bratislava and University Hospital Martin , Martin , Slovak Republic
| | - Štefan Sivák
- c Jessenius Faculty of Medicine, Clinic of Neurology , Comenius University in Bratislava and University Hospital Martin , Martin , Slovak Republic
| | - Juraj Javor
- d Faculty of Medicine, Institute of Immunology , Comenius University in Bratislava , Bratislava , Slovak Republic
| | - Egon Kurča
- c Jessenius Faculty of Medicine, Clinic of Neurology , Comenius University in Bratislava and University Hospital Martin , Martin , Slovak Republic
| | - Dušan Dobrota
- a Jessenius Faculty of Medicine, Department of Clinical Biochemistry , Comenius University in Bratislava and University Hospital Martin , Martin , Slovak Republic.,b Jessenius Faculty of Medicine in Martin, Department of Medical Biochemistry and BioMed , Comenius University in Bratislava , Martin , Slovak Republic
| | - Jozef Michalik
- c Jessenius Faculty of Medicine, Clinic of Neurology , Comenius University in Bratislava and University Hospital Martin , Martin , Slovak Republic
| |
Collapse
|
16
|
Gerasimou P, Nicolaidou V, Skordis N, Picolos M, Monos D, Costeas PA. Combined effect of glutamine at position 70 of HLA-DRB1 and alanine at position 57 of HLA-DQB1 in type 1 diabetes: An epitope analysis. PLoS One 2018; 13:e0193684. [PMID: 29494662 PMCID: PMC5832312 DOI: 10.1371/journal.pone.0193684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/15/2018] [Indexed: 02/06/2023] Open
Abstract
The contribution of specific HLA Class II alleles in type 1 diabetes is determined by polymorphic amino acid epitopes that direct antigen binding therefore, along with conventional allele frequency analysis, epitope analysis can provide important insights into disease susceptibility. We analyzed the highly heterogeneous Cypriot population for the HLA class II loci of T1DM patients and controls and we report for the first time their allele frequencies. Within our patient cohort we identified a subgroup that did not carry the DRB1*03:01-DQA1*05:01-DQB1*02:01 and DRB1*04:xx-DQA1*03:01-DQB1*03:02 risk haplotypes but a novel recombinant one, DRB1*04:XX-DQA1*03:01-DQB1*02:01 designated DR4-DQ2.3. Through epitope analysis we identified established susceptibility (DQB1 A57, DRB1 H13) and resistance (DQB1 D57) residues as well as other novel susceptibility residues DRB1 Q70, DQB1 L26 and resistance residues DRB1 D70, R70 and DQB1 Y47. Prevalence of susceptibility epitopes was higher in patients and was not exclusively a result of linkage disequilibrium. Residues DRB1 Q70, DQB1 L26 and A57 and a 10 amino acid epitope of DQA1 were the most significant in discriminating risk alleles. An extended haplotype containing these epitopes was carried by 92% of our patient cohort. Sharing of susceptibility epitopes could also explain the absence of risk haplotypes in patients. Finally, many significantly associated epitopes were non-pocket residues suggesting that critical immune functions may exist spanning further from the binding pockets.
Collapse
Affiliation(s)
- Petroula Gerasimou
- Karaiskakio Foundation, Nicosia, Cyprus
- University of Cyprus, Department of Biological Sciences, Nicosia, Cyprus
| | - Vicky Nicolaidou
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia Cyprus
| | - Nicos Skordis
- Division of Paediatric Endocrinology, Paedi Centre for Specialized Paediatrics, Nicosia, Cyprus
| | | | - Demetrios Monos
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | | |
Collapse
|
17
|
T cell receptor reversed polarity recognition of a self-antigen major histocompatibility complex. Nat Immunol 2015; 16:1153-61. [DOI: 10.1038/ni.3271] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/10/2015] [Indexed: 12/12/2022]
|
18
|
Gschweng E, De Oliveira S, Kohn DB. Hematopoietic stem cells for cancer immunotherapy. Immunol Rev 2014; 257:237-49. [PMID: 24329801 DOI: 10.1111/imr.12128] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hematopoietic stem cells (HSCs) provide an attractive target for immunotherapy of cancer and leukemia by the introduction of genes encoding T-cell receptors (TCRs) or chimeric antigen receptors (CARs) directed against tumor-associated antigens. HSCs engraft for long-term blood cell production and could provide a continuous source of targeted anti-cancer effector cells to sustain remissions. T cells produced de novo from HSCs may continuously replenish anti-tumor T cells that have become anergic or exhausted from ex vivo expansion or exposure to the intratumoral microenvironment. In addition, transgenic T cells produced in vivo undergo allelic exclusion, preventing co-expression of an endogenous TCR that could mis-pair with the introduced TCR chains and blunt activity or even cause off-target reactivity. CAR-engineered HSCs may produce myeloid and natural killer cells in addition to T cells expressing the CAR, providing broader anti-tumor activity that arises quickly after transplant and does not solely require de novo thymopoiesis. Use of TCR- or CAR-engineered HSCs would likely require cytoreductive conditioning to achieve long-term engraftment, and this approach may be used in clinical settings where autologous HSC transplant is being performed to add a graft-versus-tumor effect. Results of experimental and preclinical studies performed to date are reviewed.
Collapse
Affiliation(s)
- Eric Gschweng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA; Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | | | | |
Collapse
|
19
|
de Jong A, Cheng TY, Huang S, Gras S, Birkinshaw RW, Kasmar A, van Rhijn I, Peña-Cruz V, Ruan DT, Altman JD, Rossjohn J, Moody DB. CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens. Nat Immunol 2014; 15:177-85. [PMID: 24362891 PMCID: PMC3932764 DOI: 10.1038/ni.2790] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/18/2013] [Indexed: 01/11/2023]
Abstract
T cells autoreactive to the antigen-presenting molecule CD1a are common in human blood and skin, but the search for natural autoantigens has been confounded by background T cell responses to CD1 proteins and self lipids. After capturing CD1a-lipid complexes, we gently eluted ligands while preserving non-ligand-bound CD1a for testing lipids from tissues. CD1a released hundreds of ligands of two types. Inhibitory ligands were ubiquitous membrane lipids with polar head groups, whereas stimulatory compounds were apolar oils. We identified squalene and wax esters, which naturally accumulate in epidermis and sebum, as autoantigens presented by CD1a. The activation of T cells by skin oils suggested that headless mini-antigens nest within CD1a and displace non-antigenic resident lipids with large head groups. Oily autoantigens naturally coat the surface of the skin; thus, this points to a previously unknown mechanism of barrier immunity.
Collapse
Affiliation(s)
| | | | | | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Australia
| | - Richard W. Birkinshaw
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Australia
| | - Anne Kasmar
- Division of Rheumatology, Immunology and Allergy
| | - Ildiko van Rhijn
- Division of Rheumatology, Immunology and Allergy
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Daniel T. Ruan
- Department of Gastrointestinal and General Surgery, Brigham and Women’s Hospital, Harvard Medical School
| | | | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | | |
Collapse
|
20
|
Abstract
Metal hypersensitivity is a common immune disorder. Human immune systems mount the allergic attacks on metal ions through skin contacts, lung inhalation and metal-containing artificial body implants. The consequences can be simple annoyances to life-threatening systemic illness. Allergic hyper-reactivities to nickel (Ni) and beryllium (Be) are the best-studied human metal hypersensitivities. Ni-contact dermatitis affects 10 % of the human population, whereas Be compounds are the culprits of chronic Be disease (CBD). αβ T cells (T cells) play a crucial role in these hypersensitivity reactions. Metal ions work as haptens and bind to the surface of major histocompatibility complex (MHC) and peptide complex. This modifies the binding surface of MHC and triggers the immune response of T cells. Metal-specific αβ T cell receptors (TCRs) are usually MHC restricted, especially MHC class II (MHCII) restricted. Numerous models have been proposed, yet the mechanisms and molecular basis of metal hypersensitivity remain elusive. Recently, we determined the crystal structures of the Ni and Be presenting human MHCII molecules, HLA-DR52c (DRA*0101, DRB3*0301) and HLA-DP2 (DPA1*0103, DPB1*0201). These structures revealed unusual features of MHCII molecules and shed light on how metal ions are recognized by T cells.
Collapse
|
21
|
Liu YC, Miles JJ, Neller MA, Gostick E, Price DA, Purcell AW, McCluskey J, Burrows SR, Rossjohn J, Gras S. Highly divergent T-cell receptor binding modes underlie specific recognition of a bulged viral peptide bound to a human leukocyte antigen class I molecule. J Biol Chem 2013; 288:15442-54. [PMID: 23569211 PMCID: PMC3668706 DOI: 10.1074/jbc.m112.447185] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Human leukocyte antigen (HLA)-I molecules can present long peptides, yet the mechanisms by which T-cell receptors (TCRs) recognize featured pHLA-I landscapes are unclear. We compared the binding modes of three distinct human TCRs, CA5, SB27, and SB47, complexed with a “super-bulged” viral peptide (LPEPLPQGQLTAY) restricted by HLA-B*35:08. The CA5 and SB27 TCRs engaged HLA-B*35:08LPEP similarly, straddling the central region of the peptide but making limited contacts with HLA-B*35:08. Remarkably, the CA5 TCR did not contact the α1-helix of HLA-B*35:08. Differences in the CDR3β loop between the CA5 and SB27 TCRs caused altered fine specificities. Surprisingly, the SB47 TCR engaged HLA-B*35:08LPEP using a completely distinct binding mechanism, namely “bypassing” the bulged peptide and making extensive contacts with the extreme N-terminal end of HLA-B*35:08. This docking footprint included HLA-I residues not observed previously as TCR contact sites. The three TCRs exhibited differing patterns of alloreactivity toward closely related or distinct HLA-I allotypes. Thus, the human T-cell repertoire comprises a range of TCRs that can interact with “bulged” pHLA-I epitopes using unpredictable strategies, including the adoption of atypical footprints on the MHC-I.
Collapse
Affiliation(s)
- Yu Chih Liu
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abreu JRF, Martina S, Verrijn Stuart AA, Fillié YE, Franken KLMC, Drijfhout JW, Roep BO. CD8 T cell autoreactivity to preproinsulin epitopes with very low human leucocyte antigen class I binding affinity. Clin Exp Immunol 2012; 170:57-65. [PMID: 22943201 DOI: 10.1111/j.1365-2249.2012.04635.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Beta cells presenting islet epitopes are recognized and destroyed by autoreactive CD8 T cells in type 1 diabetes. These islet-specific T cells are believed to react with epitopes binding with high affinity to human leucocyte antigen (HLA) expressed on beta cells. However, this assumption might be flawed in case of islet autoimmunity. We evaluated T cell recognition of the complete array of preproinsulin (PPI) peptides with regard to HLA binding affinity and T cell recognition. In a comprehensive approach, 203 overlapping 9-10mer PPI peptides were tested for HLA-A2 binding and subjected to binding algorithms. Subsequently, a high-throughput assay was employed to detect PPI-specific T cells in patient blood, in which conditional HLA ligands were destabilized by ultraviolet irradiation and HLA molecules refolded with arrays of PPI peptides, followed by quantum-dot labelling and T cell staining. Analysis of patient blood revealed high frequencies of CD8 T cells recognizing very low HLA binding peptides. Of 28 peptides binding to HLA-A2, a majority was predicted not to bind. Unpredicted peptides bound mainly with low affinities. HLA binding affinity and immunogenicity may not correlate in autoimmunity. Algorithms used to predict high-affinity HLA peptide binders discount the majority of low-affinity HLA binding epitopes. Appreciation that peptides binding HLA with very low affinity can act as targets of autoreactive T cells may help to understand loss of tolerance and disease pathogenesis and possibly point to tissue-specific immune intervention targets.
Collapse
Affiliation(s)
- J R F Abreu
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Broughton SE, Petersen J, Theodossis A, Scally SW, Loh KL, Thompson A, van Bergen J, Kooy-Winkelaar Y, Henderson KN, Beddoe T, Tye-Din JA, Mannering SI, Purcell AW, McCluskey J, Anderson RP, Koning F, Reid HH, Rossjohn J. Biased T cell receptor usage directed against human leukocyte antigen DQ8-restricted gliadin peptides is associated with celiac disease. Immunity 2012; 37:611-21. [PMID: 23063329 DOI: 10.1016/j.immuni.2012.07.013] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 07/10/2012] [Indexed: 12/28/2022]
Abstract
Celiac disease is a human leukocyte antigen (HLA)-DQ2- and/or DQ8-associated T cell-mediated disorder that is induced by dietary gluten. Although it is established how gluten peptides bind HLA-DQ8 and HLA-DQ2, it is unclear how such peptide-HLA complexes are engaged by the T cell receptor (TCR), a recognition event that triggers disease pathology. We show that biased TCR usage (TRBV9(∗)01) underpins the recognition of HLA-DQ8-α-I-gliadin. The structure of a prototypical TRBV9(∗)01-TCR-HLA-DQ8-α-I-gliadin complex shows that the TCR docks centrally above HLA-DQ8-α-I-gliadin, in which all complementarity-determining region-β (CDRβ) loops interact with the gliadin peptide. Mutagenesis at the TRBV9(∗)01-TCR-HLA-DQ8-α-I-gliadin interface provides an energetic basis for the Vβ bias. Moreover, CDR3 diversity accounts for TRBV9(∗)01(+) TCRs exhibiting differing reactivities toward the gliadin epitopes at various deamidation states. Accordingly, biased TCR usage is an important factor in the pathogenesis of DQ8-mediated celiac disease.
Collapse
Affiliation(s)
- Sophie E Broughton
- The Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
A fundamental property of the immune system is its ability to mediate self-defense with a minimal amount of collateral damage to the host. The system uses several different mechanisms to achieve this goal, which is collectively referred to as the "process of immunological tolerance." This article provides an introductory historical overview to these various mechanisms, which are discussed in greater detail throughout this collection, and then briefly describes what happens when this process fails, a state referred to as "autoimmunity."
Collapse
Affiliation(s)
- Ronald H Schwartz
- Laboratory of Cellular and Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0420, USA.
| |
Collapse
|
25
|
Rosenthal KM, Edwards LJ, Sabatino JJ, Hood JD, Wasserman HA, Zhu C, Evavold BD. Low 2-dimensional CD4 T cell receptor affinity for myelin sets in motion delayed response kinetics. PLoS One 2012; 7:e32562. [PMID: 22412888 PMCID: PMC3296730 DOI: 10.1371/journal.pone.0032562] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/31/2012] [Indexed: 01/12/2023] Open
Abstract
T cells recognizing self-peptides that mediate autoimmune disease and those that are responsible for efficacious immunity against pathogens may differ in affinity for antigen due to central and peripheral tolerance mechanisms. Here we utilize prototypical self-reactive (myelin) and viral-specific (LCMV) T cells from T cell receptor (TCR) transgenic mice (2D2 and SMARTA, respectively) to explore affinity differences. The T cells responsive to virus possessed >10,000 fold higher 2D affinity as compared to the self-reactive T cells. Despite their dramatically lower affinity for their cognate ligand, 2D2 T cells respond with complete, albeit delayed, activation (proliferation and cytokine production). SMARTA activation occurs rapidly, achieving peak phosphorylation of p38 (1 minute), Erk (30 minutes), and Jun (3 hours) as well as CD69 and CD25 upregulation (3 and 6 hours, respectively), with a corresponding early initiation of proliferation. 2D2 stimulation with MOG results in altered signaling--no phospho-Erk or phospho-p38 accumulation, significantly delayed activation kinetics of Jun (12 hours), and delayed but sustained SHP-1 activity--as well as delayed CD69 and CD25 expression (12-24 hours), and slow initiation of proliferation. This delay was not intrinsic to the 2D2 T cells, as a more potent antigen with >100-fold increased 2D affinity restored rapid response kinetics in line with those identified for the viral antigen. Taken together, these data demonstrate that time can offset low TCR affinity to attain full activation and suggest a mechanism by which low affinity T cells participate in autoimmune disease.
Collapse
Affiliation(s)
- Kristen M. Rosenthal
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Lindsay J. Edwards
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Joseph J. Sabatino
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Jennifer D. Hood
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Heather A. Wasserman
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Brian D. Evavold
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
26
|
Yin Y, Li Y, Kerzic MC, Martin R, Mariuzza RA. Structure of a TCR with high affinity for self-antigen reveals basis for escape from negative selection. EMBO J 2011; 30:1137-48. [PMID: 21297580 DOI: 10.1038/emboj.2011.21] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 01/10/2011] [Indexed: 11/10/2022] Open
Abstract
The failure to eliminate self-reactive T cells during negative selection is a prerequisite for autoimmunity. To escape deletion, autoreactive T-cell receptors (TCRs) may form unstable complexes with self-peptide-MHC by adopting suboptimal binding topologies compared with anti-microbial TCRs. Alternatively, escape can occur by weak binding between self-peptides and MHC. We determined the structure of a human autoimmune TCR (MS2-3C8) bound to a self-peptide from myelin basic protein (MBP) and the multiple sclerosis-associated MHC molecule HLA-DR4. MBP is loosely accommodated in the HLA-DR4-binding groove, accounting for its low affinity. Conversely, MS2-3C8 binds MBP-DR4 as tightly as the most avid anti-microbial TCRs. MS2-3C8 engages self-antigen via a docking mode that resembles the optimal topology of anti-foreign TCRs, but is distinct from that of other autoreactive TCRs. Combined with a unique CDR3β conformation, this docking mode compensates for the weak binding of MBP to HLA-DR4 by maximizing interactions between MS2-3C8 and MBP. Thus, the MS2-3C8-MBP-DR4 complex reveals the basis for an alternative strategy whereby autoreactive T cells escape negative selection, yet retain the ability to initiate autoimmunity.
Collapse
Affiliation(s)
- Yiyuan Yin
- Institute for Bioscience and Biotechnology Research, University of Maryland, WM Keck Laboratory for Structural Biology, Rockville, MD, USA
| | | | | | | | | |
Collapse
|
27
|
Borbulevych OY, Piepenbrink KH, Baker BM. Conformational melding permits a conserved binding geometry in TCR recognition of foreign and self molecular mimics. THE JOURNAL OF IMMUNOLOGY 2011; 186:2950-8. [PMID: 21282516 DOI: 10.4049/jimmunol.1003150] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Molecular mimicry between foreign and self Ags is a mechanism of TCR cross-reactivity and is thought to contribute to the development of autoimmunity. The αβ TCR A6 recognizes the foreign Ag Tax from the human T cell leukemia virus-1 when presented by the class I MHC HLA-A2. In a possible link with the autoimmune disease human T cell leukemia virus-1-associated myelopathy/tropical spastic paraparesis, A6 also recognizes a self peptide from the neuronal protein HuD in the context of HLA-A2. We found in our study that the complexes of the HuD and Tax epitopes with HLA-A2 are close but imperfect structural mimics and that in contrast with other recent structures of TCRs with self Ags, A6 engages the HuD Ag with the same traditional binding mode used to engage Tax. Although peptide and MHC conformational changes are needed for recognition of HuD but not Tax and the difference of a single hydroxyl triggers an altered TCR loop conformation, TCR affinity toward HuD is still within the range believed to result in negative selection. Probing further, we found that the HuD-HLA-A2 complex is only weakly stable. Overall, these findings help clarify how molecular mimicry can drive self/nonself cross-reactivity and illustrate how low peptide-MHC stability can permit the survival of T cells expressing self-reactive TCRs that nonetheless bind with a traditional binding mode.
Collapse
Affiliation(s)
- Oleg Y Borbulevych
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
28
|
Dellabona P, Casorati G, de Lalla C, Montagna D, Locatelli F. On the use of donor-derived iNKT cells for adoptive immunotherapy to prevent leukemia recurrence in pediatric recipients of HLA haploidentical HSCT for hematological malignancies. Clin Immunol 2010; 140:152-9. [PMID: 21185785 DOI: 10.1016/j.clim.2010.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/22/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
Abstract
T-cell-depleted hematopoietic stem cell transplantation from an HLA haploidentical relative (hHSCT) is a useful therapy for children with high-risk leukemia lacking suitable HLA-matched donors. The immune deficiency ensuing hHSCT renders patients susceptible to life-threatening infections and disease recurrence. Adoptive immunotherapy can restore/enhance early post-transplantation immunocompetence of hHSCT recipients. Efforts are directed to identify strategies for inducing graft-versus-leukemia (GVL) response, while avoiding graft-versus-host disease (GVHD) occurrence. CD1d-restricted invariant iNKT cells are innate-like, lipid-reactive T lymphocytes implicated in the control of innate and adaptive immunity. Preclinical data suggest that iNKT cells positively modulate both GVL response and GVHD. Our recent findings in a cohort of 22 children given hHSCT for different hematological malignancies show that failure to reconstitute iNKT cells after transplantation correlates with leukemia relapse. In this review, we will discuss potential new options for adoptively transferring donor-derived iNKT cells into hHSCT recipients in the early post-transplantation period to prevent disease recurrence.
Collapse
Affiliation(s)
- Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| | | | | | | | | |
Collapse
|
29
|
Shared molecular amino acid signature in the HLA-DR peptide binding pocket predisposes to both autoimmune diabetes and thyroiditis. Proc Natl Acad Sci U S A 2010; 107:16899-903. [PMID: 20837527 DOI: 10.1073/pnas.1009511107] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is strong genetic association between type 1A diabetes (T1D) and autoimmune thyroid disease (AITD). T1D and AITD frequently occur together in the same individual, a condition classified as a variant of the autoimmune polyglandular syndrome type 3 (APS3). Because T1D and AITD are individually strongly associated with different HLA class II sequences, we asked which HLA class II pocket sequence and structure confer joint susceptibility to both T1D and AITD in the same individual (APS3v). We sequenced the HLA-DR gene in 105 APS3v patients and 153 controls, and identified a pocket amino acid signature, DRβ-Tyr-26, DRβ-Leu-67, DRβ-Lys-71, and DRβ-Arg-74, that was strongly associated with APS3v (P = 5.4 × 10(-14), odds ratio = 8.38). Logistic regression analysis demonstrated that DRβ-Leu-67 (P = 9.4 × 10(-13)) and DRβ-Arg-74 (P = 1.21 × 10(-13)) gave strong independent effects on disease susceptibility. Structural modeling studies demonstrated that pocket 4 was critical for the development of T1D+AITD; all disease-associated amino acids were linked to areas of the pocket that interact directly with the peptide and, therefore, influence peptide binding. The disease-susceptible HLA-DR pocket was more positively charged (Lys-71, Arg-74) compared with the protective pocket (Ala-71, Gln-74). We conclude that a specific pocket amino acid signature confers joint susceptibility to T1D+AITD in the same individual by causing significant structural changes in the MHC II peptide binding pocket and influencing peptide binding and presentation. Moreover, Arg-74 is a major amino acid position for the development of several autoimmune diseases. These findings suggest that blocking the critical Arg-74 pocket might offer a method for treating certain autoimmune conditions.
Collapse
|
30
|
Modeling the ternary complex TCR-Vbeta/CollagenII(261-273)/HLA-DR4 associated with rheumatoid arthritis. PLoS One 2010; 5:e11550. [PMID: 20644721 PMCID: PMC2904365 DOI: 10.1371/journal.pone.0011550] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 06/15/2010] [Indexed: 11/19/2022] Open
Abstract
Background It is known that genetic predisposition to rheumatoid arthritis (RA) is associated with the MHC class II allele HLA-DR4 and that residues 261–273 of type II collagen (huCollp261) represent an immunodominant T cell epitope restricted by the DR4 molecule. Despite recent advances in characterization of MHC and T cell receptor (TCR) contacts to this epitope, the atomic details of TCR/huCollp261/HLA-DR4 ternary complex are not known. Methodology/Principal Findings Here we have used computational modeling to get insight into this interaction. A three-dimensional model of the TCR Vβ domain from a DR4+ patient affected by RA has been derived by homology modeling techniques. Subsequently, the structure of the TCR Vβ domain in complex with huCollp261/HLA-DR4 was obtained from a docking approach in conjunction with a filtering procedure based on biochemical information. The best complex from the docking experiments was then refined by 20 ns of molecular dynamics simulation in explicit water. The predicted model is consistent with available experimental data. Our results indicate that residues 97–101 of CDR3β are critical for recognition of huCollp261/HLA-DR4 by TCR. We also show that TCR contacts on p/MHC surface affect the conformation of the shared epitope expressed by DR alleles associated with RA susceptibility. Conclusions/Significance This work presents a three-dimensional model for the ternary complex TCR-Vβ/collagenII(261–273)/HLA-DR4 associated with rheumatoid arthritis that can provide insights into the molecular mechanisms of self reactivity.
Collapse
|
31
|
Abstract
BACKGROUND Autoimmune thyroid diseases (AITD) and type 1 diabetes (T1D) are the most common autoimmune endocrine disorders. They occur frequently together in the same individual. This disease combination is denominated as autoimmune polyglandular syndrome type 3 variant (APS3v). This review aims to describe the genetic and pathological background of the syndrome. The joint susceptibility genes for AITD and T1D as well as the underlying pathogenetic mechanisms contributing to the development of autoimmunity are summarized. SUMMARY Family and population studies showed that the APS3v syndrome has a strong genetic background. Whole genome and candidate gene approaches identified several gene variations that are present in both AITD and T1D. Most important common disease susceptibility genes are human leucocyte antigen (chromosome 6), cytotoxic T-lymphocyte-associated antigen 4 (chromosome 2), protein tyrosine phosphatase nonreceptor type 22 (chromosome 1), forkhead box P3 (X chromosome), and the interleukin-2 receptor alpha/CD25 gene region (chromosome 10), all of which contributing to the susceptibility to APS3v. With respect to the underlying pathogenetic mechanisms, these genes are altogether involved in the immune regulation, in particular in the immunological synapse and T-cell activation. In addition to these common genes, there are further candidate genes with joint risk for AITD and T1D, in particular the v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 gene (chromosome 12) and C-type lectin domain family 16 member A gene (chromosome 16). The latter one might be involved in pathogen recognition. CONCLUSIONS AITD and T1D share common susceptibility gene variants that possibly act pleiotropically as risk factors for the development of autoimmunity in APS3v. The functional consequences of the genetic variants as well as their interactions should be explored in greater detail. In particular, the functional consequences of the variants of forkhead box P3 predisposing to APS3v need to be elucidated. Finally, further large-scale genome-wide associations studies of single-nucleotide polymorphism variations capturing many thousand individual genetic profiles are warranted to identify further genes that are linked to the etiology of APS3v.
Collapse
Affiliation(s)
- Manuela Dittmar
- Department of Human Biology, Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | | |
Collapse
|
32
|
Wang H, Fang Z, Morita CT. Vgamma2Vdelta2 T Cell Receptor recognition of prenyl pyrophosphates is dependent on all CDRs. THE JOURNAL OF IMMUNOLOGY 2010; 184:6209-22. [PMID: 20483784 DOI: 10.4049/jimmunol.1000231] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
gammadelta T cells differ from alphabeta T cells in the Ags they recognize and their functions in immunity. Although most alphabeta TCRs recognize peptides presented by MHC class I or II, human gammadelta T cells expressing Vgamma2Vdelta2 TCRs recognize nonpeptide prenyl pyrophosphates. To define the molecular basis for this recognition, the effect of mutations in the TCR CDR was assessed. Mutations in all CDR loops altered recognition and cover a large footprint. Unlike murine gammadelta TCR recognition of the MHC class Ib T22 protein, there was no CDR3delta motif required for recognition because only one residue is required. Instead, the length and sequence of CDR3gamma was key. Although a prenyl pyrophosphate-binding site was defined by Lys109 in Jgamma1.2 and Arg51 in CDR2delta, the area outlined by critical mutations is much larger. These results show that prenyl pyrophosphate recognition is primarily by germline-encoded regions of the gammadelta TCR, allowing a high proportion of Vgamma2Vdelta2 TCRs to respond. This underscores its parallels to innate immune receptors. Our results also provide strong evidence for the existence of an Ag-presenting molecule for prenyl pyrophosphates.
Collapse
Affiliation(s)
- Hong Wang
- Division of Rheumatology, Department of Internal Medicine, Interdisciplinary Graduate Program in Immunology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
33
|
Durinovic-Belló I, Wu RP, Gersuk VH, Sanda S, Shilling HG, Nepom GT. Insulin gene VNTR genotype associates with frequency and phenotype of the autoimmune response to proinsulin. Genes Immun 2010; 11:188-93. [PMID: 20054344 PMCID: PMC2845516 DOI: 10.1038/gene.2009.108] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Immune responses to autoantigens are in part controlled by deletion of autoreactive cells through genetically regulated selection mechanisms. We have directly analyzed peripheral CD4+ proinsulin (PI) 76–90 (SLQPLALEGSLQKRG)-specific T cells using soluble fluorescent major histocompatibility complex class II tetramers. Subjects with type I diabetes and healthy controls with high levels of peripheral proinsulin-specific T cells were characterized by the presence of a disease-susceptible polymorphism in the insulin variable number of tandem repeats (INS-VNTR) gene. Conversely, subjects with a ‘protective' polymorphism in the INS-VNTR gene had nearly undetectable levels of proinsulin tetramer-positive T cells. These results strongly imply a direct relationship between genetic control of autoantigen expression and peripheral autoreactivity, in which proinsulin genotype restricts the quantity and quality of the potential T-cell response. Using a modified tetramer to isolate low-avidity proinsulin-specific T cells from subjects with the susceptible genotype, transcript arrays identified several induced pro-apoptotic genes in the control, but not diabetic subjects, likely representing a second peripheral mechanism for maintenance of tolerance to self antigens.
Collapse
Affiliation(s)
- I Durinovic-Belló
- Benaroya Research Institute, University of Washington School of Medicine, 1201 Ninth Avenue, Seattle, WA 98101-2795, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Kumar P, Vahedi-Faridi A, Saenger W, Ziegler A, Uchanska-Ziegler B. Conformational changes within the HLA-A1:MAGE-A1 complex induced by binding of a recombinant antibody fragment with TCR-like specificity. Protein Sci 2009; 18:37-49. [PMID: 19177349 DOI: 10.1002/pro.4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although there is X-ray crystallographic evidence that the interaction between major histocompatibility complex (MHC, in humans HLA) class I molecules and T cell receptors (TCR) or killer cell Ig-like receptors (KIR) may be accompanied by considerable changes in the conformation of selected residues or even entire loops within TCR or KIR, conformational changes between receptor-bound and -unbound MHC class I molecules of comparable magnitude have not been observed so far. We have previously determined the structure of the MHC class I molecule HLA-A1 bound to a melanoma antigen-encoding gene (MAGE)-A1-derived peptide in complex with a recombinant antibody fragment with TCR-like specificity, Fab-Hyb3. Here, we compare the X-ray structure of HLA-A1:MAGE-A1 with that complexed with Fab-Hyb3 to gain insight into structural changes of the MHC molecule that might be induced by the interaction with the antibody fragment. Apart from the expulsion of several water molecules from the interface, Fab-Hyb3 binding results in major rearrangements (up to 5.5 A) of heavy chain residues Arg65, Gln72, Arg145, and Lys146. Residue 65 is frequently and residues 72 and 146 are occasionally involved in TCR binding-induced conformational changes, as revealed by a comparison with MHC class I structures in TCR-liganded and -unliganded forms. On the other hand, residue 145 is subject to a reorientation following engagement of HLA-Cw4 and KIR2DL1. Therefore, conformational changes within the HLA-A1:MAGE-A1:Fab-Hyb3 complex include MHC residues that are also involved in reorientations in complexes with natural ligands, pointing to their central importance for the peptide-dependent recognition of MHC molecules.
Collapse
Affiliation(s)
- Pravin Kumar
- Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität Berlin, Thielallee 73, Berlin 14195, Germany
| | | | | | | | | |
Collapse
|
35
|
Campanella C, Marino Gammazza A, Mularoni L, Cappello F, Zummo G, Di Felice V. A comparative analysis of the products of GROEL-1 gene from Chlamydia trachomatis serovar D and the HSP60 var1 transcript from Homo sapiens suggests a possible autoimmune response. Int J Immunogenet 2009; 36:73-8. [PMID: 19207939 DOI: 10.1111/j.1744-313x.2008.00819.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chlamydia trachomatis serovar D produces large quantities of HSP60-1 during infections, which accumulate inside the host cell inducing autoimmunity. We compare the aminoacid sequences of the human HSP60 with the bacterial counterpart to better elucidate how CTHSP60 may simulate HSP60 from human origin during infection and may induce an autoimmune response. As a result of the comparison we suggest several possible epitopes of the CTHSP60, which may induce autoimmunity.
Collapse
Affiliation(s)
- C Campanella
- Sezione di Anatomia Umana 'E. Luna', Dipartimento di Medicina Sperimentale, Università di Palermo, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Villano MJB, Huber AK, Greenberg DA, Golden BK, Concepcion E, Tomer Y. Autoimmune thyroiditis and diabetes: dissecting the joint genetic susceptibility in a large cohort of multiplex families. J Clin Endocrinol Metab 2009; 94:1458-66. [PMID: 19141582 PMCID: PMC2682473 DOI: 10.1210/jc.2008-2193] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Epidemiological data support a shared genetic susceptibility to autoimmune thyroid disease (AITD) and type 1 diabetes (T1D). Both diseases frequently occur within the same family and in the same individual. Patients developing both T1D and AITD are considered to have an autoimmune polyglandular syndrome type 3 variant (APS3v). OBJECTIVE The goals of this study were to identify the joint susceptibility loci/genes for T1D and AITD. SETTINGS The study was conducted at an academic medical center. PARTICIPANTS AND MAIN OUTCOME MEASURES We used whole genome and candidate gene approaches in a data set of 88 families multiplex for T1D and AITD (448 individuals). RESULTS We identified three loci, on chromosomes 2p, 6p, and Xp, showing linkage when individuals with either T1D or AITD were classified as affected. The 6p locus contained the human leukocyte antigen class II genes, and the Xp locus contained the FOXP3 gene. Three loci, on 2q, 6p (human leukocyte antigen class II), and Xp, showed evidence for linkage when only APS3v individuals (T1D+AITD) were classified as affected. Analysis of positional candidate genes strongly supported CTLA-4 as the gene on 2q associated with APS3v and FOXP3 as the gene on Xp associated with T1D or AITD and APS3v. In addition, the PTPN22 and insulin variable number tandem repeat genes showed significant associations with T1D or AITD in our families. CONCLUSIONS Our results demonstrate a strong shared genetic susceptibility to T1D and AITD, with most shared genes involved in immune regulation, suggesting that immune dysregulation plays an important role in the joint susceptibility to T1D and AITD.
Collapse
MESH Headings
- Chromosome Mapping
- Chromosomes, Human, Pair 2
- Chromosomes, Human, Pair 6
- Chromosomes, Human, X
- Cohort Studies
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/genetics
- Family
- Female
- Forkhead Transcription Factors/genetics
- Genetic Predisposition to Disease
- Genetic Variation
- HLA-D Antigens/genetics
- Humans
- Lod Score
- Male
- Thyroiditis, Autoimmune/complications
- Thyroiditis, Autoimmune/genetics
Collapse
Affiliation(s)
- Maria Justina B Villano
- Department of Internal Medicine, Division of Endocrinology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | |
Collapse
|
37
|
Ziegler A, Müller CA, Böckmann RA, Uchanska-Ziegler B. Low-affinity peptides and T-cell selection. Trends Immunol 2009; 30:53-60. [PMID: 19201651 DOI: 10.1016/j.it.2008.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/15/2008] [Accepted: 11/10/2008] [Indexed: 01/17/2023]
Abstract
The dual requirement for T cells to recognize a particular major histocompatibility complex (MHC) antigen presenting a foreign peptide and to lack strong reactivity with a complex of the same molecule when bound to a self-peptide, is attained by thymic positive and negative selection processes, the molecular details of which are currently only partially understood. However, the discovery of the thymoproteasome and our improved understanding of the dynamics of peptide presentation permit us to suggest that the biophysical properties of the MHC:peptide class I complexes engaged in positive T-cell selection will be distinct from those involved in negative selection, hence imposing differential barriers for T cells.
Collapse
Affiliation(s)
- Andreas Ziegler
- Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
38
|
Gras S, Burrows SR, Kjer-Nielsen L, Clements CS, Liu YC, Sullivan LC, Bell MJ, Brooks AG, Purcell AW, McCluskey J, Rossjohn J. The shaping of T cell receptor recognition by self-tolerance. Immunity 2009; 30:193-203. [PMID: 19167249 DOI: 10.1016/j.immuni.2008.11.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 11/14/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
Abstract
During selection of the T cell repertoire, the immune system navigates the subtle distinction between self-restriction and self-tolerance, yet how this is achieved is unclear. Here we describe how self-tolerance toward a trans-HLA (human leukocyte antigen) allotype shapes T cell receptor (TCR) recognition of an Epstein-Barr virus (EBV) determinant (FLRGRAYGL). The recognition of HLA-B8-FLRGRAYGL by two archetypal TCRs was compared. One was a publicly selected TCR, LC13, that is alloreactive with HLA-B44; the other, CF34, lacks HLA-B44 reactivity because it arises when HLA-B44 is coinherited in trans with HLA-B8. Whereas the alloreactive LC13 TCR docked at the C terminus of HLA-B8-FLRGRAYGL, the CF34 TCR docked at the N terminus of HLA-B8-FLRGRAYGL, which coincided with a polymorphic region between HLA-B8 and HLA-B44. The markedly contrasting footprints of the LC13 and CF34 TCRs provided a portrait of how self-tolerance shapes the specificity of TCRs selected into the immune repertoire.
Collapse
Affiliation(s)
- Stephanie Gras
- Department of Biochemistry and Molecular Biology, The Protein Crystallography Unit, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Huber A, Menconi F, Corathers S, Jacobson EM, Tomer Y. Joint genetic susceptibility to type 1 diabetes and autoimmune thyroiditis: from epidemiology to mechanisms. Endocr Rev 2008; 29:697-725. [PMID: 18776148 PMCID: PMC2583387 DOI: 10.1210/er.2008-0015] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type 1 diabetes (T1D) and autoimmune thyroid diseases (AITD) frequently occur together within families and in the same individual. The co-occurrence of T1D and AITD in the same patient is one of the variants of the autoimmune polyglandular syndrome type 3 [APS3 variant (APS3v)]. Epidemiological data point to a strong genetic influence on the shared susceptibility to T1D and AITD. Recently, significant progress has been made in our understanding of the genetic association between T1D and AITD. At least three genes have been confirmed as major joint susceptibility genes for T1D and AITD: human leukocyte antigen class II, cytotoxic T-lymphocyte antigen 4 (CTLA-4), and protein tyrosine phosphatase non-receptor type 22. Moreover, the first whole genome linkage study has been recently completed, and additional genes will soon be identified. Not unexpectedly, all the joint genes for T1D and AITD identified so far are involved in immune regulation, specifically in the presentation of antigenic peptides to T cells. One of the lessons learned from the analysis of the joint susceptibility genes for T1D and AITD is that subset analysis is a key to dissecting the etiology of complex diseases. One of the best demonstrations of the power of subset analysis is the CTLA-4 gene in T1D. Although CTLA-4 showed very weak association with T1D, when analyzed in the subset of patients with both T1D and AITD, the genetic effect of CTLA-4 was significantly stronger. Gene-gene and genetic-epigenetic interactions most likely play a role in the shared genetic susceptibility to T1D and AITD. Dissecting these mechanisms will lead to a better understanding of the etiology of T1D and AITD, as well as autoimmunity in general.
Collapse
Affiliation(s)
- Amanda Huber
- Division of Endocrinology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Eddie A. James
- Benaroya Research Institute, Virginia Mason Medical Center, Seattle, Washington
| | - William W. Kwok
- Benaroya Research Institute, Virginia Mason Medical Center, Seattle, Washington
- Department of Immunology, University of Washington, Seattle, Washington
| |
Collapse
|
41
|
|