1
|
Derman ID, Rivera T, Garriga Cerda L, Singh YP, Saini S, Abaci HE, Ozbolat IT. Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration. INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING 2025; 7:012009. [PMID: 39569402 PMCID: PMC11574952 DOI: 10.1088/2631-7990/ad878c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/23/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
This comprehensive review explores the multifaceted landscape of skin bioprinting, revolutionizing dermatological research. The applications of skin bioprinting utilizing techniques like extrusion-, droplet-, laser- and light-based methods, with specialized bioinks for skin biofabrication have been critically reviewed along with the intricate aspects of bioprinting hair follicles, sweat glands, and achieving skin pigmentation. Challenges remain with the need for vascularization, safety concerns, and the integration of automated processes for effective clinical translation. The review further investigates the incorporation of biosensor technologies, emphasizing their role in monitoring and enhancing the wound healing process. While highlighting the remarkable progress in the field, critical limitations and concerns are critically examined to provide a balanced perspective. This synthesis aims to guide scientists, engineers, and healthcare providers, fostering a deeper understanding of the current state, challenges, and future directions in skin bioprinting for transformative applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- I Deniz Derman
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States of America
| | - Taino Rivera
- Biomedical Engineering Department, Penn State University, University Park, PA, United States of America
| | - Laura Garriga Cerda
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Yogendra Pratap Singh
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States of America
| | - Shweta Saini
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States of America
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, United States of America
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States of America
- Biomedical Engineering Department, Penn State University, University Park, PA, United States of America
- Materials Research Institute, Penn State University, University Park, PA, United States of America
- Cancer Institute, Penn State University, University Park, PA, United States of America
- Neurosurgery Department, Penn State University, University Park, PA, United States of America
- Department of Medical Oncology, Cukurova University, Adana, Turkey
| |
Collapse
|
2
|
Lu J, Shi X, Zhou Z, Lu N, Chu G, Jin H, Zhu L, Chen A. Enhancing Fracture Healing with 3D Bioprinted Hif1a-Overexpressing BMSCs Hydrogel: A Novel Approach to Accelerated Bone Repair. Adv Healthc Mater 2025; 14:e2402415. [PMID: 39580668 DOI: 10.1002/adhm.202402415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/17/2024] [Indexed: 11/26/2024]
Abstract
Addressing the urgent need for effective fracture treatments, this study investigates the efficacy of a 3D bioprinted biomimetic hydrogel, enriched with bone marrow mesenchymal stem cells (BMSCs) and targeted hypoxia-inducible factor 1 alpha (Hif1a) gene activation, in enhancing fracture healing. A photocross-linkable bioink, gelatin methacryloyl bone matrix anhydride (GBMA) is developed, and selected its 5% concentration for bioink formulation. Rat BMSCs are isolated and combined with GBMA to create the GBMA@BMSCs bioink. This bioink is then used in 3D bioprinting to fabricate a hydrogel for application in a rat femoral fracture model. Through transcriptome sequencing, WGCNA, and Venn analysis, the hypoxia-inducible factor Hif1a is identified as a critical gene in the fracture healing process. In vitro studies showed that Hif1a promoted BMSC proliferation, chondrogenic differentiation, and cartilage matrix stability. The in vivo application of the GBMA@BMSCs hydrogel with Hif1a overexpression significantly accelerated fracture healing, evidenced by early and enhanced cartilage callus formation. The study demonstrates that 3D bioprinting of GBMA@BMSCs hydrogel, particularly with Hif1a-enhanced BMSCs, offers a promising approach for rapid and effective fracture repair.
Collapse
Affiliation(s)
- Jiajia Lu
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P. R. China
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200001, P. R. China
| | - Xiaojian Shi
- Department of Orthopedic Trauma, Haimen People's Hospital of Jiangsu Province, Haimen, 226100, P. R. China
| | - Zhibin Zhou
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang, 110016, P. R. China
| | - Nan Lu
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P. R. China
| | - Guangxin Chu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Hai Jin
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Lei Zhu
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200001, P. R. China
| | - Aimin Chen
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, P. R. China
| |
Collapse
|
3
|
Wang Z, Liang W, Wang G, Wu H, Dang W, Zhen Y, An Y. Construction Form and Application of Three-Dimensional Bioprinting Ink Containing Hydroxyapatite. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:507-521. [PMID: 38569169 DOI: 10.1089/ten.teb.2023.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
With the increasing prevalence of bone tissue diseases, three-dimensional (3D) bioprinting applied to bone tissue engineering for treatment has received a lot of interests in recent years. The research and popularization of 3D bioprinting in bone tissue engineering require bioinks with good performance, which is closely related to ideal material and appropriate construction form. Hydroxyapatite (HAp) is the inorganic component of natural bone and has been widely used in bone tissue engineering and other fields due to its good biological and physicochemical properties. Previous studies have prepared different bioinks containing HAp and evaluated their properties in various aspects. Most bioinks showed significant improvement in terms of rheology and biocompatibility; however, not all of them had sufficiently favorable mechanical properties and antimicrobial activity. The deficiencies in properties of bioink and 3D bioprinting technology limited the applications of bioinks containing HAp in clinical trials. This review article summarizes the construction forms of bioinks containing HAp and its modifications in previous studies, as well as the 3D bioprinting techniques adopted to print bioink containing HAp. In addition, this article summarizes the advantages and underlying mechanisms of bioink containing HAp, as well as its limitations, and suggests possible improvement to facilitate the development of bone tissue engineering bioinks containing HAp in the future.
Collapse
Affiliation(s)
- Zimo Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Wei Liang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Huiting Wu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Wanwen Dang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
4
|
Nizam M, Purohit R, Taufik M. Materials for 3D printing in healthcare sector: A review. Proc Inst Mech Eng H 2024; 238:939-963. [PMID: 39397720 DOI: 10.1177/09544119241289731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Additive Manufacturing (AM) encompasses various techniques creating intricate components from digital models. The aim of incorporating 3D printing (3DP) in the healthcare sector is to transform patient care by providing personalized solutions, improving medical procedures, fostering research and development, and ultimately optimizing the efficiency and effectiveness of healthcare delivery. This review delves into the historical beginnings of AM's 9 integration into medical contexts exploring various categories of AM methodologies and their roles within the medical sector. This survey also dives into the issue of material requirements and challenges specific to AM's medical applications. Emphasis is placed on how AM processes directly enhance human well-being. The primary focus of this paper is to highlight the evolution and incentives for cross-disciplinary AM applications, particularly in the realm of healthcare by considering their principle, materials and applications. It is designed for a diverse audience, including manufacturing professionals and researchers, seeking insights into this transformative technology's medical dimensions.
Collapse
Affiliation(s)
- Maruf Nizam
- Centre of Excellence in Product Design and Smart Manufacturing, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Rajesh Purohit
- Centre of Excellence in Product Design and Smart Manufacturing, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Mohammad Taufik
- Centre of Excellence in Product Design and Smart Manufacturing, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| |
Collapse
|
5
|
Li C, An N, Song Q, Hu Y, Yin W, Wang Q, Le Y, Pan W, Yan X, Wang Y, Liu J. Enhancing organoid culture: harnessing the potential of decellularized extracellular matrix hydrogels for mimicking microenvironments. J Biomed Sci 2024; 31:96. [PMID: 39334251 PMCID: PMC11429032 DOI: 10.1186/s12929-024-01086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Over the past decade, organoids have emerged as a prevalent and promising research tool, mirroring the physiological architecture of the human body. However, as the field advances, the traditional use of animal or tumor-derived extracellular matrix (ECM) as scaffolds has become increasingly inadequate. This shift has led to a focus on developing synthetic scaffolds, particularly hydrogels, that more accurately mimic three-dimensional (3D) tissue structures and dynamics in vitro. The ECM-cell interaction is crucial for organoid growth, necessitating hydrogels that meet organoid-specific requirements through modifiable physical and compositional properties. Advanced composite hydrogels have been engineered to more effectively replicate in vivo conditions, offering a more accurate representation of human organs compared to traditional matrices. This review explores the evolution and current uses of decellularized ECM scaffolds, emphasizing the application of decellularized ECM hydrogels in organoid culture. It also explores the fabrication of composite hydrogels and the prospects for their future use in organoid systems.
Collapse
Affiliation(s)
- Chen Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
| | - Ni An
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Qingru Song
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Yuelei Hu
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Wenzhen Yin
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Qi Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Yinpeng Le
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- School of Materials Science and Engineering, Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenting Pan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Xinlong Yan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Yunfang Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China.
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China.
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| | - Juan Liu
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China.
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Shi W, Zhang Z, Wang X. The Prospect of Hepatic Decellularized Extracellular Matrix as a Bioink for Liver 3D Bioprinting. Biomolecules 2024; 14:1019. [PMID: 39199406 PMCID: PMC11352484 DOI: 10.3390/biom14081019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
The incidence of liver diseases is high worldwide. Many factors can cause liver fibrosis, which in turn can lead to liver cirrhosis and even liver cancer. Due to the shortage of donor organs, immunosuppression, and other factors, only a few patients are able to undergo liver transplantation. Therefore, how to construct a bioartificial liver that can be transplanted has become a global research hotspot. With the rapid development of three-dimensional (3D) bioprinting in the field of tissue engineering and regenerative medicine, researchers have tried to use various 3D bioprinting technologies to construct bioartificial livers in vitro. In terms of the choice of bioinks, liver decellularized extracellular matrix (dECM) has many advantages over other materials for cell-laden hydrogel in 3D bioprinting. This review mainly summarizes the acquisition of liver dECM and its application in liver 3D bioprinting as a bioink with respect to availability, printability, and biocompatibility in many aspects and puts forward the current challenges and prospects.
Collapse
Affiliation(s)
- Wen Shi
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University, Shenyang 110122, China;
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhe Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University, Shenyang 110122, China;
| |
Collapse
|
7
|
Shukla P, Bera AK, Yeleswarapu S, Pati F. High Throughput Bioprinting Using Decellularized Adipose Tissue-Based Hydrogels for 3D Breast Cancer Modeling. Macromol Biosci 2024; 24:e2400035. [PMID: 38685795 DOI: 10.1002/mabi.202400035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/29/2024] [Indexed: 05/02/2024]
Abstract
3D bioprinting allows rapid automated fabrication and can be applied for high throughput generation of biomimetic constructs for in vitro drug screening. Decellularized extracellular matrix (dECM) hydrogel is a popular biomaterial choice for tissue engineering and studying carcinogenesis as a tumor microenvironmental mimetic. This study proposes a method for high throughput bioprinting with decellularized adipose tissue (DAT) based hydrogels for 3D breast cancer modeling. A comparative analysis of decellularization protocol using detergent-based and detergent-free decellularization methods for caprine-origin adipose tissue is performed, and the efficacy of dECM hydrogel for 3D cancer modeling is assessed. Histological, biochemical, morphological, and biological characterization and analysis showcase the cytocompatibility of DAT hydrogel. The rheological property of DAT hydrogel and printing process optimization is assessed to select a bioprinting window to attain 3D breast cancer models. The bioprinted tissues are characterized for cellular viability and tumor cell-matrix interactions. Additionally, an approach for breast cancer modeling is shown by performing rapid high throughput bioprinting in a 96-well plate format, and in vitro drug screening using 5-fluorouracil is performed on 3D bioprinted microtumors. The results of this study suggest that high throughput bioprinting of cancer models can potentially have downstream clinical applications like multi-drug screening platforms and personalized disease models.
Collapse
Affiliation(s)
- Priyanshu Shukla
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Ashis Kumar Bera
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Sriya Yeleswarapu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| |
Collapse
|
8
|
Shi W, Zheng J, Zhang J, Dong X, Li Z, Xiao Y, Li Q, Huang X, Du Y. Desktop-Stereolithography 3D Printing of a Decellularized Extracellular Matrix/Mesenchymal Stem Cell Exosome Bioink for Vaginal Reconstruction. Tissue Eng Regen Med 2024; 21:943-957. [PMID: 38937423 PMCID: PMC11286906 DOI: 10.1007/s13770-024-00649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND 3D-printing is widely used in regenerative medicine and is expected to achieve vaginal morphological restoration and true functional reconstruction. Mesenchymal stem cells-derived exosomes (MSCs-Exos) were applyed in the regeneration of various tissues. The current study aimed to explore the effctive of MSCs-Exos in vaginal reconstruction. METHODS In this work, hydrogel was designed using decellularized extracellular matrix (dECM) and gelatin methacrylate (GelMA) and silk fibroin (SF). The biological scaffolds were constructed using desktop-stereolithography. The physicochemical properties of the hydrogels were evaluated; Some experiments have been conducted to evaluate exosomes' effect of promotion vaginal reconstruction and to explore the mechanism in this process. RESULTS It was observed that the sustained release property of exosomes in the hydrogel both in vitro and in vitro.The results revealed that 3D scaffold encapsulating exosomes expressed significant effects on the vascularization and musule regeneration of the regenerative vagina tissue. Also, MSCs-Exos strongly promoted vascularization in the vaginal reconstruction of rats, which may through the PI3K/AKT signaling pathway. CONCLUSION The use of exosome-hydrogel composites improved the epithelial regeneration of vaginal tissue, increased angiogenesis, and promoted smooth muscle tissue regeneration. 3D-printed, lumenal scaffold encapsulating exosomes might be used as a cell-free alternative treatment strategy for vaginal reconstruction.
Collapse
Affiliation(s)
- Wenxin Shi
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Jiahua Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Jingkun Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Xiaoli Dong
- Department of Reproductive Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Zhongkang Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Yanlai Xiao
- Department of Obstetrics and Gynecology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050000, Hebei, China
| | - Qian Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Xianghua Huang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China.
| | - Yanfang Du
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
9
|
Li Y, Zhang Y, Zhang G. Comparative Analysis of Decellularization Methods for the Production of Decellularized Umbilical Cord Matrix. Curr Issues Mol Biol 2024; 46:7686-7701. [PMID: 39057096 PMCID: PMC11276046 DOI: 10.3390/cimb46070455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The importance of decellularized extracellular matrix (dECM) as a natural biomaterial in tissue engineering and regenerative medicine is rapidly growing. The core objective of the decellularization process is to eliminate cellular components while maximizing the preservation of the ECM's primary structure and components. Establishing a rapid, effective, and minimally destructive decellularization technique is essential for obtaining high-quality dECM to construct regenerative organs. This study focused on human umbilical cord tissue, designing different reagent combinations for decellularization protocols while maintaining a consistent processing time. The impact of these protocols on the decellularization efficiency of human umbilical cord tissue was evaluated. The results suggested that the composite decellularization strategy utilizing trypsin/EDTA + Triton X-100 + sodium deoxycholate was the optimal approach in this study for preparing decellularized human umbilical cord dECM. After 5 h of decellularization treatment, most cellular components were eliminated, confirmed through dsDNA quantitative detection, hematoxylin and eosin (HE) staining, and DAPI staining. Meanwhile, Masson staining, periodic acid-silver methenamine (PASM) staining, periodic acid-Schiff (PAS) staining, and immunofluorescent tissue section staining results revealed that the decellularized scaffold retained extracellular matrix components, including collagen and glycosaminoglycans (GAGs). Compared to native umbilical cord tissue, electron microscopy results demonstrated that the microstructure of the extracellular matrix was well preserved after decellularization. Furthermore, Fourier-transform infrared spectroscopy (FTIR) findings indicated that the decellularization process successfully retained the main functional group structures of extracellular matrix (ECM) components. The quantitative analysis of collagen, elastin, and GAG content validated the advantages of this decellularization process in preserving and purifying ECM components. Additionally, it was confirmed that this decellularized matrix exhibited no cytotoxicity in vitro. This study achieved short-term decellularization preparation for umbilical cord tissue through a combined decellularization strategy.
Collapse
Affiliation(s)
- Yang Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.L.); (Y.Z.)
- School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.L.); (Y.Z.)
| | - Guifeng Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.L.); (Y.Z.)
- School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Luo W, Zhang H, Wan R, Cai Y, Liu Y, Wu Y, Yang Y, Chen J, Zhang D, Luo Z, Shang X. Biomaterials-Based Technologies in Skeletal Muscle Tissue Engineering. Adv Healthc Mater 2024; 13:e2304196. [PMID: 38712598 DOI: 10.1002/adhm.202304196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Indexed: 05/08/2024]
Abstract
For many clinically prevalent severe injuries, the inherent regenerative capacity of skeletal muscle remains inadequate. Skeletal muscle tissue engineering (SMTE) seeks to meet this clinical demand. With continuous progress in biomedicine and related technologies including micro/nanotechnology and 3D printing, numerous studies have uncovered various intrinsic mechanisms regulating skeletal muscle regeneration and developed tailored biomaterial systems based on these understandings. Here, the skeletal muscle structure and regeneration process are discussed and the diverse biomaterial systems derived from various technologies are explored in detail. Biomaterials serve not merely as local niches for cell growth, but also as scaffolds endowed with structural or physicochemical properties that provide tissue regenerative cues such as topographical, electrical, and mechanical signals. They can also act as delivery systems for stem cells and bioactive molecules that have been shown as key participants in endogenous repair cascades. To achieve bench-to-bedside translation, the typical effect enabled by biomaterial systems and the potential underlying molecular mechanisms are also summarized. Insights into the roles of biomaterials in SMTE from cellular and molecular perspectives are provided. Finally, perspectives on the advancement of SMTE are provided, for which gene therapy, exosomes, and hybrid biomaterials may hold promise to make important contributions.
Collapse
Affiliation(s)
- Wei Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hanli Zhang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Renwen Wan
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yuxi Cai
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yang Wu
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yimeng Yang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jiani Chen
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
| | - Zhiwen Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiliang Shang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
11
|
Wan H, Xiang J, Mao G, Pan S, Li B, Lu Y. Recent Advances in the Application of 3D-Printing Bioinks Based on Decellularized Extracellular Matrix in Tissue Engineering. ACS OMEGA 2024; 9:24219-24235. [PMID: 38882108 PMCID: PMC11170705 DOI: 10.1021/acsomega.4c02847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
In recent years, 3D bioprinting with various types of bioinks has been widely used in tissue engineering to fabricate human tissues and organs with appropriate biological functions. Decellularized extracellular matrix (dECM) is an excellent bioink candidate because it is enriched with a variety of bioactive proteins and bioactive factors and can provide a suitable environment for tissue repair or tissue regeneration while reducing the likelihood of severe immune rejection. In this Review, we systematically review recent advances in 3D bioprinting and decellularization technologies and comprehensively detail the latest research and applications of dECM as a bioink for tissue engineering in various systems, with the aim of providing a reference for researchers in tissue engineering to better understand the properties of dECM bioinks.
Collapse
Affiliation(s)
- Haoxin Wan
- Department
of Thoracic Surgery, The First Affiliated
Hospital of Soochow University, Suzhou 215000, China
| | - Jian Xiang
- Affiliated
Hospital of Yangzhou University, Yangzhou 225000, China
| | - Guocai Mao
- Department
of Thoracic Surgery, The First Affiliated
Hospital of Soochow University, Suzhou 215000, China
| | - Shu Pan
- Department
of Thoracic Surgery, The First Affiliated
Hospital of Soochow University, Suzhou 215000, China
| | - Bing Li
- The
Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Yi Lu
- Clinical
Medical College, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
12
|
Klak M, Rachalewski M, Filip A, Dobrzański T, Berman A, Wszoła M. Bioprinting of Perfusable, Biocompatible Vessel-like Channels with dECM-Based Bioinks and Living Cells. Bioengineering (Basel) 2024; 11:439. [PMID: 38790306 PMCID: PMC11117567 DOI: 10.3390/bioengineering11050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
There is a growing interest in the production of bioinks that on the one hand, are biocompatible and, on the other hand, have mechanical properties that allow for the production of stable constructs that can survive for a long time after transplantation. While the selection of the right material is crucial for bioprinting, there is another equally important issue that is currently being extensively researched-the incorporation of the vascular system into the fabricated scaffolds. Therefore, in the following manuscript, we present the results of research on bioink with unique physico-chemical and biological properties. In this article, two methods of seeding cells were tested using bioink B and seeding after bioprinting the whole model. After 2, 5, 8, or 24 h of incubation, the flow medium was used in the tested systems. At the end of the experimental trial, for each time variant, the canals were stored in formaldehyde, and immunohistochemical staining was performed to examine the presence of cells on the canal walls and roof. Cells adhered to both ways of fiber arrangement; however, a parallel bioprint with the 5 h incubation and the intermediate plating of cells resulted in better adhesion efficiency. For this test variant, the percentage of cells that adhered was at least 20% higher than in the other analyzed variants. In addition, it was for this variant that the lowest percentage of viable cells was found that were washed out of the tested model. Importantly, hematoxylin and eosin staining showed that after 8 days of culture, the cells were evenly distributed throughout the canal roof. Our study clearly shows that neovascularization-promoting cells effectively adhere to ECM-based pancreatic bioink. Summarizing the presented results, it was demonstrated that the proposed bioink compositions can be used for bioprinting bionic organs with a vascular system formed by endothelial cells and fibroblasts.
Collapse
Affiliation(s)
- Marta Klak
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
- Polbionica sp. z o.o., 01-242 Warsaw, Poland
| | - Michał Rachalewski
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
| | - Anna Filip
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
| | | | | | - Michał Wszoła
- Foundation of Research and Science Development, 01-242 Warsaw, Poland or (M.W.)
- Polbionica sp. z o.o., 01-242 Warsaw, Poland
| |
Collapse
|
13
|
Gan X, Wang X, Huang Y, Li G, Kang H. Applications of Hydrogels in Osteoarthritis Treatment. Biomedicines 2024; 12:923. [PMID: 38672277 PMCID: PMC11048369 DOI: 10.3390/biomedicines12040923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review critically evaluates advancements in multifunctional hydrogels, particularly focusing on their applications in osteoarthritis (OA) therapy. As research evolves from traditional natural materials, there is a significant shift towards synthetic and composite hydrogels, known for their superior mechanical properties and enhanced biodegradability. This review spotlights novel applications such as injectable hydrogels, microneedle technology, and responsive hydrogels, which have revolutionized OA treatment through targeted and efficient therapeutic delivery. Moreover, it discusses innovative hydrogel materials, including protein-based and superlubricating hydrogels, for their potential to reduce joint friction and inflammation. The integration of bioactive compounds within hydrogels to augment therapeutic efficacy is also examined. Furthermore, the review anticipates continued technological advancements and a deeper understanding of hydrogel-based OA therapies. It emphasizes the potential of hydrogels to provide tailored, minimally invasive treatments, thus highlighting their critical role in advancing the dynamic field of biomaterial science for OA management.
Collapse
Affiliation(s)
- Xin Gan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yiwan Huang
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China;
| | - Guanghao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Hao Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
14
|
Laowpanitchakorn P, Zeng J, Piantino M, Uchida K, Katsuyama M, Matsusaki M. Biofabrication of engineered blood vessels for biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2330339. [PMID: 38633881 PMCID: PMC11022926 DOI: 10.1080/14686996.2024.2330339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/10/2024] [Indexed: 04/19/2024]
Abstract
To successfully engineer large-sized tissues, establishing vascular structures is essential for providing oxygen, nutrients, growth factors and cells to prevent necrosis at the core of the tissue. The diameter scale of the biofabricated vasculatures should range from 100 to 1,000 µm to support the mm-size tissue while being controllably aligned and spaced within the diffusion limit of oxygen. In this review, insights regarding biofabrication considerations and techniques for engineered blood vessels will be presented. Initially, polymers of natural and synthetic origins can be selected, modified, and combined with each other to support maturation of vascular tissue while also being biocompatible. After they are shaped into scaffold structures by different fabrication techniques, surface properties such as physical topography, stiffness, and surface chemistry play a major role in the endothelialization process after transplantation. Furthermore, biological cues such as growth factors (GFs) and endothelial cells (ECs) can be incorporated into the fabricated structures. As variously reported, fabrication techniques, especially 3D printing by extrusion and 3D printing by photopolymerization, allow the construction of vessels at a high resolution with diameters in the desired range. Strategies to fabricate of stable tubular structures with defined channels will also be discussed. This paper provides an overview of the many advances in blood vessel engineering and combinations of different fabrication techniques up to the present time.
Collapse
Affiliation(s)
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Marie Piantino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Kentaro Uchida
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Misa Katsuyama
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
15
|
Kafili G, Niknejad H, Tamjid E, Simchi A. Amnion-derived hydrogels as a versatile platform for regenerative therapy: from lab to market. Front Bioeng Biotechnol 2024; 12:1358977. [PMID: 38468689 PMCID: PMC10925797 DOI: 10.3389/fbioe.2024.1358977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
In recent years, the amnion (AM) has emerged as a versatile tool for stimulating tissue regeneration and has been of immense interest for clinical applications. AM is an abundant and cost-effective tissue source that does not face strict ethical issues for biomedical applications. The outstanding biological attributes of AM, including side-dependent angiogenesis, low immunogenicity, anti-inflammatory, anti-fibrotic, and antibacterial properties facilitate its usage for tissue engineering and regenerative medicine. However, the clinical usage of thin AM sheets is accompanied by some limitations, such as handling without folding or tearing and the necessity for sutures to keep the material over the wound, which requires additional considerations. Therefore, processing the decellularized AM (dAM) tissue into a temperature-sensitive hydrogel has expanded its processability and applicability as an injectable hydrogel for minimally invasive therapies and a source of bioink for the fabrication of biomimetic tissue constructs by recapitulating desired biochemical cues or pre-defined architectural design. This article reviews the multi-functionality of dAM hydrogels for various biomedical applications, including skin repair, heart treatment, cartilage regeneration, endometrium regeneration, vascular graft, dental pulp regeneration, and cell culture/carrier platform. Not only recent and cutting-edge research is reviewed but also available commercial products are introduced and their main features and shortcomings are elaborated. Besides the great potential of AM-derived hydrogels for regenerative therapy, intensive interdisciplinary studies are still required to modify their mechanical and biological properties in order to broaden their therapeutic benefits and biomedical applications. Employing additive manufacturing techniques (e.g., bioprinting), nanotechnology approaches (e.g., inclusion of various bioactive nanoparticles), and biochemical alterations (e.g., modification of dAM matrix with photo-sensitive molecules) are of particular interest. This review article aims to discuss the current function of dAM hydrogels for the repair of target tissues and identifies innovative methods for broadening their potential applications for nanomedicine and healthcare.
Collapse
Affiliation(s)
- Golara Kafili
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolreza Simchi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
16
|
Wang M, Wu Y, Li G, Lin Q, Zhang W, Liu H, Su J. Articular cartilage repair biomaterials: strategies and applications. Mater Today Bio 2024; 24:100948. [PMID: 38269053 PMCID: PMC10806349 DOI: 10.1016/j.mtbio.2024.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Articular cartilage injury is a frequent worldwide disease, while effective treatment is urgently needed. Due to lack of blood vessels and nerves, the ability of cartilage to self-repair is limited. Despite the availability of various clinical treatments, unfavorable prognoses and complications remain prevalent. However, the advent of tissue engineering and regenerative medicine has generated considerable interests in using biomaterials for articular cartilage repair. Nevertheless, there remains a notable scarcity of comprehensive reviews that provide an in-depth exploration of the various strategies and applications. Herein, we present an overview of the primary biomaterials and bioactive substances from the tissue engineering perspective to repair articular cartilage. The strategies include regeneration, substitution, and immunization. We comprehensively delineate the influence of mechanically supportive scaffolds on cellular behavior, shedding light on emerging scaffold technologies, including stimuli-responsive smart scaffolds, 3D-printed scaffolds, and cartilage bionic scaffolds. Biologically active substances, including bioactive factors, stem cells, extracellular vesicles (EVs), and cartilage organoids, are elucidated for their roles in regulating the activity of chondrocytes. Furthermore, the composite bioactive scaffolds produced industrially to put into clinical use, are also explicitly presented. This review offers innovative solutions for treating articular cartilage ailments and emphasizes the potential of biomaterials for articular cartilage repair in clinical translation.
Collapse
Affiliation(s)
- Mingkai Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- College of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- College of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Qiushui Lin
- Department of Spine Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Wencai Zhang
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
17
|
Cross-Najafi AA, Farag K, Chen AM, Smith LJ, Zhang W, Li P, Ekser B. The Long Road to Develop Custom-built Livers: Current Status of 3D Liver Bioprinting. Transplantation 2024; 108:357-368. [PMID: 37322580 PMCID: PMC10724374 DOI: 10.1097/tp.0000000000004668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although liver transplantation is the gold-standard therapy for end-stage liver disease, the shortage of suitable organs results in only 25% of waitlisted patients undergoing transplants. Three-dimensional (3D) bioprinting is an emerging technology and a potential solution for personalized medicine applications. This review highlights existing 3D bioprinting technologies of liver tissues, current anatomical and physiological limitations to 3D bioprinting of a whole liver, and recent progress bringing this innovation closer to clinical use. We reviewed updated literature across multiple facets in 3D bioprinting, comparing laser, inkjet, and extrusion-based printing modalities, scaffolded versus scaffold-free systems, development of an oxygenated bioreactor, and challenges in establishing long-term viability of hepatic parenchyma and incorporating structurally and functionally robust vasculature and biliary systems. Advancements in liver organoid models have also increased their complexity and utility for liver disease modeling, pharmacologic testing, and regenerative medicine. Recent developments in 3D bioprinting techniques have improved the speed, anatomical, and physiological accuracy, and viability of 3D-bioprinted liver tissues. Optimization focusing on 3D bioprinting of the vascular system and bile duct has improved both the structural and functional accuracy of these models, which will be critical in the successful expansion of 3D-bioprinted liver tissues toward transplantable organs. With further dedicated research, patients with end-stage liver disease may soon be recipients of customized 3D-bioprinted livers, reducing or eliminating the need for immunosuppressive regimens.
Collapse
Affiliation(s)
- Arthur A. Cross-Najafi
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristine Farag
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela M. Chen
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lester J. Smith
- Department of Radiology and Imaging Sciences, Indiana University of School of Medicine, Indianapolis, IN, USA
- 3D Bioprinting Core, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wenjun Zhang
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ping Li
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
18
|
Santos MGD, França FS, Prestes JP, Teixeira C, Sommer LC, Sperling LE, Pranke P. Production of a Bioink Containing Decellularized Spinal Cord Tissue for 3D Bioprinting. Tissue Eng Part A 2024; 30:61-74. [PMID: 37772706 DOI: 10.1089/ten.tea.2023.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
For the past few years, three-dimensional (3D) bioprinting has emerged as a promising approach in the field of regenerative medicine. This technique allows for the production of 3D scaffolds to support cell transplantation due to its ability to mimic the extracellular environment. One alternative to enhancing cell adhesion, survival, and proliferation is the use of decellularized extracellular matrix as a bioink component. The aim of this study was to produce a bioink using lyophilized rat decellularized spinal cord tissue (DSCT) for 3D bioprinting of nervous tissue. DNA quantification, hematoxylin and eosin and DAPI staining indicated that 1% sodium dodecyl sulfate and 9 h processing were effective in removing the cells from the spinal cord samples. The cell viability assay showed that the decellularized matrix is not cytotoxic for PC12 cells. The hydrogel containing DSCT, alginate, and gelatine used as the base for the bioink has a shear thinning behavior and low G″/G' ratio, allowing for good printability without compromising cell viability after 3D bioprinting. The bioink supported long-term PC12 cell survival, with 93% of live cells 4 weeks after printing, and stimulated the production of laminin-1 and neurofilament-M. This bioink, therefore, represents an easily available biomaterial for central nervous system tissue engineering.
Collapse
Affiliation(s)
- Marcelo Garrido Dos Santos
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Stem Cell Laboratory, Fundamental Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Fernanda Stapenhorst França
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Stem Cell Laboratory, Fundamental Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - João Pedro Prestes
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Stem Cell Laboratory, Fundamental Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristian Teixeira
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Stem Cell Laboratory, Fundamental Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Luiz Carlos Sommer
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Stem Cell Laboratory, Fundamental Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura Elena Sperling
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Stem Cell Laboratory, Fundamental Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Stem Cell Laboratory, Fundamental Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Instituto de Pesquisa com Células-tronco (IPCT), Porto Alegre, Brazil
| |
Collapse
|
19
|
Xie R, Pal V, Yu Y, Lu X, Gao M, Liang S, Huang M, Peng W, Ozbolat IT. A comprehensive review on 3D tissue models: Biofabrication technologies and preclinical applications. Biomaterials 2024; 304:122408. [PMID: 38041911 PMCID: PMC10843844 DOI: 10.1016/j.biomaterials.2023.122408] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
The limitations of traditional two-dimensional (2D) cultures and animal testing, when it comes to precisely foreseeing the toxicity and clinical effectiveness of potential drug candidates, have resulted in a notable increase in the rate of failure during the process of drug discovery and development. Three-dimensional (3D) in-vitro models have arisen as substitute platforms with the capacity to accurately depict in-vivo conditions and increasing the predictivity of clinical effects and toxicity of drug candidates. It has been found that 3D models can accurately represent complex tissue structure of human body and can be used for a wide range of disease modeling purposes. Recently, substantial progress in biomedicine, materials and engineering have been made to fabricate various 3D in-vitro models, which have been exhibited better disease progression predictivity and drug effects than convention models, suggesting a promising direction in pharmaceutics. This comprehensive review highlights the recent developments in 3D in-vitro tissue models for preclinical applications including drug screening and disease modeling targeting multiple organs and tissues, like liver, bone, gastrointestinal tract, kidney, heart, brain, and cartilage. We discuss current strategies for fabricating 3D models for specific organs with their strengths and pitfalls. We expand future considerations for establishing a physiologically-relevant microenvironment for growing 3D models and also provide readers with a perspective on intellectual property, industry, and regulatory landscape.
Collapse
Affiliation(s)
- Renjian Xie
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China
| | - Vaibhav Pal
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Yanrong Yu
- School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China
| | - Xiaolu Lu
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China
| | - Mengwei Gao
- School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China
| | - Shijie Liang
- School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China
| | - Miao Huang
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China
| | - Weijie Peng
- Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering in Jiangxi Province, Gannan Medical University, Ganzhou, JX, 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, JX, China; School of Pharmaceutics, Nanchang University, Nanchang, JX, 330006, China.
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA; Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Materials Research Institute, Pennsylvania State University, University Park, PA, USA; Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Penn State University, Hershey, PA, 17033, USA; Department of Medical Oncology, Cukurova University, Adana, 01130, Turkey; Biotechnology Research and Application Center, Cukurova University, Adana, 01130, Turkey.
| |
Collapse
|
20
|
Wang F, Wang H, Shan X, Mei J, Wei P, Song Q, Chen W. High-strength and high-toughness ECM films with the potential for peripheral nerve repair. Biomed Mater 2023; 19:015010. [PMID: 38048625 DOI: 10.1088/1748-605x/ad11fa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
Extracellular matrix (ECM) scaffolds are widely applied in the field of regeneration as the result of their irreplaceable biological advantages, and the preparation of ECM scaffolds into ECM hydrogels expands the applications to some extent. However, weak mechanical properties of current ECM materials limit the complete exploitation of ECM's biological advantages. To enable ECM materials to be utilized in applications requiring high strength, herein, we created a kind of new ECM material, ECM film, and evaluated its mechanical properties. ECM films exhibited outstanding toughness with no cracks after arbitrarily folding and crumpling, and dramatically high strength levels of 86 ± 17.25 MPa, the maximum of which was 115 MPa. Such spectacular high-strength and high-toughness films, containing only pure ECM without any crosslinking agents and other materials, far exceed current pure natural polymer gel films and even many composite gel films and synthetic polymer gel films. In addition, both PC12 cells and Schwann cells cultured on the surface of ECM films, especially Schwann cells, showed good proliferation, and the neurite outgrowth of the PC12 cells was promoted, indicating the application potential of ECM film in peripheral nerve repair.
Collapse
Affiliation(s)
- Fangfang Wang
- Medical Research Center, The First Affiliated Hospital of Ningbo University; Ningbo University, Ningbo 315010, People's Republic of China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, People's Republic of China
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, People's Republic of China
| | - Haiyang Wang
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Xiaotong Shan
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, People's Republic of China
| | - Jin Mei
- Medical Research Center, The First Affiliated Hospital of Ningbo University; Ningbo University, Ningbo 315010, People's Republic of China
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, People's Republic of China
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, People's Republic of China
| | - Qinghua Song
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, People's Republic of China
| | - Weiwei Chen
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo 315010, People's Republic of China
| |
Collapse
|
21
|
Di Gravina GM, Bari E, Croce S, Scocozza F, Pisani S, Conti B, Avanzini MA, Auricchio F, Cobianchi L, Torre ML, Conti M. Design and development of a hepatic lyo-dECM powder as a biomimetic component for 3D-printable hybrid hydrogels. Biomed Mater 2023; 19:015005. [PMID: 37992318 DOI: 10.1088/1748-605x/ad0ee2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Bioprinting offers new opportunities to obtain reliable 3Din vitromodels of the liver for testing new drugs and studying pathophysiological mechanisms, thanks to its main feature in controlling the spatial deposition of cell-laden hydrogels. In this context, decellularized extracellular matrix (dECM)-based hydrogels have caught more and more attention over the last years because of their characteristic to closely mimic the tissue-specific microenvironment from a biological point of view. In this work, we describe a new concept of designing dECM-based hydrogels; in particular, we set up an alternative and more practical protocol to develop a hepatic lyophilized dECM (lyo-dECM) powder as an 'off-the-shelf' and free soluble product to be incorporated as a biomimetic component in the design of 3D-printable hybrid hydrogels. To this aim, the powder was first characterized in terms of cytocompatibility on human and porcine mesenchymal stem cells (MSCs), and the optimal powder concentration (i.e. 3.75 mg ml-1) to use in the hydrogel formulation was identified. Moreover, its non-immunogenicity and capacity to reactivate the elastase enzyme potency was proved. Afterward, as a proof-of-concept, the powder was added to a sodium alginate/gelatin blend, and the so-defined multi-component hydrogel was studied from a rheological point of view, demonstrating that adding the lyo-dECM powder at the selected concentration did not alter the viscoelastic properties of the original material. Then, a printing assessment was performed with the support of computational simulations, which were useful to definea priorithe hydrogel printing parameters as window of printability and its post-printing mechanical collapse. Finally, the proposed multi-component hydrogel was bioprinted with cells inside, and its post-printing cell viability for up to 7 d was successfully demonstrated.
Collapse
Affiliation(s)
- Giulia M Di Gravina
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
- Department of Industrial and Information Engineering, University of Pavia, Pavia, Italy
| | - Elia Bari
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Stefania Croce
- Department of General Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Franca Scocozza
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Silvia Pisani
- Department of Drug Science, University of Pavia, Pavia, Italy
| | - Bice Conti
- Department of Drug Science, University of Pavia, Pavia, Italy
| | - Maria A Avanzini
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Lorenzo Cobianchi
- Department of General Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Maria Luisa Torre
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
- PharmaExceed s.r.l., Pavia, Italy
| | - Michele Conti
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| |
Collapse
|
22
|
Han S, Kim J, Kim SH, Youn W, Kim J, Ji GY, Yang S, Park J, Lee GM, Kim Y, Choi IS. In vitro induction of in vivo-relevant stellate astrocytes in 3D brain-derived, decellularized extracellular matrices. Acta Biomater 2023; 172:218-233. [PMID: 37788738 DOI: 10.1016/j.actbio.2023.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
In vitro fabrication of 3D cell culture systems that could provide in vivo tissue-like, structural, and biochemical environments to neural cells is essential not only for fundamental studies on brain function and behavior, but also for tissue engineering and regenerative medicine applicable to neural injury and neurodegenerative diseases. In particular, for astrocytes-which actively respond to the surroundings and exhibit varied morphologies based on stimuli (e.g., stiffness and chemicals) in vitro, as well as physiological or pathological conditions in vivo-it is crucial to establish an appropriate milieu in in vitro culture platforms. Herein, we report the induction of in vivo-relevant, stellate-shaped astrocytes derived from cortices of Rattus norvegicus by constructing the 3D cell culture systems of brain-derived, decellularized extracellular matrices (bdECMs). The bdECM hydrogels were mechanically stable and soft, and the bdECM-based 3D scaffolds supplied biochemically active environments that astrocytes could interact with, leading to the development of in vivo-like stellate structures. In addition to the distinct morphology with actively elongated endfeet, the astrocytes, cultured in 3D bdECM scaffolds, would have neurosupportive characteristics, indicated by the accelerated neurite outgrowth in the astrocyte-conditioned media. Furthermore, next-generation sequencing showed that the gene expression profiles of astrocytes cultured in bdECMs were significantly different from those cultured on 2D surfaces. The stellate-shaped astrocytes in the bdECMs were analyzed to have reached a more mature state, for instance, with decreased expression of genes for scaffold ECMs, actin filaments, and cell division. The results suggest that the bdECM-based 3D culture system offers an advanced platform for culturing primary cortical astrocytes and their mixtures with other neural cells, providing a brain-like, structural and biochemical milieu that promotes the maturity and in vivo-like characteristics of astrocytes in both form and gene expression. STATEMENT OF SIGNIFICANCE: Decellularized extracellular matrices (dECMs) have emerged as strong candidates for the construction of three-dimensional (3D) cell cultures in vitro, owing to the potential to provide native biochemical and physical environments. In this study, we fabricated hydrogels of brain-derived dECMs (bdECMs) and cultured primary astrocytes within the bdECM hydrogels in a 3D context. The cultured astrocytes exhibited a stellate morphology distinct from conventional 2D cultures, featuring tridimensionally elongated endfeet. qRT-PCR and NGS-based transcriptomic analyses revealed gene expression patterns indicative of a more mature state, compared with the 2D culture. Moreover, astrocytes cultured in bdECMs showed neurosupportive characteristics, as demonstrated by the accelerated neurite outgrowth in astrocyte-conditioned media. We believe that the bdECM hydrogel-based culture system can serve as an in vitro model system for astrocytes and their coculture with other neural cells, holding significant potential for neural engineering and therapeutic applications.
Collapse
Affiliation(s)
- Sol Han
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Jungnam Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, South Korea
| | - Wongu Youn
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Jihoo Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Gil Yong Ji
- Cannabis Medical, Inc., Asan 31418, South Korea
| | - Seoin Yang
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Joohyouck Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, South Korea
| | | | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea; Department of Bio and Brain Engineering, KAIST, Daejeon 34141, South Korea.
| |
Collapse
|
23
|
Zheng H, Li M, Wu L, Liu W, Liu Y, Gao J, Lu Z. Progress in the application of hydrogels in immunotherapy of gastrointestinal tumors. Drug Deliv 2023; 30:2161670. [PMID: 36587630 PMCID: PMC9809389 DOI: 10.1080/10717544.2022.2161670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Gastrointestinal tumors are the most common cancers with the highest morbidity and mortality worldwide. Surgery accompanied by chemotherapy, radiotherapy and targeted therapy remains the first option for gastrointestinal tumors. However, poor specificity for tumor cells of these postoperative treatments often leads to severe side effects and poor prognosis. Tumor immunotherapy, including checkpoint blockade and tumor vaccines, has developed rapidly in recent years, showing good curative effects and minimal side effects in the treatment of gastrointestinal tumors. National Comprehensive Cancer Network guidelines recommend tumor immunotherapy as part of the treatment of gastrointestinal tumors. However, the heterogeneity of tumor cells, complicacy of the tumor microenvironment and poor tumor immunogenicity hamper the effectiveness of tumor immunotherapy. Hydrogels, defined as three-dimensional, hydrophilic, and water-insoluble polymeric networks, could significantly improve the overall response rate of immunotherapy due to their superior drug loading efficacy, controlled release and drug codelivery ability. In this article, we briefly describe the research progress made in recent years on hydrogel delivery systems in immunotherapy for gastrointestinal tumors and discuss the potential future application prospects and challenges to provide a reference for the clinical application of hydrogels in tumor immunotherapy.
Collapse
Affiliation(s)
- Hao Zheng
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Lili Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wenshang Liu
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yu Liu
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China,Jie Gao Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Zhengmao Lu
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China,CONTACT Zhengmao Lu Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai200433, China
| |
Collapse
|
24
|
Ratushnyy AY, Buravkova LB. Microgravity Effects and Aging Physiology: Similar Changes or Common Mechanisms? BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1763-1777. [PMID: 38105197 DOI: 10.1134/s0006297923110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 12/19/2023]
Abstract
Despite the use of countermeasures (including intense physical activity), cosmonauts and astronauts develop muscle atony and atrophy, cardiovascular system failure, osteopenia, etc. All these changes, reminiscent of age-related physiological changes, occur in a healthy person in microgravity quite quickly - within a few months. Adaptation to the lost of gravity leads to the symptoms of aging, which are compensated after returning to Earth. The prospect of interplanetary flights raises the question of gravity thresholds, below which the main physiological systems will decrease their functional potential, similar to aging, and affect life expectancy. An important role in the aging process belongs to the body's cellular reserve - progenitor cells, which are involved in physiological remodeling and regenerative/reparative processes of all physiological systems. With age, progenitor cell count and their regenerative potential decreases. Moreover, their paracrine profile becomes pro-inflammatory during replicative senescence, disrupting tissue homeostasis. Mesenchymal stem/stromal cells (MSCs) are mechanosensitive, and therefore deprivation of gravitational stimulus causes serious changes in their functional status. The review compares the cellular effects of microgravity and changes developing in senescent cells, including stromal precursors.
Collapse
Affiliation(s)
- Andrey Yu Ratushnyy
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia.
| | - Ludmila B Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| |
Collapse
|
25
|
Kafili G, Kabir H, Jalali Kandeloos A, Golafshan E, Ghasemi S, Mashayekhan S, Taebnia N. Recent advances in soluble decellularized extracellular matrix for heart tissue engineering and organ modeling. J Biomater Appl 2023; 38:577-604. [PMID: 38006224 PMCID: PMC10676626 DOI: 10.1177/08853282231207216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Despite the advent of tissue engineering (TE) for the remodeling, restoring, and replacing damaged cardiovascular tissues, the progress is hindered by the optimal mechanical and chemical properties required to induce cardiac tissue-specific cellular behaviors including migration, adhesion, proliferation, and differentiation. Cardiac extracellular matrix (ECM) consists of numerous structural and functional molecules and tissue-specific cells, therefore it plays an important role in stimulating cell proliferation and differentiation, guiding cell migration, and activating regulatory signaling pathways. With the improvement and modification of cell removal methods, decellularized ECM (dECM) preserves biochemical complexity, and bio-inductive properties of the native matrix and improves the process of generating functional tissue. In this review, we first provide an overview of the latest advancements in the utilization of dECM in in vitro model systems for disease and tissue modeling, as well as drug screening. Then, we explore the role of dECM-based biomaterials in cardiovascular regenerative medicine (RM), including both invasive and non-invasive methods. In the next step, we elucidate the engineering and material considerations in the preparation of dECM-based biomaterials, namely various decellularization techniques, dECM sources, modulation, characterizations, and fabrication approaches. Finally, we discuss the limitations and future directions in fabrication of dECM-based biomaterials for cardiovascular modeling, RM, and clinical translation.
Collapse
Affiliation(s)
- Golara Kafili
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Hannaneh Kabir
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, USA
| | | | - Elham Golafshan
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Sara Ghasemi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Nayere Taebnia
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
26
|
Li Q, Yu H, Zhao F, Cao C, Wu T, Fan Y, Ao Y, Hu X. 3D Printing of Microenvironment-Specific Bioinspired and Exosome-Reinforced Hydrogel Scaffolds for Efficient Cartilage and Subchondral Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303650. [PMID: 37424038 PMCID: PMC10502685 DOI: 10.1002/advs.202303650] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Indexed: 07/11/2023]
Abstract
In clinical practice, repairing osteochondral defects presents a challenge due to the varying biological properties of articular cartilages and subchondral bones. Thus, elucidating how spatial microenvironment-specific biomimetic scaffolds can be used to simultaneously regenerate osteochondral tissue is an important research topic. Herein, a novel bioinspired double-network hydrogel scaffold produced via 3D printing with tissue-specific decellularized extracellular matrix (dECM) and human adipose mesenchymal stem cell (MSC)-derived exosomes is described. The bionic hydrogel scaffolds promote rat bone marrow MSC attachment, spread, migration, proliferation, and chondrogenic and osteogenic differentiation in vitro, as determined based on the sustained release of bioactive exosomes. Furthermore, the 3D-printed microenvironment-specific heterogeneous bilayer scaffolds efficiently accelerate the simultaneous regeneration of cartilage and subchondral bone tissues in a rat preclinical model. In conclusion, 3D dECM-based microenvironment-specific biomimetics encapsulated with bioactive exosomes can serve as a novel cell-free recipe for stem cell therapy when treating injured or degenerative joints. This strategy provides a promising platform for complex zonal tissue regeneration whilst holding attractive clinical translation potential.
Collapse
Affiliation(s)
- Qi Li
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
- Center of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730China
| | - Huilei Yu
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Fengyuan Zhao
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Chenxi Cao
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Tong Wu
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Yifei Fan
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Yingfang Ao
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Xiaoqing Hu
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| |
Collapse
|
27
|
Kafili G, Tamjid E, Niknejad H, Simchi A. Development of printable nanoengineered composite hydrogels based on human amniotic membrane for wound healing application. JOURNAL OF MATERIALS SCIENCE 2023; 58:12351-12372. [DOI: 10.1007/s10853-023-08783-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/14/2023] [Indexed: 01/06/2025]
|
28
|
Kim D, Kim G. Bioprinted hASC-laden cell constructs with mechanically stable and cell alignment cue for tenogenic differentiation. Biofabrication 2023; 15:045006. [PMID: 37442127 DOI: 10.1088/1758-5090/ace740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/13/2023] [Indexed: 07/15/2023]
Abstract
3D bioprinting is a technology that enables the precise and controlled deposition of cells and an artificial extracellular matrix (ECM) to create functional tissue constructs. However, current 3D bioprinting methods still struggle to obtain mechanically stable and unique cell-morphological structures, such as fully aligned cells. In this study, we propose a new 3D bioprinting approach that utilizes a high concentration of bioink without cells to support mechanical properties and drag flow to fully align cells in a thin bath filled with cell-laden bioink, resulting in a hybrid cell-laden construct with a mechanical stable and fully aligned cell structure. To demonstrate the feasibility of this approach, we used it to fabricate a cell-laden construct using human adipose stem cells (hASCs) for tendon tissue engineering. To achieve appropriate processing conditions, various factors such as the bioink concentration, nozzle moving speed, and volume flow rate were considered. To enhance the biocompatibility of the cell-laden construct, we used porcine decellularized tendon ECM.In vitrocellular responses, including tenogenic differentiation of the fabricated hybrid cell structures with aligned or randomly distributed cells, were evaluated using hASCs. In addition, the mechanical properties of the hybrid cell-laden construct could be adjusted by controlling the concentration of the mechanically reinforcing strut using methacrylated tendon-decellularized extracellular matrix. Based on these results, the hybrid cell-laden structure has the potential to be a highly effective platform for the alignment of musculoskeletal tissues.
Collapse
Affiliation(s)
- Dongyun Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - GeunHyung Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
29
|
Decarli MC, Seijas‐Gamardo A, Morgan FLC, Wieringa P, Baker MB, Silva JVL, Moraes ÂM, Moroni L, Mota C. Bioprinting of Stem Cell Spheroids Followed by Post-Printing Chondrogenic Differentiation for Cartilage Tissue Engineering. Adv Healthc Mater 2023; 12:e2203021. [PMID: 37057819 PMCID: PMC11468754 DOI: 10.1002/adhm.202203021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/13/2023] [Indexed: 04/15/2023]
Abstract
Cartilage tissue presents low self-repair capability and lesions often undergo irreversible progression. Structures obtained by tissue engineering, such as those based in extrusion bioprinting of constructs loaded with stem cell spheroids may offer valuable alternatives for research and therapeutic purposes. Human mesenchymal stromal cell (hMSC) spheroids can be chondrogenically differentiated faster and more efficiently than single cells. This approach allows obtaining larger tissues in a rapid, controlled and reproducible way. However, it is challenging to control tissue architecture, construct stability, and cell viability during maturation. Herein, this work reports a reproducible bioprinting process followed by a successful post-bioprinting chondrogenic differentiation procedure using large quantities of hMSC spheroids encapsulated in a xanthan gum-alginate hydrogel. Multi-layered constructs are bioprinted, ionically crosslinked, and post chondrogenically differentiated for 28 days. The expression of glycosaminoglycan, collagen II and IV are observed. After 56 days in culture, the bioprinted constructs are still stable and show satisfactory cell metabolic activity with profuse extracellular matrix production. These results show a promising procedure to obtain 3D models for cartilage research and ultimately, an in vitro proof-of-concept of their potential use as stable chondral tissue implants.
Collapse
Affiliation(s)
- Monize Caiado Decarli
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityUniversiteitssingel, 40MaastrichtLimburg6229 ERthe Netherlands
- Department of Engineering of Biomaterials and of BioprocessesSchool of Chemical EngineeringUniversity of Campinas ‐ UNICAMPAv. Albert Einstein, 500, Cidade Universitária “Zeferino Vaz”CampinasSP13083‐852Brazil
| | - Adrián Seijas‐Gamardo
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityUniversiteitssingel, 40MaastrichtLimburg6229 ERthe Netherlands
| | - Francis L. C. Morgan
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityUniversiteitssingel, 40MaastrichtLimburg6229 ERthe Netherlands
| | - Paul Wieringa
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityUniversiteitssingel, 40MaastrichtLimburg6229 ERthe Netherlands
| | - Matthew B. Baker
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityUniversiteitssingel, 40MaastrichtLimburg6229 ERthe Netherlands
| | - Jorge Vicente L. Silva
- Three‐Dimensional Technologies Research GroupCTI Renato ArcherRodovia Dom Pedro I SP‐65, Km 143,6 ‐ AmaraisCampinasSP13069‐901Brazil
| | - Ângela Maria Moraes
- Department of Engineering of Biomaterials and of BioprocessesSchool of Chemical EngineeringUniversity of Campinas ‐ UNICAMPAv. Albert Einstein, 500, Cidade Universitária “Zeferino Vaz”CampinasSP13083‐852Brazil
| | - Lorenzo Moroni
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityUniversiteitssingel, 40MaastrichtLimburg6229 ERthe Netherlands
| | - Carlos Mota
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityUniversiteitssingel, 40MaastrichtLimburg6229 ERthe Netherlands
| |
Collapse
|
30
|
Urciuolo F, Imparato G, Netti PA. In vitro strategies for mimicking dynamic cell-ECM reciprocity in 3D culture models. Front Bioeng Biotechnol 2023; 11:1197075. [PMID: 37434756 PMCID: PMC10330728 DOI: 10.3389/fbioe.2023.1197075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
The extracellular microenvironment regulates cell decisions through the accurate presentation at the cell surface of a complex array of biochemical and biophysical signals that are mediated by the structure and composition of the extracellular matrix (ECM). On the one hand, the cells actively remodel the ECM, which on the other hand affects cell functions. This cell-ECM dynamic reciprocity is central in regulating and controlling morphogenetic and histogenetic processes. Misregulation within the extracellular space can cause aberrant bidirectional interactions between cells and ECM, resulting in dysfunctional tissues and pathological states. Therefore, tissue engineering approaches, aiming at reproducing organs and tissues in vitro, should realistically recapitulate the native cell-microenvironment crosstalk that is central for the correct functionality of tissue-engineered constructs. In this review, we will describe the most updated bioengineering approaches to recapitulate the native cell microenvironment and reproduce functional tissues and organs in vitro. We have highlighted the limitations of the use of exogenous scaffolds in recapitulating the regulatory/instructive and signal repository role of the native cell microenvironment. By contrast, strategies to reproduce human tissues and organs by inducing cells to synthetize their own ECM acting as a provisional scaffold to control and guide further tissue development and maturation hold the potential to allow the engineering of fully functional histologically competent three-dimensional (3D) tissues.
Collapse
Affiliation(s)
- F. Urciuolo
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - G. Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - P. A. Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
31
|
Ellis K, Wood R. The Comparative Invasiveness of Endometriotic Cell Lines to Breast and Endometrial Cancer Cell Lines. Biomolecules 2023; 13:1003. [PMID: 37371583 DOI: 10.3390/biom13061003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Endometriosis is an invasive condition that affects 10% of women (and people assigned as female at birth) worldwide. The purpose of this study was to characterize the relative invasiveness of three available endometriotic cell lines (EEC12Z, iEc-ESCs, tHESCs) to cancer cell lines (MDA-MB-231, SW1353 and EM-E6/E7/TERT) and assess whether the relative invasiveness was consistent across different invasion assays. All cell lines were subjected to transwell, spheroid drop, and spheroid-gel invasion assays, and stained for vimentin, cytokeratin, E-Cadherin and N-Cadherin to assess changes in expression. In all assays, endometriotic cell lines showed comparable invasiveness to the cancer cell lines used in this study, with no significant differences in invasiveness identified. EEC12Z cells that had invaded within the assay periods showed declines in E-Cadherin expression compared to cells that had not invaded within the assay period, without significant changes in N-Cadherin expression, which may support the hypothesis that an epithelial-to-mesenchymal transition is an influence on the invasiveness shown by this peritoneal endometriosis cell line.
Collapse
Affiliation(s)
- Katherine Ellis
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch 8041, New Zealand
- Endometriosis New Zealand, Christchurch 8041, New Zealand
| | - Rachael Wood
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch 8041, New Zealand
- The Biomolecular Interaction Centre, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|
32
|
Huang L, Chen L, Chen H, Wang M, Jin L, Zhou S, Gao L, Li R, Li Q, Wang H, Zhang C, Wang J. Biomimetic Scaffolds for Tendon Tissue Regeneration. Biomimetics (Basel) 2023; 8:246. [PMID: 37366841 DOI: 10.3390/biomimetics8020246] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Tendon tissue connects muscle to bone and plays crucial roles in stress transfer. Tendon injury remains a significant clinical challenge due to its complicated biological structure and poor self-healing capacity. The treatments for tendon injury have advanced significantly with the development of technology, including the use of sophisticated biomaterials, bioactive growth factors, and numerous stem cells. Among these, biomaterials that the mimic extracellular matrix (ECM) of tendon tissue would provide a resembling microenvironment to improve efficacy in tendon repair and regeneration. In this review, we will begin with a description of the constituents and structural features of tendon tissue, followed by a focus on the available biomimetic scaffolds of natural or synthetic origin for tendon tissue engineering. Finally, we will discuss novel strategies and present challenges in tendon regeneration and repair.
Collapse
Affiliation(s)
- Lvxing Huang
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Le Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Hengyi Chen
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Manju Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310000, China
| | - Letian Jin
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Shenghai Zhou
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Lexin Gao
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Ruwei Li
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Quan Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Hanchang Wang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Can Zhang
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Junjuan Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| |
Collapse
|
33
|
Oliveira TS, Smirnow I, Santee KM, Miglino MA, Barreto RDSN. Decellularized Vascular Scaffolds Derived from Bovine Placenta Blood Vessels. Arq Bras Cardiol 2023; 120:e20220816. [PMID: 37311129 PMCID: PMC10263409 DOI: 10.36660/abc.20220816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/10/2023] [Accepted: 04/05/2023] [Indexed: 06/15/2023] Open
Abstract
OBJECTIVES Diseases associated with the circulatory system are the main causes of worldwide morbidity and mortality, implying the need for vascular implants. Thus, the production of vascular biomaterials has proven to be a promising alternative to therapies used in studies and research related to vascular physiology. The present project aims to achieve the artificial development of blood vessels through the recellularization of vascular scaffolds derived from bovine placental vessels. METHODS The chorioallantoic surface of the bovine placenta was used to produce decellularized biomaterials. For recellularization, 2.5 x 104 endothelial cells were seeded above each decellularized vessel fragment during three or seven days, when culture were interrupted, and the fragments were fixed for cell attachment analysis. Decellularized and recellularized biomaterials were evaluated by basic histology, scanning electron microscopy, and immunohistochemistry. RESULTS The decellularization process produced vessels that maintained natural structure and elastin content, and no cells or gDNA remains were observed. Endothelial precursor cells were also attached to lumen and external surface of the decellularized vessel.Conclusion: Our results show a possibility of future uses of this biomaterial in cardiovascular medicine, as in the development of engineered vessels.
Collapse
Affiliation(s)
- Tarley Santos Oliveira
- Departamento de CirurgiaFaculdade de Medicina Veterinária e ZootecniaUniversidade de São PauloSão PauloSPBrasilDepartamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP – Brasil
| | - Igor Smirnow
- Departamento de CirurgiaFaculdade de Medicina Veterinária e ZootecniaUniversidade de São PauloSão PauloSPBrasilDepartamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP – Brasil
| | - Kadija Mohamed Santee
- Departamento de CirurgiaFaculdade de Medicina Veterinária e ZootecniaUniversidade de São PauloSão PauloSPBrasilDepartamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP – Brasil
| | - Maria Angelica Miglino
- Departamento de CirurgiaFaculdade de Medicina Veterinária e ZootecniaUniversidade de São PauloSão PauloSPBrasilDepartamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP – Brasil
| | - Rodrigo da Silva Nunes Barreto
- Departamento de CirurgiaFaculdade de Medicina Veterinária e ZootecniaUniversidade de São PauloSão PauloSPBrasilDepartamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP – Brasil
| |
Collapse
|
34
|
Badhe RV, Chatterjee A, Bijukumar D, Mathew MT. Current advancements in bio-ink technology for cartilage and bone tissue engineering. Bone 2023; 171:116746. [PMID: 36965655 PMCID: PMC10559728 DOI: 10.1016/j.bone.2023.116746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
In tissue engineering, the fate of a particular organ/tissue regeneration and repair mainly depends on three pillars - 3D architecture, cells used, and stimulus provided. 3D cell supportive structure development is one of the crucial pillars necessary for defining organ/tissue geometry and shape. In recent years, the advancements in 3D bio-printing (additive manufacturing) made it possible to develop very precise 3D architectures with the help of industrial software like Computer-Aided Design (CAD). The main requirement for the 3D printing process is the bio-ink, which can act as a source for cell support, proliferation, drug (growth factors, stimulators) delivery, and organ/tissue shape. The selection of the bio-ink depends upon the type of 3D tissue of interest. Printing tissues like bone and cartilage is always challenging because it is difficult to find printable biomaterial that can act as bio-ink and mimic the strength of the natural bone and cartilage tissues. This review describes different biomaterials used to develop bio-inks with different processing variables and cell-seeding densities for bone and cartilage 3D printing applications. The review also discusses the advantages, limitations, and cell bio-ink compatibility in each biomaterial section. The emphasis is given to bio-inks reported for 3D printing cartilage and bone and their applications in orthopedics and orthodontists. The critical/important performance and the architectural morphology requirements of desired bone and cartilage bio-inks were compiled in summary.
Collapse
Affiliation(s)
- Ravindra V Badhe
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA; Pharmaceutical Chemistry Department, Marathwada Mitramandal's College of Pharmacy, Thergaon, Pune, Maharashtra, India
| | - Abhinav Chatterjee
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Divya Bijukumar
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Mathew T Mathew
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA.
| |
Collapse
|
35
|
Ding Z, Tang N, Huang J, Cao X, Wu S. Global hotspots and emerging trends in 3D bioprinting research. Front Bioeng Biotechnol 2023; 11:1169893. [PMID: 37304138 PMCID: PMC10248473 DOI: 10.3389/fbioe.2023.1169893] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Three-dimensional (3D) bioprinting is an advanced tissue engineering technique that has received a lot of interest in the past years. We aimed to highlight the characteristics of articles on 3D bioprinting, especially in terms of research hotspots and focus. Publications related to 3D bioprinting from 2007 to 2022 were acquired from the Web of Science Core Collection database. We have used VOSviewer, CiteSpace, and R-bibliometrix to perform various analyses on 3,327 published articles. The number of annual publications is increasing globally, a trend expected to continue. The United States and China were the most productive countries with the closest cooperation and the most research and development investment funds in this field. Harvard Medical School and Tsinghua University are the top-ranked institutions in the United States and China, respectively. Dr. Anthony Atala and Dr. Ali Khademhosseini, the most productive researchers in 3D bioprinting, may provide cooperation opportunities for interested researchers. Tissue Engineering Part A contributed the largest publication number, while Frontiers in Bioengineering and Biotechnology was the most attractive journal with the most potential. As for the keywords in 3D bioprinting, Bio-ink, Hydrogels (especially GelMA and Gelatin), Scaffold (especially decellularized extracellular matrix), extrusion-based bioprinting, tissue engineering, and in vitro models (organoids particularly) are research hotspots analyzed in the current study. Specifically, the research topics "new bio-ink investigation," "modification of extrusion-based bioprinting for cell viability and vascularization," "application of 3D bioprinting in organoids and in vitro model" and "research in personalized and regenerative medicine" were predicted to be hotspots for future research.
Collapse
Affiliation(s)
- Zhiyu Ding
- Department of Orthopaedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Ning Tang
- Department of Orthopaedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Junjie Huang
- Department of Orthopaedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xu Cao
- Department of Orthopaedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Song Wu
- Department of Orthopaedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
36
|
Tavares-Negrete JA, Pedroza-González SC, Frías-Sánchez AI, Salas-Ramírez ML, de Santiago-Miramontes MDLÁ, Luna-Aguirre CM, Alvarez MM, Trujillo-de Santiago G. Supplementation of GelMA with Minimally Processed Tissue Promotes the Formation of Densely Packed Skeletal-Muscle-Like Tissues. ACS Biomater Sci Eng 2023. [PMID: 37126642 DOI: 10.1021/acsbiomaterials.2c01521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present a simple and cost-effective strategy for developing gelatin methacryloyl (GelMA) hydrogels supplemented with minimally processed tissue (MPT) to fabricate densely packed skeletal-muscle-like tissues. MPT powder was prepared from skeletal muscle by freeze-drying, grinding, and sieving. Cell-culture experiments showed that the incorporation of 0.5-2.0% (w/v) MPT into GelMA hydrogels enhances the proliferation of murine myoblasts (C2C12 cells) compared to proliferation in pristine GelMA hydrogels and GelMA supplemented with decellularized skeletal-muscle tissues (DCTs). MPT-supplemented constructs also preserved their three-dimensional (3D) integrity for 28 days. By contrast, analogous pristine GelMA constructs only maintained their structure for 14 days or less. C2C12 cells embedded in MPT-supplemented constructs exhibited a higher degree of cell alignment and reached a significantly higher density than cells loaded in pristine GelMA constructs. Our results suggest that the addition of MPT incorporates a rich source of biochemical and topological cues, such as growth factors, glycosaminoglycans (GAGs), and structurally preserved proteins (e.g., collagen). In addition, GelMA supplemented with MPT showed suitable rheological properties for use as bioinks for extrusion bioprinting. We envision that this simple and cost-effective strategy of hydrogel supplementation will evolve into an exciting spectrum of applications for tissue engineers, primarily in the biofabrication of relevant microtissues for in vitro models and cultured meat and ultimately for the biofabrication of transplant materials using autologous MPT.
Collapse
Affiliation(s)
- Jorge A Tavares-Negrete
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Sara Cristina Pedroza-González
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Ada I Frías-Sánchez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Miriam L Salas-Ramírez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, 64849 Monterrey, México
| | | | - Claudia Maribel Luna-Aguirre
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Mario M Alvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, 64849 Monterrey, México
| |
Collapse
|
37
|
Zhe M, Wu X, Yu P, Xu J, Liu M, Yang G, Xiang Z, Xing F, Ritz U. Recent Advances in Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting in Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3197. [PMID: 37110034 PMCID: PMC10143913 DOI: 10.3390/ma16083197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
In recent years, three-dimensional (3D) bioprinting has been widely utilized as a novel manufacturing technique by more and more researchers to construct various tissue substitutes with complex architectures and geometries. Different biomaterials, including natural and synthetic materials, have been manufactured into bioinks for tissue regeneration using 3D bioprinting. Among the natural biomaterials derived from various natural tissues or organs, the decellularized extracellular matrix (dECM) has a complex internal structure and a variety of bioactive factors that provide mechanistic, biophysical, and biochemical signals for tissue regeneration and remodeling. In recent years, more and more researchers have been developing the dECM as a novel bioink for the construction of tissue substitutes. Compared with other bioinks, the various ECM components in dECM-based bioink can regulate cellular functions, modulate the tissue regeneration process, and adjust tissue remodeling. Therefore, we conducted this review to discuss the current status of and perspectives on dECM-based bioinks for bioprinting in tissue engineering. In addition, the various bioprinting techniques and decellularization methods were also discussed in this study.
Collapse
Affiliation(s)
- Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyu Wu
- West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Jiawei Xu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ming Liu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guang Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhou Xiang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Xing
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
38
|
Liang C, Liao L, Tian W. Advances Focusing on the Application of Decellularized Extracellular Matrix in Periodontal Regeneration. Biomolecules 2023; 13:673. [PMID: 37189420 PMCID: PMC10136219 DOI: 10.3390/biom13040673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
The decellularized extracellular matrix (dECM) is capable of promoting stem cell proliferation, migration, adhesion, and differentiation. It is a promising biomaterial for application and clinical translation in the field of periodontal tissue engineering as it most effectively preserves the complex array of ECM components as they are in native tissue, providing ideal cues for regeneration and repair of damaged periodontal tissue. dECMs of different origins have different advantages and characteristics in promoting the regeneration of periodontal tissue. dECM can be used directly or dissolved in liquid for better flowability. Multiple ways were developed to improve the mechanical strength of dECM, such as functionalized scaffolds with cells that harvest scaffold-supported dECM through decellularization or crosslinked soluble dECM that can form injectable hydrogels for periodontal tissue repair. dECM has found recent success in many periodontal regeneration and repair therapies. This review focuses on the repairing effect of dECM in periodontal tissue engineering, with variations in cell/tissue sources, and specifically discusses the future trend of periodontal regeneration and the future role of soluble dECM in entire periodontal tissue regeneration.
Collapse
Affiliation(s)
| | - Li Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| |
Collapse
|
39
|
Chen T, Xia Y, Zhang L, Xu T, Yi Y, Chen J, Liu Z, Yang L, Chen S, Zhou X, Chen X, Wu H, Liu J. Loading neural stem cells on hydrogel scaffold improves cell retention rate and promotes functional recovery in traumatic brain injury. Mater Today Bio 2023; 19:100606. [PMID: 37063247 PMCID: PMC10102240 DOI: 10.1016/j.mtbio.2023.100606] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Neural stem cell (NSC) has gained considerable attention in traumatic brain injury (TBI) treatment because of their ability to replenish dysfunctional neurons and stimulate endogenous neurorestorative processes. However, their therapeutic effects are hindered by the low cell retention rate after transplantation into the dynamic brain. In this study, we found cerebrospinal fluid (CSF) flow after TBI is an important factor associated with cell loss following NSC transplantation. Recently, several studies have shown that hydrogels could serve as a beneficial carrier for stem cell transplantation, which provides a solution to prevent CSF flow-induced cell loss after TBI. For this purpose, we evaluated three different hydrogel scaffolds and found the gelatin methacrylate (GelMA)/sodium alginate (Alg) (GelMA/Alg) hydrogel scaffold showed the best capabilities for NSC adherence, growth, and differentiation. Additionally, we detected that pre-differentiated NSCs, which were loaded on the GelMA/Alg hydrogel and cultured for 7 days in neuronal differentiation medium (NSC [7d]), had the highest cell retention rate after CSF impact. Next, the neuroprotective effects of the NSC-loaded GelMA/Alg hydrogel scaffold were evaluated in a rat model of TBI. NSC [7d]-loaded GelMA/Alg markedly decreased microglial activation and neuronal death in the acute phase, reduced tissue loss, alleviated astrogliosis, promoted neurogenesis, and improved neurological recovery in the chronic phase. In summary, we demonstrated that the integration with the GelMA/Alg and modification of NSC differentiation could inhibit the influence of CSF flow on transplanted NSCs, leading to increased number of retained NSCs and improved neuroprotective effects, providing a promising alternative for TBI treatment.
Collapse
Affiliation(s)
- Tiange Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuguo Xia
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Xu
- Bio-Intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, China
| | - Yan Yi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Hunan, China
| | - Jianwei Chen
- Bio-Intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, China
| | - Ziyuan Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liting Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siming Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxi Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haiyu Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinfang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Corresponding author. Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Rd, Kaifu District, Changsha, 410008, PR China.
| |
Collapse
|
40
|
Yang X, Ma Y, Wang X, Yuan S, Huo F, Yi G, Zhang J, Yang B, Tian W. A 3D-Bioprinted Functional Module Based on Decellularized Extracellular Matrix Bioink for Periodontal Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205041. [PMID: 36516309 PMCID: PMC9929114 DOI: 10.1002/advs.202205041] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/15/2022] [Indexed: 05/14/2023]
Abstract
Poor fiber orientation and mismatched bone-ligament interface fusion have plagued the regeneration of periodontal defects by cell-based scaffolds. A 3D bioprinted biomimetic periodontal module is designed with high architectural integrity using a methacrylate gelatin/decellularized extracellular matrix (GelMA/dECM) cell-laden bioink. The module presents favorable mechanical properties and orientation guidance by high-precision topographical cues and provides a biochemical environment conducive to regulating encapsulated cell behavior. The dECM features robust immunomodulatory activity, reducing the release of proinflammatory factors by M1 macrophages and decreasing local inflammation in Sprague Dawley rats. In a clinically relevant critical-size periodontal defect model, the bioprinted module significantly enhances the regeneration of hybrid periodontal tissues in beagles, especially the anchoring structures of the bone-ligament interface, well-aligned periodontal fibers, and highly mineralized alveolar bone. This demonstrates the effectiveness and feasibility of 3D bioprinting combined with a dental follicle-specific dECM bioink for periodontium regeneration, providing new avenues for future clinical practice.
Collapse
Affiliation(s)
- Xueting Yang
- State Key Laboratory of Oral DiseasesNational Engineering Laboratory for Oral Regenerative MedicineEngineering Research Center of Oral Translational MedicineMinistry of EducationDepartment of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Yue Ma
- State Key Laboratory of Oral DiseasesNational Engineering Laboratory for Oral Regenerative MedicineEngineering Research Center of Oral Translational MedicineMinistry of EducationWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Xiuting Wang
- State Key Laboratory of Oral DiseasesNational Engineering Laboratory for Oral Regenerative MedicineEngineering Research Center of Oral Translational MedicineMinistry of EducationDepartment of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Shengmeng Yuan
- State Key Laboratory of Oral DiseasesNational Engineering Laboratory for Oral Regenerative MedicineEngineering Research Center of Oral Translational MedicineMinistry of EducationDepartment of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Fangjun Huo
- State Key Laboratory of Oral DiseasesNational Engineering Laboratory for Oral Regenerative MedicineEngineering Research Center of Oral Translational MedicineMinistry of EducationWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Genzheng Yi
- State Key Laboratory of Oral DiseasesNational Engineering Laboratory for Oral Regenerative MedicineEngineering Research Center of Oral Translational MedicineMinistry of EducationDepartment of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Jingyi Zhang
- Chengdu Shiliankangjian Biotechnology Co., Ltd.Chengdu610041P. R. China
| | - Bo Yang
- State Key Laboratory of Oral DiseasesNational Engineering Laboratory for Oral Regenerative MedicineEngineering Research Center of Oral Translational MedicineMinistry of EducationDepartment of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Weidong Tian
- State Key Laboratory of Oral DiseasesNational Engineering Laboratory for Oral Regenerative MedicineEngineering Research Center of Oral Translational MedicineMinistry of EducationDepartment of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| |
Collapse
|
41
|
Kort-Mascort J, Flores-Torres S, Peza-Chavez O, Jang JH, Pardo LA, Tran SD, Kinsella J. Decellularized ECM hydrogels: prior use considerations, applications, and opportunities in tissue engineering and biofabrication. Biomater Sci 2023; 11:400-431. [PMID: 36484344 DOI: 10.1039/d2bm01273a] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Tissue development, wound healing, pathogenesis, regeneration, and homeostasis rely upon coordinated and dynamic spatial and temporal remodeling of extracellular matrix (ECM) molecules. ECM reorganization and normal physiological tissue function, require the establishment and maintenance of biological, chemical, and mechanical feedback mechanisms directed by cell-matrix interactions. To replicate the physical and biological environment provided by the ECM in vivo, methods have been developed to decellularize and solubilize tissues which yield organ and tissue-specific bioactive hydrogels. While these biomaterials retain several important traits of the native ECM, the decellularizing process, and subsequent sterilization, and solubilization result in fragmented, cleaved, or partially denatured macromolecules. The final product has decreased viscosity, moduli, and yield strength, when compared to the source tissue, limiting the compatibility of isolated decellularized ECM (dECM) hydrogels with fabrication methods such as extrusion bioprinting. This review describes the physical and bioactive characteristics of dECM hydrogels and their role as biomaterials for biofabrication. In this work, critical variables when selecting the appropriate tissue source and extraction methods are identified. Common manual and automated fabrication techniques compatible with dECM hydrogels are described and compared. Fabrication and post-manufacturing challenges presented by the dECM hydrogels decreased mechanical and structural stability are discussed as well as circumvention strategies. We further highlight and provide examples of the use of dECM hydrogels in tissue engineering and their role in fabricating complex in vitro 3D microenvironments.
Collapse
Affiliation(s)
| | | | - Omar Peza-Chavez
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | - Joyce H Jang
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | | | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Joseph Kinsella
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
42
|
The effect of culture conditions on the bone regeneration potential of osteoblast-laden 3D bioprinted constructs. Acta Biomater 2023; 156:190-201. [PMID: 36155098 DOI: 10.1016/j.actbio.2022.09.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
Three Dimensional (3D) bioprinting is one of the most recent additive manufacturing technologies and enables the direct incorporation of cells within a highly porous 3D-bioprinted construct. While the field has mainly focused on developing methods for enhancing printing resolution and shape fidelity, little is understood about the biological impact of bioprinting on cells. To address this shortcoming, this study investigated the in vitro and in vivo response of human osteoblasts subsequent to bioprinting using gelatin methacryloyl (GelMA) as the hydrogel precursor. First, bioprinted and two-dimensional (2D) cultured osteoblasts were compared, demonstrating that the 3D microenvironment from bioprinting enhanced bone-related gene expression. Second, differentiation regimens of 2-week osteogenic pre-induction in 2D before bioprinting and/or 3-week post-printing osteogenic differentiation were assessed for their capacity to increase the bioprinted construct's biofunctionality towards bone regeneration. The combination of pre-and post-induction regimens showed superior osteogenic gene expression and mineralisation in vitro. Moreover, a rat calvarial model using microtomography and histology demonstrated bone regeneration potential for the pre-and post-differentiation procedure. This study shows the positive impact of bioprinting on cells for osteogenic differentiation and the increased in vivo osteogenic potential of bioprinted constructs via a pre-induction method. STATEMENT OF SIGNIFICANCE: 3D bioprinting, one of the most recent technologies for tissue engineering has mostly focussed on developing methods for enhancing printing properties, little is understood on the biological impact of bioprinting and /or subsequent in vitro maturation methods on cells. Therefore, we addressed these fundamental questions by investigating osteoblast gene expression in bioprinted construct and assessed the efficacy of several induction regimen towards osteogenic differentiation in vitro and in vivo. Osteogenic induction of cells prior to seeding in scaffolds used in conventional tissue engineering applications has been demonstrated to increase the osteogenic potential of the resulting construct. However, to the best of our knowledge, pre-induction methods have not been investigated in 3D bioprinting.
Collapse
|
43
|
Chae S, Cho DW. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering. Acta Biomater 2023; 156:4-20. [PMID: 35963520 DOI: 10.1016/j.actbio.2022.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 02/02/2023]
Abstract
The advent of three-dimensional (3D) bioprinting has enabled impressive progress in the development of 3D cellular constructs to mimic the structural and functional characteristics of natural tissues. Bioprinting has considerable translational potential in tissue engineering and regenerative medicine. This review highlights the rational design and biofabrication strategies of diverse 3D bioprinted tissue constructs for orthopedic tissue engineering applications. First, we elucidate the fundamentals of 3D bioprinting techniques and biomaterial inks and discuss the basic design principles of bioprinted tissue constructs. Next, we describe the rationale and key considerations in 3D bioprinting of tissues in many different aspects. Thereafter, we outline the recent advances in 3D bioprinting technology for orthopedic tissue engineering applications, along with detailed strategies of the engineering methods and materials used, and discuss the possibilities and limitations of different 3D bioprinted tissue products. Finally, we summarize the current challenges and future directions of 3D bioprinting technology in orthopedic tissue engineering and regenerative medicine. This review not only delineates the representative 3D bioprinting strategies and their tissue engineering applications, but also provides new insights for the clinical translation of 3D bioprinted tissues to aid in prompting the future development of orthopedic implants. STATEMENT OF SIGNIFICANCE: 3D bioprinting has driven major innovations in the field of tissue engineering and regenerative medicine; aiming to develop a functional viable tissue construct that provides an alternative regenerative therapy for musculoskeletal tissue regeneration. 3D bioprinting-based biofabrication strategies could open new clinical possibilities for creating equivalent tissue substitutes with the ability to customize them to meet patient demands. In this review, we summarize the significance and recent advances in 3D bioprinting technology and advanced bioinks. We highlight the rationale for biofabrication strategies using 3D bioprinting for orthopedic tissue engineering applications. Furthermore, we offer ample perspective and new insights into the current challenges and future direction of orthopedic bioprinting translation research.
Collapse
Affiliation(s)
- Suhun Chae
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang 37673, South Korea; EDmicBio Inc., 111 Hoegi-ro, Dongdaemun-gu, Seoul 02445, South Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongsangbuk-do, Pohang 37673, South Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea.
| |
Collapse
|
44
|
Assad H, Assad A, Kumar A. Recent Developments in 3D Bio-Printing and Its Biomedical Applications. Pharmaceutics 2023; 15:255. [PMID: 36678884 PMCID: PMC9861443 DOI: 10.3390/pharmaceutics15010255] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The fast-developing field of 3D bio-printing has been extensively used to improve the usability and performance of scaffolds filled with cells. Over the last few decades, a variety of tissues and organs including skin, blood vessels, and hearts, etc., have all been produced in large quantities via 3D bio-printing. These tissues and organs are not only able to serve as building blocks for the ultimate goal of repair and regeneration, but they can also be utilized as in vitro models for pharmacokinetics, drug screening, and other purposes. To further 3D-printing uses in tissue engineering, research on novel, suitable biomaterials with quick cross-linking capabilities is a prerequisite. A wider variety of acceptable 3D-printed materials are still needed, as well as better printing resolution (particularly at the nanoscale range), speed, and biomaterial compatibility. The aim of this study is to provide expertise in the most prevalent and new biomaterials used in 3D bio-printing as well as an introduction to the associated approaches that are frequently considered by researchers. Furthermore, an effort has been made to convey the most pertinent implementations of 3D bio-printing processes, such as tissue regeneration, etc., by providing the most significant research together with a comprehensive list of material selection guidelines, constraints, and future prospects.
Collapse
Affiliation(s)
- Humira Assad
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab 144001, India
| | - Arvina Assad
- Bibi Halima College of Nursing and Medical Technology, Srinagar 190010, India
| | - Ashish Kumar
- Nalanda College of Engineering, Department of Science and Technology, Government of Bihar, Patna 803108, India
| |
Collapse
|
45
|
Alternative lung cell model systems for toxicology testing strategies: Current knowledge and future outlook. Semin Cell Dev Biol 2023; 147:70-82. [PMID: 36599788 DOI: 10.1016/j.semcdb.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
Due to the current relevance of pulmonary toxicology (with focus upon air pollution and the inhalation of hazardous materials), it is important to further develop and implement physiologically relevant models of the entire respiratory tract. Lung model development has the aim to create human relevant systems that may replace animal use whilst balancing cost, laborious nature and regulatory ambition. There is an imperative need to move away from rodent models and implement models that mimic the holistic characteristics important in lung function. The purpose of this review is therefore, to describe and identify the various alternative models that are being applied towards assessing the pulmonary toxicology of inhaled substances, as well as the current and potential developments of various advanced models and how they may be applied towards toxicology testing strategies. These models aim to mimic various regions of the lung, as well as implementing different exposure methods with the addition of various physiologically relevent conditions (such as fluid-flow and dynamic movement). There is further progress in the type of models used with focus on the development of lung-on-a-chip technologies and bioprinting, as well as and the optimization of such models to fill current knowledge gaps within toxicology.
Collapse
|
46
|
Wei Q, Liu D, Chu G, Yu Q, Liu Z, Li J, Meng Q, Wang W, Han F, Li B. TGF-β1-supplemented decellularized annulus fibrosus matrix hydrogels promote annulus fibrosus repair. Bioact Mater 2023; 19:581-593. [PMID: 35600980 PMCID: PMC9108517 DOI: 10.1016/j.bioactmat.2022.04.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 04/23/2022] [Indexed: 12/19/2022] Open
Abstract
Annulus fibrosus (AF) repair remains a challenge because of its limited self-healing ability. Endogenous repair strategies combining scaffolds and growth factors show great promise in AF repair. Although the unique and beneficial characteristics of decellularized extracellular matrix (ECM) in tissue repair have been demonstrated, the poor mechanical property of ECM hydrogels largely hinders their applications in tissue regeneration. In the present study, we combined polyethylene glycol diacrylate (PEGDA) and decellularized annulus fibrosus matrix (DAFM) to develop an injectable, photocurable hydrogel for AF repair. We found that the addition of PEGDA markedly improved the mechanical strength of DAFM hydrogels while maintaining their porous structure. Transforming growth factor-β1 (TGF-β1) was further incorporated into PEGDA/DAFM hydrogels, and it could be continuously released from the hydrogel. The in vitro experiments showed that TGF-β1 facilitated the migration of AF cells. Furthermore, PEGDA/DAFM/TGF-β1 hydrogels supported the adhesion, proliferation, and increased ECM production of AF cells. In vivo repair performance of the hydrogels was assessed using a rat AF defect model. The results showed that the implantation of PEGDA/DAFM/TGF-β1 hydrogels effectively sealed the AF defect, prevented nucleus pulposus atrophy, retained disc height, and partially restored the biomechanical properties of disc. In addition, the implanted hydrogel was infiltrated by cells resembling AF cells and well integrated with adjacent AF tissue. In summary, findings from this study indicate that TGF-β1-supplemented DAFM hydrogels hold promise for AF repair.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dachuan Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Qifan Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhao Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiaying Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Qingchen Meng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weishan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Fengxuan Han
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
47
|
Wang B, Qinglai T, Yang Q, Li M, Zeng S, Yang X, Xiao Z, Tong X, Lei L, Li S. Functional acellular matrix for tissue repair. Mater Today Bio 2022; 18:100530. [PMID: 36601535 PMCID: PMC9806685 DOI: 10.1016/j.mtbio.2022.100530] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
In view of their low immunogenicity, biomimetic internal environment, tissue- and organ-like physicochemical properties, and functionalization potential, decellularized extracellular matrix (dECM) materials attract considerable attention and are widely used in tissue engineering. This review describes the composition of extracellular matrices and their role in stem-cell differentiation, discusses the advantages and disadvantages of existing decellularization techniques, and presents methods for the functionalization and characterization of decellularized scaffolds. In addition, we discuss progress in the use of dECMs for cartilage, skin, nerve, and muscle repair and the transplantation or regeneration of different whole organs (e.g., kidneys, liver, uterus, lungs, and heart), summarize the shortcomings of using dECMs for tissue and organ repair after refunctionalization, and examine the corresponding future prospects. Thus, the present review helps to further systematize the application of functionalized dECMs in tissue/organ transplantation and keep researchers up to date on recent progress in dECM usage.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Shiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinying Tong
- Department of Hemodialysis, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Corresponding author. State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Corresponding author. Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
48
|
Zhang M, Zhang C, Li Z, Fu X, Huang S. Advances in 3D skin bioprinting for wound healing and disease modeling. Regen Biomater 2022; 10:rbac105. [PMID: 36683757 PMCID: PMC9845530 DOI: 10.1093/rb/rbac105] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Even with many advances in design strategies over the past three decades, an enormous gap remains between existing tissue engineering skin and natural skin. Currently available in vitro skin models still cannot replicate the three-dimensionality and heterogeneity of the dermal microenvironment sufficiently to recapitulate many of the known characteristics of skin disorder or disease in vivo. Three-dimensional (3D) bioprinting enables precise control over multiple compositions, spatial distributions and architectural complexity, therefore offering hope for filling the gap of structure and function between natural and artificial skin. Our understanding of wound healing process and skin disease would thus be boosted by the development of in vitro models that could more completely capture the heterogeneous features of skin biology. Here, we provide an overview of recent advances in 3D skin bioprinting, as well as design concepts of cells and bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering physiological or pathological skin model, focusing more specifically on the function of skin appendages and vasculature. We conclude with current challenges and the technical perspective for further development of 3D skin bioprinting.
Collapse
Affiliation(s)
| | | | | | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, China,School of Medicine, Nankai University, 94 Wei Jing Road, Tianjin 300071, China
| | - Sha Huang
- Correspondence address. Tel: +86-10-66867384, E-mail:
| |
Collapse
|
49
|
Qian H, He L, Ye Z, Wei Z, Ao J. Decellularized matrix for repairing intervertebral disc degeneration: Fabrication methods, applications and animal models. Mater Today Bio 2022; 18:100523. [PMID: 36590980 PMCID: PMC9800636 DOI: 10.1016/j.mtbio.2022.100523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Intervertebral disc degeneration (IDD)-induced low back pain significantly influences the quality of life, placing a burden on public health systems worldwide. Currently available therapeutic strategies, such as conservative or operative treatment, cannot effectively restore intervertebral disc (IVD) function. Decellularized matrix (DCM) is a tissue-engineered biomaterial fabricated using physical, chemical, and enzymatic technologies to eliminate cells and antigens. By contrast, the extracellular matrix (ECM), including collagen and glycosaminoglycans, which are well retained, have been extensively studied in IVD regeneration. DCM inherits the native architecture and specific-differentiation induction ability of IVD and has demonstrated effectiveness in IVD regeneration in vitro and in vivo. Moreover, significant improvements have been achieved in the preparation process, mechanistic insights, and application of DCM for IDD repair. Herein, we comprehensively summarize and provide an overview of the roles and applications of DCM for IDD repair based on the existing evidence to shed a novel light on the clinical treatment of IDD.
Collapse
Key Words
- (3D), three-dimensional
- (AF), annular fibers
- (AFSC), AF stem cells
- (APNP), acellular hydrogel descendent from porcine NP
- (DAF-G), decellularized AF hydrogel
- (DAPI), 4,6-diamidino-2-phenylindole
- (DCM), decellularized matrix
- (DET), detergent-enzymatic treatment
- (DWJM), Wharton's jelly matrix
- (ECM), extracellular matrix
- (EVs), extracellular vesicles
- (Exos), exosome
- (IDD), intervertebral disc degeneration
- (IVD), intervertebral disc
- (LBP), Low back pain
- (NP), nucleus pulposus
- (NPCS), NP-based cell delivery system
- (PEGDA/DAFM), polyethylene glycol diacrylate/decellularized AF matrix
- (SD), sodium deoxycholate
- (SDS), sodium dodecyl sulfate
- (SIS), small intestinal submucosa
- (TGF), transforming growth factor
- (bFGF), basic fibroblast growth factor
- (hADSCs), human adipose-derived stem cells
- (hDF), human dermal fibroblast
- (iAF), inner annular fibers
- (oAF), outer annular fibers
- (sGAG), sulfated glycosaminoglycan
- Decellularized matrix
- Intervertebral disc degeneration
- Regenerative medicine
- Tissue engineering
Collapse
Affiliation(s)
- Hu Qian
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li He
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhimin Ye
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
- Corresponding author. Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, 410000, China.
| | - Zairong Wei
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Corresponding author. Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, China.
| |
Collapse
|
50
|
Xie X, Wu S, Mou S, Guo N, Wang Z, Sun J. Microtissue-Based Bioink as a Chondrocyte Microshelter for DLP Bioprinting. Adv Healthc Mater 2022; 11:e2201877. [PMID: 36085440 PMCID: PMC11468467 DOI: 10.1002/adhm.202201877] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/06/2022] [Indexed: 01/28/2023]
Abstract
Bioprinting specific tissues with robust viability is a great challenge, requiring a delicate balance between a densely cellular distribution and hydrogel network crosslinking density. Microtissues composed of tissue-specific mesenchymal stem cells and extra cellular matrix (ECM) particles provide an alternative scheme for realizing biomimetic cell density and microenvironment. Nevertheless, due to their instability during manufacturing, scarce efforts have been made to date to assemble them using rapid prototyping methods. Here, a novel microtissue bioink with good printability and cellular viability maintenance for digital light processing (DLP) bioprinting is introduced. Generally, the microtissue bioink is prepared by crosslinking acellular matrix microparticles and GelMA hydrogel with a specific proportion. The microtissue bioink exhibits the desired mechanical properties, swelling ratio, and has almost no influences on printability. For instance, a DLP bioprinted ear with a precise auricle structure using microtia chondrocytes microtissue boink is created. Additionally, the chondrocytes in the printed ears show obvious advantages in cell proliferation in vitro and auricular cartilage regeneration in vivo. The microtissue composite bioink for DLP printing not only enables accurate assembly of organ building blocks but also provides a 3D shelter to ensure printed cells' viability.
Collapse
Affiliation(s)
- Xinfang Xie
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Wuhan Clinical Research Center for Superficial Organ ReconstructionWuhan430022China
| | - Shuang Wu
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Wuhan Clinical Research Center for Superficial Organ ReconstructionWuhan430022China
| | - Shan Mou
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Wuhan Clinical Research Center for Superficial Organ ReconstructionWuhan430022China
| | - Nengqiang Guo
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Wuhan Clinical Research Center for Superficial Organ ReconstructionWuhan430022China
| | - Zhenxing Wang
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Wuhan Clinical Research Center for Superficial Organ ReconstructionWuhan430022China
| | - Jiaming Sun
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Wuhan Clinical Research Center for Superficial Organ ReconstructionWuhan430022China
| |
Collapse
|