1
|
Soleimani A, Oraee Yazdani S, Pedram M, Saadinam F, Rasaee MJ, Soleimani M. Intrathecal injection of human placental mesenchymal stem cells derived exosomes significantly improves functional recovery in spinal cord injured rats. Mol Biol Rep 2024; 51:193. [PMID: 38270663 DOI: 10.1007/s11033-023-08972-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) due to lack of restoration of damaged neuronal cells is associated with sensorimotor impairment. This study was focused on using the human placental mesenchymal stem cells- exosome (HPMSCs- Exosomes) in an animal model of severe SCI under myelogram procedure. METHODS AND RESULTS Intrathecal injection of exosomes was performed in the acute phase of SCI in female rats. The improved functional recovery of the animals was followed for 6 weeks in control (saline, n = 6) and HPMSCs- EXO (HPMSCs-Exosomes, n = 6) groups. Pathological changes and glial scar size were evaluated. The Immunohistochemistry (IHC) of GFAP and NF200 factors as well as the apoptosis assay was investigated in the tissue samples from the injury site. The results demonstrated that HPMSCs-exosomes can improve motor function by attenuating apoptosis of neurons at the injury site, decreasing GFAP expression and increasing NF200 in the HPMSCs-EXO group. Also, HPMSCs-exosomes by preventing the formation of cavities causes preservation of tissue in SCI rats. CONCLUSIONS These findings demonstrate the effectiveness of HPMSC-Exosomes as a therapeutic method to improve functional recovery, reduce pathological changes associated with injury, and prevent chronicity after SCI. The neuroprotective and anti-apoptotic potential of HPMSCs- Exosomes may be a promising therapeutic approach for SCI. Another result was the importance of intrathecal injection of exosomes in the acute phase, which accelerated the healing process. Furthermore, the myelogram can be a feasible and suitable method to confirm the accuracy of intrathecal injection and examine the subarachnoid space in the laboratory animals.
Collapse
Affiliation(s)
- Afsane Soleimani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Post Office Box: 14115-111, Tehran, Iran
| | - Saeed Oraee Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Post Office Box: 1983969411, Tehran, Iran
| | - Mirsepehr Pedram
- Department of Surgery & Radiology- Faculty of Veterinary Medicine, University of Tehran, Post Office Box: 14155-6619, Tehran, Iran
| | - Fatemeh Saadinam
- Department of Surgery & Radiology- Faculty of Veterinary Medicine, University of Tehran, Post Office Box: 14155-6619, Tehran, Iran
| | - Mohammad Javad Rasaee
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Post Office Box: 14115-111, Tehran, Iran.
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Post Office Box: 14115-111, Tehran, Iran.
| |
Collapse
|
2
|
Wang S, Cheng L. The role of apoptosis in spinal cord injury: a bibliometric analysis from 1994 to 2023. Front Cell Neurosci 2024; 17:1334092. [PMID: 38293650 PMCID: PMC10825042 DOI: 10.3389/fncel.2023.1334092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Background Apoptosis after spinal cord injury (SCI) plays a pivotal role in the secondary injury mechanisms, which cause the ultimate neurologic insults. A better understanding of the molecular and cellular basis of apoptosis in SCI allows for improved glial and neuronal survival via the administrations of anti-apoptotic biomarkers. The knowledge structure, development trends, and research hotspots of apoptosis and SCI have not yet been systematically investigated. Methods Articles and reviews on apoptosis and SCI, published from 1st January 1994 to 1st Oct 2023, were retrieved from the Web of Science™. Bibliometrix in R was used to evaluate annual publications, countries, affiliations, authors, sources, documents, key words, and hot topics. Results A total of 3,359 publications in accordance with the criterions were obtained, which exhibited an ascending trend in annual publications. The most productive countries were the USA and China. Journal of Neurotrauma was the most impactive journal; Wenzhou Medical University was the most prolific affiliation; Cuzzocrea S was the most productive and influential author. "Apoptosis," "spinal-cord-injury," "expression," "activation," and "functional recovery" were the most frequent key words. Additionally, "transplantation," "mesenchymal stemness-cells," "therapies," "activation," "regeneration," "repair," "autophagy," "exosomes," "nlrp3 inflammasome," "neuroinflammation," and "knockdown" were the latest emerging key words, which may inform the hottest themes. Conclusions Apoptosis after SCI may cause the ultimate neurological damages. Development of novel treatments for secondary SCI mainly depends on a better understanding of apoptosis-related mechanisms in molecular and cellular levels. Such therapeutic interventions involve the application of anti-apoptotic agents, free radical scavengers, as well as anti-inflammatory drugs, which can be targeted to inhibit core events in cellular and molecular injury cascades pathway.
Collapse
Affiliation(s)
- Siqiao Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Hashemi ZS, Moghadam MF, Khalili S, Hashemi SM, Sepehr KS, Sadroddiny E. Distinctive Expression of MetastamiRs in Breast Cancer Mesenchymal Stem Cells Isolated from Solid Tumor. Curr Stem Cell Res Ther 2024; 19:1525-1534. [PMID: 38265389 DOI: 10.2174/011574888x272313231124063458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND MSCs are a part of the tumor microenvironment, which secrete cytokines and chemokines. They can affect metastasis and the growth of tumors. metastamiRs are newly recognized regulatory elements of the metastasis pathway which are involved in epithelial-to-mesenchymal transition (EMT). OBJECTIVE In the present study, we aimed to assess the expression profile of metastamiRs in the context of MSCs in correlation with their invasion and migration power. METHODS Tumor-isolated BC-MSCs and normal human mammary epithelial cells (HMECs) along with MCF-7, MDA-MB231, and MCF-10A cells were prepared and confirmed for their identity. The cells were assessed for CD44+CD24¯ percentage, Oct-4, and Survivin expression. GEO, KEGG, and TCGA databases were investigated to detect differential miR-expressions. Real- time PCR for 13 miRs was performed using LNA primers. Ultimately, Transwell-Matrigel assays as used to assess the level of migration and invasion. RESULTS Our results indicated that some oncomiRs like miR-10b were upregulated in BC-MSCs, while the levels of miR-373 and miR-520c were similar to the MCF-10A. Generally, miR-200 family members were on lower levels compared to the other miR-suppressor (miR-146a, 146b, and 335). miR-31 and 193b were up-regulated in MCF-10A. The most invasiveness was observed in the MDA-MB231 cell line. CONCLUSION We have demonstrated that the miR-expression levels of BC-MSCs are somewhat in between MCF-7 and MDA-MB231 miR-expression levels. This could be the logic behind the moderate level of invasion in BC-MSCs. Therefore, miR-therapy approaches such as miR-mimic or antagomiRs could be used for BC-MSCs in clinical cancer therapy.
Collapse
Affiliation(s)
- Zahra Sadat Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Koushan Sineh Sepehr
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Sadroddiny
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Liu JP, Wang JL, Hu BE, Zou FL, Wu CL, Shen J, Zhang WJ. Olfactory ensheathing cells and neuropathic pain. Front Cell Dev Biol 2023; 11:1147242. [PMID: 37223000 PMCID: PMC10201020 DOI: 10.3389/fcell.2023.1147242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 08/29/2023] Open
Abstract
Damage to the nervous system can lead to functional impairment, including sensory and motor functions. Importantly, neuropathic pain (NPP) can be induced after nerve injury, which seriously affects the quality of life of patients. Therefore, the repair of nerve damage and the treatment of pain are particularly important. However, the current treatment of NPP is very weak, which promotes researchers to find new methods and directions for treatment. Recently, cell transplantation technology has received great attention and has become a hot spot for the treatment of nerve injury and pain. Olfactory ensheathing cells (OECs) are a kind of glial cells with the characteristics of lifelong survival in the nervous system and continuous division and renewal. They also secrete a variety of neurotrophic factors, bridge the fibers at both ends of the injured nerve, change the local injury microenvironment, and promote axon regeneration and other biological functions. Different studies have revealed that the transplantation of OECs can repair damaged nerves and exert analgesic effect. Some progress has been made in the effect of OECs transplantation in inhibiting NPP. Therefore, in this paper, we provided a comprehensive overview of the biology of OECs, described the possible pathogenesis of NPP. Moreover, we discussed on the therapeutic effect of OECs transplantation on central nervous system injury and NPP, and prospected some possible problems of OECs transplantation as pain treatment. To provide some valuable information for the treatment of pain by OECs transplantation in the future.
Collapse
Affiliation(s)
- Ji-peng Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jia-ling Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Bai-er Hu
- Department of Physical Examination, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Fei-long Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Chang-lei Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jie Shen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Abdolmohammadi K, Mahmoudi T, Alimohammadi M, Tahmasebi S, Zavvar M, Hashemi SM. Mesenchymal stem cell-based therapy as a new therapeutic approach for acute inflammation. Life Sci 2022; 312:121206. [PMID: 36403645 DOI: 10.1016/j.lfs.2022.121206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Acute inflammatory diseases such as acute colitis, kidney injury, liver failure, lung injury, myocardial infarction, pancreatitis, septic shock, and spinal cord injury are significant causes of death worldwide. Despite advances in the understanding of its pathophysiology, there are many restrictions in the treatment of these diseases, and new therapeutic approaches are required. Mesenchymal stem cell-based therapy due to immunomodulatory and regenerative properties is a promising candidate for acute inflammatory disease management. Based on preclinical results, mesenchymal stem cells and their-derived secretome improved immunological and clinical parameters. Furthermore, many clinical trials of acute kidney, liver, lung, myocardial, and spinal cord injury have yielded promising results. In this review, we try to provide a comprehensive view of mesenchymal stem cell-based therapy in acute inflammatory diseases as a new treatment approach.
Collapse
Affiliation(s)
- Kamal Abdolmohammadi
- Department of Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Tayebeh Mahmoudi
- 17 Shahrivar Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanothechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Melrose J. Fractone Stem Cell Niche Components Provide Intuitive Clues in the Design of New Therapeutic Procedures/Biomatrices for Neural Repair. Int J Mol Sci 2022; 23:5148. [PMID: 35563536 PMCID: PMC9103880 DOI: 10.3390/ijms23095148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to illustrate recent developments in neural repair utilizing hyaluronan as a carrier of olfactory bulb stem cells and in new bioscaffolds to promote neural repair. Hyaluronan interacts with brain hyalectan proteoglycans in protective structures around neurons in perineuronal nets, which also have roles in the synaptic plasticity and development of neuronal cognitive properties. Specialist stem cell niches termed fractones located in the sub-ventricular and sub-granular regions of the dentate gyrus of the hippocampus migrate to the olfactory bulb, which acts as a reserve of neuroprogenitor cells in the adult brain. The extracellular matrix associated with the fractone stem cell niche contains hyaluronan, perlecan and laminin α5, which regulate the quiescent recycling of stem cells and also provide a means of escaping to undergo the proliferation and differentiation to a pluripotent migratory progenitor cell type that can participate in repair processes in neural tissues. Significant improvement in the repair of spinal cord injury and brain trauma has been reported using this approach. FGF-2 sequestered by perlecan in the neuroprogenitor niche environment aids in these processes. Therapeutic procedures have been developed using olfactory ensheathing stem cells and hyaluronan as a carrier to promote neural repair processes. Now that recombinant perlecan domain I and domain V are available, strategies may also be expected in the near future using these to further promote neural repair strategies.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia;
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
7
|
Miah M, Ferretti P, Choi D. Considering the Cellular Composition of Olfactory Ensheathing Cell Transplants for Spinal Cord Injury Repair: A Review of the Literature. Front Cell Neurosci 2021; 15:781489. [PMID: 34867207 PMCID: PMC8635789 DOI: 10.3389/fncel.2021.781489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
Olfactory ensheathing cells (OECs) are specialized glia cells of the olfactory system that support the continual regeneration of olfactory neurons throughout adulthood. Owing to their pro-regenerative properties, OECs have been transplanted in animal models of spinal cord injuries (SCI) and trialed in clinical studies on SCI patients. Although these studies have provided convincing evidence to support the continued development of OEC transplantation as a treatment option for the repair of SCI, discrepancies in the reported outcome has shown that OEC transplantation requires further improvement. Much of the variability in the reparative potential of OEC transplants is due to the variations in the cell composition of transplants between studies. As a result, the optimal cell preparation is currently a subject of debate. Here we review, the characterization as well as the effect of the cell composition of olfactory cell transplantation on therapeutic outcome in SCI. Firstly, we summarize and review the cell composition of olfactory cell preparations across the different species studied prior to transplantation. Since the purity of cells in olfactory transplants might affect the study outcome we also examine the effect of the proportions of OECs and the different cell types identified in the transplant on neuroregeneration. Finally, we consider the effect of the yield of cells on neuroregeneration by assessing the cell dose of transplants on therapeutic outcome.
Collapse
Affiliation(s)
- Mahjabeen Miah
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Patrizia Ferretti
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David Choi
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
8
|
Orlandin JR, Gomes IDS, Sallum Leandro SDF, Fuertes Cagnim A, Casals JB, Carregaro AB, Freitas SH, Machado LC, Reis Castiglioni MC, Garcia Alves AL, de Vasconcelos Machado VM, Ambrósio CE. Treatment of Chronic Spinal Cord Injury in Dogs Using Amniotic Membrane-Derived Stem Cells: Preliminary Results. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2021; 14:39-49. [PMID: 34703247 PMCID: PMC8536879 DOI: 10.2147/sccaa.s324184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022]
Abstract
Introduction Intervertebral disc diseases (IVDD) represent the majority of neurological attendance and responsible for the most cases of paralysis in dogs. Treatments currently used do not show satisfactory results in patients with more severe and chronic neurological manifestations. Methods To promote nerve and muscular recovery, as well as improve quality of life, we aimed to create a double-blind test method, associating spinal decompression surgery and allogeneic transplantation of amniotic membrane-derived stem cells (AMSCs) in dogs with chronic IVDD. Cells were characterized as fetal mesenchymal cells and safe for application. Eight animals completed the experiment: stem cell applications were made in four animals that had previously undergone an unsuccessful surgical procedure (“SC group”, n = 4); two animals were submitted to surgery, followed by applications of stem cells (“Surgery + SC”, n = 2); two other animals were submitted to surgery, followed by the application of saline solution (“Surgery + placebo”, n = 2). During the surgical procedure, a topical application was performed on the lesion and after fifteen and forty-five days another two applications were made via epidural. Animals were monitored biweekly and reassessed three months after surgery, by functional tests and magnetic resonance exams. Results Some animals presented significant neurological improvement, such as the recovery of nociception and ability to remain on station. Despite the need further studies, until the present moment, cell therapy has been feasible and has no harmful effects on animals. Conclusion The protocol of preclinical trial showed the association with decompressive surgery and cell transplantation in dogs with thoracolumbar IVDD proved feasible, and it was possible to observe neurological improvement after treatment. No tissue improvement through MRI was found. The double-blind test guaranteed reliability of the evaluations and results obtained that, even with a small sample size, generated satisfactory results for the animals and owners.
Collapse
Affiliation(s)
- Jéssica Rodrigues Orlandin
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA-USP), University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Ingrid da Silva Gomes
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA-USP), University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Shamira de Fátima Sallum Leandro
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA-USP), University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Artur Fuertes Cagnim
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA-USP), University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Juliana Barbosa Casals
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA-USP), University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Adriano Bonfim Carregaro
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA-USP), University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Silvio Henrique Freitas
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA-USP), University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Luciana Cristina Machado
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA-USP), University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Maria Cristina Reis Castiglioni
- Department of Veterinary Medicine, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Ana Liz Garcia Alves
- Department of Veterinary Medicine, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Vânia Maria de Vasconcelos Machado
- Department of Veterinary Medicine, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA-USP), University of São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
9
|
Edamura K, Takahashi Y, Fujii A, Masuhiro Y, Narita T, Seki M, Asano K. Recombinant canine basic fibroblast growth factor-induced differentiation of canine bone marrow mesenchymal stem cells into voltage- and glutamate-responsive neuron-like cells. Regen Ther 2020; 15:121-128. [PMID: 33426210 PMCID: PMC7770349 DOI: 10.1016/j.reth.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Introduction Basic fibroblast growth factor (bFGF) is a promising cytokine in regenerative therapy for spinal cord injury. In this study, recombinant canine bFGF (rc-bFGF) was synthesized for clinical use in dogs, and the ability of rc-bFGF to differentiate canine bone marrow mesenchymal stem cells (BMSCs) into functional neurons was investigated. Methods The rc-bFGF was synthesized using a wheat germ cell-free protein synthesis system. The expression of rc-bFGF mRNA in the purification process was confirmed using a reverse transcription-polymerase chain reaction (RT-PCR). Western blotting was performed to confirm the antigenic property of the purified protein. To verify function of the purified protein, phosphorylation of extracellular signal-regulated kinase (ERK) was examined by in vitro assay using HEK293 cells. To compare the neuronal differentiation capacity of canine BMSCs in response to treatment with rc-bFGF, the cells were divided into the following four groups: control, undifferentiated, rh-bFGF, and rc-bFGF groups. After neuronal induction, the percentage of cells that had changed to a neuron-like morphology and the mRNA expression of neuronal markers were evaluated. Furthermore, to assess the function of the canine BMSCs after neuronal induction, changes in the intracellular Ca2+ concentrations after stimulation with KCl and l-glutamate were examined. Results The protein synthesized in this study was rc-bFGF and functioned as bFGF, from the results of RT-PCR, western blotting, and the expression of pERK in HEK293 cells. Canine BMSCs acquired a neuron-like morphology and expressed mRNAs of neuronal markers after neuronal induction in the rh-bFGF and the rc-bFGF groups. These results were more marked in the rc-bFGF group than in the other groups. Furthermore, an increase in intracellular Ca2+ concentrations was observed after the stimulation of KCl and l-glutamate in the rc-bFGF group, same as in the rh-bFGF group. Conclusions A functional rc-bFGF was successfully synthesized, and rc-bFGF induced the differentiation of canine BMSCs into voltage- and glutamate-responsive neuron-like cells. Our purified rc-bFGF may contribute, on its own, or in combination with canine BMSCs, to regenerative therapy for spinal cord injury in dogs. Functional rc-bFGF was successfully synthesized. rc-bFGF induced the differentiation of canine BMSCs into neuron-like cells. rc-bFGF may aid in regenerative therapy of spinal cord injury in dogs.
Collapse
Key Words
- BMSCs, bone marrow mesenchymal stem cells
- Basic fibroblast growth factor
- Bone marrow
- Differentiation
- Dog
- EDTA, ethylenediaminetetraacetic acid
- ERK, extracellular signal-regulated kinase
- FBS, fatal bovine serum
- FGFR, basic fibroblast growth factor receptor
- GUSB, β-glucuronidase
- HEK293, human embryonic kidney cells 293
- HRP, horseradish peroxidase
- Mesenchymal stem cell
- Neuron
- PBS, phosphate buffered saline
- PCR, polymerase chain reaction
- PI3K, phosphatidylinositol 3-kinase
- RT-PCR, reverse transcription-polymerase chain reaction
- bFGF, basic fibroblast growth factor
- cDNA, complementary DNA
- mRNA, messenger ribonucleic acid
- pERK, phosphorylated extracellular signal-regulated kinase
- αMEM, alpha modified eagle minimum essential medium
Collapse
Affiliation(s)
- Kazuya Edamura
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yusuke Takahashi
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Airi Fujii
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yoshikazu Masuhiro
- Department of Applied Biological Science, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takanori Narita
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Mamiko Seki
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kazushi Asano
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource and Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| |
Collapse
|
10
|
Reshamwala R, Shah M, Belt L, Ekberg JAK, St John JA. Reliable cell purification and determination of cell purity: crucial aspects of olfactory ensheathing cell transplantation for spinal cord repair. Neural Regen Res 2020; 15:2016-2026. [PMID: 32394949 PMCID: PMC7716040 DOI: 10.4103/1673-5374.282218] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transplantation of olfactory ensheathing cells, the glia of the primary olfactory nervous system, has been trialed for spinal cord injury repair with promising but variable outcomes in animals and humans. Olfactory ensheathing cells can be harvested either from the lamina propria beneath the neuroepithelium in the nasal cavity, or from the olfactory bulb in the brain. As these areas contain several other cell types, isolating and purifying olfactory ensheathing cells is a critical part of the process. It is largely unknown how contaminating cells such as fibroblasts, other glial cell types and supporting cells affect olfactory ensheathing cell function post-transplantation; these cells may also cause unwanted side-effects. It is also, however, possible that the presence of some of the contaminant cells can improve outcomes. Here, we reviewed the last decade of olfactory ensheathing cell transplantation studies in rodents, with a focus on olfactory ensheathing cell purity. We analyzed how purification methods and resultant cell purity differed between olfactory mucosa- and olfactory bulb-derived cell preparations. We analyzed how the studies reported on olfactory ensheathing cell purity and which criteria were used to define cells as olfactory ensheathing cells. Finally, we analyzed the correlation between cell purity and transplantation outcomes. We found that olfactory bulb-derived olfactory ensheathing cell preparations are typically purer than mucosa-derived preparations. We concluded that there is an association between high olfactory ensheathing cell purity and favourable outcomes, but the lack of olfactory ensheathing cell-specific markers severely hampers the field.
Collapse
Affiliation(s)
- Ronak Reshamwala
- Griffith Institute for Drug Discovery, Griffith University, Brisbane; Menzies Health Institute Queensland, Griffith University, Southport; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Megha Shah
- Menzies Health Institute Queensland, Griffith University, Southport; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Lucy Belt
- Menzies Health Institute Queensland, Griffith University, Southport; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Jenny A K Ekberg
- Griffith Institute for Drug Discovery, Griffith University, Brisbane; Menzies Health Institute Queensland, Griffith University, Southport; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - James A St John
- Griffith Institute for Drug Discovery, Griffith University, Brisbane; Menzies Health Institute Queensland, Griffith University, Southport; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Kalotra S, Saini V, Singh H, Sharma A, Kaur G. 5-Nonyloxytryptamine oxalate-embedded collagen-laminin scaffolds augment functional recovery after spinal cord injury in mice. Ann N Y Acad Sci 2019; 1465:99-116. [PMID: 31800108 DOI: 10.1111/nyas.14279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/03/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
Polysialic acid (PSA) is crucial for the induction and maintenance of nervous system plasticity and repair after injury. In order to exploit the immense therapeutic potential of PSA, previous studies have focused on the identification and development of peptide-based or synthetic PSA mimetics. 5-Nonyloxytryptamine (5-NOT) has been previously reported as a PSA-mimicking compound for promoting functional recovery after spinal cord injury in mice. In order to explore the neuroregeneration potential of 5-NOT, the current study was based on a biomaterial approach using collagen-laminin (C/L) scaffolds. In in vitro studies, 5-NOT was observed to promote neurite outgrowth, migration, and fasciculation in cerebellar neuronal cells, whereas in 3D cell cultures it showed more ramification and complex Sholl profiles. 5-NOT promoted the survival and neurite length of cortical neurons when cocultured with glutamate-challenged astrocytes. In in vivo studies, spinal cord compression injury mice were used with immediate application of C/L hydrogels impregnated with 5-NOT. C/L + 5-NOT-treated mice demonstrated ∼75% of motor recovery 14 days after injury. Furthermore, this effect was shown to be dependent on the ERK-MAPK pathway and augmentation of cell survival. Thus, based on a biomaterial approach, our current study provides new insight for 5-NOT-containing hydrogels as a promising candidate to speed up recovery after central nervous system injuries.
Collapse
Affiliation(s)
- Shikha Kalotra
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vedangana Saini
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harpal Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anuradha Sharma
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
12
|
Reshamwala R, Shah M, St John J, Ekberg J. Survival and Integration of Transplanted Olfactory Ensheathing Cells are Crucial for Spinal Cord Injury Repair: Insights from the Last 10 Years of Animal Model Studies. Cell Transplant 2019; 28:132S-159S. [PMID: 31726863 PMCID: PMC7016467 DOI: 10.1177/0963689719883823] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/03/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
Olfactory ensheathing cells (OECs), the glial cells of the primary olfactory nervous system, support the natural regeneration of the olfactory nerve that occurs throughout life. OECs thus exhibit unique properties supporting neuronal survival and growth. Transplantation of OECs is emerging as a promising treatment for spinal cord injury; however, outcomes in both animals and humans are variable and the method needs improvement and standardization. A major reason for the discrepancy in functional outcomes is the variability in survival and integration of the transplanted cells, key factors for successful spinal cord regeneration. Here, we review the outcomes of OEC transplantation in rodent models over the last 10 years, with a focus on survival and integration of the transplanted cells. We identify the key factors influencing OEC survival: injury type, source of transplanted cells, co-transplantation with other cell types, number and concentration of cells, method of delivery, and time of transplantation after the injury. We found that two key issues are hampering optimization and standardization of OEC transplantation: lack of (1) reliable methods for identifying transplanted cells, and (2) three-dimensional systems for OEC delivery. To develop OEC transplantation as a successful and standardized therapy for spinal cord injury, we must address these issues and increase our understanding of the complex parameters influencing OEC survival.
Collapse
Affiliation(s)
- Ronak Reshamwala
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia
| | - Megha Shah
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia
| | - James St John
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia
| | - Jenny Ekberg
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Massoto TB, Santos ACR, Ramalho BS, Almeida FM, Martinez AMB, Marques SA. Mesenchymal stem cells and treadmill training enhance function and promote tissue preservation after spinal cord injury. Brain Res 2019; 1726:146494. [PMID: 31586628 DOI: 10.1016/j.brainres.2019.146494] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/14/2019] [Accepted: 10/02/2019] [Indexed: 01/01/2023]
Abstract
Spinal cord injury (SCI) is considered a serious neurological disorder that can lead to severe sensory, motor and autonomic deficits. In this work, we investigated whether cell therapy associated with physical activity after mouse SCI could promote morphological and functional outcomes, using a lesion model established by our group. Mesenchymal stem cells (8 × 105 cells/2 µL) or DMEM (2 µL), were injected in the epicenter of the lesion at 7 days after SCI, and the mice started a moderate treadmill training 14 days after injury. Functional assessments were performed weekly up to 8 weeks after injury when the morphological analyses were also performed. Four injured groups were analyzed: DMEM (SCI plus DMEM injection), MSCT (SCI plus MSC injection), DMEM + TMT (SCI plus DMEM injection and treadmill training) and MSCT + TMT (SCI plus MSC injection and treadmill training). The animals that received the combined therapy (MSCT + TMT) were able to recover and maintained the better functional results throughout the analyzed period. The morphometric analysis from MSCT + TMT group evidenced a larger spared white matter area and a higher number of preserved myelinated fibers with the majority of them reaching the ideal G-ratio values, when compared to other groups. Ultrastructural analysis from this group, using transmission electron microscopy, showed better tissue preservation with few microcavitations and degenerating nerve fibers. Also, this group exhibited a significantly higher neurotrophin 4 (NT4) expression as compared to the other groups. The results provided by this study support the conclusion that the association of strategies is a potential therapeutic approach to treat SCI, with the possibility of translation into the clinical practice.
Collapse
Affiliation(s)
- Tamires Braga Massoto
- Laboratory of Neural Regeneration and Function - Department of Neurobiology, Institute of Biology, Federal Fluminense University, Rio de Janeiro, Brazil
| | - Anne Caroline Rodrigues Santos
- Laboratory of Neural Regeneration and Function - Department of Neurobiology, Institute of Biology, Federal Fluminense University, Rio de Janeiro, Brazil; Laboratory of Neurodegeneration and Repair, Clementino Fraga Filho Hospital, Medical School, Departament of Pathology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna S Ramalho
- Laboratory of Neurodegeneration and Repair, Clementino Fraga Filho Hospital, Medical School, Departament of Pathology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Martins Almeida
- Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria Blanco Martinez
- Laboratory of Neurodegeneration and Repair, Clementino Fraga Filho Hospital, Medical School, Departament of Pathology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suelen Adriani Marques
- Laboratory of Neural Regeneration and Function - Department of Neurobiology, Institute of Biology, Federal Fluminense University, Rio de Janeiro, Brazil; Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Li C, Jiao G, Wu W, Wang H, Ren S, Zhang L, Zhou H, Liu H, Chen Y. Exosomes from Bone Marrow Mesenchymal Stem Cells Inhibit Neuronal Apoptosis and Promote Motor Function Recovery via the Wnt/β-catenin Signaling Pathway. Cell Transplant 2019; 28:1373-1383. [PMID: 31423807 PMCID: PMC6802144 DOI: 10.1177/0963689719870999] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Severe spinal cord injury (SCI) is caused by external mechanical injury, resulting in
unrecoverable neurological injury. Recent studies have shown that exosomes derived from
bone marrow mesenchymal stem cells (BMSCs-Exos) might be valuable paracrine molecules in
the treatment of SCI. In this study, we designed SCI models in vivo and in vitro and then
investigated the possible mechanism of successful repair by BMSCs-Exos. In vivo, we
established one Sham group and two SCI model groups. The Basso, Beattie, Bresnahan (BBB)
scores showed that BMSCs-Exos could effectively promote the recovery of spinal cord
function. The results of the Nissl staining, immunohistochemistry, and TUNEL/NeuN/DAPI
double staining showed that BMSCs-Exos inhibited neuronal apoptosis. Western blot analysis
showed that the protein expression level of Bcl-2 was significantly increased in the
BMSCs-Exos group compared with the PBS group, while the protein expression levels of Bax,
cleaved caspase-3, and cleaved caspase-9 were significantly decreased. The results of
western bolt and qRT-PCR demonstrated that BMSCs-Exos could activate the Wnt/β-catenin
signaling pathway effectively. In vitro, we found that inhibition of the Wnt/β-catenin
signaling pathway could promote neuronal apoptosis following lipopolysaccharide (LPS)
induction. These results demonstrated that BMSCs-Exos may be a promising therapeutic for
SCI by activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ci Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Guangjun Jiao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Wenliang Wu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Hongliang Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Shanwu Ren
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Lu Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Hongming Zhou
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Haichun Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| |
Collapse
|
15
|
Du XJ, Chen YX, Zheng ZC, Wang N, Wang XY, Kong FE. Neural stem cell transplantation inhibits glial cell proliferation and P2X receptor-mediated neuropathic pain in spinal cord injury rats. Neural Regen Res 2019; 14:876-885. [PMID: 30688274 PMCID: PMC6375052 DOI: 10.4103/1673-5374.249236] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
P2X4 and P2X7 receptors play an important role in neuropathic pain after spinal cord injury. Regulation of P2X4 and P2X7 receptors can obviously reduce pain hypersensitivity after injury. To investigate the role of neural stem cell transplantation on P2X receptor-mediated neuropathic pain and explore related mechanisms, a rat model of spinal cord injury was prepared using the free-falling heavy body method with spinal cord segment 10 as the center. Neural stem cells were injected into the injured spinal cord segment using a micro-syringe. Expression levels of P2X4 and P2X7 receptors, neurofilament protein, and glial fibrillary acidic protein were determined by immunohistochemistry and western blot assay. In addition, sensory function was quantitatively assessed by current perception threshold. The Basso-Beattie-Bresnahan locomotor rating scale was used to assess neuropathological pain. The results showed that 4 weeks after neural stem cell transplantation, expression of neurofilament protein in the injured segment was markedly increased, while expression of glial fibrillary acidic protein and P2X4 and P2X7 receptors was decreased. At this time point, motor and sensory functions of rats were obviously improved, and neuropathic pain was alleviated. These findings demonstrated that neural stem cell transplantation reduced overexpression of P2X4 and P2X7 receptors, activated locomotor and sensory function reconstruction, and played an important role in neuropathic pain regulation after spinal cord injury. Therefore, neural stem cell transplantation is one potential option for relieving neuropathic pain mediated by P2X receptors.
Collapse
Affiliation(s)
- Xiao-Jing Du
- Department of Rehabilitation Medicine, the Central Hospital of Taian, Taian, Shandong Province, China
| | - Yue-Xia Chen
- Department of Rehabilitation Medicine, the Central Hospital of Taian, Taian, Shandong Province, China
| | - Zun-Cheng Zheng
- Department of Rehabilitation Medicine, the Central Hospital of Taian, Taian, Shandong Province, China
| | - Nan Wang
- Graduate School, Taishan Medical University, Taian, Shandong Province, China
| | - Xiao-Yu Wang
- Department of Rehabilitation Medicine, the Central Hospital of Taian, Taian, Shandong Province, China
| | - Fan-E Kong
- Graduate School, Taishan Medical University, Taian, Shandong Province, China
| |
Collapse
|
16
|
Ning GZ, Song WY, Xu H, Zhu RS, Wu QL, Wu Y, Zhu SB, Li JQ, Wang M, Qu ZG, Feng SQ. Bone marrow mesenchymal stem cells stimulated with low-intensity pulsed ultrasound: Better choice of transplantation treatment for spinal cord injury: Treatment for SCI by LIPUS-BMSCs transplantation. CNS Neurosci Ther 2018; 25:496-508. [PMID: 30294904 DOI: 10.1111/cns.13071] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 12/19/2022] Open
Abstract
Stem cell transplantation, especially treatment with bone marrow mesenchymal stem cells (BMSCs), has been considered a promising therapy for the locomotor and neurological recovery of spinal cord injury (SCI) patients. However, the clinical benefits of BMSCs transplantation remain limited because of the considerably low viability and inhibitory microenvironment. In our research, low-intensity pulsed ultrasound (LIPUS), which has been widely applied to clinical applications and fundamental research, was employed to improve the properties of BMSCs. The most suitable intensity of LIPUS stimulation was determined. Furthermore, the optimized BMSCs were transplanted into the epicenter of injured spinal cord in rats, which were randomized into four groups: (a) Sham group (n = 10), rats received laminectomy only and the spinal cord remained intact. (b) Injury group (n = 10), rats with contused spinal cord subjected to the microinjection of PBS solution. (c) BMSCs transplantation group (n = 10), rats with contused spinal cord were injected with BMSCs without any priming. (d) LIPUS-BMSCs transplantation group (n = 10), BMSCs stimulated with LIPUS were injected at the injured epicenter after contusion. Rats were then subjected to behavioral tests, immunohistochemistry, and histological observation. It was found that BMSCs stimulated with LIPUS obtained higher cell viability, migration, and neurotrophic factors expression in vitro. The rate of apoptosis remained constant. After transplantation of BMSCs and LIPUS-BMSCs postinjury, locomotor function was significantly improved in LIPUS-BMSCs transplantation group with higher level of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the epicenter, and the expression of neurotrophic receptor was also enhanced. Histological observation demonstrated reduced cavity formation in LIPUS-BMSCs transplantation group when comparing with other groups. The results suggested LIPUS can improve BMSCs viability and neurotrophic factors expression in vitro, and transplantation of LIPUS-BMSCs could promote better functional recovery, indicating possible clinical application for the treatment of SCI.
Collapse
Affiliation(s)
- Guang-Zhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen-Ye Song
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong Xu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Ru-Sen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Qiu-Li Wu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu Wu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shi-Bo Zhu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ji-Qing Li
- Department of Electronic Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Man Wang
- Department of Electronic Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zhi-Gang Qu
- Department of Electronic Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Shi-Qing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
17
|
Pedram MS, Dehghan MM, Shojaee M, Fekrazad R, Sharifi D, Farzan A, Ghasemi S, AliMohammad Kalhori K. Therapeutic effects of simultaneous Photobiomodulation therapy (PBMT) and Meloxicam administration on experimental acute spinal cord injury: Rat animal model. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:49-54. [PMID: 30312920 DOI: 10.1016/j.jphotobiol.2018.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/29/2018] [Accepted: 09/25/2018] [Indexed: 11/26/2022]
Abstract
STUDY DESIGN Application of Photobiomodulation therapy (PBMT) and meloxicam in acute spinal cord injury, functional recovery and histological evaluation. OBJECTIVE Evaluation of the effect of simultaneous PBMT and meloxicam on treatment of acute experimental spinal cord injury and comparing it with the effect of application of each of them separately. SETTING The study was conducted at the Department of Surgery & Radiology, Faculty of Veterinary Medicine and Institute of Biomedical Research, University of Tehran, Tehran, Iran. METHODS Twenty four rats were used in this study. A compression injury was induced to the T8-T9 segment of the spinal cord of rats using a Fogarty embolectomy catheter. Rats were randomly divided into 4 groups including: Control group, PBMT (810 nm-200 mw-8 s-2 weeks) group, Meloxicam (1 mg/kg) group, and PBMT and Meloxicam (mixed) group. After inducing injury, hind limb performance of the rats was evaluated, using BBB test and then treatment intervention was performed and continued for 2 weeks. RESULTS Four weeks after injury induction, BBB test results were significantly higher in all treatment groups in comparison to control group, however, there were no significant differences among the treatment groups. In addition, histological findings revealed no significant difference between all 4 study groups. CONCLUSION According to the results of this study we can conclude that simultaneous and separate application of PBMT and Meloxicam play an effective role in treatment of acute spinal cord injuries.
Collapse
Affiliation(s)
- Mir Sepehr Pedram
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Institute of Biomedical Research, University of Tehran, Tehran, Iran.
| | - Maryam Shojaee
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Laser research center in medical Sciences, AJA University of Medical Sciences & International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Davood Sharifi
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Arash Farzan
- Department of Orthodontics, School of Density, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Setareh Ghasemi
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Katayoun AliMohammad Kalhori
- Department of Oral & Maxillofacial Pathology, Dental Faculty, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
18
|
Gómez-Pinedo U, Sanchez-Rojas L, Vidueira S, Sancho FJ, Martínez-Ramos C, Lebourg M, Monleón Pradas M, Barcia JA. Bridges of biomaterials promote nigrostriatal pathway regeneration. J Biomed Mater Res B Appl Biomater 2018; 107:190-196. [PMID: 29573127 DOI: 10.1002/jbm.b.34110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/14/2018] [Accepted: 02/18/2018] [Indexed: 12/21/2022]
Abstract
Repair of central nervous system (CNS) lesions is difficulted by the lack of ability of central axons to regrow, and the blocking by the brain astrocytes to axonal entry. We hypothesized that by using bridges made of porous biomaterial and permissive olfactory ensheathing glia (OEG), we could provide a scaffold to permit restoration of white matter tracts. We implanted porous polycaprolactone (PCL) bridges between the substantia nigra and the striatum in rats, both with and without OEG. We compared the number of tyrosine-hydroxylase positive (TH+) fibers crossing the striatal-graft interface, and the astrocytic and microglial reaction around the grafts, between animals grafted with and without OEG. Although TH+ fibers were found inside the grafts made of PCL alone, there was a greater fiber density inside the graft and at the striatal-graft interface when OEG was cografted. Also, there was less astrocytic and microglial reaction in those animals. These results show that these PCL grafts are able to promote axonal growth along the nigrostriatal pathway, and that cografting of OEG markedly enhances axonal entry inside the grafts, growth within them, and re-entry of axons into the CNS. These results may have implications in the treatment of diseases such as Parkinson's and others associated with lesions of central white matter tracts. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 190-196, 2019.
Collapse
Affiliation(s)
- Ulises Gómez-Pinedo
- Centro de Investigación Príncipe Felipe, Valencia, Spain.,Servicio de Neurocirugía. Instituto de Neurociencias. IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Leyre Sanchez-Rojas
- Servicio de Neurocirugía. Instituto de Neurociencias. IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | - Cristina Martínez-Ramos
- Centro de Investigación Príncipe Felipe, Valencia, Spain.,Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia, Valencia, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Myriam Lebourg
- Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia, Valencia, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Manuel Monleón Pradas
- Centro de Investigación Príncipe Felipe, Valencia, Spain.,Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia, Valencia, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Juan A Barcia
- Centro de Investigación Príncipe Felipe, Valencia, Spain.,Servicio de Neurocirugía. Instituto de Neurociencias. IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
19
|
Transplantation of olfactory ensheathing cells on functional recovery and neuropathic pain after spinal cord injury; systematic review and meta-analysis. Sci Rep 2018; 8:325. [PMID: 29321494 PMCID: PMC5762885 DOI: 10.1038/s41598-017-18754-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/01/2017] [Indexed: 12/14/2022] Open
Abstract
There are considerable disagreements on the application of olfactory ensheathing cells (OEC) for spinal cord injury (SCI) rehabilitation. The present meta-analysis was designed to investigate the efficacy of OEC transplantation on motor function recovery and neuropathic pain alleviation in SCI animal models. Accordingly, all related studies were identified and included. Two independent researchers assessed the quality of the articles and summarized them by calculating standardized mean differences (SMD). OEC transplantation was shown to significantly improve functional recovery (SMD = 1.36; 95% confidence interval: 1.05–1.68; p < 0.001). The efficacy of this method was higher in thoracic injuries (SMD = 1.41; 95% confidence interval: 1.08–1.74; p < 0.001) and allogeneic transplants (SMD = 1.53; 95% confidence interval: 1.15–1.90; p < 0.001). OEC transplantation had no considerable effects on the improvement of hyperalgesia (SMD = −0.095; 95% confidence interval: −0.42–0.23; p = 0.57) but when the analyses were limited to studies with follow-up ≥8 weeks, it was associated with increased hyperalgesia (SMD = −0.66; 95% confidence interval: −1.28–0.04; p = 0.04). OEC transplantation did not affect SCI-induced allodynia (SMD = 0.54; 95% confidence interval: −0.80–1.87; p = 0.43). Our findings showed that OEC transplantation can significantly improve motor function post-SCI, but it has no effect on allodynia and might lead to relative aggravation of hyperalgesia.
Collapse
|
20
|
Lee YS, Wu S, Arinzeh TL, Bunge MB. Transplantation of Schwann Cells Inside PVDF-TrFE Conduits to Bridge Transected Rat Spinal Cord Stumps to Promote Axon Regeneration Across the Gap. J Vis Exp 2017. [PMID: 29155759 DOI: 10.3791/56077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Among various models for spinal cord injury in rats, the contusion model is the most often used because it is the most common type of human spinal cord injury. The complete transection model, although not as clinically relevant as the contusion model, is the most rigorous method to evaluate axon regeneration. In the contusion model, it is difficult to distinguish regenerated from sprouted or spared axons due to the presence of remaining tissue post injury. In the complete transection model, a bridging method is necessary to fill the gap and create continuity from the rostral to the caudal stumps in order to evaluate the effectiveness of the treatments. A reliable bridging surgery is essential to test outcome measures by reducing the variability due to the surgical method. The protocols described here are used to prepare Schwann cells (SCs) and conduits prior to transplantation, complete transection of the spinal cord at thoracic level 8 (T8), insert the conduit, and transplant SCs into the conduit. This approach also uses in situ gelling of an injectable basement membrane matrix with SC transplantation that allows improved axon growth across the rostral and caudal interfaces with the host tissue.
Collapse
Affiliation(s)
- Yee-Shuan Lee
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine
| | - Siliang Wu
- Department of Materials Science and Engineering, New Jersey Institute of Technology
| | | | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine; Department of Cell Biology, University of Miami Miller School of Medicine; Department of Neurological Surgery, University of Miami Miller School of Medicine;
| |
Collapse
|
21
|
Orlandin JR, Ambrósio CE, Lara VM. Glial scar-modulation as therapeutic tool in spinal cord injury in animal models. Acta Cir Bras 2017; 32:168-174. [PMID: 28300871 DOI: 10.1590/s0102-865020170209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/20/2017] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Spinal Cord injury represents, in veterinary medicine, most of the neurological attendances and may result in permanent disability, death or euthanasia. Due to inflammation resulting from trauma, it originates the glial scar, which is a cell interaction complex system. Its function is to preserve the healthy circuits, however, it creates a physical and molecular barrier that prevents cell migration and restricts the neuroregeneration ability. METHODS This review aims to present innovations in the scene of treatment of spinal cord injury, approaching cell therapy, administration of enzyme, anti-inflammatory, and other active principles capable of modulating the inflammatory response, resulting in glial scar reduction and subsequent functional improvement of animals. RESULTS Some innovative therapies as cell therapy, administration of enzymes, immunosuppressant or other drugs cause the modulation of inflammatory response proved to be a promising tool for the reduction of gliosis. CONCLUSION Those tools promise to reduce gliosis and promote locomotor recovery in animals with spinal cord injury.
Collapse
Affiliation(s)
- Jéssica Rodrigues Orlandin
- Veterinary Medicine Department, Faculty of Animal Science and Food Engineering, Universidade de São Paulo, Pirassununga, SP, Brazil
| | | | | |
Collapse
|
22
|
Pathophysiology, mechanisms and applications of mesenchymal stem cells for the treatment of spinal cord injury. Biomed Pharmacother 2017; 91:693-706. [DOI: 10.1016/j.biopha.2017.04.126] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/25/2017] [Accepted: 04/30/2017] [Indexed: 02/06/2023] Open
|
23
|
Effect of Extremely Low Frequency Electromagnetic Field on MAP2 and Nestin Gene Expression of Hair Follicle Dermal Papilla Cells. Int J Artif Organs 2016; 39:294-9. [PMID: 27515859 DOI: 10.5301/ijao.5000512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2016] [Indexed: 12/19/2022]
Abstract
Introduction In recent years, the extremely low frequency electromagnetic field (ELF-EMF) has attracted a great deal of scientific interest. The ELF-EMF signal is able to control ion transport across ion channels and therefore induce cell differentiation. Aim The purpose of this study was to investigate the effect of ELF-EMF (50 Hz, 1 mT) on MAP2 and Nestin gene expression of dermal papilla mesenchymal cells (DPCs). Methods In order to examine the effect of chemical and electromagnetic factors on gene expression, 4 experimental groups, namely chemical (cell exposure to chemical signals), EMF (exposing cells to ELF-EMF), chemical-EMF (subjecting cells to chemical signals and ELF-EMF) and control (with no treatment) groups, were prepared, treated for 5 days, and studied. To assess the effect of extended test time on the expression of neural differentiation markers (Nestin and MAP2), an EMF group was prepared and treated for a period of 14 consecutive days. The beneficial role of EMF in inducing neural differentiation was shown by real-time PCR analysis. Results The higher expression of MAP2 after 14 days compared to that after 5 days and decrease of cell proliferation on days 5 to 20 were indicative of the positive effect of extending treatment time on neural differentiation by evaluation of gene expression in EMF group.
Collapse
|
24
|
Schäck L, Budde S, Lenarz T, Krettek C, Gross G, Windhagen H, Hoffmann A, Warnecke A. Induction of neuronal-like phenotype in human mesenchymal stem cells by overexpression of Neurogenin1 and treatment with neurotrophins. Tissue Cell 2016; 48:524-32. [PMID: 27423984 DOI: 10.1016/j.tice.2016.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/18/2016] [Accepted: 06/25/2016] [Indexed: 01/15/2023]
Abstract
AIM OF THE STUDY The induced expression of the transcription factors neurogenin1 (Neurog1) or neuronal differentiation 1 (NeuroD1) has previously been shown to initiate neuronal differentiation in embryonic stem cells (ESC). Human bone marrow-derived mesenchymal stem cells (hBMSCs) are ethically non-controversial stem cells. However, they are not pluripotent. In cochlear implantation, regeneration or replacement of lost spiral ganglion neurons may be a measure for the improvement of implant function. Thus, the aim of the study was to investigate whether the expression of Neurog1 or NeuroD1 is sufficient for induction of neuronal differentiation in hBMSCs. MATERIALS AND METHODS Human BMSCs were transduced with lentivirus expressing NeuroD1 or Neuorg1. Transduced cells were then treated with small molecules that enhanced neuronal differentiation. Markers of neuronal differentiation were evaluated. RESULTS Using quantitative reverse transcription PCR, the up-regulation of transcription factors expressed by developing primary auditory neurons, such as BRN3a (POU4F1) and GATA3, was quantified after induction of Neurog-1 expression. In addition, the expression of the receptor NTRK2 was induced by treatment with its specific ligand BDNF. The induction of expression of the vesicular glutamate transporter 1 was identified on gene and protein level. NeuroD1 seemed not sufficient to induce and maintain neuronal differentiation. CONCLUSIONS Induction of neuronal differentiation by overexpression of Neurog1 initiated important steps for the development of glutamatergic neurons such as the spiral ganglion neurons. However, it seems not sufficient to maintain the glutamatergic spiral ganglion neuron-like phenotype.
Collapse
Affiliation(s)
- Luisa Schäck
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Department of Trauma Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany
| | - Stefan Budde
- Department of Orthopaedic Surgery, Hannover Medical School, Annastift, Anna von Borries-Str. 1-7, 30625 Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation, Germany
| | - Christian Krettek
- Department of Trauma Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany
| | - Gerhard Gross
- Helmholtz Centre for Infection Research, Department of Gene Regulation and Differentiation, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Henning Windhagen
- Department of Orthopaedic Surgery, Hannover Medical School, Annastift, Anna von Borries-Str. 1-7, 30625 Hannover, Germany
| | - Andrea Hoffmann
- Department of Trauma Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Department of Orthopaedic Surgery, Hannover Medical School, Annastift, Anna von Borries-Str. 1-7, 30625 Hannover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation, Germany.
| |
Collapse
|
25
|
Saini V, Lutz D, Kataria H, Kaur G, Schachner M, Loers G. The polysialic acid mimetics 5-nonyloxytryptamine and vinorelbine facilitate nervous system repair. Sci Rep 2016; 6:26927. [PMID: 27324620 PMCID: PMC4914991 DOI: 10.1038/srep26927] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/07/2016] [Indexed: 02/05/2023] Open
Abstract
Polysialic acid (PSA) is a large negatively charged glycan mainly attached to the neural cell adhesion molecule (NCAM). Several studies have shown that it is important for correct formation of brain circuitries during development and for synaptic plasticity, learning and memory in the adult. PSA also plays a major role in nervous system regeneration following injury. As a next step for clinical translation of PSA based therapeutics, we have previously identified the small organic compounds 5-nonyloxytryptamine and vinorelbine as PSA mimetics. Activity of 5-nonyloxytryptamine and vinorelbine had been confirmed in assays with neural cells from the central and peripheral nervous system in vitro and shown to be independent of their function as serotonin receptor 5-HT1B/1D agonist or cytostatic drug, respectively. As we show here in an in vivo paradigm for spinal cord injury in mice, 5-nonyloxytryptamine and vinorelbine enhance regain of motor functions, axonal regrowth, motor neuron survival and remyelination. These data indicate that 5-nonyloxytryptamine and vinorelbine may be re-tasked from their current usage as a 5-HT1B/1D agonist or cytostatic drug to act as mimetics for PSA to stimulate regeneration after injury in the mammalian nervous system.
Collapse
Affiliation(s)
- Vedangana Saini
- Department of Biotechnology, Guru Nanak Dev University, GT Road, 143005 Amritsar, India
- Center for Molecular Neurobiology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - David Lutz
- Center for Molecular Neurobiology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Hardeep Kataria
- Center for Molecular Neurobiology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, GT Road, 143005 Amritsar, India
| | - Melitta Schachner
- Keck Center for Collaborative Neurosciences, Rutgers University, Piscataway, NJ 08854, USA
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, People’s Republic of China
| | - Gabriele Loers
- Center for Molecular Neurobiology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| |
Collapse
|
26
|
Yousefifard M, Nasirinezhad F, Shardi Manaheji H, Janzadeh A, Hosseini M, Keshavarz M. Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alleviating neuropathic pain in a spinal cord injury model. Stem Cell Res Ther 2016; 7:36. [PMID: 26957122 PMCID: PMC4784350 DOI: 10.1186/s13287-016-0295-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/03/2016] [Accepted: 02/17/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Stem cell therapy can be used for alleviating the neuropathic pain induced by spinal cord injuries (SCIs). However, survival and differentiation of stem cells following their transplantation vary depending on the host and intrinsic factors of the cell. Therefore, the present study aimed to determine the effect of stem cells derived from bone marrow (BM-MSC) and umbilical cord (UC-MSC) on neuropathic pain relief. METHODS A compression model was used to induce SCI in a rat model. A week after SCI, about 1 million cells were transplanted into the spinal cord. Behavioral tests, including motor function recovery, mechanical allodynia, cold allodynia, mechanical hyperalgesia, and thermal hyperalgesia, were carried out every week for 8 weeks after SCI induction. A single unit recording and histological evaluation were then performed. RESULTS We show that BM-MSC and UC-MSC transplantations led to improving functional recovery, allodynia, and hyperalgesia. No difference was seen between the two cell groups regarding motor recovery and alleviating the allodynia and hyperalgesia. These cells survived in the tissue at least 8 weeks and prevented cavity formation due to SCI. However, survival rate of UC-MSC was significantly higher than BM-MSC. Electrophysiological evaluations showed that transplantation of UC-MSC brings about better results than BM-MSCs in wind up of wide dynamic range neurons. CONCLUSIONS The results of the present study show that BM-MSC and UC-MSC transplantations alleviated the symptoms of neuropathic pain and resulted in subsequent motor recovery after SCI. However, survival rate and electrophysiological findings of UC-MSC were significantly better than BM-MSC.
Collapse
Affiliation(s)
- Mahmoud Yousefifard
- Electrophysiology Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farinaz Nasirinezhad
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Physiology, Iran University of Medical Sciences, Tehran, Iran.
| | - Homa Shardi Manaheji
- Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Atousa Janzadeh
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. .,Pediatric Chronic Kidney Disease Research Center, Childrens Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mansoor Keshavarz
- Electrophysiology Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Comparison of Capability of Human Bone Marrow Mesenchymal Stem Cells and Endometrial Stem Cells to Differentiate into Motor Neurons on Electrospun Poly(ε-caprolactone) Scaffold. Mol Neurobiol 2015; 53:5278-87. [PMID: 26420037 DOI: 10.1007/s12035-015-9442-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/10/2015] [Indexed: 12/20/2022]
Abstract
Human endometrial and bone marrow-derived mesenchymal stem cells can be differentiated into a number of cell lineages. Mesenchymal stem cells (MSCs) are potential candidates for cellular therapy. The differentiation of human bone marrow MSCs (hBM-MSCs) and endometrial stem cells (hEnSCs) into motor neuron-like cells has been rarely investigated previously; however, the comparison between these stem cells when they are differentiated into motor neuron-like cell is yet to be studied. The aim of this study was therefore to investigate and compare the capability of hBM-MSCs and hEnSCs cultured on tissue culture polystyrene (TCP) and poly ε-caprolactone (PCL) nanofibrous scaffold to differentiate into motor neuron-like cells in the presence of neural inductive molecules. Engineered hBM-MSCs and hEnSCs seeded on PCL nanofibrous scaffold were differentiated into beta-tubulin III, islet-1, Neurofilament-H (NF-H), HB9, Pax6, and choactase-positive motor neurons by immunostaining and real-time PCR, in response to the signaling molecules. The data obtained from PCR and immunostaining showed that the expression of motor neuron markers of both hBM-MSCs and hEnSCs differentiated cells on PCL scaffold are significantly higher than that of the control group. The expression of these markers in hEnSCs differentiated cells was higher than that in hBM-MSCs. However, this difference was not statistically significant. In conclusion, differentiated hBM-MSCs and hEnSCs on PCL can provide a suitable three-dimensional situation for neuronal survival and outgrowth for regeneration of the central nervous system. Both cells may be potential candidates for cellular therapy in motor neuron disorders. However, differentiation of hEnSCs into motor neuron-like cells was better than hBM-MSCs.
Collapse
|
28
|
Bagher Z, Ebrahimi-Barough S, Azami M, Safa M, Joghataei MT. Cellular activity of Wharton's Jelly-derived mesenchymal stem cells on electrospun fibrous and solvent-cast film scaffolds. J Biomed Mater Res A 2015; 104:218-26. [DOI: 10.1002/jbm.a.35555] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/14/2015] [Accepted: 08/07/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Zohreh Bagher
- ENT-Head and Neck Research Center and Department; Rasoul Akram Hospital, Iran University of Medical Sciences & Health Services; Tehran Iran
- Department of Tissue Engineering and Regenerative Medicine; School of Advanced Technologies in Medicine, Iran University of Medical Sciences; Tehran Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences; School of Advanced Technologies in Medicine, Tehran University of Medical Sciences; Tehran Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences; School of Advanced Technologies in Medicine, Tehran University of Medical Sciences; Tehran Iran
| | - Majid Safa
- Cellular and Molecular Research Center; Iran University of Medical Sciences; Tehran Iran
- Department of Tissue Engineering and Regenerative Medicine; School of Advanced Technologies in Medicine, Iran University of Medical Sciences; Tehran Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center; Iran University of Medical Sciences; Tehran Iran
- Department of Tissue Engineering and Regenerative Medicine; School of Advanced Technologies in Medicine, Iran University of Medical Sciences; Tehran Iran
| |
Collapse
|
29
|
Oriented growth and transdifferentiation of mesenchymal stem cells towards a Schwann cell fate on micropatterned substrates. J Biosci Bioeng 2015; 121:325-35. [PMID: 26371993 DOI: 10.1016/j.jbiosc.2015.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/01/2015] [Accepted: 07/14/2015] [Indexed: 11/24/2022]
Abstract
While Schwann cells (SCs) have a significant role in peripheral nerve regeneration, their use in treatments has been limited because of lack of a readily available source. To address this issue, this study focused on the effect of guidance cues by employing micropatterned polymeric films to influence the alignment, morphology and transdifferentiation of bone marrow-derived rat mesenchymal stem cells (MSCs) towards a Schwann cell-like fate. Two different types of polymers, biocompatible polystyrene (PS) and biodegradable poly(lactic acid) (PLA) were used to fabricate patterned films. Percentages of transdifferentiated MSCs (tMSCs) immunolabeled with SC markers (α-S100β and α-p75(NTR)) were found to be similar on patterned versus smooth PS and PLA substrates. However, patterning had a significant effect on the alignment and elongation of the tMSCs. More than 80% of the tMSCs were oriented in the direction of microgrooves (0°-20°), while cells on the smooth substrates were randomly oriented. The aspect ratio [AR, ratio of length (in direction of microgrooves) and breadth (in direction perpendicular to microgrooves)] of the tMSCs on patterned substrates had a value of approximately five, as compared to cells on smooth substrates where the AR was one. Understanding responses to these cues in vitro helps us in understanding the behavior and interaction of the cells with the 3D environment of the scaffolds, facilitating the application of these concepts to designing effective nerve guidance conduits for peripheral nerve regeneration.
Collapse
|
30
|
Kabiri M, Oraee-Yazdani S, Dodel M, Hanaee-Ahvaz H, Soudi S, Seyedjafari E, Salehi M, Soleimani M. Cytocompatibility of a conductive nanofibrous carbon nanotube/poly (L-Lactic acid) composite scaffold intended for nerve tissue engineering. EXCLI JOURNAL 2015; 14:851-60. [PMID: 26600751 PMCID: PMC4650950 DOI: 10.17179/excli2015-282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 05/28/2015] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to fabricate a conductive aligned nanofibrous substrate and evaluate its suitability and cytocompatibility with neural cells for nerve tissue engineering purposes. In order to reach these goals, we first used electrospinning to fabricate single-walled carbon-nanotube (SWCNT) incorporated poly(L-lactic acid) (PLLA) nanofibrous scaffolds and then assessed its cytocompatibility with olfactory ensheathing glial cells (OEC). The plasma treated scaffolds were characterized using scanning electron microscopy and water contact angle. OECs were isolated from olfactory bulb of GFP Sprague-Dawley rats and characterized using OEC specific markers via immunocytochemistry and flow cytometery. The cytocompatibility of the conductive aligned nano-featured scaffold was assessed using microscopy and MTT assay. We indicate that doping of PLLA polymer with SWCNT can augment the aligned nanosized substrate with conductivity, making it favorable for nerve tissue engineering. Our results demonstrated that SWCNT/PLLA composite scaffold promote the adhesion, growth, survival and proliferation of OEC. Regarding the ideal physical, topographical and electrical properties of the scaffold and the neurotrophic and migratory features of the OECs, we suggest this scaffold and the cell/scaffold construct as a promising platform for cell delivery to neural defects in nerve tissue engineering approaches.
Collapse
Affiliation(s)
- Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran ; Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran ; Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Saeed Oraee-Yazdani
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran ; Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masumeh Dodel
- Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Center, Tehran, Iran ; Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran, Stem Cell Technology Research Center, Tehran, Iran
| | - Hana Hanaee-Ahvaz
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran
| | - Sara Soudi
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran ; Department of Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran ; Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Mohammad Salehi
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran ; Department of Biotechnology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
31
|
Kabiri M, Oraee-Yazdani S, Shafiee A, Hanaee-Ahvaz H, Dodel M, Vaseei M, Soleimani M. Neuroregenerative effects of olfactory ensheathing cells transplanted in a multi-layered conductive nanofibrous conduit in peripheral nerve repair in rats. J Biomed Sci 2015; 22:35. [PMID: 25986461 PMCID: PMC4437686 DOI: 10.1186/s12929-015-0144-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/01/2015] [Indexed: 01/09/2023] Open
Abstract
Background The purpose of this study was to evaluate the efficacy of a multi-layered conductive nanofibrous hollow conduit in combination with olfactory ensheathing cells (OEC) to promote peripheral nerve regeneration. We aimed to harness both the topographical and electrical cues of the aligned conductive nanofibrous single-walled carbon nanotube/ poly (L-lactic acid) (SWCNT/PLLA) scaffolds along with the neurotrophic features of OEC in a nerve tissue engineered approach. Results We demonstrated that SWCNT/PLLA composite scaffolds support the adhesion, growth, survival and proliferation of OEC. Using microsurgical techniques, the tissue engineered nerve conduits were interposed into an 8 mm gap in sciatic nerve defects in rats. Functional recovery was evaluated using sciatic functional index (SFI) fortnightly after the surgery. Histological analyses including immunohistochemistry for S100 and NF markers along with toluidine blue staining (nerve thickness) and TEM imaging (myelin sheath thickness) of the sections from middle and distal parts of nerve grafts showed an increased regeneration in cell/scaffold group compared with cell-free scaffold and silicone groups. Neural regeneration in cell/scaffold group was very closely similar to autograft group, as deduced from SFI scores and histological assessments. Conclusions Our results indicated that the tissue engineered construct made of rolled sheet of SWCNT/PLLA nanofibrous scaffolds and OEC could promote axonal outgrowth and peripheral nerve regeneration suggesting them as a promising alternative in nerve tissue engineering.
Collapse
Affiliation(s)
- Mahboubeh Kabiri
- Department of Biotechnology, College of science, University of Tehran, Tehran, Iran. .,Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran. .,Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Center, Tehran, Iran.
| | - Saeed Oraee-Yazdani
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran. .,Functional Neurosurgery Research Center, Department of Neurosurgery, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Shafiee
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran. .,Experimental Dermatology Group, UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia.
| | - Hana Hanaee-Ahvaz
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran.
| | - Masumeh Dodel
- Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Center, Tehran, Iran. .,Department of Textile engineering, Amirkabir University of Technology, Tehran, Iran, Stem Cell Technology Research Center, Tehran, Iran.
| | - Mohammad Vaseei
- Pathology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
32
|
Song Z, Wu C, Sun S, Li H, Wang D, Gong J, Yan Z. Quantitative analysis of factors influencing tissue-engineered bone formation by detecting the expression levels of alkaline phosphatase and bone γ-carboxyglutamate protein 2. Exp Ther Med 2015; 9:1097-1102. [PMID: 25780393 PMCID: PMC4353779 DOI: 10.3892/etm.2015.2259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/17/2014] [Indexed: 11/06/2022] Open
Abstract
Bone tissue engineering is a promising alternative approach that permits the efficient reconstruction of bone defects. There are four elements involved in bone tissue engineering technology, including the seed cells, growth factors, scaffolds and culture environment. The aim of the present study was to evaluate the effect of these factors on bone formation in tissue engineering technology by analyzing the expression of osteogenetic markers using polymerase chain reaction (PCR). Bone marrow mesenchymal stem cells (BMSCs) were extracted from the bone marrow of the bilateral tibial platform of New Zealand white rabbits. In addition, platelet-rich plasma (PRP) samples were prepared from blood extracted from the ear vein of the rabbits. A perfusion bioreactor was used to provide the culture environment, and β-tricalcium phosphate (β-TCP) was used to build the scaffolds. The β-TCP scaffolds were divided into five groups and each group was treated with a different combination of the factors. Next, the composites were implanted into the rabbits. After three months, the expression levels of the new bone formation markers, alkaline phosphatase and bone γ-carboxyglutamate protein 2, were detected using quantitative reverse transcription-PCR analysis. The expression levels of the markers in the experimental groups were higher compared with the negative control group. Comparisons between the experimental groups also revealed statistical significance. Scanning electron microscopy revealed good adhesion and distribution of the BMSCs on the β-TCP scaffold. In conclusion, the PCR results indicated that PRP, BMSCs and the bioreactor exhibited a promoting effect on bone formation.
Collapse
Affiliation(s)
- Zezhong Song
- Joint Surgery Department, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Changshun Wu
- Joint Surgery Department, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Shui Sun
- Joint Surgery Department, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Huibo Li
- Joint Surgery Department, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Dong Wang
- Joint Surgery Department, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jianbao Gong
- Joint Surgery Department, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zexing Yan
- Joint Surgery Department, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
33
|
Li L, Li Y, Jiang H. Neurotrophine-3 may contribute to neuronal differentiation of mesenchymal stem cells through the activation of the bone morphogenetic protein pathway. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/cmble-2015-0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AbstractWe investigated whether neurotrophin-3 (NT-3) can promote differentiation of mouse bone mesenchymal stem cells (MSCs) into neurons via the bone morphogenetic protein pathway. MSCs were prepared from rat bone marrow and either transfected with pIRES2-EGFP or pIRES2-EGFP-NT-3 or treated with bone morphogenetic protein 4. The pIRES2-EGFP-NT-3-transfected MSCs further underwent noggin treatment or siRNA-mediated knockout of the TrkC gene or were left untreated. Immunofluorescence staining, real-time PCR and Western blot analyses were performed to evaluate the transcription and expression of neural-specific genes and BMP-Smad signaling. MSCs were efficiently transduced by the NT-3 gene via pIRES2-EGFP vectors. pIRES2- EGFP-NT-3 could initiate the transcription and expression of neural-specific genes, including nestin, NSE and MAP-2, and stimulate BMP-Smad signaling. The transcription and expression of neural-specific genes and BMP-Smad signaling were significantly suppressed by siRNA-mediated knockdown of the TrkC gene of MSCs. These findings suggest that the BMP signaling pathway may be a key regulatory point in NT-3-transfected neuronal differentiation of MSCs. The BMP and neurotrophin pathways contribute to a tightly regulated signaling network that directs the precise connections between neuronal differentiation of MSCs and their targets.
Collapse
|
34
|
Evaluation of Motor Neuron-Like Cell Differentiation of hEnSCs on Biodegradable PLGA Nanofiber Scaffolds. Mol Neurobiol 2014; 52:1704-1713. [DOI: 10.1007/s12035-014-8931-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
|
35
|
Chen L, Li J, Wu L, Yang M, Gao F, Yuan L. Synergistic actions of olomoucine and bone morphogenetic protein-4 in axonal repair after acute spinal cord contusion. Neural Regen Res 2014; 9:1830-8. [PMID: 25422646 PMCID: PMC4239774 DOI: 10.4103/1673-5374.143431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2014] [Indexed: 01/10/2023] Open
Abstract
To determine whether olomoucine acts synergistically with bone morphogenetic protein-4 in the treatment of spinal cord injury, we established a rat model of acute spinal cord contusion by impacting the spinal cord at the T8 vertebra. We injected a suspension of astrocytes derived from glial-restricted precursor cells exposed to bone morphogenetic protein-4 (GDAsBMP) into the spinal cord around the site of the injury, and/or olomoucine intraperitoneally. Olomoucine effectively inhibited astrocyte proliferation and the formation of scar tissue at the injury site, but did not prevent proliferation of GDAsBMP or inhibit their effects in reducing the spinal cord lesion cavity. Furthermore, while GDAsBMP and olomoucine independently resulted in small improvements in locomotor function in injured rats, combined administration of both treatments had a significantly greater effect on the restoration of motor function. These data indicate that the combined use of olomoucine and GDAsBMP creates a better environment for nerve regeneration than the use of either treatment alone, and contributes to spinal cord repair after injury.
Collapse
Affiliation(s)
- Liang Chen
- Capital Medical University School of Rehabilitation Medicine, Beijing, China ; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Jianjun Li
- Capital Medical University School of Rehabilitation Medicine, Beijing, China ; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China ; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Liang Wu
- Rehabilitation Center, Beijing Xiaotangshan Rehabilitation Hospital, Beijing, China
| | - Mingliang Yang
- Capital Medical University School of Rehabilitation Medicine, Beijing, China ; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China ; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Feng Gao
- Capital Medical University School of Rehabilitation Medicine, Beijing, China ; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Li Yuan
- Department of General Surgery, China Rehabilitation Research Center, Beijing, China
| |
Collapse
|
36
|
Abstract
Spinal cord injury is a complex pathology often resulting in functional impairment and paralysis. Gene therapy has emerged as a possible solution to the problems of limited neural tissue regeneration through the administration of factors promoting axonal growth, while also offering long-term local delivery of therapeutic molecules at the injury site. Of note, gene therapy is our response to the requirements of neural and glial cells following spinal cord injury, providing, in a time-dependent manner, growth substances for axonal regeneration and eliminating axonal growth inhibitors. Herein, we explore different gene therapy strategies, including targeting gene expression to modulate the presence of neurotrophic growth or survival factors and increase neural tissue plasticity. Special attention is given to describing advances in viral and non-viral gene delivery systems, as well as the available routes of gene delivery. Finally, we discuss the future of combinatorial gene therapies and give consideration to the implementation of gene therapy in humans.
Collapse
|
37
|
Wu L, Li J, Chen L, Zhang H, Yuan L, Davies SJ. Combined transplantation of GDAs(BMP) and hr-decorin in spinal cord contusion repair. Neural Regen Res 2014; 8:2236-48. [PMID: 25206533 PMCID: PMC4146032 DOI: 10.3969/j.issn.1673-5374.2013.24.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/27/2013] [Indexed: 12/23/2022] Open
Abstract
Following spinal cord injury, astrocyte proliferation and scar formation are the main factors inhibiting the regeneration and growth of spinal cord axons. Recombinant decorin suppresses inflammatory reactions, inhibits glial scar formation, and promotes axonal growth. Rat models of T8 spinal cord contusion were created with the NYU impactor and these models were subjected to combined transplantation of bone morphogenetic protein-4-induced glial-restricted precursor-derived astrocytes and human recombinant decorin transplantation. At 28 days after spinal cord contusion, double-immunofluorescent histochemistry revealed that combined transplantation inhibited the early inflammatory response in injured rats. Furthermore, brain-derived neurotrophic factor, which was secreted by transplanted cells, protected injured axons. The combined transplantation promoted axonal regeneration and growth of injured motor and sensory neurons by inhibiting astrocyte proliferation and glial scar formation, with astrocytes forming a linear arrangement in the contused spinal cord, thus providing axonal regeneration channels.
Collapse
Affiliation(s)
- Liang Wu
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China ; Department of Neural Functional Reconstruction of Spine and Spinal Cord, China Rehabilitation Research Center, Beijing 100068, China ; Rehabilitation Center, Beijing Xiaotangshan Rehabilitation Hospital, Beijing 102211, China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China ; Department of Neural Functional Reconstruction of Spine and Spinal Cord, China Rehabilitation Research Center, Beijing 100068, China
| | - Liang Chen
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China ; Department of Neural Functional Reconstruction of Spine and Spinal Cord, China Rehabilitation Research Center, Beijing 100068, China
| | - Hong Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China
| | - Li Yuan
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China ; Department of Neural Functional Reconstruction of Spine and Spinal Cord, China Rehabilitation Research Center, Beijing 100068, China
| | - Stephen Ja Davies
- Department of Neurosurgery, University of Colorado Denver, 1250 14th Street Denver, Colorado 80217, USA
| |
Collapse
|
38
|
Lemarchant S, Pruvost M, Hébert M, Gauberti M, Hommet Y, Briens A, Maubert E, Gueye Y, Féron F, Petite D, Mersel M, do Rego JC, Vaudry H, Koistinaho J, Ali C, Agin V, Emery E, Vivien D. tPA promotes ADAMTS-4-induced CSPG degradation, thereby enhancing neuroplasticity following spinal cord injury. Neurobiol Dis 2014; 66:28-42. [PMID: 24576594 DOI: 10.1016/j.nbd.2014.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/23/2014] [Accepted: 02/13/2014] [Indexed: 01/12/2023] Open
Abstract
Although tissue plasminogen activator (tPA) is known to promote neuronal remodeling in the CNS, no mechanism of how this plastic function takes place has been reported so far. We provide here in vitro and in vivo demonstrations that this serine protease neutralizes inhibitory chondroitin sulfate proteoglycans (CSPGs) by promoting their degradation via the direct activation of endogenous type 4 disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-4). Accordingly, in a model of compression-induced spinal cord injury (SCI) in rats, we found that administration of either tPA or its downstream effector ADAMTS-4 restores the tPA-dependent activity lost after the SCI and thereby, reduces content of CSPGs in the spinal cord, a cascade of events leading to an improved axonal regeneration/sprouting and eventually long term functional recovery. This is the first study to reveal a tPA-ADAMTS-4 axis and its function in the CNS. It also raises the prospect of exploiting such cooperation as a therapeutic tool for enhancing recovery after acute CNS injuries.
Collapse
Affiliation(s)
- Sighild Lemarchant
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France
| | - Mathilde Pruvost
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France
| | - Marie Hébert
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France
| | - Maxime Gauberti
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France
| | - Yannick Hommet
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France
| | - Aurélien Briens
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France
| | - Eric Maubert
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France
| | - Yatma Gueye
- CNRS UMR-6184, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, IFR Jean Roche, Faculté de Médecine, University of Aix-Marseille, F-13916 Marseille, France
| | - François Féron
- CNRS UMR-6184, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, IFR Jean Roche, Faculté de Médecine, University of Aix-Marseille, F-13916 Marseille, France
| | - Didier Petite
- Inserm UMR-S 583, Institute for Neurosciences of Montpellier, Pathophysiology and Therapy of Sensory and Motor Deficits, Saint Eloi Hospital, F-34091 Montpellier, France
| | - Marcel Mersel
- Inserm UMR-S 583, Institute for Neurosciences of Montpellier, Pathophysiology and Therapy of Sensory and Motor Deficits, Saint Eloi Hospital, F-34091 Montpellier, France
| | - Jean-Claude do Rego
- Inserm UMR-S 982, Différenciation et Communication Neuronale et Neuroendocrine, PRIMACEN, IFRMP 23, University of Rouen, F-76130 Mont-Saint-Aignan, France
| | - Hubert Vaudry
- Inserm UMR-S 982, Différenciation et Communication Neuronale et Neuroendocrine, PRIMACEN, IFRMP 23, University of Rouen, F-76130 Mont-Saint-Aignan, France
| | - Jari Koistinaho
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Carine Ali
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France
| | - Véronique Agin
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France
| | - Evelyne Emery
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France; Department of Neurosurgery, Caen University Hospital, Avenue de la Côte de Nacre, F-14000 Caen, France.
| | - Denis Vivien
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, University of Caen Basse-Normandie, GIP CYCERON, F-14074 Caen Cedex, France.
| |
Collapse
|
39
|
Dedeepiya VD, William JB, Parthiban JKBC, Chidambaram R, Balamurugan M, Kuroda S, Iwasaki M, Preethy S, Abraham SJK. The known-unknowns in spinal cord injury, with emphasis on cell-based therapies - a review with suggestive arenas for research. Expert Opin Biol Ther 2014; 14:617-34. [PMID: 24660978 DOI: 10.1517/14712598.2014.889676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION In spite of extensive research, the progress toward a cure in spinal cord injury (SCI) is still elusive, which holds good for the cell- and stem cell-based therapies. We have critically analyzed seven known gray areas in SCI, indicating the specific arenas for research to improvise the outcome of cell-based therapies in SCI. AREAS COVERED The seven, specific known gray areas in SCI analyzed are: i) the gap between animal models and human victims; ii) uncertainty about the time, route and dosage of cells applied; iii) source of the most efficacious cells for therapy; iv) inability to address the vascular compromise during SCI; v) lack of non-invasive methodologies to track the transplanted cells; vi) need for scaffolds to retain the cells at the site of injury; and vii) physical and chemical stimuli that might be required for synapses formation yielding functional neurons. EXPERT OPINION Further research on scaffolds for retaining the transplanted cells at the lesion, chemical and physical stimuli that may help neurons become functional, a meta-analysis of timing of the cell therapy, mode of application and larger clinical studies are essential to improve the outcome.
Collapse
Affiliation(s)
- Vidyasagar Devaprasad Dedeepiya
- Nichi-In Centre for Regenerative Medicine (NCRM), The Mary-Yoshio Translational Hexagon (MYTH) , PB 1262, Chennai - 600034, Tamil Nadu , India +91 44 24732186 ; ,
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ning G, Tang L, Wu Q, Li Y, Li Y, Zhang C, Feng S. Human umbilical cord blood stem cells for spinal cord injury: early transplantation results in better local angiogenesis. Regen Med 2014; 8:271-81. [PMID: 23627822 DOI: 10.2217/rme.13.26] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM We aim to explore the repair mechanism after the transplantation of CD34(+) human umbilical cord blood cells (HUCBCs) in traumatic spinal cord injury (SCI) in rats. MATERIALS & METHODS Wistar rats with SCI were randomly divided into three groups: DMEM injection (group A); CD34(+) HUCBC transplantation on the first day after injury (group B); and CD34(+) HUCBC transplantation on the sixth day after injury (group C). The Basso, Beattie and Bresnahan scores were used to evaluate motor behavior. At the injured site, the infarct size, blood vessel density, and survival and neural differentiation of transplanted cells were analyzed. RESULTS It was found that the Basso, Beattie and Bresnahan score in group B was significantly higher than other groups (p < 0.05), and the infarct size and blood vessel density at the injured site were significantly different (p < 0.01). However, the transplanted cells survived at least 3 weeks at the injured site, but did not differentiate into neural cells. CONCLUSION These results suggested transplantation of CD34(+) HUCBCs during the acute phase could promote the functional recovery better than during the subacute phase after SCI by raising blood vessel density, suggesting the possible clinical application for the treatment of spinal injury.
Collapse
Affiliation(s)
- Guangzhi Ning
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin Heping District Anshan Road 154, Tianjin 300052, PR China
| | | | | | | | | | | | | |
Collapse
|
41
|
Arundic acid (ONO-2506) inhibits secondary injury and improves motor function in rats with spinal cord injury. J Neurol Sci 2014; 337:186-92. [DOI: 10.1016/j.jns.2013.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/26/2013] [Accepted: 12/04/2013] [Indexed: 11/17/2022]
|
42
|
Teixeira FG, Carvalho MM, Sousa N, Salgado AJ. Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci 2013; 70:3871-82. [PMID: 23456256 PMCID: PMC11113366 DOI: 10.1007/s00018-013-1290-8] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/22/2013] [Accepted: 02/04/2013] [Indexed: 12/15/2022]
Abstract
The low regeneration potential of the central nervous system (CNS) represents a challenge for the development of new therapeutic strategies. Mesenchymal stem cells (MSCs) have been proposed as a possible therapeutic tool for CNS disorders. In addition to their differentiation potential, it is well accepted nowadays that their beneficial actions can also be mediated by their secretome. Indeed, it was already demonstrated, both in vitro and in vivo, that MSCs are able to secrete a broad range of neuroregulatory factors that promote an increase in neurogenesis, inhibition of apoptosis and glial scar formation, immunomodulation, angiogenesis, neuronal and glial cell survival, as well as relevant neuroprotective actions on different pathophysiological contexts. Considering their protective action in lesioned sites, MSCs' secretome might also improve the integration of local progenitor cells in neuroregeneration processes, opening a door for their future use as therapeutical strategies in human clinical trials. Thus, in this review we analyze the current understanding of MSCs secretome as a new paradigm for the treatment of CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- Fábio G. Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Miguel M. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
43
|
Ning G, Chen R, Li Y, Wu Q, Wu Q, Li Y, Feng S. X-irradiation for inhibiting glial scar formation in injured spinal cord. Neural Regen Res 2013; 8:1582-9. [PMID: 25206454 PMCID: PMC4145965 DOI: 10.3969/j.issn.1673-5374.2013.17.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 03/27/2013] [Indexed: 11/23/2022] Open
Abstract
X-irradiation has a beneficial effect in treating spinal cord injury. We supposed that X-irradiation could improve the microenvironment at the site of a spinal cord injury and inhibit glial scar formation. Thus, this study was designed to observe the effects of 8 Gy X-irradiation on the injury site at 6 hours and 2, 4, 7, and 14 days post injury, in terms of improvement in the microenvironment and hind limb motor function. Immunohistochemistry showed that the expression of macrophage marker ED-1 and the area with glial scar formation were reduced. In addition, the Basso, Beattie and Bresnahan score was higher at 7 days post injury relative to the other time points post injury. Results indicated that X-irradiation at a dose of 8 Gy can inhibit glial scar formation and alleviate the inflammatory reaction, thereby repairing spinal cord injury. X-irradiation at 7 days post spinal cord injury may be the best time window.
Collapse
Affiliation(s)
- Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Renhui Chen
- Department of Orthopedics, Tianjin 4th Central Hospital, Tianjin 300140, China
| | - Yulin Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiang Wu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiuli Wu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yan Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
44
|
Management strategies for acute spinal cord injury: current options and future perspectives. Curr Opin Crit Care 2013; 18:651-60. [PMID: 23104069 DOI: 10.1097/mcc.0b013e32835a0e54] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Spinal cord injury is a devastating acute neurological condition with loss of function and poor long-term prognosis. This review summarizes current management strategies and innovative concepts on the horizon. RECENT FINDINGS The routine use of steroids in patients with spinal cord injuries has been largely abandoned and considered a 'harmful standard of care'. Prospective trials have shown that early spine stabilization within 24 h results in decreased secondary complication rates. Neuronal plasticity and axonal regeneration in the adult spinal cord are limited due to myelin-associated inhibitory molecules, such as Nogo-A. The experimental inhibition of Nogo-A ameliorates axonal sprouting and functional recovery in animal models. SUMMARY General management strategies for acute spinal cord injury consist of protection of airway, breathing, oxygenation and control of blood loss with maintenance of blood pressure. Unstable spine fractures should be stabilized early to allow unrestricted mobilization of patients with spinal cord injuries and to decrease preventable complications. Steroids are largely considered obsolete and have been abandoned in clinical guidelines. Nogo-A represents a promising new pharmacological target to promote sprouting of injured axons and restore function. Prospective clinical trials of Nogo-A inhibition in patients with spinal cord injuries are currently under way.
Collapse
|
45
|
Choi JS, Leem JW, Lee KH, Kim SS, Suh-Kim H, Jung SJ, Kim UJ, Lee BH. Effects of human mesenchymal stem cell transplantation combined with polymer on functional recovery following spinal cord hemisection in rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:405-11. [PMID: 23269903 PMCID: PMC3526745 DOI: 10.4196/kjpp.2012.16.6.405] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/12/2012] [Accepted: 10/22/2012] [Indexed: 12/23/2022]
Abstract
The spontaneous axon regeneration of damaged neurons is limited after spinal cord injury (SCI). Recently, mesenchymal stem cell (MSC) transplantation was proposed as a potential approach for enhancing nerve regeneration that avoids the ethical issues associated with embryonic stem cell transplantation. As SCI is a complex pathological entity, the treatment of SCI requires a multipronged approach. The purpose of the present study was to investigate the functional recovery and therapeutic potential of human MSCs (hMSCs) and polymer in a spinal cord hemisection injury model. Rats were subjected to hemisection injuries and then divided into three groups. Two groups of rats underwent partial thoracic hemisection injury followed by implantation of either polymer only or polymer with hMSCs. Another hemisection-only group was used as a control. Behavioral, electrophysiological and immunohistochemical studies were performed on all rats. The functional recovery was significantly improved in the polymer with hMSC-transplanted group as compared with control at five weeks after transplantation. The results of electrophysiologic study demonstrated that the latency of somatosensory-evoked potentials (SSEPs) in the polymer with hMSC-transplanted group was significantly shorter than in the hemisection-only control group. In the results of immunohistochemical study, β-gal-positive cells were observed in the injured and adjacent sites after hMSC transplantation. Surviving hMSCs differentiated into various cell types such as neurons, astrocytes and oligodendrocytes. These data suggest that hMSC transplantation with polymer may play an important role in functional recovery and axonal regeneration after SCI, and may be a potential therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Ji Soo Choi
- Department of Physiology, Brain Korea 21 Project for Medical Science, and Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | | | | | | | | | | | |
Collapse
|