1
|
Liu Y, McClements DJ, Chen X, Liang R, Zou L, Liu W. Plant-based flaxseed oil microcapsules fabricated from coacervation of gluten at oil droplet surface: Microstructure, oxidation stability, and oil digestion control. J Food Sci 2024. [PMID: 39455101 DOI: 10.1111/1750-3841.17475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024]
Abstract
This study aimed to develop microcapsules with wheat gluten-coated oil droplets to enhance the oxidation stability and control the digestibility of flaxseed oil. The microcapsules were fabricated using a three-step procedure: (i) flaxseed oil was homogenized with an alkaline gluten solution to form oil-in-water emulsions containing small gluten-coated oil droplets (320-400 nm); (ii) the pH of these emulsions was then neutralized to facilitate the deposition of gluten around the oil droplets, thereby forming a thick layer; (iii) a flaxseed oil microcapsule powder was then prepared by spray drying. During the microcapsule formation, intermolecular interactions, including hydrophobic interactions and hydrogen bonds, were involved in the coacervation of gluten at the emulsion surface. The resultant microcapsules with a multiple-core structure had external diameters of 4-26 µm and encapsulation efficiencies of 90%-94%. The microencapsulated oil powders contained a relatively high flaxseed oil content (60%-80%). Among them, the sample with 60% oil content demonstrated the best stability in resisting oil droplet coalescence; thus, it exhibited a higher lipolysis rate and extent during simulated gastrointestinal digestion. A 30-day accelerated storage study showed that encapsulation of the flaxseed oil improved its resistance to oxidation. These findings suggest that the pH-deposition method can successfully produce microencapsulated polyunsaturated lipids using all plant-derived ingredients, which may facilitate their use in new plant-based foods through a green and sustainable approach.
Collapse
Affiliation(s)
- Yikun Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Xing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Ruihong Liang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- International Institute of Food Innovation, Nanchang University, Nanchang, China
| | - Wei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi, China
- International Institute of Food Innovation, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Lavertu JD, Bawa KK, Hrapovic S, Fu D, Oh JK, Hemraz UD. Fabrication of thermo-responsive multicore microcapsules using a facile extrusion process. RSC Adv 2024; 14:20105-20112. [PMID: 38915334 PMCID: PMC11194665 DOI: 10.1039/d4ra03131h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024] Open
Abstract
A process employing extrusion was used to produce multicore microcapsules composed of multiple beads. The inner beads were made from κ-carrageenan (κ-c), a thermo-responsive linear sulphated polymer whose gelling temperature ranges at 40-60 °C, depending on the concentration of κ-c polymer and the amount of potassium chloride used for gelation. The resulting beads were then enveloped by chitosan through gelation with sodium triphosphate. The pesticide ammonium glufosinate was encapsulated in the κ-c/chitosan multicore microcapsules for demonstration of controlled release of the encapsulant. It was found that in response to an external stimulus, such as elevated temperature or solar simulation, the microcapsules exhibit the gradual release of encapsulated pesticide molecules from multicore microcapsules, compared with beads only. This process of making multicore microcapsules can be extended to other polymer pairs based on applications. This work is relevant to agriculture, where the controlled-release of the pesticides or fertilizers could be triggered by the sun and/or temperature changes, thus extending the residual period of the chemicals as well as decreasing the extent of pollution by leaching of abundant chemicals.
Collapse
Affiliation(s)
- Jean-Danick Lavertu
- Aquatic and Crop Resource Development, National Research Council of Canada 6100 Royalmount Avenue Montreal Quebec H4P 2R2 Canada
| | - Kamaljeet Kaur Bawa
- Department of Chemistry and Biochemistry, Concordia University Montreal Quebec H4B 1R6 Canada
| | - Sabahudin Hrapovic
- Aquatic and Crop Resource Development, National Research Council of Canada 6100 Royalmount Avenue Montreal Quebec H4P 2R2 Canada
| | - Dong Fu
- Aquatic and Crop Resource Development, National Research Council of Canada 6100 Royalmount Avenue Montreal Quebec H4P 2R2 Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University Montreal Quebec H4B 1R6 Canada
| | - Usha D Hemraz
- Aquatic and Crop Resource Development, National Research Council of Canada 6100 Royalmount Avenue Montreal Quebec H4P 2R2 Canada
- Human Health Therapeutics, National Research Council of Canada 6100 Royalmount Avenue Montreal Quebec H4P 2R2 Canada
| |
Collapse
|
3
|
Gao Y, Ding Z, Liu Y, Xu YJ. Advances in encapsulation systems of Antarctic krill oil: From extraction to encapsulation, and future direction. Compr Rev Food Sci Food Saf 2024; 23:e13332. [PMID: 38578167 DOI: 10.1111/1541-4337.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
Antarctic krill oil (AKO) is highly sought after by consumers and the food industry due to its richness in a variety of nutrients and physiological activities. However, current extraction methods are not sufficient to better extract AKO and its nutrients, and AKO is susceptible to lipid oxidation during processing and storage, leading to nutrient loss and the formation of off-flavors and toxic compounds. The development of various extraction methods and encapsulation systems for AKO to improve oil yield, nutritional value, antioxidant capacity, and bioavailability has become a research hotspot. This review summarizes the research progress of AKO from extraction to encapsulation system construction. The AKO extraction mechanism, technical parameters, oil yield and composition of solvent extraction, aqueous enzymatic extraction, supercritical/subcritical extraction, and three-liquid-phase salting-out extraction system are described in detail. The principles, choice of emulsifier/wall materials, preparation methods, advantages and disadvantages of four common encapsulation systems for AKO, namely micro/nanoemulsions, microcapsules, liposomes and nanostructured lipid carriers, are summarized. These four encapsulation systems are characterized by high encapsulation efficiency, low production cost, high bioavailability and high antioxidant capacity. Depending on the unique advantages and conditions of different encapsulation methods, as well as consumer demand for health and nutrition, different products can be developed. However, existing AKO encapsulation systems lack relevant studies on digestive absorption and targeted release, and the single product category of commercially available products limits consumer choice. In conjunction with clinical studies of AKO encapsulation systems, the development of encapsulation systems for special populations should be a future research direction.
Collapse
Affiliation(s)
- Yuhang Gao
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Zhansheng Ding
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Rengifo E, Rios-Mera JD, Huamaní P, Vela-Paredes R, Vásquez J, Saldaña E, Siche R, Tello F. Fish Burgers Fortified with Microencapsulated Sacha Inchi Oil: Effects on Technological and Sensory Properties. Foods 2024; 13:1004. [PMID: 38611310 PMCID: PMC11011811 DOI: 10.3390/foods13071004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 04/14/2024] Open
Abstract
The long-chain omega-3 fatty acids alpha linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have proven health benefits, but it is not common to find them together in a processed food product. This could lead to healthier and more functional food products, which may have positive implications for consumer health and well-being. This work aimed to fortify a model burger manufactured with fillets of an Amazonian fish (boquichico, Prochilodus nigricans) by adding microencapsulated sacha inchi oil (Plukenetia volubilis, rich in ALA) (MSIO) produced by spray-drying. MSIO was incorporated into the burgers at different levels (0, 3, 4, 5, and 6%). The burgers were characterized by their proximal composition, cooking losses, texture profile, lipid oxidation, sensory profile, overall liking, and fatty acid profile. The results showed that adding MSIO up to concentrations of 5% or 6% increased the instrumental hardness, chewiness, and lipid oxidation in the burgers. However, fortifying the burgers with 3% MSIO was possible without affecting the burgers' sensory properties and overall liking. Regarding the fatty acid profile, the burgers with 3% MSIO had a higher content of polyunsaturated fatty acids, with the ALA, EPA, and DHA types of fatty acids. Therefore, we recommend using this fortification concentration, but future studies should be carried out to improve the oxidative stability of MSIO and the burgers.
Collapse
Affiliation(s)
- Estefany Rengifo
- Departamento de Ingeniería de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos 16002, Peru; (E.R.); (P.H.); (R.V.-P.); (J.V.)
| | - Juan D. Rios-Mera
- Instituto de Investigación de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Jaén, Jaén 06800, Peru;
| | - Patricia Huamaní
- Departamento de Ingeniería de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos 16002, Peru; (E.R.); (P.H.); (R.V.-P.); (J.V.)
| | - Rafael Vela-Paredes
- Departamento de Ingeniería de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos 16002, Peru; (E.R.); (P.H.); (R.V.-P.); (J.V.)
| | - Jessy Vásquez
- Departamento de Ingeniería de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos 16002, Peru; (E.R.); (P.H.); (R.V.-P.); (J.V.)
| | - Erick Saldaña
- Sensory Analysis and Consumer Study Group, Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Moquegua 18001, Peru;
| | - Raúl Siche
- Escuela de Ingeniería Agroindustrial, Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo, Trujillo 13011, Peru;
| | - Fernando Tello
- Departamento de Ingeniería de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos 16002, Peru; (E.R.); (P.H.); (R.V.-P.); (J.V.)
| |
Collapse
|
5
|
Mohammed NK, Ahmad NH, Muhialdin BJ, Meor Hussin AS. Modulating of microencapsulated virgin coconut oil-based creamer. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:528-538. [PMID: 38327854 PMCID: PMC10844180 DOI: 10.1007/s13197-023-05860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 02/09/2024]
Abstract
This work aims to produce a virgin coconut oil (VCO) creamer through two drying stages; spray drying followed by fluidised bed drying, and to examine its antioxidant properties and oxidative stability during different storage conditions. Evaluation of the physicochemical properties of spray dry VCO and oxidative stability of the VCO creamer were performed using peroxide value (PV), antioxidant activity (DPPH), and total phenolic content (TPC) at 25, 4, and 25 °C, respectively, for 8 weeks. Agglomeration process has improved the agglomerated VCO creamer's properties in terms of moisture content (4.34%), solubility (85.2%), water activity (0.32%), and bulk density (0.36 g/cm3). The morphology of agglomerated VCO creamer showed cluster and irregular shapes with enlargement in the particle size, (d32) 395 µm and (d43) 426 µm. The overall oxidative results showed stability for the agglomerated VCO creamer stored at 4 °C in terms of TPC, DPPH and PV over 8 weeks followed by creamer stored at 25 °C which had similar stability with slight differences. The creamer stored at 38 °C showed rapid degradation for all oxidation tests from week 2 onwards. Agglomeration technology has indicated to be effective in the stabilization of virgin coconut oil against lipid oxidation and prolonging its shelf-life. Graphical abstract
Collapse
Affiliation(s)
| | - Nurul Hawa Ahmad
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang,, Selangor Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Belal J. Muhialdin
- Nutrition and Food Science Department, California State Polytechnic University, Pomona, CA 91768 USA
| | - Anis Shobirin Meor Hussin
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang,, Selangor Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| |
Collapse
|
6
|
Singh AK, Pal P, Pandey B, Goksen G, Sahoo UK, Lorenzo JM, Sarangi PK. Development of "Smart Foods" for health by nanoencapsulation: Novel technologies and challenges. Food Chem X 2023; 20:100910. [PMID: 38144773 PMCID: PMC10740092 DOI: 10.1016/j.fochx.2023.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023] Open
Abstract
Importance of nanotechnology may be seen by penetration of its application in diverse areas including the food sector. With investigations and advancements in nanotechnology, based on feedback from these diverse areas, ease, and efficacy are also increasing. The food sector may use nanotechnology to encapsulate smart foods for increased health, wellness, illness prevention, and effective targeted delivery. Such nanoencapsulated targeted delivery systems may further add to the economic and nutritional properties of smart foods like stability, solubility, effectiveness, safeguard against disintegration, permeability, and bioavailability of smart/bioactive substances. But in the way of application, the fabrication of nanomaterials/nanostructures has several challenges which range from figuring out the optimal technique for obtaining them to determining the most suitable form of nanostructure for a bioactive molecule of interest. This review precisely addresses concepts, recent advances in fabrication techniques as well as current challenges/glitches of nanoencapsulation with special reference to smart foods/bioactive components. Since dealing with food materials also raises the quest for safety and regulatory norms a brief overview of the safety and regulatory aspects of nanomaterials/nanoencapsulation is also presented.
Collapse
Affiliation(s)
- Akhilesh Kumar Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Priti Pal
- Shri Ramswaroop Memorial College of Engineering & Management, Tewariganj, Faizabad, Road, Lucknow 226028, India
| | - Brijesh Pandey
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin 33100, Turkey
| | | | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n◦ 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795004, Manipur, India
| |
Collapse
|
7
|
Kim W, Wang Y, Vongsvivut J, Ye Q, Selomulya C. On surface composition and stability of β-carotene microcapsules comprising pea/whey protein complexes by synchrotron-FTIR microspectroscopy. Food Chem 2023; 426:136565. [PMID: 37302310 DOI: 10.1016/j.foodchem.2023.136565] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
This study aims to elucidate the stability of spray dried β-carotene microcapsules by identifying their surface composition using synchrotron-Fourier transform infrared (FTIR) microspectroscopy. To investigate the impact of enzymatic cross-linking and polysaccharide addition on heteroprotein, three wall materials were prepared: pea/whey protein blends (Con), cross-linked pea/whey protein blends (TG), and cross-linked pea/whey protein blends-maltodextrin complex (TG-MD). The TG-MD exhibited the highest encapsulation efficiency (>90 %) after 8 weeks of storage followed by TG and Con. Chemical images obtained using synchrotron-FTIR microspectroscopy confirmed that the TG-MD displayed the least amount of surface oil, followed by TG and Con, due to increasing amphiphilic β-sheet structure of the proteins led by cross-linking and maltodextrin addition. Both enzymatic cross-linking and polysaccharide addition improved the stability of β-carotene microcapsules, demonstrating that pea/whey protein blends with maltodextrin can be utilised as a hybrid wall material for enhancing the encapsulation efficiency of lipophilic bioactive compounds in foods.
Collapse
Affiliation(s)
- Woojeong Kim
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO - Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Qianyu Ye
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | | |
Collapse
|
8
|
Guo L, Fan L, Liu Y, Li J. Strategies for improving loading of emulsion-based functional oil powder. Crit Rev Food Sci Nutr 2023:1-20. [PMID: 37724529 DOI: 10.1080/10408398.2023.2257325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Functional oil is type of oil that is beneficial to human health and has nutritional value, however, functional oils are rich in bioactive substances such as polyunsaturated fatty acids which are sensitive to environmental factors and are susceptible to oxidation or decomposition. Construction of emulsion-based oil powder is a promising approach for improving the stability and solubility of functional oils. However, the low effective loading of oil in powder is the main challenge limiting encapsulation technology. This manuscript focuses on reviewing the current research progress of emulsion-based functional oil powder construction and systematically summarizes the processing characteristics of emulsion-based oil powder with high payload and summarizing the strategies to enhance the payload of powder in term of emulsification and drying, respectively. The impact of emulsion formation on oil powder production is discussed from different characteristics of emulsions, including emulsion composition, emulsification methods and emulsion types. In addition, the current status of improving material loading performance by various modifications to the drying technology is discussed, including the addition of drying processing additives, changes in drying parameters and the effect of innovative technological means.
Collapse
Affiliation(s)
- Lingxi Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Han M, Liu K, Liu X, Rashid MT, Zhang H, Wang M. Research Progress of Protein-Based Bioactive Substance Nanoparticles. Foods 2023; 12:2999. [PMID: 37627998 PMCID: PMC10453113 DOI: 10.3390/foods12162999] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Bioactive substances exhibit various physiological activities-such as antimicrobial, antioxidant, and anticancer activities-and have great potential for application in food, pharmaceuticals, and nutraceuticals. However, the low solubility, chemical instability, and low bioavailability of bioactive substances limit their application in the food industry. Using nanotechnology to prepare protein nanoparticles to encapsulate and deliver active substances is a promising approach due to the abundance, biocompatibility, and biodegradability of proteins. Common protein-based nanocarriers include nano-emulsions, nano-gels, nanoparticles, and nano complexes. In this review, we give an overview of protein-based nanoparticle fabrication methods, highlighting their pros and cons. Additionally, we discuss the applications and current issues regarding the utilization of protein-based nanoparticles in the food industry. Finally, we provide perspectives on future development directions, with a focus on classifying bioactive substances and their functional properties.
Collapse
Affiliation(s)
- Mengqing Han
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Xin Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Muhammad Tayyab Rashid
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Huiyan Zhang
- Zhengzhou Ruipu Biological Engineering Co., Ltd., Zhengzhou 450001, China;
| | - Meiyue Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (M.H.); (X.L.); (M.T.R.); (M.W.)
| |
Collapse
|
10
|
Sun Q, Yin S, He Y, Cao Y, Jiang C. Biomaterials and Encapsulation Techniques for Probiotics: Current Status and Future Prospects in Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2185. [PMID: 37570503 PMCID: PMC10421492 DOI: 10.3390/nano13152185] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Probiotics have garnered significant attention in recent years due to their potential advantages in diverse biomedical applications, such as acting as antimicrobial agents, aiding in tissue repair, and treating diseases. These live bacteria must exist in appropriate quantities and precise locations to exert beneficial effects. However, their viability and activity can be significantly impacted by the surrounding tissue, posing a challenge to maintain their stability in the target location for an extended duration. To counter this, researchers have formulated various strategies that enhance the activity and stability of probiotics by encapsulating them within biomaterials. This approach enables site-specific release, overcoming technical impediments encountered during the processing and application of probiotics. A range of materials can be utilized for encapsulating probiotics, and several methods can be employed for this encapsulation process. This article reviews the recent advancements in probiotics encapsulated within biomaterials, examining the materials, methods, and effects of encapsulation. It also provides an overview of the hurdles faced by currently available biomaterial-based probiotic capsules and suggests potential future research directions in this field. Despite the progress achieved to date, numerous challenges persist, such as the necessity for developing efficient, reproducible encapsulation methods that maintain the viability and activity of probiotics. Furthermore, there is a need to design more robust and targeted delivery vehicles.
Collapse
Affiliation(s)
- Qiqi Sun
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
| | - Sheng Yin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yingxu He
- School of Computing, National University of Singapore, Singapore 119077, Singapore;
| | - Yi Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210000, China
| |
Collapse
|
11
|
Reis CC, Freitas SP, Lorentino CMA, Fagundes TDSF, da Matta VM, Dos Santos ALS, Moreira DDL, Kunigami CN, Jung EP, Ribeiro LDO. Bioproducts from Passiflora cincinnata Seeds: The Brazilian Caatinga Passion Fruit. Foods 2023; 12:2525. [PMID: 37444263 DOI: 10.3390/foods12132525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The present work aimed to obtain bioproducts from Passiflora cincinnata seeds, the Brazilian Caatinga passion fruit, as well as to determine their physical, chemical and biological properties. The seeds were pressed in a continuous press to obtain the oil, which showed an oxidative stability of 5.37 h and a fatty profile rich in linoleic acid. The defatted seeds were evaluated for the recovery of antioxidant compounds by a central rotation experimental design, varying temperature (32-74 °C), ethanol (13-97%) and solid-liquid ratio (1:10-1:60 m/v). The best operational condition (74 °C, 58% ethanol, 1:48) yielded an extract composed mainly of lignans, which showed antioxidant capacity and antimicrobial activity against Gram-positive and Gram-negative bacteria. The microencapsulation of linoleic acid-rich oil through spray drying has proven to be an effective method for protecting the oil. Furthermore, the addition of the antioxidant extract to the formulation increased the oxidative stability of the product to 30% (6.97 h), compared to microencapsulated oil without the addition of the antioxidant extract (5.27 h). The microparticles also exhibited favorable technological characteristics, such as low hygroscopicity and high water solubility. Thus, it was possible to obtain three bioproducts from the Brazilian Caatinga passion fruit seeds: the oil rich in linoleic acid (an essential fatty acid), antioxidant extract from the defatted seeds and the oil microparticles added from the antioxidant extract.
Collapse
Affiliation(s)
- Carolina Cruzeiro Reis
- Laboratory of Vegetable Oil, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Suely Pereira Freitas
- Laboratory of Vegetable Oil, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Carolline Margot Albanez Lorentino
- Laboratory for Advanced Studies of Emerging and Resistant Microorganisms, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | | | - André Luis Souza Dos Santos
- Laboratory for Advanced Studies of Emerging and Resistant Microorganisms, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Davyson de Lima Moreira
- Laboratory of Natural Products, Rio de Janeiro Botanical Garden Research Institute, Rio de Janeiro 22460-030, Brazil
- Post-Graduation Program in Translational Drugs and Medicines, Institute of Technology in Medicines, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Claudete Norie Kunigami
- Laboratory of Organic and Inorganic Chemical Analysis, National Institute of Technology, Rio de Janeiro 20081-312, Brazil
| | - Eliane Przytyk Jung
- Laboratory of Organic and Inorganic Chemical Analysis, National Institute of Technology, Rio de Janeiro 20081-312, Brazil
| | - Leilson de Oliveira Ribeiro
- Laboratory of Organic and Inorganic Chemical Analysis, National Institute of Technology, Rio de Janeiro 20081-312, Brazil
| |
Collapse
|
12
|
Jia W, Wu X, Kang X. Integrated the embedding delivery system and targeted oxygen scavenger enhances free radical scavenging capacity. Food Chem X 2023; 17:100558. [PMID: 36845467 PMCID: PMC9943856 DOI: 10.1016/j.fochx.2022.100558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
World trends in oil crop growing area, yield, and production over the last 10 years exhibited an increase of 48 %, 82 %, and 240 %, respectively. Concerning reduced shelf-life of oil-containing food products caused by oil oxidation and the demand for sensory quality of oil, the development of methods the improvement oil quality is urgently required. This critical review presented a concise overview of the recent literature related to the inhibition ways of oil oxidation. The mechanism of different antioxidants and nanoparticle delivery systems on oil oxidation was also explored. The current review provides scientific findings on control strategies: (i) design oxidation quality assessment model; (ii) packaging by antioxidant coatings and eco-friendly film nanocomposite: ameliorate physicochemical properties; (iii) molecular investigations on inhibitory effects of selected antioxidants and underlying mechanisms; (iv) explore the interrelationship between the cysteine/citric acid and lipoxygenase pathway in the progression of oxidative/fragmentation degradation of unsaturated fatty acid chains.
Collapse
Key Words
- Antioxidant control strategies
- Antioxidations
- BHA, butyl hydroxy anisole
- BHT, butylated hydroxytoluene
- FDA, Food and Drug Administration
- HPLC, high performance liquid chromatography
- HPODE, hydroperoxyoctadecadienoic acid
- LC, liquid chromatography
- Linoleic acid
- Lipoxygenase
- MDA, malondialdehyde
- MPN, metal-polyphenol network
- MS, mass spectrometry
- MUFA, monounsaturated fatty acid
- Nanocomposite packaging
- Nanoparticle delivery system
- PUFA, polyunsaturated fatty acid
- SFA, saturated fatty acid
- TA, tannic acid
- TBHQ, tert-butyl hydroquinone
- US FDA, US Food and Drug Administration
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xinyu Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xin Kang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
13
|
Weng Y, Li Y, Chen X, Song H, Zhao CX. Encapsulation of enzymes in food industry using spray drying: recent advances and process scale-ups. Crit Rev Food Sci Nutr 2023; 64:7941-7958. [PMID: 36971126 DOI: 10.1080/10408398.2023.2193982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Enzymes are widely used in the food industry due to their ability in improving the functional, sensory, and nutritional properties of food products. However, their poor stability under harsh industrial conditions and their compromised shelf-lives during long-term storage limit their applications. This review introduces typical enzymes and their functionality in the food industry and demonstrates spray drying as a promising approach for enzyme encapsulation. Recent studies on encapsulation of enzymes in the food industry using spray drying and the key achievements are summarized. The latest developments including the novel design of spray drying chambers, nozzle atomizers and advanced spray drying techniques are also analyzed and discussed in depth. In addition, the scale-up pathways connecting laboratory scale trials and industrial scale productions are illustrated, as most of the current studies have been limited to lab-scales. Enzyme encapsulation using spray drying is a versatile strategy to improve enzyme stability in an economical and industrial viable way. Various nozzle atomizers and drying chambers have recently been developed to increase process efficiency and product quality. A comprehensive understanding of the complex droplet-to-particle transformations during the drying process would be beneficial for both process optimization and scale-up design.
Collapse
Affiliation(s)
- Yilun Weng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Yang Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Tan M, Zhang X, Sun S, Cui G. Nanostructured steady-state nanocarriers for nutrients preservation and delivery. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:31-93. [PMID: 37722776 DOI: 10.1016/bs.afnr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Food bioactives possess specific physiological benefits of preventing certain diet-related chronic diseases or maintain human health. However, the limitations of the bioactives are their poor stability, lower water solubility and unacceptable bioaccessibility. Structure damage or degradation is often found for the bioactives under certain environmental conditions like high temperature, strong light, extreme pH or high oxygen concentration during food processing, packaging, storage and absorption. Nanostructured steady-state nanocarriers have shown great potential in overcoming the drawbacks for food bioactives. Various delivery systems including solid form delivery system, liquid form delivery system and encapsulation technology have been developed. The embedded food nutrients can largely decrease the loss and degradation during food processing, packaging and storage. The design and application of stimulus and targeted delivery systems can improve the stability, bioavailability and efficacy of the food bioactives upon oral consumption due to enzymatic degradation in the gastrointestinal tract. The food nutrients encapsulated in the smart delivery system can be well protected against degradation during oral administration, thus improving the bioavailability and releazing controlled or targeted release for food nutrients. The encapsulated food bioactives show great potential in nutrition therapy for sub-health status and disease. Much effort is required to design and prepare more biocompatible nanostructured steady-state nanocarriers using food-grade protein or polysaccharides as wall materials, which can be used in food industry and maintain the human health.
Collapse
Affiliation(s)
- Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China.
| | - Xuedi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Shan Sun
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Guoxin Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| |
Collapse
|
15
|
Song Q, Guan W, Wei C, Liu W, Cai L. Microencapsulation of tomato seed oil using phlorotannins-adducted pea protein isolate-chitosan and pea protein isolate-chitosan complex coacervates. Food Chem 2023; 419:136091. [PMID: 37027975 DOI: 10.1016/j.foodchem.2023.136091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/09/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Pea protein isolates (PPI)/phlorotannins (PT)/chitosan (CS) ternary complex and PPI/CS binary complex were synthesized to prepare tomato seed oil (TSO) microcapsules. The concentration of PT was determined to be 0.025% (w/w) based on the solubility, emulsification, and UV-visible spectrum of PPI-PT complex. Subsequently, the optimal pHs associated with the formation of PPI/CS and PPI-PT/CS complex coacervates were determined to be pH 6.6 and 6.1, while the optimal ratios were 9:1 and 6:1, respectively. The coacervate microcapsules were successfully produced by freeze-dried method and those formulated with PPI-PT/CS displayed significantly lower surface oil content (14.57 ± 0.22%), higher encapsulation efficiency (70.54 ± 0.13%), lower particle size (5.97 ± 0.16 μm), and PDI (0.25 ± 0.02) than PPI/CS. The microcapsules were characterized by scanning electron microscopy and Fourier Transform infrared spectroscopy. Furthermore, the encapsulated TSO exhibited enhanced thermal and oxidative stability than that of free oil, along with microcapsules fabricated with PPI-PT/CS ternary complex showed better protection than that of free PT. Overall, PPI-PT/CS complex as an effective wall material in delivery system presented great potential.
Collapse
|
16
|
Sprayed microcapsules of minerals for fortified food. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
17
|
Yi M, You Y, Zhang Y, Wu G, Karrar E, Zhang L, Zhang H, Jin Q, Wang X. Highly Valuable Fish Oil: Formation Process, Enrichment, Subsequent Utilization, and Storage of Eicosapentaenoic Acid Ethyl Esters. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020672. [PMID: 36677730 PMCID: PMC9865908 DOI: 10.3390/molecules28020672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
In recent years, as the demand for precision nutrition is continuously increasing, scientific studies have shown that high-purity eicosapentaenoic acid ethyl ester (EPA-EE) functions more efficiently than mixed omega-3 polyunsaturated fatty acid preparations in diseases such as hyperlipidemia, heart disease, major depression, and heart disease; therefore, the market demand for EPA-EE is growing by the day. In this paper, we attempt to review EPA-EE from a whole-manufacturing-chain perspective. First, the extraction, refining, and ethanolysis processes (fish oil and ethanol undergo transesterification) of EPA-EE are described, emphasizing the potential of green substitute technologies. Then, the method of EPA enrichment is thoroughly detailed, the pros and cons of different methods are compared, and current developments in monomer production techniques are addressed. Finally, a summary of current advanced strategies for dealing with the low oxidative stability and low bioavailability of EPA-EE is presented. In conclusion, understanding the entire production process of EPA-EE will enable us to govern each step from a macro perspective and accomplish the best use of EPA-EE in a more cost-effective and environmentally friendly way.
Collapse
Affiliation(s)
- Mengyuan Yi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yue You
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yiren Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- Correspondence: (G.W.); (L.Z.); Tel.: +86-510-85876799 (G.W.); +86-510-85351730 (L.Z.)
| | - Emad Karrar
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Le Zhang
- Wuxi Children’s Hospital, Children’s Hospital Affiliated to Jiangnan University, Wuxi 214023, China
- Correspondence: (G.W.); (L.Z.); Tel.: +86-510-85876799 (G.W.); +86-510-85351730 (L.Z.)
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
18
|
Phenolic Fraction from Peanut ( Arachis hypogaea L.) By-product: Innovative Extraction Techniques and New Encapsulation Trends for Its Valorization. FOOD BIOPROCESS TECH 2023; 16:726-748. [PMID: 36158454 PMCID: PMC9483447 DOI: 10.1007/s11947-022-02901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022]
Abstract
Peanut skin is a by-product rich in bioactive compounds with high nutritional and pharmaceutical values. The phenolic fraction, rich in proanthocyanidins/procyanidins, is a relevant class of bioactive compounds, which has been increasingly applied as functional ingredients for food and pharmaceutical applications and is mostly recovered from peanut skins through low-pressure extraction methods. Therefore, the use of green high-pressure extractions is an interesting alternative to value this peanut by-product. This review addresses the benefits of the phenolic fraction recovered from peanut skin, with a focus on proanthocyanin/procyanidin compounds, and discusses the improvement of their activity, bioavailability, and protection, by methods such as encapsulation. Different applications for the proanthocyanidins, in the food and pharmaceutical industries, are also explored. Additionally, high-pressure green extraction methods, combined with micro/nanoencapsulation, using wall material derived from peanut industrial processing, may represent a promising biorefinery strategy to improve the bioavailability of proanthocyanidins recovered from underutilized peanut skins.
Collapse
|
19
|
Homayoonfal M, Malekjani N, Baeghbali V, Ansarifar E, Hedayati S, Jafari SM. Optimization of spray drying process parameters for the food bioactive ingredients. Crit Rev Food Sci Nutr 2022; 64:5631-5671. [PMID: 36547397 DOI: 10.1080/10408398.2022.2156976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spray drying (SD) is one of the most important thermal processes used to produce different powders and encapsulated materials. During this process, quality degradation might happen. The main objective of applying optimization methods in SD processes is maximizing the final nutritional quality of the product besides sensory attributes. Optimization regarding economic issues might be also performed. Applying optimization approaches in line with mathematical models to predict product changes during thermal processes such as SD can be a promising method to enhance the quality of final products. In this review, the application of the response surface methodology (RSM), as the most widely used approach, is introduced along with other optimization techniques such as factorial, Taguchi, and some artificial intelligence-based methods like artificial neural networks (ANN), genetic algorithms (GA), Fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS). Also, probabilistic methods such as Monte Carlo are briefly introduced. Some recent case studies regarding the implementation of these methods in SD processes are also exemplified and discussed.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Vahid Baeghbali
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Ansarifar
- Department of Public Health, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Sara Hedayati
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
20
|
Cáceres D, Giménez B, Márquez-Ruiz G, Holgado F, Vergara C, Romero-Hasler P, Soto-Bustamante E, Robert P. Incorporation of hydroxytyrosol alkyl esters of different chain length as antioxidant strategy in walnut oil spray-dried microparticles with a sodium alginate outer layer. Food Chem 2022; 395:133595. [DOI: 10.1016/j.foodchem.2022.133595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
|
21
|
Producing submicron chitosan-stabilized oil Pickering emulsion powder by an electrostatic collector-equipped spray dryer. Carbohydr Polym 2022; 294:119791. [DOI: 10.1016/j.carbpol.2022.119791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/11/2022] [Accepted: 06/25/2022] [Indexed: 01/03/2023]
|
22
|
Kumar A, Kaur R, Kumar V, Kumar S, Gehlot R, Aggarwal P. New insights into water-in-oil-in-water (W/O/W) double emulsions: Properties, fabrication, instability mechanism, and food applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Liu R, Qin X, Liu X, Wang Y, Zhong J. Host-guest interactions between oleic acid and β-cyclodextrin: A combined experimental and theoretical study. Food Chem 2022; 387:132910. [DOI: 10.1016/j.foodchem.2022.132910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022]
|
24
|
Interfacial behavior and emulsion stability of lipid delivery system regulated by two-dimensional facial amphiphiles bile salts. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Altay Ö, Köprüalan Ö, İlter I, Koç M, Ertekin FK, Jafari SM. Spray drying encapsulation of essential oils; process efficiency, formulation strategies, and applications. Crit Rev Food Sci Nutr 2022; 64:1139-1157. [PMID: 36004620 DOI: 10.1080/10408398.2022.2113364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Essential oils (EOs) have many beneficial qualities, including antimicrobial, antioxidant, antiviral, and antifungal activities, along with good aroma, which have played a significant role in pharmaceutical, textile, and food industries. However, their high volatility and sensibility to external factors, as well as susceptibility to deterioration caused by environmental and storage conditions, or even common processing, and consequently limited water solubility, makes it difficult to incorporate them into aqueous food matrices and limits their industrial application. Spray-drying encapsulation has been proposed as a solution and a challenging research field to retard oil oxidation, extend EO's shelf life, improve their physicochemical stability, achieve controlled release, suggest novel uses, and therefore boost their added value. The objective of this review is to discuss various used wall materials, infeed emulsion properties, the main formulation and process variables affecting the physicochemical properties and release characteristics of the EOs-loaded particles obtained by spray-drying, the stability of EOs during storage, and the applications of encapsulated EOs powders in foods and nutrition, pharmaceuticals, and textile industries. The current review also summarizes recent advances in spray drying approaches for improving encapsulation efficiency, flavor retention, controlled release, and applicability of encapsulated EOs, thereby expanding their use and functionalities.
Collapse
Affiliation(s)
- Özgül Altay
- Department of Food Engineering, Faculty of Engineering, Ege University, İzmir, Türkiye
| | - Özgün Köprüalan
- Department of Food Engineering, Faculty of Engineering, Ege University, İzmir, Türkiye
| | - Işıl İlter
- Department of Food Engineering, Faculty of Engineering, Ege University, İzmir, Türkiye
- Department of Food Engineering, Faculty of Engineering, Manisa Celal Bayar University, Manisa, Türkiye
| | - Mehmet Koç
- Department of Food Engineering, Faculty of Engineering, Aydın Adnan Menderes University, Aydın, Türkiye
| | - Figen Kaymak Ertekin
- Department of Food Engineering, Faculty of Engineering, Ege University, İzmir, Türkiye
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
26
|
Singh H, Kumar Y, Meghwal M. Encapsulated oil powder: Processing, properties, and applications. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Himani Singh
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship and Management Sonepat Haryana India
| | - Yogesh Kumar
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE) University of Padova Padua Italy
| | - Murlidhar Meghwal
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship and Management Sonepat Haryana India
| |
Collapse
|
27
|
Kaul S, Kaur K, Mehta N, Dhaliwal SS, Kennedy JF. Characterization and optimization of spray dried iron and zinc nanoencapsules based on potato starch and maltodextrin. Carbohydr Polym 2022; 282:119107. [DOI: 10.1016/j.carbpol.2022.119107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
|
28
|
The Effect of Marinating on Fatty Acid Composition of Sous-Vide Semimembranosus Muscle from Holstein-Friesian Bulls. Foods 2022; 11:foods11060797. [PMID: 35327220 PMCID: PMC8949574 DOI: 10.3390/foods11060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/27/2022] Open
Abstract
The aim of the study was to evaluate the effect of two commercial oil marinades on marinated bovine semimembranosus muscles’ (n = 12) fatty acid composition. Fatty acids were determined in unmarinated raw and sous-vide beef and marinated muscles with two different marinades. The application of marinating changed the fatty acid composition in sous-vide beef. The sum of saturated fatty acids (SFA) and n-6/n-3 ratio decreased. However, the sum of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), including n-6 and n-3, increased in marinated sous-vide beef, while a proportion of conjugated linoleic acid (CLA) and arachidonic acid (AA) decreased. The concentration (mg/100 g) of the sum of SFA and CLA in sous-vide beef was unaffected by marinating; however, the treatment significantly increased the sum of MUFA, PUFA, n-6 fatty and n-3 fatty acid concentrations. Using marinades containing canola oil and spices prior to the sous-vide treatment of beef was effective in improving its fatty acid composition.
Collapse
|
29
|
Álvarez R, Giménez B, Mackie A, Torcello-Gómez A, Quintriqueo A, Oyarzun-Ampuero F, Robert P. Influence of the particle size of encapsulated chia oil on the oil release and bioaccessibility during in vitro gastrointestinal digestion. Food Funct 2022; 13:1370-1379. [PMID: 35044402 DOI: 10.1039/d1fo03688b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among vegetable oils, chia oil has been gaining interest in recent years due to its high linolenic acid content (ALA, 18:3 ω3). The aim of this work was to study the influence of the particle size of encapsulated purified chia oil (PCO) on the encapsulation efficiency and PCO release during in vitro digestion. PCO micro- and nano-sized particles with sodium alginate (SA) as an encapsulating agent (ME-PCO-SA and NE-PCO-SA) were designed by micro and nano spray-drying, respectively, applying a central composite plus star point experimental design. NE-PCO-SA showed a smaller particle size and higher encapsulation efficiency of PCO than ME-PCO-SA (0.16 μm vs. 3.5 μm; 98.1% vs. 92.0%). Emulsions (NE-PCO and ME-PCO) and particles (NE-PCO-SA and ME-PCO-SA) were subjected to in vitro static gastrointestinal digestion. ME-PCO and NE-PCO showed sustained oil release throughout the three phases of digestion (oral, gastric and intestinal phases), whereas the PCO release from ME-PCO-SA and NE-PCO-SA occurred mainly in the intestinal phase, showing the suitability of sodium alginate as an intestine-site release polymer. Nano-sized particles showed a significantly higher PCO release after in vitro digestion (NE-PCO-SA, 78.4%) than micro-sized particles (ME-PCO-SA, 69.8%), and also higher bioaccessibility of individual free fatty acids, such as C18:3 ω-3 (NE-PCO-SA, 23.6%; ME-PCO-SA, 7.9%), due to their greater surface area. However, when ME-PCO-SA and NE-PCO-SA were incorporated into yogurt, the PCO release from both particle systems after the digestion of the matrix was similar (NE-PCO-SA, 58.8%; ME-PCO-SA-Y, 61.8%), possibly because the calcium ions contained in the yogurt induced partial ionic gelation of SA, impairing the PCO release. Sodium alginate spray-dried micro and nanoparticles showed great potential for vehiculation of omega-3 rich oils in the design of functional foods.
Collapse
Affiliation(s)
- Rudy Álvarez
- Dpto. Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile.
| | - Begoña Giménez
- Dpto. Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Ecuador 3769, Estación Central, Santiago, Chile
| | - Alan Mackie
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Amelia Torcello-Gómez
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Alejandra Quintriqueo
- Dpto. Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile.
| | - Felipe Oyarzun-Ampuero
- Departamento de Ciencia y Tecnología Farmacéutica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Paz Robert
- Dpto. Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile.
| |
Collapse
|
30
|
Otero P, Carpena M, Fraga-Corral M, Garcia-Oliveira P, Soria-Lopez A, Barba F, Xiao JB, Simal-Gandara J, Prieto M. Aquaculture and agriculture-by products as sustainable sources of omega-3 fatty acids in the food industry. EFOOD 2022. [DOI: 10.53365/efood.k/144603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The valorization of by-products is currently a matter of great concern to improve the sustainability of the food industry. High quality by-products derived from the food chain are omega-3 fatty acids, being fish the main source of docosahexaenoic acid and eicosapentaenoic acid. The search for economic and sustainable sources following the standards of circular economy had led to search for strategies that put in value new resources to obtain different omega-3 fatty acids, which could be further employed in the development of new industrial products without producing more wastes and economic losses. In this sense, seeds and vegetables, fruits and crustaceans by products can be an alternative. This review encompasses all these aspects on omega-3 fatty acids profile from marine and agri-food by-products together with their extraction and purification technologies are reported. These comprise conventional techniques like extraction with solvents, cold press, and wet pressing and, more recently proposed ones like, supercritical fluids fractionation and purification by chromatographic methods. The information collected indicates a trend to combine different conventional and emerging technologies to improve product yields and purity. This paper also addresses encapsulation strategies for their integration in novel foods to achieve maximum consumer acceptance and to ensure their effectiveness.
Collapse
|
31
|
Fathi F, N Ebrahimi S, Matos LC, P P Oliveira MB, Alves RC. Emerging drying techniques for food safety and quality: A review. Compr Rev Food Sci Food Saf 2022; 21:1125-1160. [PMID: 35080792 DOI: 10.1111/1541-4337.12898] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/27/2022]
Abstract
The new trends in drying technology seek a promising alternative to synthetic preservatives to improve the shelf-life and storage stability of food products. On the other hand, the drying process can result in deformation and degradation of phytoconstituents due to their thermal sensitivity. The main purpose of this review is to give a general overview of common drying techniques with special attention to food industrial applications, focusing on recent advances to maintain the features of the active phytoconstituents and nutrients, and improve their release and storage stability. Furthermore, a drying technique that extends the shelf-life of food products by reducing trapped water, will negatively affect the spoilage of microorganisms and enzymes that are responsible for undesired chemical composition changes, but can protect beneficial microorganisms like probiotics. This paper also explores recent efficient improvements in drying technologies that produce high-quality and low-cost final products compared to conventional methods. However, despite the recent advances in drying technologies, hybrid drying (a combination of different drying techniques) and spray drying (drying with the help of encapsulation methods) are still promising techniques in food industries. In conclusion, spray drying encapsulation can improve the morphology and texture of dry materials, preserve natural components for a long time, and increase storage times (shelf-life). Optimizing a drying technique and using a suitable drying agent should also be a promising solution to preserve probiotic bacteria and antimicrobial compounds.
Collapse
Affiliation(s)
- Faezeh Fathi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran.,REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Samad N Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | | | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Rita C Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
32
|
Rodríguez-González I, Díaz-Reinoso B, Domínguez H. Intensification Strategies for the Extraction of Polyunsaturated Fatty Acids and Other Lipophilic Fractions From Seaweeds. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02757-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Baltrusch KL, Torres MD, Domínguez H, Flórez-Fernández N. Spray-drying microencapsulation of tea extracts using green starch, alginate or carrageenan as carrier materials. Int J Biol Macromol 2022; 203:417-429. [PMID: 35077749 DOI: 10.1016/j.ijbiomac.2022.01.129] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/17/2022]
Abstract
Tea industry generates many by-products which could be used to produce and incorporate bioactive tea extracts (TE) into nutraceuticals, cosmetics and/or clinical applications. However, sensibility to external factors is a major disadvantage hindering its utilization. This study deals with the implementation and characterization of suitable biopolymer delivery systems based on starch, carrageenan or alginate, as microencapsulation, to stabilize and protect TE through innovative thin-carbohydrate-coated formulations. TE were spray-dried and microencapsulated in recycled carrier materials (alginate, carrageenan or starch). Product yields varied from 55 to 58%. High microencapsulation and loading efficiencies were achieved (60-93% and 65-84%, respectively). Antioxidant capacity varied from 32 to 46 g Trolox/100 g extract, within different carrier-systems; which also showed promising rheological and UV-protective properties when transformed into gels. Total phenolic content, particle-size distribution, HPSEC-analysis, SEM-analysis and FTIR-analysis were also performed. In sum, this paper characterizes and discusses the high potential of these recycled carbohydrate-coated microparticles for future applications.
Collapse
Affiliation(s)
- K L Baltrusch
- Department of Chemical Engineering, Universidade de Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004 Ourense, Spain; CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| | - M D Torres
- Department of Chemical Engineering, Universidade de Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004 Ourense, Spain; CINBIO, Universidade de Vigo, 32004 Ourense, Spain.
| | - H Domínguez
- Department of Chemical Engineering, Universidade de Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004 Ourense, Spain; CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| | - N Flórez-Fernández
- Department of Chemical Engineering, Universidade de Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004 Ourense, Spain; CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
34
|
Oxidative stability of encapsulated sunflower oil: effect of protein-polysaccharide mixtures and long-term storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
The extent and mechanism of the effect of protectant material in the production of active lactic acid bacteria powder using spray drying: A review. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Rubio FTV, Haminiuk CWI, Santos PDDF, Martelli-Tosi M, Thomazini M, Balieiro JCDC, Makimori GYF, Favaro-Trindade CS. Investigation of brewer’s spent yeast as a bio-vehicle for encapsulation of natural colorants from pumpkin (Cucurbita moschata) peels. Food Funct 2022; 13:10096-10109. [DOI: 10.1039/d2fo00759b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Brewer’s spent yeast (BSY) Saccharomyces cerevisiae has been currently explored as a bio-vehicle for encapsulation of bioactive compounds and as a delivery system. The main objectives of this work were...
Collapse
|
37
|
Relative bioavailability enhancement of simvastatin via dry emulsion systems: comparison of spray drying and fluid bed layering technology. Eur J Pharm Biopharm 2021; 172:228-239. [PMID: 34942336 DOI: 10.1016/j.ejpb.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022]
Abstract
Comprehensive comparisons of similar lipid based drug delivery systems produced by different technologies are scarce. Spray drying and fluid bed layering technologies were compared with respect to the process and product characteristics of otherwise similar simvastatin loaded dry emulsion systems. Fluid bed layering provided higher process yield (83.3% vs 71.5%), encapsulation efficiency (80.0% vs 68.4 %), relative one month product stability (93.8% vs 85.5%), larger and more circular particles (336 µm vs 56 µm) and lower median oil droplet size after product reconstitution in water (2.85 µm vs 4.27 µm), compared to spray drying. However, spray dried products exhibited higher drug content (22.2 mg/g vs 9.34 mg/g). An in-vivo pharmacokinetic study in rats was performed and a pharmacokinetic model was developed in order to compare the optimised simvastatin loaded dry emulsion systems, a simvastatin glyceride mimetic loaded in the dry emulsion and a simvastatin loaded SMEDDS with a reference physical mixture. Of the formulation tested, fluid bed layered pellets excelled and provided a 115% relative increase in bioavailability. Among the two technologies, fluid bed layering provided dry emulsion products with higher relative bioavailability and better product characteristics for further processing into final dosage forms.
Collapse
|
38
|
Microencapsulation for Functional Textile Coatings with Emphasis on Biodegradability—A Systematic Review. COATINGS 2021. [DOI: 10.3390/coatings11111371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The review provides an overview of research findings on microencapsulation for functional textile coatings. Methods for the preparation of microcapsules in textiles include in situ and interfacial polymerization, simple and complex coacervation, molecular inclusion and solvent evaporation from emulsions. Binders play a crucial role in coating formulations. Acrylic and polyurethane binders are commonly used in textile finishing, while organic acids and catalysts can be used for chemical grafting as crosslinkers between microcapsules and cotton fibres. Most of the conventional coating processes can be used for microcapsule-containing coatings, provided that the properties of the microcapsules are appropriate. There are standardised test methods available to evaluate the characteristics and washfastness of coated textiles. Among the functional textiles, the field of environmentally friendly biodegradable textiles with microcapsules is still at an early stage of development. So far, some physicochemical and physical microencapsulation methods using natural polymers or biodegradable synthetic polymers have been applied to produce environmentally friendly antimicrobial, anti-inflammatory or fragranced textiles. Standardised test methods for evaluating the biodegradability of textile materials are available. The stability of biodegradable microcapsules and the durability of coatings during the use and care of textiles still present several challenges that offer many opportunities for further research.
Collapse
|
39
|
Yerlikaya P, Alp AC, Tokay FG, Aygun T, Kaya A, Topuz OK, Yatmaz HA. Determination of fatty acids and vitamins A, D and E intake through fish consumption. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Ali Can Alp
- Fisheries Faculty Akdeniz University Antalya Turkey
| | | | - Tugce Aygun
- Fisheries Faculty Akdeniz University Antalya Turkey
| | - Adem Kaya
- Fisheries Faculty Akdeniz University Antalya Turkey
| | | | - Hanife Aydan Yatmaz
- Food Safety and Agricultural Research Center Akdeniz University Antalya Turkey
| |
Collapse
|
40
|
Lipid microencapsulation process using spray drying: modeling and heat recovery study. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Omega-3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits-A Review. Antioxidants (Basel) 2021; 10:antiox10101627. [PMID: 34679761 PMCID: PMC8533147 DOI: 10.3390/antiox10101627] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
The omega−3 (n−3) polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic (DHA) acid are well known to protect against numerous metabolic disorders. In view of the alarming increase in the incidence of chronic diseases, consumer interest and demand are rapidly increasing for natural dietary sources of n−3 PUFAs. Among the plant sources, seed oils from chia (Salvia hispanica), flax (Linum usitatissimum), and garden cress (Lepidium sativum) are now widely considered to increase α-linolenic acid (ALA) in the diet. Moreover, seed oil of Echium plantagineum, Buglossoides arvensis, and Ribes sp. are widely explored as a source of stearidonic acid (SDA), a more effective source than is ALA for increasing the EPA and DHA status in the body. Further, the oil from microalgae and thraustochytrids can also directly supply EPA and DHA. Thus, these microbial sources are currently used for the commercial production of vegan EPA and DHA. Considering the nutritional and commercial importance of n−3 PUFAs, this review critically discusses the nutritional aspects of commercially exploited sources of n−3 PUFAs from plants, microalgae, macroalgae, and thraustochytrids. Moreover, we discuss issues related to oxidative stability and bioavailability of n−3 PUFAs and future prospects in these areas.
Collapse
|
42
|
Muhoza B, Qi B, Harindintwali JD, Koko MYF, Zhang S, Li Y. Encapsulation of cinnamaldehyde: an insight on delivery systems and food applications. Crit Rev Food Sci Nutr 2021; 63:2521-2543. [PMID: 34515594 DOI: 10.1080/10408398.2021.1977236] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cinnamaldehyde is an essential oil extracted from the leaves, bark, roots and flowers of cinnamon plants (genus Cinnamomum). Cinnamaldehyde has shown biological functions such as antioxidants, antimicrobials, anti-diabetic, anti-obesity and anti-cancer. However, poor solubility in water as well as molecular sensitivity to oxygen, light, and high temperature limit the direct application of cinnamaldehyde. Researchers are using different encapsulation techniques to maximize the potential biological functions of cinnamaldehyde. Different delivery systems such as liposomes, emulsions, biopolymer nanoparticles, complex coacervation, molecular inclusion, and spray drying have been developed for this purpose. The particle size and morphology, composition and physicochemical properties influence the performance of each delivery system. Consequently, the individual delivery system has its advantages and limitations for specific applications. Given the essential role of cinnamaldehyde in functional food and food preservation, appropriate approaches should be applied in the encapsulation and application of encapsulated cinnamaldehyde. This review systematically analyzes available encapsulation techniques for cinnamaldehyde in terms of their design, properties, advantages and limitations, and food application status. The information provided in this manuscript will assist in the development and widespread use of cinnamaldehyde-loaded particles in the food and beverage industries.
Collapse
Affiliation(s)
- Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jean Damascene Harindintwali
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | | | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China.,Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China.,Heilongjiang Green Food Science Research Institute, Harbin, China.,National Research Center of Soybean Engineering and Technology, Harbin, China
| |
Collapse
|
43
|
Fadini AL, Alvim ID, Carazzato CA, Paganotti KBDF, Miguel AMRDO, Rodrigues RAF. Microparticles loaded with fish oil: stability studies, food application and sensory evaluation. J Microencapsul 2021; 38:365-380. [PMID: 34278940 DOI: 10.1080/02652048.2021.1948622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
AIM Evaluate the stability of microparticles loaded with fish oil produced by spray drying, spray chilling and by the combination of these techniques (double-shell) and use the microparticles for food application. METHODS Samples were stored for 180 days at 6 °C and 24 °C (75% RH). Performed investigations included encapsulation efficiency, moisture content, aw, size (laser scattering), colour (L*, a*, b*), polyunsaturated fatty acids (PUFAs) (GC), thermal behaviour (DSC) and crystalline structure (XRD). RESULTS Double-shell microparticles containing 26 wt% core material, 22.74 ± 0.02 µm (D0.5) and 2.05 ± 0.03 span index, 1.262 ± 0.026 wt% moisture content and 0.240 ± 0.001 of aw had PUFAs retention higher than 90 wt% during storage at 6 °C without changes in crystalline structure (β'-type crystals) and melting temperature (54 °C). The sensory evaluation suggested low fish oil release in oral phase digestion. CONCLUSIONS Double-shell microparticles were effective to protect and deliver PUFAs.
Collapse
Affiliation(s)
- Ana Lúcia Fadini
- Cereal Chocotec, Institute of Food Technology, Campinas, Brazil
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| | | | | | | | | | - Rodney Alexandre Ferreira Rodrigues
- Phytochemistry Division, CPQBA, University of Campinas, Paulínia, Brazil
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
44
|
Whey protein isolate-lignin complexes as encapsulating agents for enhanced survival during spray drying, storage, and in vitro gastrointestinal passage of Lactobacillus reuteri KUB-AC5. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
Encapsulation and Protection of Omega-3-Rich Fish Oils Using Food-Grade Delivery Systems. Foods 2021; 10:foods10071566. [PMID: 34359436 PMCID: PMC8305697 DOI: 10.3390/foods10071566] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Regular consumption of adequate quantities of lipids rich in omega-3 fatty acids is claimed to provide a broad spectrum of health benefits, such as inhibiting inflammation, cardiovascular diseases, diabetes, arthritis, and ulcerative colitis. Lipids isolated from many marine sources are a rich source of long-chain polyunsaturated fatty acids (PUFAs) in the omega-3 form which are claimed to have particularly high biological activities. Functional food products designed to enhance human health and wellbeing are increasingly being fortified with these omega-3 PUFAs because of their potential nutritional and health benefits. However, food fortification with PUFAs is challenging because of their low water-solubility, their tendency to rapidly oxidize, and their variable bioavailability. These challenges can be addressed using advanced encapsulation technologies, which typically involve incorporating the omega-3 oils into well-designed colloidal particles fabricated from food-grade ingredients, such as liposomes, emulsion droplets, nanostructured lipid carriers, or microgels. These omega-3-enriched colloidal dispersions can be used in a fluid form or they can be converted into a powdered form using spray-drying, which facilitates their handling and storage, as well as prolonging their shelf life. In this review, we provide an overview of marine-based omega-3 fatty acid sources, discuss their health benefits, highlight the challenges involved with their utilization in functional foods, and present the different encapsulation technologies that can be used to improve their performance.
Collapse
|
46
|
Stability of eicosapentaenoic acid and docosahexaenoic acid in spray-dried powder of emulsified krill oil. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2020.100009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
47
|
Smaoui S, Ben Hlima H, Ben Braïek O, Ennouri K, Mellouli L, Mousavi Khaneghah A. Recent advancements in encapsulation of bioactive compounds as a promising technique for meat preservation. Meat Sci 2021; 181:108585. [PMID: 34119890 DOI: 10.1016/j.meatsci.2021.108585] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Encapsulation is currently considered as one the most valuable methods for preserving aromatic compounds or hiding odors, enhancing their thermal and oxidative stability, and expanding their food applications. Indeed, this current article was aimed to provide an overview regarding the encapsulation of plant bioactive compounds and the spray-drying and extrusion processes with a focused discussion regarding the encountered challenges for meat and meat product preservation. Furthermore, different ranges of carbohydrates as wall materials (carriers) besides the process conditions' effects on the encapsulation effectiveness and the particle size of the encapsulated bioactive compounds have been discussed. The encapsulation of these compounds ameliorates the quality of the stored meat products by further delaying in microflora growth and lipid/protein oxidation. Therefore, the innovative technologies for plant active compounds encapsulation offer a prospective alternative for natural preservation development in the meat industry.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018 Sfax, Tunisia.
| | - Hajer Ben Hlima
- Algae Biotechnology Unit, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax-Tunisia, 3038 Sfax, Tunisia
| | - Olfa Ben Braïek
- Laboratory of Transmissible Diseases and Biologically Active Substances (LR99ES27), Faculty of Pharmacy, University of Monastir, Tunisia
| | - Karim Ennouri
- Laboratory of Amelioration and Protection of Olive Genetic Resources, Olive Tree Institute, University of Sfax, Sfax, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018 Sfax, Tunisia
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
48
|
Huang D, Yang P, Tang X, Luo L, Sunden B. Application of infrared radiation in the drying of food products. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
49
|
Encina C, Giménez B, Márquez-Ruiz G, Holgado F, Vergara C, Romero-Hasler P, Soto-Bustamante E, Robert P. Hydroxypropyl-inulin as a novel encapsulating agent of fish oil by conventional and water-free spray drying. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Jafari SM, Arpagaus C, Cerqueira MA, Samborska K. Nano spray drying of food ingredients; materials, processing and applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|