1
|
Tao W, Li W, Aweya JJ, Lin R, Jin R, Liang D, Ren Z, Yang S. Bacillus subtilis fermented shrimp waste isolated peptide, PVQ9, and its antimicrobial mechanism on four Gram-positive foodborne bacteria. Food Microbiol 2025; 125:104654. [PMID: 39448164 DOI: 10.1016/j.fm.2024.104654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Bacillus subtilis produces proteases that hydrolyze proteins to produce bioactive peptides. Given the mounting waste from processed shrimp, the antimicrobial potential of peptides isolated from B. subtilis fermented shrimp waste was explored. Among the five peptides screened using molecular docking prediction, PVQ9 (AVFPSIVGRPR) had strong antibacterial activity against four common foodborne Gram-positive bacteria, i.e., Staphylococcus aureus, Bacillus cereus, Mammaliicoccus sciuri, and Kurthia gibsonii. The minimum bactericidal concentrations (MBCs) were 62.5 μg/mL for S. aureus and B. cereus, and 31.3 μg/mL for both M. sciuri and K. gibsonii, with a time-kill of 3 h observed for all strains. Mechanistically, it was demonstrated that PVQ9 could destroy bacterial cell walls, change bacteria cell membrane permeability, bind to bacteria DNA, and cause cell apoptosis. Most importantly, peptide PVQ9 could inhibit the spoilage of bean curd or tofu contaminated with K. gibsonii. These findings suggest that PVQ9 could be a useful preservative in controlling foodborne pathogenic bacteria in soy products and other processed foods.
Collapse
Affiliation(s)
- Weihong Tao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Wenjie Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Rong Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Ritian Jin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Duo Liang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
2
|
Li Y, Ye Y, Zhu X, Liu X, Li X, Zhao Y, Che X. Transcriptomic analysis reveals nanoplastics-induced apoptosis, autophagy and immune response in Litopenaeus vannamei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174360. [PMID: 38960190 DOI: 10.1016/j.scitotenv.2024.174360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Increasing attention is being paid to the toxic physiological effects of nanoplastics (NPs) on aquatic organisms. However, few studies have systematically evaluated the regulatory mechanisms of NPs on immune response in crustaceans. In this study, a 28-day chronic exposure experiment was conducted in which shrimps were exposed to various 80-nm polystyrene NPs concentrations (0, 0.1, 1, 5 and 10 mg/L). Transcriptomic analysis was used to investigate the regulatory mechanisms of NPs in immune response of Litopenaeus vannamei. With increasing NPs concentration, the total hemocyte count (THC) content decreased, while phagocytosis rate (PR) and respiratory burst (RB) showed trends of first rising and then falling. High concentration (10 mg/L) of NPs caused the destruction of hepatopancreas tissue structure, the shedding of microvilli, the increase number of hepatocyte apoptosis and autophagy structure. With increasing NPs concentration, the lysozyme (Lys), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities first increased and then decrease, while contents of lipid peroxidation and malondialdehyde increased; the expression levels of Toll, MyD88, GPx, SOD, proPO, Lys, and ALF generally increased at first and then decreased. Transcriptional sequencing analysis showed that the pathway of differentially expressed genes in KEGG enrichment mainly included lysosome (ko04142), apoptosis (ko04210) pathways, indicating that the NPs mainly affected the immune regulatory mechanism. Further analysis by Gene Set Enrichment Analysis (GSEA) showed that the up-regulation pathways of NPs activation mainly included immune response-related pathways such as mitochondrial autophagy, DNA repair, autophagosomes signaling pathway. Our results indicated that NPs exposure induced oxidative stress, apoptosis and autophagy in shrimps. This study provides a basis for further understanding of the mechanisms of antioxidant immune regulation by NPs in shrimp and may serve as a reference for healthy ecological culture of shrimp.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xiaoyi Zhu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Xinfeng Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| |
Collapse
|
3
|
Gao M, Tang H, Zhu H. Advances in extraction, utilization, and development of chitin/chitosan and its derivatives from shrimp shell waste. Compr Rev Food Sci Food Saf 2024; 23:e70008. [PMID: 39223761 DOI: 10.1111/1541-4337.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Shrimp consumption is in great demand among the seafood used globally. However, this expansion has resulted in the substantial generation and disposal of shrimp shell waste. Through literature search, it has been observed that since 2020, global scholars have shown unprecedented interest in shrimp shell waste and its chitin/chitosan. However, these new insights lack corresponding and comprehensive summarization and analysis. Therefore, this article provides a detailed review of the extraction methods, applications, and the latest research developments on chitin/chitosan from shrimp shells, including micro-nano derivatives, from 2020 to the present. The results indicate that chemical extraction remains the primary technique for the extraction and preparation of chitin/chitosan from shrimp shells. With further refinement and development, adjusting parameters in the chemical extraction process or employing auxiliary techniques such as microwave and radiation enable the customization of target products with different characteristics (e.g., deacetylation degree, molecular weight, and degree of acetylation) according to specific needs. Additionally, in pursuit of environmentally friendly, efficient, and gentle extraction processes, recent research has shifted toward microbial fermentation and green solvent methods for chitin/chitosan extraction. Beyond the traditional antibacterial, film-forming, and encapsulation functionalities, research into the applications of chitosan in biomedical, food processing, new materials, water treatment, and adsorption fields is gradually deepening. Chitin/chitosan derivatives and their modified products have also been a focal point of research in recent years. However, with the rapid expansion, the future development of chitin/chitosan and its derivatives still faces challenges related to the unclear mechanism of action and the complexities associated with industrial scale-up.
Collapse
Affiliation(s)
- Mingyue Gao
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Hanqi Tang
- Personal Department, Shandong University, Qingdao, China
| | - Hongguang Zhu
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
El Boumlasy S, Mangraviti D, Arena K, Cacciola F, Asraoui F, Debdoubi A. Determination of astaxanthin and astaxanthin esters in three samples of shrimp waste ( Parapenaeus longirostris) by high performance liquid chromatography coupled photo-diode array and mass spectrometry detection. Nat Prod Res 2024; 38:2901-2908. [PMID: 37572009 DOI: 10.1080/14786419.2023.2245959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/16/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
The present study aimed to identify the content of astaxanthin and its esterified forms using high-performance liquid chromatography coupled with diode array and atmospheric pressure chemical ionisation mass spectrometry detection in three samples of shrimp waste. The analyses revealed twenty-one astaxanthin derivatives, including astaxanthin in free form, across all three extracts with the highest number of derivatives observed in the head extract. The shell extract had a lower content of astaxanthin and its esterified forms, with monoesterified astaxanthins being the major components, with contents ranging from 0.5-1 mg g-1. On the other hand, in both global waste and head extracts, astaxanthin diesters were found to be the dominant bioactive compounds, with contents ranging from 0.7-5.2 mg g-1 and 10.2-18.2 mg g-1, respectively. Notably, the astaxanthin content extracted from head was significantly higher compared to other extracts, indicating its potential as a valuable source of bioactive compounds.
Collapse
Affiliation(s)
- Soumia El Boumlasy
- Laboratory of Materials-Catalysis, Chemistry Department, Faculty of Sciences of Tetouan, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Domenica Mangraviti
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Katia Arena
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Fadoua Asraoui
- Laboratory of Applied Biology and Pathology, Department of Biology, Faculty of Sciences of Tetouan, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Abderrahmane Debdoubi
- Laboratory of Materials-Catalysis, Chemistry Department, Faculty of Sciences of Tetouan, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
5
|
Kaewtrakulchai N, Samattakarn N, Chanpee S, Assawasaengrat P, Manatura K, Wongrerkdee S, Eiad-Ua A. Solid shrimp waste derived nanoporous carbon as an alternative bio-sorbent for oxytetracycline removal from aquaculture wastewater. Heliyon 2024; 10:e32427. [PMID: 38933975 PMCID: PMC11200350 DOI: 10.1016/j.heliyon.2024.e32427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Recently, it has been critical to effectively remove oxytetracycline (OTC) from aquaculture wastewater before releasing into the environment. The adsorption process is recognized as an efficient pathway for removing OTC since it is a simple, stable, and cost-effective method. This study aims to develop nanoporous carbon entirely from shrimp waste (SW) via hydrothermal carbonization assisted with KOH activation. Existing KOH significantly increases the porosity of SW nanoporous carbon. The optimal SW porous carbon was obtained using 5 wt%KOH for activation, which had the largest surface area of 679.51 m2/g with the total pore volume of 0.458 cm3/g. Moreover, the SW porous carbon with the highest porosity was selected for the OTC adsorption. The Langmuir isotherm model and the pseudo-second-order kinetic model match the experimental data, implying that the adsorption mechanism is mono-layered adsorption due to micropores by chemisorption interaction. The adsorption capacity significantly improved by increasing the dosage of SW nanoporous carbon. The SW nanoporous carbon adsorption for OTC is primarily regulated by pore filling affected by hydrogen bonding, and π-π* interaction also plays a significant role. The SW nanoporous carbon showed an efficient OTC adsorption after 5 regeneration cycles. This work demonstrates biomass waste recycling and emphasizes the potential of aquatic food processing waste-derived nanoporous carbon for antibiotic adsorption.
Collapse
Affiliation(s)
- Napat Kaewtrakulchai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok, 10900, Thailand
| | - Nippit Samattakarn
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok, 10900, Thailand
| | - Sirayu Chanpee
- Department of Chemical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Pornsawan Assawasaengrat
- Department of Chemical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Kanit Manatura
- Department of Mechanical Engineering, Faculty of Engineering at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhonpatom, 73140, Thailand
| | - Sutthipoj Wongrerkdee
- Department of Physical and Material Sciences, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Apiluck Eiad-Ua
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology, Bangkok, 10520, Thailand
| |
Collapse
|
6
|
Wani AK, Akhtar N, Mir TUG, Rahayu F, Suhara C, Anjli A, Chopra C, Singh R, Prakash A, El Messaoudi N, Fernandes CD, Ferreira LFR, Rather RA, Américo-Pinheiro JHP. Eco-friendly and safe alternatives for the valorization of shrimp farming waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38960-38989. [PMID: 37249769 PMCID: PMC10227411 DOI: 10.1007/s11356-023-27819-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
The seafood industry generates waste, including shells, bones, intestines, and wastewater. The discards are nutrient-rich, containing varying concentrations of carotenoids, proteins, chitin, and other minerals. Thus, it is imperative to subject seafood waste, including shrimp waste (SW), to secondary processing and valorization for demineralization and deproteination to retrieve industrially essential compounds. Although several chemical processes are available for SW processing, most of them are inherently ecotoxic. Bioconversion of SW is cost-effective, ecofriendly, and safe. Microbial fermentation and the action of exogenous enzymes are among the significant SW bioconversion processes that transform seafood waste into valuable products. SW is a potential raw material for agrochemicals, microbial culture media, adsorbents, therapeutics, nutraceuticals, and bio-nanomaterials. This review comprehensively elucidates the valorization approaches of SW, addressing the drawbacks of chemically mediated methods for SW treatments. It is a broad overview of the applications associated with nutrient-rich SW, besides highlighting the role of major shrimp-producing countries in exploring SW to achieve safe, ecofriendly, and efficient bio-products.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Tahir Ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Farida Rahayu
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Cece Suhara
- Research Center for Horticulture and Plantation, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Anjli Anjli
- HealthPlix Technologies Private Limited, Bengaluru, 560103, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, 80000, Agadir, Morocco
| | - Clara Dourado Fernandes
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
- Institute of Technology and Research, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Rauoof Ahmad Rather
- Division of Environmental Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Srinagar, Jammu and Kashmir, India
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil.
- Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP, 08230-030, Brazil.
| |
Collapse
|
7
|
Marques LP, Bernardo YAA, Conte-Junior CA. Applications of high-intensity ultrasound on shrimp: Potential, constraints, and prospects in the extraction and retrieval of bioactive compounds, safety, and quality. J Food Sci 2024; 89:3148-3166. [PMID: 38685866 DOI: 10.1111/1750-3841.17093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
The global shrimp market holds substantial prominence within the food industry, registering a significant USD 24.7 billion in worldwide exportation in 2020. However, the production of a safe and high-quality product requires consideration of various factors, including the potential for allergenic reactions, occurrences of foodborne outbreaks, and risks of spoilage. Additionally, the exploration of the recovery of bioactive compounds (e.g., astaxanthin [AX], polyunsaturated fatty acids, and polysaccharides) from shrimp waste demands focused attention. Within this framework, this review seeks to comprehend and assess the utilization of high-intensity ultrasound (HIUS), both as a standalone method and combined with other technologies, within the shrimp industry. The objective is to evaluate its applications, limitations, and prospects, with a specific emphasis on delineating the impact of sonication parameters (e.g., power, time, and temperature) on various applications. This includes an examination of undesirable effects and identifying areas of interest for current and prospective research. HIUS has demonstrated promise in enhancing the extraction of bioactive compounds, such as AX, lipids, and chitin, while concurrently addressing concerns such as allergen reduction (e.g., tropomyosin), inactivation of pathogens (e.g., Vibrio parahaemolyticus), and quality improvement, manifesting in reduced melanosis scores and improved peelability. Nonetheless, potential impediments, particularly related to oxidation processes, especially those associated with lipids, pose a hindrance to its widespread implementation, potentially impacting texture properties. Consequently, further optimization studies remain imperative. Moreover, novel applications of sonication in shrimp processing, including brining, thawing, and drying, represent a promising avenue for expanding the utilization of HIUS in the shrimp industry.
Collapse
Affiliation(s)
- Lucas P Marques
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Yago A A Bernardo
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos A Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Biochemistry (PPGBq), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Matouri M, Liu Z, Saldaña MDA. Production of chitosan from shrimp shell using ultrasound followed by subcritical water hydrolysis. Food Chem 2024; 441:138248. [PMID: 38232680 DOI: 10.1016/j.foodchem.2023.138248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
The interest in shrimp shell valorization has been growing in line with sustainability goals. Therefore, the main objective of this study was to obtain chitosan from shrimp shell using ultrasound followed by subcritical water treatment. Ultrasonication of shells was performed at 600 and 1200 W for 5 min. Then, shells were hydrolyzed at 140-260 °C and 50 bar for 10-60 min followed by demineralization using citric acid, bleaching using hydrogen peroxide and deacetylation using sodium hydroxide solution. The highest deproteination (80.93 %) was obtained by ultrasonication at 1200 W/5 min followed by subcritical water hydrolysis at 260 °C/50 bar/60 min, where the residue with a yield of 10.56 %, whiteness index of 60.42, degree of deacetylation of 64.27 %, relative crystallinity of 32.66 % and similar functional groups to the commercial sample was obtained. These results indicated that the combination of ultrasound with subcritical water is promising to valorize shrimp shell towards production of value-added compounds.
Collapse
Affiliation(s)
- Mashaer Matouri
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Zhengjie Liu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Marleny D A Saldaña
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
9
|
Ekrem Parlak M, Irmak Sahin O, Neslihan Dundar A, Türker Saricaoglu F, Smaoui S, Goksen G, Koirala P, Al-Asmari F, Prakash Nirmal N. Natural colorant incorporated biopolymers-based pH-sensing films for indicating the food product quality and safety. Food Chem 2024; 439:138160. [PMID: 38086233 DOI: 10.1016/j.foodchem.2023.138160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
The current synthetic plastic-based packaging creates environmental hazards that impact climate change. Hence, the topic of the current research in food packaging is biodegradable packaging and its development. In addition, new smart packaging solutions are being developed to monitor the quality of packaged foods, with dual functions as food preservation and quality indicators. In the creation of intelligent and active food packaging, many natural colorants have been employed effectively as pH indicators and active substances, respectively. This review provides an overview of biodegradable polymers and natural colorants that are being extensively studied for pH-indicating packaging. A comprehensive discussion has been provided on the current status of the development of intelligent packaging systems for food, different incorporation techniques, and technical challenges in the development of such green packaging. Finally, the food industry and environmental protection might be revolutionized by pH-sensing biodegradable packaging enabling real-time detection of food product quality and safety.
Collapse
Affiliation(s)
- Mahmud Ekrem Parlak
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Oya Irmak Sahin
- Department of Chemical Engineering, Faculty of Engineering, Yalova University, 76200 Yalova, Turkey
| | - Ayse Neslihan Dundar
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Furkan Türker Saricaoglu
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa, 31982 Al-Hofuf, Saudi Arabia
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
10
|
Nirmal N, Demir D, Ceylan S, Ahmad S, Goksen G, Koirala P, Bono G. Polysaccharides from shell waste of shellfish and their applications in the cosmeceutical industry: A review. Int J Biol Macromol 2024; 265:131119. [PMID: 38522682 DOI: 10.1016/j.ijbiomac.2024.131119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Shell waste from shellfish processing contains valuable natural polysaccharides, including sulfated polysaccharides, acidic polysaccharides, glycosaminoglycans, chitin and their derivatives. These shellfish waste-derived polysaccharides have numerous functional and biological properties that can be applied in various industries, including the cosmeceutical industry. In keeping with global sustainability and green industry trends, the cosmeceuticals industry is transitioning from petrochemical-based ingredients to natural substitutes. In this context, shell waste-derived polysaccharides and their derivatives can play a major role as natural substitutes for petroleum-based components in various cosmeceutical skincare, hair care, oral care and body care products. This review focuses on the presence of polysaccharides and their derivatives in shell waste and discusses their various cosmeceutical applications in skin care, hair care, sun care, oral care and body care products. This indicates that shell waste utilization will help create a circular economy in which extracted polysaccharides are used to produce green cosmeceutical products.
Collapse
Affiliation(s)
- Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| | - Didem Demir
- Department of Chemistry and Chemical Process Technologies, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Türkiye
| | - Seda Ceylan
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, 01250 Adana, Türkiye
| | - Sameer Ahmad
- Food Technology Department, Jamia Hamdard, G782+55X, Mehrauli - Badarpur Rd, Hamdard Nagar, New Delhi, Delhi 110062, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Türkiye
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Gioacchino Bono
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Via L. Vaccara 61, 91026 Mazara del Vallo, TP, Italy; Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Di Palermo, Palermo, Italy
| |
Collapse
|
11
|
Adnan M, Zafar M, Anwar Z. Screening of Chitinolytic Microfungi and Optimization of Parameters for Hyperproduction of Chitinase Through Solid-State Fermentation Technique. Appl Biochem Biotechnol 2024; 196:1840-1862. [PMID: 37440112 DOI: 10.1007/s12010-023-04663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
This study is intended for the production of chitinase enzyme from locally isolated fungal strains. Out of 10 isolated fungal strains from district Gujrat, Punjab, Pakistan, Aspergillus terreus SB3 (accession number ON738571) was found with maximum chitinolytic potential (80.8 U/mL/min). By applying central composite design (CCD) through response surface methodology (RSM) under solid-state fermentation (SSF), eight nutritional and physical parameters were optimized. Among these, temperature, substrate concentration, and pH were found as significant factors toward chitinase production in the first phase. Moisture and nitrogen source were found as significant factors during second phase of chitinase production. The effect of incubation period, inoculum size, and magnesium source was observed as non-significant. The chitinase activity was successfully enhanced more than 2 folds up to 198.5 U/mL/min at optimized conditions of 35 °C temperature, 4.5 pH, 20 g substrate concentration, 4-day incubation period, 55% moisture content, 4.5 mL inoculum size, 0.25 g ammonium sulfate, and 0.30 g magnesium sulfate using RSM design. It was also found that Ganoderma lucidum (bracket fungus) has more potential to be used for the production of chitinase compared to fish scales. The present study exhibited Aspergillus terreus SB3 (ON738571) as a potential indigenous strain capable for hyperproduction of chitinase through cheap fermentation technology that might be employed for the eradication of chitin-based sea waste to remove the marine pollution.
Collapse
Affiliation(s)
- Muhammad Adnan
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Punjab, Pakistan
| | - Muddassar Zafar
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Punjab, Pakistan.
| | - Zahid Anwar
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Punjab, Pakistan
| |
Collapse
|
12
|
Rossi N, Grosso C, Delerue-Matos C. Shrimp Waste Upcycling: Unveiling the Potential of Polysaccharides, Proteins, Carotenoids, and Fatty Acids with Emphasis on Extraction Techniques and Bioactive Properties. Mar Drugs 2024; 22:153. [PMID: 38667770 PMCID: PMC11051396 DOI: 10.3390/md22040153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Shrimp processing generates substantial waste, which is rich in valuable components such as polysaccharides, proteins, carotenoids, and fatty acids. This review provides a comprehensive overview of the valorization of shrimp waste, mainly shrimp shells, focusing on extraction methods, bioactivities, and potential applications of these bioactive compounds. Various extraction techniques, including chemical extraction, microbial fermentation, enzyme-assisted extraction, microwave-assisted extraction, ultrasound-assisted extraction, and pressurized techniques are discussed, highlighting their efficacy in isolating polysaccharides, proteins, carotenoids, and fatty acids from shrimp waste. Additionally, the bioactivities associated with these compounds, such as antioxidant, antimicrobial, anti-inflammatory, and antitumor properties, among others, are elucidated, underscoring their potential in pharmaceutical, nutraceutical, and cosmeceutical applications. Furthermore, the review explores current and potential utilization avenues for these bioactive compounds, emphasizing the importance of sustainable resource management and circular economy principles in maximizing the value of shrimp waste. Overall, this review paper aims to provide insights into the multifaceted aspects of shrimp waste valorization, offering valuable information for researchers, industries, and policymakers interested in sustainable resource utilization and waste-management strategies.
Collapse
Affiliation(s)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (N.R.); (C.D.-M.)
| | | |
Collapse
|
13
|
Thepthanee C, Ei ZZ, Benjakul S, Zou H, Petsri K, Innets B, Chanvorachote P. Shrimp Lipids Inhibit Migration, Epithelial-Mesenchymal Transition, and Cancer Stem Cells via Akt/mTOR/c-Myc Pathway Suppression. Biomedicines 2024; 12:722. [PMID: 38672078 PMCID: PMC11048134 DOI: 10.3390/biomedicines12040722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Shrimp is a rich source of bioactive molecules that provide health benefits. However, the high cholesterol content in shrimp oil may pose a risk. We utilized the cholesterol elimination method to obtain cholesterol-free shrimp lipids (CLs) and investigated their anticancer potential, focusing on cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT). Our study focused on CSCs and EMT, as these factors are known to contribute to cancer metastasis. The results showed that treatment with CLs at doses ranging from 0 to 500 µg/mL significantly suppressed the cell migration ability of human lung cancer (H460 and H292) cells, indicating its potential to inhibit cancer metastasis. The CLs at such concentrations did not cause cytotoxicity to normal human keratinocytes. Additionally, CL treatment was found to significantly reduce the levels of Snail, Slug, and Vimentin, which are markers of EMT. Furthermore, we investigated the effect of CLs on CSC-like phenotypes and found that CLs could significantly suppress the formation of a three-dimensional (3D) tumor spheroid in lung cancer cells. Furthermore, CLs induced apoptosis in the CSC-rich population and significantly depleted the levels of CSC markers CD133, CD44, and Sox2. A mechanistic investigation demonstrated that exposing lung cancer cells to CLs downregulated the phosphorylation of Akt and mTOR, as well as c-Myc expression. Based on these findings, we believe that CLs may have beneficial effects on health as they potentially suppress EMT and CSCs, as well as the cancer-potentiating pathway of Akt/mTOR/c-Myc.
Collapse
Affiliation(s)
- Chorpaka Thepthanee
- Department of Food Science, School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Zin Zin Ei
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (Z.Z.E.); (B.I.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkhla University, Songkhla 90110, Thailand;
| | - Hongbin Zou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Korrakod Petsri
- Department of Pharmacology, Faculty of Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Bhurichaya Innets
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (Z.Z.E.); (B.I.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (Z.Z.E.); (B.I.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Guilherme-Fernandes J, Fonseca AJM, Aires T, Lima SAC, Maia MRG, Cabrita ARJ. Unveiling the effects of shrimp hydrolysate as a dietary ingredient in healthy adult Beagle dogs. J Anim Sci 2024; 102:skae280. [PMID: 39292957 PMCID: PMC11484800 DOI: 10.1093/jas/skae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024] Open
Abstract
To be more sustainable, the pet food industry could increase the inclusion of animal byproducts from the human food chain and fish hydrolysates have been reported to benefit dogs' health. However, there is limited research on the impact of alternative marine hydrolysates in dog food. The current study evaluated the effects of including shrimp hydrolysate as a replacement for wheat gluten (experimental diet) in an extruded complete diet (control diet) on diet palatability, intake, digestibility, fecal characteristics and metabolites, oral volatile sulfur compounds (VSC), and coat quality in dogs. The palatability of diets was assessed in a 2-bowl test, conducted with 12 healthy adult Beagle dogs. No differences were observed in the first approach, first taste, or intake ratio. A randomized block design lasting 12 wk was performed with 12 dogs distributed into 6 blocks, according to sex and body weight; one dog from each block was randomly allocated to each diet. Fecal characteristics and metabolites were measured in weeks 0, 4, 8, and 12, VSC and coat quality in weeks 4, 8, and 12, and apparent total tract digestibility (ATTD) of nutrients and energy in week 12. The inclusion of shrimp hydrolysate did not affect intake, but increased fecal output (dry matter, DM, basis, P < 0.05). Fecal butyrate concentration was lower (P < 0.05) in dogs fed the experimental diet. The inclusion of shrimp hydrolysate did not affect ATTD of nutrients and energy, and VSC. Both diets promoted high coat quality. The experimental diet decreased gloss and general evaluation scores in week 4 (P < 0.05), but improved scale scores in weeks 4 and 12 (P < 0.05). Overall, the findings indicate the potential of including shrimp hydrolysate in diets for dogs, fostering a more sustainable industry.
Collapse
Affiliation(s)
- Joana Guilherme-Fernandes
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - António J M Fonseca
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Tiago Aires
- SORGAL, Sociedade de Óleos e Rações S.A., 3880-728 S. João Ovar, Portugal
| | - Sofia A C Lima
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Margarida R G Maia
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Ana R J Cabrita
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
15
|
Zhang J, Mohd Said F, Jing Z. Hydrogels based on seafood chitin: From extraction to the development. Int J Biol Macromol 2023; 253:126482. [PMID: 37640188 DOI: 10.1016/j.ijbiomac.2023.126482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Chitin is extensively applied in vast applications due to its excellent biological properties, such as biodegradable and non-toxic. About 50 % of waste generated during seafood processing is chitin. Conventionally, chitin is extracted via chemical method. However, it has many shortcomings. Many novel extraction methods have emerged, including enzymatic hydrolysis, microbial fermentation, ultrasonic or microwave-assisted, ionic liquids, and deep eutectic solvents. Chitin and its derivatives-based hydrogels have attracted much attention due to their excellent properties. Nevertheless, they all have many limitations. Therefore, the preparation and application of chitin and its derivatives-based hydrogels are still facing great challenges. This review focuses on the challenges and prospects for sustainable chitin extraction from seafood waste and the preparation and application of chitin and its derivatives-based hydrogels. First section summarizes the mechanism and application of several methods of extracting chitin. The different extraction methods were evaluated from the aspects of yield, degree of acetylation, and protein and mineral residuals. The shortcomings of the extraction methods are also discussed. Next section summarizes the preparation and application of chitin and its derivatives-based hydrogels. Overall, we hope this mini-review can provide a practical reference for selecting chitin extraction methods from seafood and applying chitin and its derivatives-based hydrogels.
Collapse
Affiliation(s)
- Juanni Zhang
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| | - Farhan Mohd Said
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
| | - Zhanxin Jing
- College of Chemistry and Environment, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, China
| |
Collapse
|
16
|
Duppeti H, Nakkarike Manjabhatta S, Bheemanakere Kempaiah B. Optimization of ultrasonic-assisted extraction of flavor compounds from shrimp by-products and characterization of flavor profile of the extract. ULTRASONICS SONOCHEMISTRY 2023; 101:106651. [PMID: 37862944 PMCID: PMC10589748 DOI: 10.1016/j.ultsonch.2023.106651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/04/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
This study aimed to optimize the ultrasonic-assisted extraction conditions of flavor compounds from white shrimp heads (WSHs). The effects of sonication amplitude, sonication time, and solvent-to-solid ratio on the extraction yield (EY) of flavor compounds and the degree of protein modification (DPM) were evaluated by Box-Behnken design and response surface methodology (RSM). The optimum EY (40.87 %) and DPM (26.28 %) were obtained at amplitude, time, and solvent-to-solid ratios of 63.2 %, 20.5 min, and 20.8 mL/g, respectively. The optimum DPM value indicates that sonication markedly influenced the protein denaturation, as evidenced by the higher TCA soluble protein content. Further, we also investigated the taste active composition of ultrasonic extract of shrimp head (USH). Results show that the equivalent umami concentration (EUC) value was significantly (p < 0.05) increased in the ultrasonic extract of shrimp head (USH) (55.44 ± 3.25 g MSG/100 g) compared to the control shrimp head extract (CSH) (8.32 ± 1.07 g MSG/100 g). This study also deals with the development of shrimp flavor concentrate (SFC) using USH by the conventional heating process. Sensory evaluation of SFC revealed that the shrimp-like aroma and umami taste characteristics were predominant. Thus, USH's improved umami taste composition demonstrates its potential utilization for producing SFC with higher EUC.
Collapse
Affiliation(s)
- Haritha Duppeti
- Department of Meat and Marine Sciences, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Plantation Products, Spices and Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570020, India.
| | - Sachindra Nakkarike Manjabhatta
- Department of Meat and Marine Sciences, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bettadaiah Bheemanakere Kempaiah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Plantation Products, Spices and Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570020, India.
| |
Collapse
|
17
|
Gulzar S, Tagrida M, Prodpran T, Li L, Benjakul S. Packaging films based on biopolymers from seafood processing wastes: Preparation, properties, and their applications for shelf-life extension of seafoods-A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4451-4483. [PMID: 37680068 DOI: 10.1111/1541-4337.13230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023]
Abstract
Biopolymers derived from seafood processing byproducts are used to prepare active and biodegradable films as the packaging of food products. These films possess bioactivities to enhance the shelf life of packed foods by proactively releasing antimicrobial/antioxidative agents into the foods and providing sufficient barrier properties. Seafood processing byproducts are an eminent source of valuable compounds, including biopolymers and bioactive compounds. These biopolymers, including collagen, gelatin, chitosan, and muscle proteins, could be used to prepare robust and sustainable food packaging with some antimicrobial agents or antioxidants, for example, plant extracts rich in polyphenols or essential oils. These active packaging are not only biodegradable but also prevent the deterioration of packed foods caused by spoilage microorganisms as well as chemical deterioration. Seafood discards have a promising benefit for the development of environmentally friendly food packaging systems via the appropriate preparation methods or techniques. Therefore, the green packaging from seafood leftover can be better exploited and replace the synthetic counterpart.
Collapse
Affiliation(s)
- Saqib Gulzar
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Food Technology, Engineering and Science, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Mohamed Tagrida
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence in Bio-based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Food and Nutrition, Kyung Hee Unibersity, Seoul, Republic of Korea
| |
Collapse
|
18
|
Lal J, Deb S, Singh SK, Biswas P, Debbarma R, Yadav NK, Debbarma S, Vaishnav A, Meena DK, Waikhom G, Patel AB. Diverse uses of valuable seafood processing industry waste for sustainability: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28890-2. [PMID: 37523086 DOI: 10.1007/s11356-023-28890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023]
Abstract
Seafoods are rich in untapped bioactive compounds that have the potential to provide novel ingredients for the development of commercial functional foods and pharmaceuticals. Unfortunately, a large portion of waste or discards is generated in commercial processing setups (50-80%), which is wasted or underutilized. These by-products are a rich source of novel and valuable biomolecules, including bioactive peptides, collagen and gelatin, oligosaccharides, fatty acids, enzymes, calcium, water-soluble minerals, vitamins, carotenoids, chitin, chitosan and biopolymers. These fish components may be used in the food, cosmetic, pharmaceutical, environmental, biomedical and other industries. Furthermore, they provide a viable source for the production of biofuels. As a result, the current review emphasizes the importance of effective by-product and discard reduction techniques that can provide practical and profitable solutions. Recognizing this, many initiatives have been initiated to effectively use them and generate income for the long-term sustainability of the environment and economic framework of the processing industry. This comprehensive review summarizes the current state of the art in the sustainable valorisation of seafood by-products for human consumption. The review can generate a better understanding of the techniques for seafood waste valorisation to accelerate the sector while providing significant benefits.
Collapse
Affiliation(s)
- Jham Lal
- College of Fisheries, Central Agricultural University, Lembucherra, Tripura, 799210, India
| | - Suparna Deb
- College of Fisheries, Central Agricultural University, Lembucherra, Tripura, 799210, India
| | - Soibam Khogen Singh
- College of Fisheries, Central Agricultural University, Lembucherra, Tripura, 799210, India.
| | - Pradyut Biswas
- College of Fisheries, Central Agricultural University, Lembucherra, Tripura, 799210, India
| | - Reshmi Debbarma
- College of Fisheries, Central Agricultural University, Lembucherra, Tripura, 799210, India
| | - Nitesh Kumar Yadav
- College of Fisheries, Central Agricultural University, Lembucherra, Tripura, 799210, India
| | - Sourabh Debbarma
- College of Fisheries, Central Agricultural University, Lembucherra, Tripura, 799210, India
| | - Anand Vaishnav
- College of Fisheries, Central Agricultural University, Lembucherra, Tripura, 799210, India
| | - Dharmendra Kumar Meena
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Gusheinzed Waikhom
- College of Fisheries, Central Agricultural University, Lembucherra, Tripura, 799210, India
| | - Arun Bhai Patel
- College of Fisheries, Central Agricultural University, Lembucherra, Tripura, 799210, India
| |
Collapse
|
19
|
Saetang J, Sukkapat P, Mittal A, Julamanee J, Khopanlert W, Maneechai K, Nazeer RA, Sangkhathat S, Benjakul S. Proteome Analysis of the Antiproliferative Activity of the Novel Chitooligosaccharide-Gallic Acid Conjugate against the SW620 Colon Cancer Cell Line. Biomedicines 2023; 11:1683. [PMID: 37371778 DOI: 10.3390/biomedicines11061683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Chitooligosaccharide (COS) and gallic acid (GA) are natural compounds with anti-cancer properties, and their conjugate (COS-GA) has several biological activities. Herein, the anti-cancer activity of COS-GA in SW620 colon cancer cells was investigated. MTT assay was used to evaluate cell viability after treatment with 62.5, 122, and 250 µg/mL of COS, GA, and COS-GA for 24 and 48 h. The number of apoptotic cells was determined using flow cytometry. Proteomic analysis was used to explore the mechanisms of action of different compounds. COS-GA and GA showed a stronger anti-cancer effect than COS by reducing SW620 cell proliferation at 125 and 250 µg/mL within 24 h. Flow cytometry revealed 20% apoptosis after COS-GA treatment for 24 h. Thus, GA majorly contributed to the enhanced anti-cancer activity of COS via conjugation. Proteomic analysis revealed alterations in protein translation and DNA duplication in the COS group and the structural constituents of the cytoskeleton, intermediate filament organization, the mitochondrial nucleoid, and glycolytic processes in the COS-GA group. Anti-cancer-activity-related proteins were altered, including CLTA, HSPA9, HIST2H2BF, KRT18, HINT1, DSP, and VIM. Overall, the COS-GA conjugate can serve as a potential anti-cancer agent for the safe and effective treatment of colon cancer.
Collapse
Affiliation(s)
- Jirakrit Saetang
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Phutthipong Sukkapat
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Jakrawadee Julamanee
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Wannakorn Khopanlert
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Kajornkiat Maneechai
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Surasak Sangkhathat
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
20
|
Carmen PC, Marlon AT, Luz MN, María TQ, Ricardo AP. Influence of pre-treatment and drying process of the shrimp ( Litopenaeus vannamei) exoskeleton for balanced feed production. Heliyon 2023; 9:e16712. [PMID: 37292330 PMCID: PMC10245252 DOI: 10.1016/j.heliyon.2023.e16712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/08/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Shrimp industry wastes can be transformed and used as raw material for the development of new products. The aim of this research was to evaluate the influence of pre-treatment and drying process of the shrimp (Litopenaeus vannamei) exoskeleton for balanced feed production. The balanced feed was made with shrimp flour (25.74%), cotton seed cake (24.56%), rice bran (22.06%), beef tallow (16.18%), sweet potato flour (5.81%), and cassava flour (5.66%). To obtain the flour, shrimp processing waste (heads and exoskeletons) were blanched, dried, ground and sieved. Blanching was carried out using a full factorial 22 experimental design, where temperature and time were evaluated as independent variables. The drying kinetics of the blanched exoskeletons were performed in a tray dryer at different temperatures (40 and 50 °C) and air velocity (1, 1.5 and 2 m/s). The blanching process showed no significant effect on the protein content present in shrimp by-products. The drying kinetics showed that the greatest loss of moisture occurs in the period of decreasing velocity, dominated by mass transfer by diffusion. The Page model showed the best fit for the experimental data. From the mixture of shrimp flour with the other ingredients in the proportions indicated by the Solve software, fish food pellets were obtained. These met the nutritional requirements of fish (tarpon) in the juvenile-commercial stage.
Collapse
Affiliation(s)
- Pérez-Cervera Carmen
- School of Engineering and Architecture; Universidad Pontificia Bolivariana; Cra 6 No. 97 A 99, Montería, Colombia
| | - Aleán-Tuirán Marlon
- School of Engineering and Architecture; Universidad Pontificia Bolivariana; Cra 6 No. 97 A 99, Montería, Colombia
| | - Martínez-Navarro Luz
- School of Engineering and Architecture; Universidad Pontificia Bolivariana; Cra 6 No. 97 A 99, Montería, Colombia
| | - Tavera-Quiroz María
- Agroindustrial Engineering Program, Engineering Department. University of Sucre, Colombia
| | | |
Collapse
|
21
|
Rodríguez-Jiménez JMDJ, Montalvo-González E, López-García UM, Barros-Castillo JC, Ragazzo-Sánchez JA, García-Magaña MDL. Guamara and Cocuixtle: Source of Proteases for the Transformation of Shrimp By-Products into Hydrolysates with Potential Application. BIOLOGY 2023; 12:biology12050753. [PMID: 37237565 DOI: 10.3390/biology12050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Since the fruits of Bromelia pinguin and Bromelia karatas are rich in proteases, the aim of this research was to optimize the hydrolysis process of cooked white shrimp by-products due to the effect of these proteases. A robust Taguchi L16' design was used to optimize the hydrolysis process. Similarly, the amino acid profile by GC-MS and antioxidant capacity (ABTS and FRAP) were determined. The optimal conditions for hydrolysis of cooked shrimp by-products were pH 8.0, 30 °C, 0.5 h, 1 g of substrate and 100 µg/mL of B. karatas, pH 7.5, 40 °C, 0.5 h, 0.5 g substrate and 100 µg/mL enzyme extract from B. pinguin and pH 7.0, 37 °C, 1 h, 1.5 g substrate and 100 µg/mL enzyme bromelain. The optimized hydrolyzates of B. karatas B. pinguin and bromelain had 8 essential amino acids in their composition. The evaluation of the antioxidant capacity of the hydrolyzates under optimal conditions showed more than 80% inhibition of in ABTS radical, B. karatas hydrolyzates had better higher ferric ion reduction capacity with 10.09 ± 0.02 mM TE/mL. Finally, the use of proteolytic extracts from B. pinguin and B. karatas to optimize hydrolysis process allowed obtaining hydrolyzates of cooked shrimp by-products with potential antioxidant capacity.
Collapse
Affiliation(s)
- Juan Miguel de Jesús Rodríguez-Jiménez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Ulises Miguel López-García
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Julio César Barros-Castillo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - María de Lourdes García-Magaña
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| |
Collapse
|
22
|
Dong Q, Qiu W, Feng Y, Jin Y, Deng S, Tao N, Jin Y. Proteases and microwave treatment on the quality of chitin and chitosan produced from white shrimp (
Penaeus vannamei
). EFOOD 2023. [DOI: 10.1002/efd2.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Affiliation(s)
- Qiqi Dong
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Weiqiang Qiu
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Yuhui Feng
- Jilin Tobacco Industry Co., Ltd. Jilin China
| | - Yingshan Jin
- College of Bioscience and technology Yangzhou University Jiangsu China
| | - Shanggui Deng
- College of Food and Pharmacy Zhejiang Ocean University Zhoushan Zhejiang China
| | - Ningping Tao
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Yinzhe Jin
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| |
Collapse
|
23
|
Prakash Nirmal N, Singh Rajput M, Bhojraj Rathod N, Mudgil P, Pati S, Bono G, Nalinanon S, Li L, Maqsood S. Structural characteristic and molecular docking simulation of fish protein-derived peptides: Recent updates on antioxidant, anti-hypertensive and anti-diabetic peptides. Food Chem 2023; 405:134737. [DOI: 10.1016/j.foodchem.2022.134737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/30/2022] [Accepted: 10/22/2022] [Indexed: 11/25/2022]
|
24
|
Rathod NB, Meral R, Siddiqui SA, Nirmal N, Ozogul F. Nanoemulsion-based approach to preserve muscle food: A review with current knowledge. Crit Rev Food Sci Nutr 2023; 64:6812-6833. [PMID: 36789616 DOI: 10.1080/10408398.2023.2175347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Muscle foods are regarded as nutritionally dense foods while they are prone to spoilage by action of microorganism and oxidation. Recently, the consumer's preference is mostly toward minimally processed foods as well as preserved with natural preservatives. However, natural extract directly to the food matrix has several drawbacks. Hence development and applications of nanoemulsion has gained importance for the preservation of muscle foods to meet consumer requirements with enhanced food safety. Nanoemulsion utilizes natural extracts at much lower concentration with higher preservative abilities over original components. Nanoemulsions offer protection to the active component from degradation and ensure longer bioavailability. Novel techniques used for formulation of nanoemulsion provide stability to the emulsion with desirable qualities to improve their impacts. The application of nanoemulsion is known to enhance the preservative action of nanoemulsions by improving the microbial safety and oxidative stability in nanoform. This review provides recent updates on different methods used for formulation of nanoemulsions from different sources. Besides, successful application of nanoemulsion derived using natural agents for muscle food preservation and shelf life extension are reviewed. Thus, the application of nanoemulsion to extend shelf life and maintain quality is suggested for muscle foods.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Post-Harvest Technology and Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth) Roha, Raigad, Maharashtra, India
| | - Raciye Meral
- Faculty of Engineering, Department of Food Engineering, Van Yüzüncü Yıl University, Van, Turkey
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), D-Quakenbrück, Germany
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkey
| |
Collapse
|
25
|
Leiva-Portilla D, Martínez R, Bernal C. Valorization of shrimp (Heterocarpus reedi) processing waste via enzymatic hydrolysis: Protein extractions, hydrolysates and antioxidant peptide fractions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Dong Q, Qiu W, Li L, Tao N, Liang Wang A, Deng S, Jin Y. Extraction of Chitin from White Shrimp (Penaeus vannamei) Shells Using Binary Ionic Liquid Mixtures. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Hassoun A, Cropotova J, Trollman H, Jagtap S, Garcia-Garcia G, Parra-López C, Nirmal N, Özogul F, Bhat Z, Aït-Kaddour A, Bono G. Use of industry 4.0 technologies to reduce and valorize seafood waste and by-products: A narrative review on current knowledge. Curr Res Food Sci 2023; 6:100505. [PMID: 37151380 PMCID: PMC10160358 DOI: 10.1016/j.crfs.2023.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 05/09/2023] Open
Abstract
Fish and other seafood products represent a valuable source of many nutrients and micronutrients for the human diet and contribute significantly to global food security. However, considerable amounts of seafood waste and by-products are generated along the seafood value and supply chain, from the sea to the consumer table, causing severe environmental damage and significant economic loss. Therefore, innovative solutions and alternative approaches are urgently needed to ensure a better management of seafood discards and mitigate their economic and environmental burdens. The use of emerging technologies, including the fourth industrial revolution (Industry 4.0) innovations (such as Artificial Intelligence, Big Data, smart sensors, and the Internet of Things, and other advanced technologies) to reduce and valorize seafood waste and by-products could be a promising strategy to enhance blue economy and food sustainability around the globe. This narrative review focuses on the issues and risks associated with the underutilization of waste and by-products resulting from fisheries and other seafood industries. Particularly, recent technological advances and digital tools being harnessed for the prevention and valorization of these natural invaluable resources are highlighted.
Collapse
Affiliation(s)
- Abdo Hassoun
- Univ. Littoral Côte D’Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- Corresponding author. Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France.
| | - Janna Cropotova
- Department of Biological Sciences, Ålesund, Norwegian University of Science and Technology, Larsgårdsvegen 4, 6025, Ålesund, Norway
- Corresponding author.
| | - Hana Trollman
- School of Business, University of Leicester, Leicester, LE2 1RQ, UK
| | - Sandeep Jagtap
- Sustainable Manufacturing Systems Centre, School of Aerospace, Transport & Manufacturing, Cranfield University, Cranfield, MK43 0AL, UK
| | - Guillermo Garcia-Garcia
- Department of Agrifood System Economics, Centre ‘Camino de Purchil’, Institute of Agricultural and Fisheries Research and Training (IFAPA), P.O. Box 2027, 18080, Granada, Spain
| | - Carlos Parra-López
- Department of Agrifood System Economics, Centre ‘Camino de Purchil’, Institute of Agricultural and Fisheries Research and Training (IFAPA), P.O. Box 2027, 18080, Granada, Spain
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330, Balcali, Adana, Turkey
| | - Zuhaib Bhat
- Division of Livestock Products Technology, SKUAST-Jammu, Jammu, 181102, J&K, India
| | | | - Gioacchino Bono
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Mazara Del Vallo, Italy
- Dipartimento di Scienze e Technologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Di Palermo, Viale Delle Scienze, 90128, Palermo, Italy
| |
Collapse
|
28
|
Anticoagulant and Fibrinolytic Properties of Two Heparinoid Compounds Prepared from Shrimp Waste. Foods 2022; 12:foods12010066. [PMID: 36613282 PMCID: PMC9818578 DOI: 10.3390/foods12010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Heparinoid, a type of compound that has structures similar to heparin, has been found in marine organisms such as shrimp head. This shrimp waste products were used to prepare, characterize, and evaluate the antithrombotic effect of heparinoid. Two heparinoid compounds were obtained from shrimp head, and the main fraction F1 was →4)-GlcA-(1→3)-GalNAc-(1→ with Ara, while the minor fraction F2 composed mainly of the backbone as →4)-β-D-GlcA (or IdoA)-(1→4)-β-D-GlcN (or GlcNAc)-(1→. Both F1 and F2 could extend activated partial thromboplastin time and thrombin time concentration-dependently, and F2 has stronger activity than F1 at the same concentration. The potential anticoagulant mechanism of F1 and F2 may relate to their combination with more antithrombin III, which binds to and potentiates the action of antithrombin as well as inhibiting coagulation factors Xa and IIa, preventing blood clot formation. Furthermore, heparinoid F1 and F2 were found to have high fibrinolytic capability in vitro and in vivo via activating the self-fibrinolytic system. In conclusion, heparinoids (F1 and F2) derived from shrimp head wastes could be used as candidate compounds to prevent thrombosis while posing a lower hemorrhagic risk.
Collapse
|
29
|
Goncalves R, Lund I, Sousa D, Skov PV. Shrimp waste meal (Pandalus borealis) as an alternative ingredient in diets for juvenile European lobster (Homarus gammarus, L.). Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Nikoo M, Benjakul S, Ahmadi Gavlighi H. Protein hydrolysates derived from aquaculture and marine byproducts through autolytic hydrolysis. Compr Rev Food Sci Food Saf 2022; 21:4872-4899. [PMID: 36321667 DOI: 10.1111/1541-4337.13060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/19/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022]
Abstract
Autolysis technology has shown potential for protein hydrolysates production from marine and aquaculture byproducts. Viscera are a source of cheap proteolytic enzymes for producing protein hydrolysates from the whole fish or processing byproducts of the most valuable commercial species by applying autolysis technology. The use of autolysis allows economical production of protein hydrolysate and provides an opportunity to valorize downstream fish and shellfish processing byproducts at a lower cost. As a result, production and application of marine byproduct autolysates is increasing in the global protein hydrolysates market. Nevertheless, several restrictions occur with autolysis, including lipid and protein oxidation mediated by the heterogeneous composition of byproducts. The generally poor storage and handling of byproducts may increase the formation of undesirable metabolites during autolysis, which can be harmful. The formation of nitrogenous compounds (i.e., biogenic amines), loss of freshness, and process of autolysis in the byproducts could increase the rate of quality and safety loss and lead to more significant concern about the use of autolysates for human food applications. The current review focuses on the autolysis process, which is applied for the hydrolysis of aquaculture and marine discards to obtain peptides as functional or nutritive ingredients. It further addresses the latest findings on the mechanisms and factors contributing the deterioration of byproducts and possible ways to control oxidation and other food quality and safety issues in raw materials and protein hydrolysates.
Collapse
Affiliation(s)
- Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia, West Azerbaijan, Iran
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Hassan Ahmadi Gavlighi
- Faculty of Agriculture, Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
31
|
Jiang W, Ren K, Yang Z, Fang Z, Li Y, Xiang X, Song Y. Purification, Identification and Molecular Docking of Immunomodulatory Peptides from the Heads of Litopenaeus vannamei. Foods 2022; 11:3309. [PMID: 37431056 PMCID: PMC9602407 DOI: 10.3390/foods11203309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
In order to realize the high-value utilization of Litopenaeus vannamei (L. vannamei) heads, immunomodulatory peptides were prepared from the enzymatic hydrolysate of L. vannamei heads, and the action mechanism of immunomodulatory peptides was determined by molecular docking. The results showed that six proteases were used to hydrolyze L. vannamei head proteins, with the animal protease hydrolysate exhibiting the highest macrophage relative proliferation rate (MRPR). The enzymatic products were then sequentially purified by ultrafiltration, Sephadex G-15 gel chromatography, identified by liquid chromatography-mass spectrometry (LC-MS/MS), and finally selected for six immunomodulatory peptides (PSPFPYFT, SAGFPEGF, GPQGPPGH, QGF, PGMR, and WQR). These peptides maintained good immune activity under heat treatment, pH treatment, and in vitro gastrointestinal digestion. Molecular docking analysis indicated that these peptides showed great binding to both toll-like receptor 2 and 4 (TLR2 and TLR4/MD-2), leading to immunomodulation. The discarded L. vannamei heads in this article are considered to be promising food-borne immunomodulators that contribute to enhancing the immune function of the body.
Collapse
Affiliation(s)
- Weiwei Jiang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Keyu Ren
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiyan Yang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhou Fang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yan Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xi Xiang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yishan Song
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| |
Collapse
|
32
|
Song X, Zhang B, Cao Y, Liu B, Chen B. Shrimp-waste based dispersant as oil spill treating agent: Biodegradation of dispersant and dispersed oil. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129617. [PMID: 35872457 DOI: 10.1016/j.jhazmat.2022.129617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The emerging demand for the enhancement of biodegradation of persistent organic pollutants from marine oil spills using oil-treating agents to minimize the environmental impacts promotes the development of green dispersants. Shrimp waste is a potential raw material to generate green dispersants. The biodegradability of dispersed oil and dispersants themselves are key factors for the national consideration of the approval, stockpile, and usage of dispersants. However, it is unknown whether shrimp-waste-based dispersant (SWD) has high bioavailability or facilitates the biodegradation of dispersed oil. In this study, we tackled the biodegradation of oil dispersed by a purified SWD. Furthermore, the SWD biodegradability was evaluated by exploring the degradation genes via metagenomic sequencing, analyzing the enzymatic activities for dispersant biodegradation by molecular docking, and discussing the SWD toxicity. We discovered that the SWD facilitated the biodegradation of two crude oils (Alaska North Slope and Marine Fuel-No.6). The metagenomic analysis with molecular docking showed that fresh seawater had feasible enzymes to degrade the SWD to safety components. Additionally, the SWD was low toxic and high bioactive. The findings helped confirm that the purified SWD is an effective and eco-sustainable marine oil spill treating agent and tracked the biodegradation of dispersed oil and the SWD.
Collapse
Affiliation(s)
- Xing Song
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada.
| | - Yiqi Cao
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada
| | - Bo Liu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada
| |
Collapse
|
33
|
Real-time authentication of minced shrimp by rapid evaporative ionization mass spectrometry. Food Chem 2022; 383:132432. [PMID: 35182874 DOI: 10.1016/j.foodchem.2022.132432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 11/20/2022]
Abstract
Minced shrimp is popular seafood due to its delicious flavor and nutritional value. However, the biological species of raw material of minced shrimp are not distinguished by naked eyes after processing. Thus, an in situ and real-time minced shrimp authentication method was established using iKnife rapid evaporative ionization mass spectrometry (REIMS) based lipidomics. The samples were analyzed under ambient ionization without any tedious preparation step. Seven economic shrimp samples were tested, whose phenotypes were used to develop a real-time recognition model. A total of 19 fatty acids and 45 phospholipid molecular species were efficiently identified and statistically analyzed by multivariate statistical analysis. The results showed that the seven shrimp species were well distinguished, and the most contributing ions at m/z 255.2, 279.2, 301.2, 327.2, 699.5, 742.5, etc., were revealed by variable importance in projection. The proposed iKnife REIMS showed excellent performance in minced shrimp authentication.
Collapse
|
34
|
Zhu K, Yan W, Dai Z, Zhang Y. Astaxanthin Extract from Shrimp ( Trachypenaeus curvirostris) By-Products Improves Quality of Ready-to-Cook Shrimp Surimi Products during Frozen Storage at -18 °C. Foods 2022; 11:foods11142122. [PMID: 35885365 PMCID: PMC9323547 DOI: 10.3390/foods11142122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023] Open
Abstract
The effects of astaxanthin extract (AE) from shrimp by-products on the quality and sensory properties of ready-to-cook shrimp surimi products (RC-SSP) during frozen storage at −18 °C were investigated. Changes in 2-thiobarbituric acid reactive substances (TBARS) value, sulfhydryl groups, carbonyls, salt-soluble protein content, textural properties, color, and sensory quality over specific storage days were evaluated. The AE from shrimp by-products contained 4.49 μg/g tocopherol and 23.23 μg/g astaxanthin. The shrimp surimi products supplemented with 30 g/kg AE had higher redness values and greater overall acceptability and texture properties after cooking (p < 0.05). AE showed higher oxidative stability in RC-SSP than the control, as evidenced by lower TBARS and carbonyl content, and higher sulfhydryl and salt-soluble protein content. AE from shrimp by-products had positive effects on the antioxidant activity and color difference of RC-SSP, and could be used as a potential multifunctional additive for the development of shrimp surimi products.
Collapse
|
35
|
Nirmal NP, Maqsood S. Editorial: Seafood waste utilization: Isolation, characterization, functional and bio-active properties, and their application in food and nutrition. Front Nutr 2022; 9:948624. [PMID: 35911102 PMCID: PMC9332191 DOI: 10.3389/fnut.2022.948624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
- *Correspondence: Nilesh Prakash Nirmal
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
36
|
Zhu X, Meng C, Sun F, Wei Z, Chen L, Chen W, Tong S, Du H, Gao J, Ren J, Li D, Gao Z. Sustainable production of astaxanthin in microorganisms: the past, present, and future. Crit Rev Food Sci Nutr 2022; 63:10239-10255. [PMID: 35694786 DOI: 10.1080/10408398.2022.2080176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Astaxanthin (3,3'-dihydroxy-4,4'-diketo-β-carotene) is a type of C40 carotenoid with remarkable antioxidant characteristics, showing significant application prospects in many fields. Traditionally, the astaxanthin is mainly obtained from chemical synthesis and natural acquisition, with both approaches having many limitations and not capable of meeting the growing market demand. In order to cope with these challenges, novel techniques, e.g., the innovative cell engineering strategies, have been developed to increase the astaxanthin production. In this review, we first elaborated the biosynthetic pathway of astaxanthin, with the key enzymes and their functions discussed in the metabolic process. Then, we summarized the conventional, non-genetic strategies to promote the production of astaxanthin, including the methods of exogenous additives, mutagenesis, and adaptive evolution. Lastly, we reviewed comprehensively the latest studies on the synthesis of astaxanthin in various recombinant microorganisms based on the concept of microbial cell factory. Furthermore, we have proposed several novel technologies for improving the astaxanthin accumulation in several model species of microorganisms.
Collapse
Affiliation(s)
- Xiangyu Zhu
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- School of Life Sciences and medicine, Shandong University of Technology, Zibo, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Life Sciences and medicine, Shandong University of Technology, Zibo, China
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, USA
| | - Zuoxi Wei
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- School of Life Sciences and medicine, Shandong University of Technology, Zibo, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Wuxi Chen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Sheng Tong
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Huanmin Du
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Jinshan Gao
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Jiali Ren
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Life Sciences and medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
37
|
Nag M, Lahiri D, Dey A, Sarkar T, Pati S, Joshi S, Bunawan H, Mohammed A, Edinur HA, Ghosh S, Ray RR. Seafood Discards: A Potent Source of Enzymes and Biomacromolecules With Nutritional and Nutraceutical Significance. Front Nutr 2022; 9:879929. [PMID: 35464014 PMCID: PMC9024408 DOI: 10.3389/fnut.2022.879929] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 01/09/2023] Open
Abstract
In recent times, the seafood industry is found to produce large volumes of waste products comprising shrimp shells, fish bones, fins, skins, intestines, and carcasses, along with the voluminous quantity of wastewater effluents. These seafood industry effluents contain large quantities of lipids, amino acids, proteins, polyunsaturated fatty acids, minerals, and carotenoids mixed with the garbage. This debris not only causes a huge wastage of various nutrients but also roots in severe environmental contamination. Hence, the problem of such seafood industry run-offs needs to be immediately managed with a commercial outlook. Microbiological treatment may lead to the valorization of seafood wastes, the trove of several useful compounds into value-added materials like enzymes, such as lipase, protease, chitinase, hyaluronidase, phosphatase, etc., and organic compounds like bioactive peptides, collagen, gelatin, chitosan, and mineral-based nutraceuticals. Such bioconversion in combination with a bio-refinery strategy possesses the potential for environment-friendly and inexpensive management of discards generated from seafood, which can sustainably maintain the production of seafood. The compounds that are being produced may act as nutritional sources or as nutraceuticals, foods with medicinal value. Determining utilization of seafood discard not only reduces the obnoxious deposition of waste but adds economy in the production of food with nutritional and medicinal importance, and, thereby meets up the long-lasting global demand of making nutrients and nutraceuticals available at a nominal cost.
Collapse
Affiliation(s)
- Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Ankita Dey
- Department of Pathology, Belle Vue Clinic, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Siddhartha Pati
- Skills Innovation and Academic Network Institute, Association for Biodiversity Conservation and Research (ABC), Balasore, India
- NatNov Bioscience Private Limited, Balasore, India
| | - Sanket Joshi
- Central Analytical and Applied Research Unit, Oil & Gas Research Center, Sultan Qaboos University, Muscat, Oman
| | - Hamidun Bunawan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Arifullah Mohammed
- Department of Agriculture Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan Kampus Jeli, Jeli, Malaysia
| | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- *Correspondence: Hisham Atan Edinur,
| | - Sreejita Ghosh
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Kolkata, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Kolkata, India
- Rina Rani Ray,
| |
Collapse
|
38
|
Data Mining Techniques: New Method to Identify the Effects of Aquaculture Binder with Sardine on Diets of Juvenile Litopenaeus vannamei. SUSTAINABILITY 2022. [DOI: 10.3390/su14074203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this research, a dataset of growth performances and nutritional composition of juvenile Litopenaeus vannamei after being fed two diets that include aquaculture binder with sardine for 7 weeks was analyzed using data mining techniques: the K-Means Clustering Algorithm and PCA Biplot, to have a visualization of each parameter (vector) measured. The parameters evaluated were: weight gain, specific growth rate, feed efficiency, protein efficiency ratio, survival percent, moisture content, crude protein, crude lipid, and ash content. Data mining tools showed the juvenile Litopenaeus vannamei fed with mixture 2 (pellets mixed with the binder of sardine subproducts) presented the highest growth performances and nutritional composition, 23 juvenile L. vannamei shrimps showed higher relation with crude protein and crude lipid, 30 L. vannamei shrimps presented higher relation with ash, and 37 juvenile L. vannamei shrimps showed higher relation with ash and moisture. The results obtained in experimental procedures indicate that the use of a binder of sardine subproducts in shrimp diets improves the commercial parameters, improving the aquaculture field.
Collapse
|
39
|
Mittal A, Singh A, Hong H, Benjakul S. Chitooligosaccharides from shrimp shell chitosan prepared using H
2
O
2
or ascorbic acid/H
2
O
2
redox pair hydrolysis: characteristics, antioxidant and antimicrobial activities. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| |
Collapse
|
40
|
Astaxanthin from Crustaceans and Their Byproducts: A Bioactive Metabolite Candidate for Therapeutic Application. Mar Drugs 2022; 20:md20030206. [PMID: 35323505 PMCID: PMC8955251 DOI: 10.3390/md20030206] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, the food, pharma, and cosmetic industries have shown considerable interest in bioactive molecules of marine origin that show high potential for application as nutraceuticals and therapeutic agents. Astaxanthin, a lipid-soluble and orange-reddish-colored carotenoid pigment, is one of the most investigated pigments. Natural astaxanthin is mainly produced from microalgae, and it shows much stronger antioxidant properties than its synthetic counterpart. This paper aims to summarize and discuss the important aspects and recent findings associated with the possible use of crustacean byproducts as a source of astaxanthin. In the last five years of research on the crustaceans and their byproducts as a source of natural astaxanthin, there are many new findings regarding the astaxanthin content in different species and new green extraction protocols for its extraction. However, there is a lack of information on the amounts of astaxanthin currently obtained from the byproducts as well as on the cost-effectiveness of the astaxanthin production from the byproducts. Improvement in these areas would most certainly contribute to the reduction of waste and reuse in the crustacean processing industry. Successful exploitation of byproducts for recovery of this valuable compound would have both environmental and social benefits. Finally, astaxanthin’s strong biological activity and prominent health benefits have been discussed in the paper.
Collapse
|
41
|
Cui D, Yang J, Lu B, Deng L, Shen H. Extraction and characterization of chitin from Oratosquilla oratoria shell waste and its application in Brassica campestris L.ssp. Int J Biol Macromol 2022; 198:204-213. [PMID: 34995666 DOI: 10.1016/j.ijbiomac.2021.12.173] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/22/2022]
Abstract
Mantis shrimp waste (Oratosquilla oratoria) is a good source of chitin. The applicability of microwave-assisted organic acids and proteases for extracting chitin from mantis shrimp shell waste was evaluated, and the extracted-chitin was characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Moreover, the effects of nanochitin on the growth of pak choi (Brassica campestris L.ssp.) were also investigated. The results indicated that alkaline protease (4000 U/g, microwave heating at 60 °C, 10 min) and malic acid (5%, 320 W, 5 min) exhibited excellent potential for deproteinizing and demineralizing shells. The deproteinization and demineralization yields were 92.78% and 94.11%, respectively, and the chitin yield was 15.6%. The extracted-chitin had a highly porous structure and exhibited excellent crystallinity and thermostability compared with chitin prepared by traditional chemical methods. Furthermore, 0.003% nanochitin significantly enhanced photosynthesis, which improved the pak choi fresh weight by 22.94%, and improved the accumulation of isothiocyanates in its leaves. This study provides an alternative approach for the high-value utilization of mantis shrimp waste, and reveals the potential of chitin for application in agricultural production.
Collapse
Affiliation(s)
- Dandan Cui
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Jin Yang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Bosi Lu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Lansheng Deng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Hong Shen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, PR China.
| |
Collapse
|
42
|
Nirmal NP, Santivarangkna C, Rajput MS, Benjakul S, Maqsood S. Valorization of fish byproducts: Sources to end-product applications of bioactive protein hydrolysate. Compr Rev Food Sci Food Saf 2022; 21:1803-1842. [PMID: 35150206 DOI: 10.1111/1541-4337.12917] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Abstract
Fish processing industries result in an ample number of protein-rich byproducts, which have been used to produce protein hydrolysate (PH) for human consumption. Chemical, microbial, and enzymatic hydrolysis processes have been implemented for the production of fish PH (FPH) from diverse types of fish processing byproducts. FPH has been reported to possess bioactive active peptides known to exhibit various biological activities such as antioxidant, antimicrobial, angiotensin-I converting enzyme inhibition, calcium-binding ability, dipeptidyl peptidase-IV inhibition, immunomodulation, and antiproliferative activity, which are discussed comprehensively in this review. Appropriate conditions for the hydrolysis process (e.g., type and concentration of enzymes, time, and temperature) play an important role in achieving the desired level of hydrolysis, thus affecting the functional and bioactive properties and stability of FPH. This review provides an in-depth and comprehensive discussion on the sources, process parameters, purification as well as functional and bioactive properties of FPHs. The most recent research findings on the impact of production parameters, bitterness of peptide, storage, and food processing conditions on functional properties and stability of FPH were also reported. More importantly, the recent studies on biological activities of FPH and in vivo health benefits were discussed with the possible mechanism of action. Furthermore, FPH-polyphenol conjugate, encapsulation, and digestive stability of FPH were discussed in terms of their potential to be utilized as a nutraceutical ingredient. Last but not the least, various industrial applications of FPH and the fate of FPH in terms of limitations, hurdles, future research directions, and challenges have been addressed.
Collapse
Affiliation(s)
| | | | - Mithun Singh Rajput
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), Gujarat, India
| | - Soottawat Benjakul
- The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
43
|
Sweers L, Politiek R, Lakemond C, Bruins M, Boom R, Fogliano V, Mishyna M, Keppler J, Schutyser M. Dry fractionation for protein enrichment of animal by-products and insects: A review. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
|
45
|
Rahayu AP, Islami AF, Saputra E, Sulmartiwi L, Rahmah AU, Kurnia KA. The impact of the different types of acid solution on the extraction and adsorption performance of chitin from shrimp shell waste. Int J Biol Macromol 2022; 194:843-850. [PMID: 34838575 DOI: 10.1016/j.ijbiomac.2021.11.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/11/2021] [Accepted: 11/21/2021] [Indexed: 11/05/2022]
Abstract
The properties of chitin-based adsorbents varied among studies since they are influenced by different factors, such as the types of base and acid used to extract the chitin. Therefore, this works aimed to investigate the impact of four different acid solutions on the extraction and properties of chitin from shrimp shell waste, and to evaluate the adsorption performance of the obtained chitin on removing dye from an aqueous solution. The result showed that H2SO4, HCl, and HNO3 could remove high minerals from the shrimp shell, while the effect of CH3COOH was inferior. The Fourier Transform Infrared (FTIR) and X-ray diffraction (XRD) indicated that the extracted chitin was α-amorphous structure, regardless of the type of acid solution. However, the type of acid solution influenced the crystallinity index of the extracted chitin. The Scanning Electron Microscope (SEM) showed both fibrillar material and porous structures. In addition, the chitin extracted through demineralization using H2SO4 was more effective in removing RBBR dye from aqueous solution, followed by HCl, HNO3, and the last, CH3COOH treatment. The performances of chitin-based adsorbent could be attributed to the strength of acid solution used to remove mineral during the extraction process and the obtained pore structures.
Collapse
Affiliation(s)
- Ardiani Putri Rahayu
- Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Jalan Mulyorejo Kampus C, Surabaya 60115, Indonesia
| | - Afifah Faradilla Islami
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Jalan Mulyorejo Kampus C, Surabaya 60115, Indonesia
| | - Eka Saputra
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Jalan Mulyorejo Kampus C, Surabaya 60115, Indonesia
| | - Laksmi Sulmartiwi
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Jalan Mulyorejo Kampus C, Surabaya 60115, Indonesia
| | - Anisa Ur Rahmah
- Department of Chemical Engineering, Universitas Muhammadiyah Surakarta, Pabelan, Kartasura, Sukoharjo 57162, Indonesia
| | - Kiki Adi Kurnia
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
| |
Collapse
|
46
|
DE LA REÉ-RODRÍGUEZ SC, LÓPEZ-SAIZ CM, EZQUERRA-BRAUER JM, SANTACRUZ-ORTEGA HDC, PLASCENCIA-JATOMEA M, HERNÁNDEZ-ZAZUETA MS, SANDOVAL-PETRIS E, MARTINEZ-CRUZ O, YEPIZ-PLASCENCIA G, MEDINA-MENDEZ I. Lipidic compounds from the muscle of white shrimp (Litopenaeus vannamei): chemical structure and effect on the proliferation and morphology of human cancer cell lines. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.86822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Amer OA, Ali SS, Azab M, El-Shouny WA, Sun J, Mahmoud YAG. Exploring new marine bacterial species, Alcaligenes faecalis Alca F2018 valued for bioconversion of shrimp chitin to chitosan for concomitant biotechnological applications. Int J Biol Macromol 2021; 196:35-45. [PMID: 34920076 DOI: 10.1016/j.ijbiomac.2021.12.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 01/08/2023]
Abstract
The exploitation of chitinous materials seems to be an infinite treasure. To this end, using shellfish waste as the sole carbon/nitrogen source solves environmental challenges while lowering microbial chitinase production costs. Bioconversion of shellfish chitin wastes such as shrimp shells has recently been investigated for the production of enzymes and bioactive materials in order to maximize the utilization of chitin-containing seafood processing wastes. In this study, the bioconversion of chitin to chitosan by Alcaligenes faecalis Alca F2018 revealed the highest chitin deacetylase (CDA) activity of 40.6 U/μg. The resulted low Km and high Vmax values explain the high affinity of the purified CDA to the p-nitroacetanilide substrate. CDA with a molecular weight of 66 KDa was purified from F2018 strain, with a 14.5% yield. FT-IR revealed distinct chitosan peaks and XRD revealed that chitosan samples had lower crystallinity than chitin. TGA analysis revealed that the recovered chitosan samples were more thermally stable. The deacetylation degree percentages of the produced chitosan are in the same range as that of the commercial chitosan, suggesting the promising potential of A. faecalis Alca F2018 to utilize shrimp shells in their raw form in the fermentation media based on its CDA enzyme activity.
Collapse
Affiliation(s)
- Ohood A Amer
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt; Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Maha Azab
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Wagih A El-Shouny
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| |
Collapse
|
48
|
Protein Hydrolysis and Glycosylation as Strategies to Produce Bioactive Ingredients from Unmarketable Prawns. Foods 2021; 10:foods10112844. [PMID: 34829125 PMCID: PMC8625146 DOI: 10.3390/foods10112844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022] Open
Abstract
The present work shows a procedure to valorize non-commercial boiled shrimp to produce functional ingredients, using a combined treatment based on enzymatic hydrolysis and subsequent glycation under mild conditions. Antioxidant and prolyl endopeptidase-inhibiting activities were determined as a function of hydrolysis and glycation times (0-120 min and 0-180 min, respectively). The reaction products were characterized by determining the degree of hydrolysis, browning, fluorescent compounds, free amino acids, phenol content, Fourier transform infrared spectroscopy (FTIR), and molecular weight of the different fractions obtained. Enzymatic hydrolysis generated hydrolysates with significant antioxidant and prolyl endopeptidase-inhibiting activities. Glycation under mild conditions was used as a strategy to improve the antioxidant and potential nootropic properties of the hydrolysates. During glycation, the free amino acid content decreased, total phenols and fluorescent compounds increased significantly, and low molecular weight melanoidins were formed. The presence of peptide-glucose conjugates was also confirmed by FTIR. Glycation increased the antioxidant activities of the hydrolysates; however, their prolyl-endopeptidase-inhibiting activity was lost. Results showed that compounds with promising antioxidant (hydrolysis and glycation) and potential nootropic (hydrolysis) activities and applications in food systems were obtained from the biotechnological strategy used.
Collapse
|
49
|
El boumlasy S, La Spada F, Tuccitto N, Marletta G, Mínguez CL, Meca G, Rovetto EI, Pane A, Debdoubi A, Cacciola SO. Inhibitory Activity of Shrimp Waste Extracts on Fungal and Oomycete Plant Pathogens. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112452. [PMID: 34834815 PMCID: PMC8619012 DOI: 10.3390/plants10112452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 05/11/2023]
Abstract
(1) Background: This study was aimed at determining the in vitro inhibitory effect of new natural substances obtained by minimal processing from shrimp wastes on fungi and oomycetes in the genera Alternaria, Colletotrichum, Fusarium, Penicillium, Plenodomus and Phytophthora; the effectiveness of the substance with the highest in vitro activity in preventing citrus and apple fruit rot incited by P. digitatum and P. expansum, respectively, was also evaluated. (2) Methods: The four tested substances, water-extract, EtOAc-extract, MetOH-extract and nitric-extract, were analyzed by HPLC-ESI-MS-TOF; in vitro preliminary tests were carried out to determine the minimal inhibitory/fungicidal concentrations (MIC and MFC, respectively) of the raw dry powder, EtOAc-extract, MetOH-extract and nitric-extract for each pathogen. (3) Results: in the agar-diffusion-assay, nitric-extract showed an inhibitory effect on all pathogens, at all concentrations tested (100, 75, 50 and 25%); the maximum activity was on Plenodomus tracheiphilus, C. gloeosporioides and Ph. nicotianae; the diameters of inhibition halos were directly proportional to the extract concentration; values of MIC and MFC of this extract for all pathogens ranged from 2 to 3.5%; the highest concentrations (50 to 100%) tested in vivo were effective in preventing citrus and apple fruit molds. (4) Conclusions: This study contributes to the search for natural and ecofriendly substances for the control of pre- and post-harvest plant pathogens.
Collapse
Affiliation(s)
- Soumia El boumlasy
- Laboratory of Materials-Catalysis, Chemistry Department, Faculty of Science, University Abdelmalek Essaadi, Tetouan B.P. 2117, Morocco; (S.E.b.); (A.D.)
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (F.L.S.); (E.I.R.); (A.P.)
| | - Federico La Spada
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (F.L.S.); (E.I.R.); (A.P.)
| | - Nunzio Tuccitto
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, CSGI, Viale A. Doria 6, 95125 Catania, Italy; (N.T.); (G.M.)
- Department of Chemical Sciences, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giovanni Marletta
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, CSGI, Viale A. Doria 6, 95125 Catania, Italy; (N.T.); (G.M.)
- Department of Chemical Sciences, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Carlos Luz Mínguez
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (C.L.M.); (G.M.)
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (C.L.M.); (G.M.)
| | - Ermes Ivan Rovetto
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (F.L.S.); (E.I.R.); (A.P.)
| | - Antonella Pane
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (F.L.S.); (E.I.R.); (A.P.)
| | - Abderrahmane Debdoubi
- Laboratory of Materials-Catalysis, Chemistry Department, Faculty of Science, University Abdelmalek Essaadi, Tetouan B.P. 2117, Morocco; (S.E.b.); (A.D.)
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (F.L.S.); (E.I.R.); (A.P.)
- Correspondence: ; Tel.: +39-095-7147371
| |
Collapse
|
50
|
Liu Z, Liu Q, Zhang D, Wei S, Sun Q, Xia Q, Shi W, Ji H, Liu S. Comparison of the Proximate Composition and Nutritional Profile of Byproducts and Edible Parts of Five Species of Shrimp. Foods 2021; 10:foods10112603. [PMID: 34828883 PMCID: PMC8619515 DOI: 10.3390/foods10112603] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
The nutritional components of different parts (meat, head, shell and tail) of Litopenaeus vannamei (L.v), Macrobrachium rosenbergii (M.r), Penaeus monodon (P.m), Fenneropenaeus chinensis (F.c), and Penaeus japonicus (P.j) were analyzed and their nutritional values were evaluated. For the five species of shrimp, the meat yield was 37.47–55.94%, and the byproduct yield was 44.06–62.53%. The meat yields of L.v and F.c were the highest (55.94 and 55.92%, respectively), and the meat yield of M.r was the lowest (37.47%). The shrimp contain high amounts of crude protein, and the values of the amino acid score (AAS), chemical score (CS), and essential amino index (EAAI) were greater than or close to 1.00, indicating that shrimp protein had higher nutritional value. The shrimp head was rich in polyunsaturated fatty acids and the ratio of n-6 to n-3 PUFAs was from 0.37 to 1.68, indicating that the shrimp head is rich in n-3 PUFAs and is a good source of n-3 PUFAs. The five species of shrimp were rich in macro- and micro-minerals, especially in shrimp byproducts. The shrimp byproducts were also rich in other bioactive ingredients (astaxanthin), which are also very valuable for developing biological resources. Therefore, shrimp have many nutritional benefits, and their byproducts can also be used to develop natural nutraceuticals, which are considered to be one of the healthiest foods.
Collapse
Affiliation(s)
- Zhenyang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (Z.L.); (Q.L.); (D.Z.); (S.W.); (Q.S.); (Q.X.); (H.J.)
| | - Qiumei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (Z.L.); (Q.L.); (D.Z.); (S.W.); (Q.S.); (Q.X.); (H.J.)
| | - Di Zhang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (Z.L.); (Q.L.); (D.Z.); (S.W.); (Q.S.); (Q.X.); (H.J.)
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (Z.L.); (Q.L.); (D.Z.); (S.W.); (Q.S.); (Q.X.); (H.J.)
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (Z.L.); (Q.L.); (D.Z.); (S.W.); (Q.S.); (Q.X.); (H.J.)
| | - Qiuyu Xia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (Z.L.); (Q.L.); (D.Z.); (S.W.); (Q.S.); (Q.X.); (H.J.)
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (Z.L.); (Q.L.); (D.Z.); (S.W.); (Q.S.); (Q.X.); (H.J.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (Z.L.); (Q.L.); (D.Z.); (S.W.); (Q.S.); (Q.X.); (H.J.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence:
| |
Collapse
|