1
|
Peng S, Zhang Z, Guo J, Ma T, Liu D. Rapid detection of thiram on apple surfaces using a flexible and sticky SERS substrate coupled with chemometric methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125435. [PMID: 39571209 DOI: 10.1016/j.saa.2024.125435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/14/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024]
Abstract
In this paper, we developed a simple, rapid and sensitive method for detection of thiram on apple surfaces by surface enhance Raman spectroscopy (SERS) combined with chemometric methods. Ag NCs (Ag nanocubes) were firstly prepared by a sulfide-mediated polyol method. Then the flexible and adhesive Ag NCs@PDMS substrates were obtained by combining Ag NCs self-assembled films with PDMS films. Thiram residues on apple surfaces were transferred to the substrate using adhesion properties of Ag NCs@PDMS. And the SERS spectra were obtained by Raman microscopy and analyzed with chemometric methods. The results were analyzed by principal component analysis (PCA), for the limit of detection (LOD) of thriam on apple surfaces was 0.01 ppm. Principal component regression (PCR) and partial least squares regression (PLSR) were explored to develop quantitative models. Both models represented higher correlation coefficients (close to 1), but PLSR models exhibited better predictive performance, with the correlation coefficient was 0.99282 with a low root mean squared error of calibration (RMSEC = 0.438) and root mean squared error of validation (RMSECV = 0.597). The developed SERS method based on Ag NCs@PDMS substrate provide a simpler and more sensitive way to monitor thiram on apple surfaces.
Collapse
Affiliation(s)
- Sasa Peng
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China
| | - Zhilong Zhang
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China
| | - Jialin Guo
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China
| | - Tianchen Ma
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China
| | - Dongli Liu
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China.
| |
Collapse
|
2
|
Gong Y, Li D, Chen M, Lin A, Chen Q, Chen X. Au@Ag hollow nanoshells-based SERS integrated microfluidic chip as a sample-to-answer platform for the ultra-sensitive detection of geosmin. Anal Chim Acta 2025; 1335:343471. [PMID: 39643322 DOI: 10.1016/j.aca.2024.343471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Geosmin (GSM) can compromise the immune systems of aquatic organisms, rendering them more vulnerable to viral and bacterial infections, thereby adversely affecting their growth, reproduction, yield, and quality. Given the relatively low odor thresholds of GSM, there is a critical demand for the development of a highly sensitive and rapid detection method. According to the principle of Surface-enhanced Raman spectroscopy (SERS), localized surface plasmon resonance (LSPR) greatly enhances the Raman signals of adsorbed molecules. To date, no study has reported the application of SERS to detect GSM. RESULTS Dual-metal nanomaterials with hollow structures have been proven to provide a large surface area and heightened localized surface plasmon resonance, thereby enhancing the sensitivity of Raman signals. In this study, a sample-to-answer platform was constructed by integrating Au@Ag hollow nanoshells (HNSs)-based SERS and a microfluidic chip for the sensitive, fast, and direct determination of GSM. Under 532 nm excitation, GSM exhibit Raman peaks on the SERS-active Au@Ag HNSs, and there is a relationship between the peak intensity and the concentration of GSM. Owing to the integration of the microfluidic chip, only microliters of reagent are required, and the test results can be achieved within 4 min. The constructed sample-to-answer platform showed a good linear response to GSM in the range of 1 ng/L-1 mg/L, with a detection limit of 0.16 ng/L. An optimal calibration model is established by combining stoichiometric algorithms. SIGNIFICANCE This work realized the ultra-highly sensitive and fast determination of GSM based on SERS-active Au@Ag HNSs, which provides new insights and is very promising for the on-site monitoring of earthy odors. Our study makes a significant contribution to the literature because the developed SERS-based detection method does not require labels or biomaterials, providing the possibility of highly sensitive and on-site testing of contaminants in food and the environment.
Collapse
Affiliation(s)
- Yuting Gong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Dong Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Min Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Anhui Lin
- School of Marine Engineering, Jimei University, Xiamen, 361021, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
3
|
Hu M, Wen C, Liu J, Li M, Leng N, Guo X, Fang Q, Kou Q, Huang R, Lin XC. Ratiometric surface-enhanced Raman spectroscopy detection of 5-hydroxyindole-3-acetic acid based on Au@MIL-125@MIPs substrates. Talanta 2025; 281:126880. [PMID: 39277938 DOI: 10.1016/j.talanta.2024.126880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
5-Hydroxyindole-3-acetic acid (5-HIAA) is a molecular marker that can be used in the early diagnosis of carcinoid tumors, and the development of sophisticated 5-HIAA assays is therefore of great importance. Surface-enhanced Raman spectroscopy (SERS) has been widely used for the rapid and sensitive detection of disease biomarkers. Insufficient specificity for tumor markers and poor spectral reproducibility are the bottlenecks in the practical use of SERS technology. In this study, based on MIL-125 surface-loaded gold nanoparticles (Au@MIL-125), a novel strategy was proposed to obtain Au@MIL-125@molecularly imprinted polymers (MIPs) as functional SERS substrates by wrapping a thin MIP shell around the Au@MIL-125 surface for selective separation followed by a 5-HIAA assay. The Raman peak intensity ratio (I865/I1078) was used to quantify 5-HIAA after a SERS spectral calibration with an embedded internal standard (i.e., 4-aminobenzenethiol) to improve the quantitative accuracy. The linear range was from 10-11 to 10-7 M, and the limit of detection (LOD) was 5.45 × 10-13 M. The method of integrating the MIPs with the metal MOF-based nanocomposites was shown to be useful in the analysis of real samples using SERS. The application of SERS for the selective and quantitative detection of analytes in real sample analysis, therefore, has great potential.
Collapse
Affiliation(s)
- Miaomiao Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China; Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Changchun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Jian Liu
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Minzhe Li
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Nan Leng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xiaohuan Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Qi Fang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Qinjie Kou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Rong Huang
- Department of Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang-Cheng Lin
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China.
| |
Collapse
|
4
|
Cheng J, Zhuang S, Luo Z, Chen S, Shen Y, Ye J, Yu Z, Zhao T, Xie Y. Simple and rapid capillarity-assisted ultra-trace detection of thiram on apple surface with a silver nanoparticles/filter paper SERS substrate. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136945. [PMID: 39708602 DOI: 10.1016/j.jhazmat.2024.136945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/13/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Thiram is a readily synthesized, cost-effective antimicrobial agent widely used to control diseases in fruits and vegetables. Given the potential health hazards associated with thiram residues and advancements in detection methods, it is crucial to develop a rapid and sensitive technique for detecting these residues on fruit surfaces. Here, we prepared the Ag@filter paper (Ag@FP) surface-enhanced Raman scattering (SERS) substrate in a controlled manner and innovatively developed a capillarity-assisted SERS (CA-SERS) detection method. Sampling can be completed in less than 1 min by either wiping or using the CA-SERS method. Utilizing a portable Raman device, the detection limit for thiram residues on apple surfaces can reach as low as 0.005 ng/cm2 with the CA-SERS detection method. Furthermore, the substrate is cost-effective, can be prepared in just 7 min, and remains stable at room temperature for up to 40 days. Additionally, we developed a cost-effective, centimeter-scale auxiliary detection device to facilitate efficient on-site detection.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Shunqian Zhuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Zhewen Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Songting Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yao Shen
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhilong Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Tiancong Zhao
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
5
|
Barveen NR, Chinnapaiyan S, Zeng CW, Huang CH, Lin YY, Cheng YW. Plasmonic Au-NPs photodecorated on NiCoLDH nanosheets as a flexible SERS sensor for the real-time detection of fipronil. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135907. [PMID: 39326143 DOI: 10.1016/j.jhazmat.2024.135907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Rapid extraction and detection of probe molecules from curved surfaces is critical for on-site and real-time detection. In this study, a flexible platform was developed using carbon cloth (CC) to create honeycomb-like nickel cobalt layered double hydroxides (NiCoLDH) nanosheets via a simple electrodeposition technique, which were then decorated with gold nanoparticles (Au-NPs) via photodeposition process. The Au-NPs/NiCoLDH/CC was designed as a surface-enhanced Raman scattering (SERS) substrate for detecting the broad-spectrum insecticide, Fipronil (FP). The fabricated sensor achieves a superior SERS activity due to the electrodeposited NiCoLDH, which provides the charge-transfer effect, and the photodeposited Au-NPs, which generate efficient SERS hotspots through the electromagnetic effect. The Density Functional Theory (DFT) calculation was used to estimate the optimal geometry and frontier molecular orbital diagrams of the FP molecules. The influence of electrodeposition time on NiCoLDH production and Au-NPs decorating quantity was investigated in detail. Furthermore, the flexible SERS sensor has excellent sensitivity, homogeneity, a low limit of detection (LOD), and high reproducibility for FP detection. Even after 40 cycles of bending and torsion, the SERS substrate maintained excellent mechanical endurance. Through a direct-sampling approach, FP molecules on the surfaces and mesocarp region of grapes and tomatoes were successfully detected with lower LOD. These findings highlight the outstanding potential of the produced flexible SERS sensor for real-time and on-site insecticide detection, making it valuable for food security analysis and monitoring.
Collapse
Affiliation(s)
- Nazar Riswana Barveen
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Sathishkumar Chinnapaiyan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Che-Wei Zeng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Yen-Yu Lin
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Yu-Wei Cheng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; R&D Center of Biochemical Engineering Technology, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
| |
Collapse
|
6
|
Li H, Hu Y, Lin Z, Yan X, Sun C, Yao D. Carbon dots-based stimuli-responsive hydrogel for in-situ detection of thiram on fruits and vegetables. Food Chem 2024; 460:140405. [PMID: 39053272 DOI: 10.1016/j.foodchem.2024.140405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
Stimuli-responsive hydrogel possesses a strong loading capacity to embed luminescent indicators for constructing food safety sensors, which are suitable for field application. In this work, a fluorescent hydrogel sensor was fabricated by incorporating Ag+-modified carbon dots (CDs-Ag+) into a sodium alginate (SA) hydrogel for in-situ detection of thiram. The fluorescence of CDs was quenched due to the combined effects of electrostatic adsorption and electron transfer between Ag+ and CDs. The formation of an AgS bond between thiram and Ag+ facilitates the release of CDs, causing subsequently fluorescence recovery. Combined with smartphone and analysis software, the fluorescence color change of the hydrogel sensor was converted into data information for quantitative detection of thiram. Such a sample-to-result step is completed within 10 min. Notably, the in-situ detection experiment of thiram in fruit and vegetable samples confirmed the practical application of the hydrogel sensor. Therefore, the hydrogel sensor provides a new research direction for the in-situ detection of pesticide residues in the monitoring of food safety.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China; College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yanan Hu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhen Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xu Yan
- College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Dong Yao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
7
|
Lu N, Ma J, Lin Y, Cheng JH, Sun DW. A fluorescent Aptasensor based on magnetic-separation strategy with gold nanoclusters for Deoxynivalenol (DON) detection. Food Chem 2024; 459:140341. [PMID: 39121528 DOI: 10.1016/j.foodchem.2024.140341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 08/12/2024]
Abstract
A highly sensitive method based on MBs-cDNA@Apt-AuNCs519 was developed for deoxynivalenol (DON) detection in wheat. The MBs-cDNA@Apt-AuNCs519 was established using green emission gold nanoclusters (AuNCs519) with aggregation-induced emission properties as signal probes and combining amino-modified DON-aptamer (Apt), biotin-modified DNA strand (the partially complementary to Apt (cDNA)), and streptavidin-modified magnetic beads (MBs). The Apt-AuNCs519 were well connected with MBs-cDNA without DON but dissociated from MBs-cDNA@Apt-AuNCs519 with the addition of DON, leading to a noticeable reduction in the fluorescent intensity of the aptasensor. Moreover, this fluorescence aptasensor showed two linear relationships in the concentration range of 0.1-50 ng/mL and 50-5000 ng/mL with a limit of detection of 3.73 pg/mL with good stability, reproducibility and specificity. The results were consistent with high-performance liquid chromatography and enzyme-linked immunosorbent assay methods, further indicating the potential of this method for accurate trace detection of DON in wheat.
Collapse
Affiliation(s)
- Nian Lu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yuandong Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
8
|
Jia H, Meng W, Gao R, Wang Y, Zhan C, Yu Y, Cong H, Yu L. Integrated SERS-Microfluidic Sensor Based on Nano-Micro Hierarchical Cactus-like Array Substrates for the Early Diagnosis of Prostate Cancer. BIOSENSORS 2024; 14:579. [PMID: 39727845 DOI: 10.3390/bios14120579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
The detection and analysis of cancer cell exosomes with high sensitivity and precision are pivotal for the early diagnosis and treatment strategies of prostate cancer. To this end, a microfluidic chip, equipped with a cactus-like array substrate (CAS) based on surface-enhanced Raman spectroscopy (SERS) was designed and fabricated for the detection of exosome concentrations in Lymph Node Carcinoma of the Prostate (LNCaP). Double layers of polystyrene (PS) microspheres were self-assembled onto a polyethylene terephthalate (PET) film to form an ordered cactus-like nanoarray for detection and analysis. By combining EpCAM aptamer-labeled SERS nanoprobes and a CD63 aptamer-labeled CAS, a 'sandwich' structure was formed and applied to the microfluidic chips, further enhancing the Raman scattering signal of Raman reporter molecules. The results indicate that the integrated microfluidic sensor exhibits a good linear response within the detection concentration range of 105 particles μL-1 to 1 particle μL-1. The detection limit of exosomes in cancer cells can reach 1 particle μL-1. Therefore, we believed that the CAS integrated microfluidic sensor offers a superior solution for the early diagnosis and therapeutic intervention of prostate cancer.
Collapse
Affiliation(s)
- Huakun Jia
- State Key Laboratory of Chemical Safety, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Weiyang Meng
- State Key Laboratory of Chemical Safety, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Rongke Gao
- State Key Laboratory of Chemical Safety, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yeru Wang
- State Key Laboratory of Chemical Safety, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Changbiao Zhan
- State Key Laboratory of Chemical Safety, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yiyue Yu
- State Key Laboratory of Chemical Safety, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Haojie Cong
- State Key Laboratory of Chemical Safety, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Liandong Yu
- State Key Laboratory of Chemical Safety, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
9
|
Serebrennikova KV, Komova NS, Zherdev AV, Dzantiev BB. SERS Sensors with Bio-Derived Substrates Under the Way to Agricultural Monitoring of Pesticide Residues. BIOSENSORS 2024; 14:573. [PMID: 39727838 DOI: 10.3390/bios14120573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Uncontrolled use of pesticides in agriculture leads to negative consequences for the environment, as well as for human and animal health. Therefore, timely detection of pesticides will allow application of measures to eliminate the excess of maximum residue limits and reduce possible negative consequences in advance. Common methods of pesticide analysis suffer from high costs, and are time consuming, and labor intensive. Currently, more attention is being paid to the development of surface-enhanced Raman scattering (SERS) sensors as a non-destructive and highly sensitive tool for detecting various chemicals in agricultural applications. This review focuses on the current developments of biocompatible SERS substrates based on natural materials with unique micro/nanostructures, flexible SERS substrates based on biopolymers, as well as functionalized SERS substrates, which are close to the current needs and requirements of agricultural product quality control and environmental safety assessment. The impact of herbicides on the process of photosynthesis is considered and the prospects for the application of Raman spectroscopy and SERS for the detection of herbicides are discussed.
Collapse
Affiliation(s)
- Kseniya V Serebrennikova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Nadezhda S Komova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| |
Collapse
|
10
|
Zhang Z, Li H, Huang L, Wang H, Niu H, Yang Z, Wang M. Rapid identification and quantitative analysis of malachite green in fish via SERS and 1D convolutional neural network. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124655. [PMID: 38885572 DOI: 10.1016/j.saa.2024.124655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Rapid and quantitative detection of malachite green (MG) in aquaculture products is very important for safety assurance in food supply. Here, we develop a point-of-care testing (POCT) platform that combines a flexible and transparent surface-enhanced Raman scattering (SERS) substrate with deep learning network for achieving rapid and quantitative detection of MG in fish. The flexible and transparent SERS substrate was prepared by depositing silver (Ag) film on the polydimethylsiloxane (PDMS) film using laser molecular beam epitaxy (LMBE) technique. The wrinkled Ag NPs@PDMS film exhibits high SERS activity, excellent reproducibility and good mechanical stability. Additionally, the fast in situ detection of MG residues onfishscales was achieved by using the wrinkled Ag NPs/PDMS film and a portable Raman spectrometer, with a minimum detectable concentration of 10-6 M. Subsequently, a one-dimensional convolutional neural network (1D CNN) model was constructed for rapid quantification of MG concentration. The results demonstrated that the 1D CNN quantitative analysis model possessed superior predictive performance, with a coefficient of determination (R2) of 0.9947 and a mean squared error (MSE) of 0.0104. The proposed POCT platform, integrating a transparent flexible SERS substrate, a portable Raman spectrometer and a 1D CNN model, provides an efficient strategy for rapid identification and quantitative analysis of MG in fish.
Collapse
Affiliation(s)
- Zhaoyi Zhang
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252000, PR China
| | - Hefu Li
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252000, PR China.
| | - Lili Huang
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252000, PR China
| | - Hongjun Wang
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252000, PR China
| | - Huijuan Niu
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252000, PR China
| | - Zhenshan Yang
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252000, PR China
| | - Minghong Wang
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252000, PR China.
| |
Collapse
|
11
|
Pham AT, Bui HN, Thanh NT, Bach TN, Mai QD, Le AT. Flexible SERS chips for rapid on-site detection of tricyclazole pesticide in agricultural products. Mikrochim Acta 2024; 191:652. [PMID: 39373744 DOI: 10.1007/s00604-024-06682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
A flexible, ultrasensitive, and practical SERS chip is presented based on a paper/f-TiO2/Ag structure. The chip enhances the self-assembly of Ag nanoparticles on a cellulose fiber matrix, facilitated by smart functionalized TiO2 nanomaterials (f-TiO2). This design enables superior detection of the hazardous pesticide tricyclazole (TCZ) on crops using an advanced, simple, and efficient analytical method. Despite its straightforward fabrication process via a solvent immersion method, the intrinsic smart surface properties of the TiO2 bridging material - both hydrophilic and hydrophobic - enable the uniform and dense self-assembly of hydrophilic Ag nanoparticles (NPs) on the cellulose fiber paper substrate. This innovative design provides superior sensing efficiency for TCZ molecules with a detection limit reaching 2.1 × 10-9 M, a remarkable improvement compared to Paper/Ag substrates lacking f-TiO2 nanomaterials, which register at 10-5 M. This flexible SERS substrate also exhibits very high reliability as indicated by its excellent reproducibility and repeatability with relative standard deviations (RSD) of only 5.93% and 4.73%, respectively. Characterized by flexibility and a water-attractive yet non-soluble surface, the flexible Paper/f-TiO2/Ag chips offer the convenience of direct immersion into the analytical sample, facilitating seamless target molecule collection while circumventing interference signals. Termed the "dip and dry" technique, its advantages in field analysis are indisputable, boasting in situ deployment, simplicity, and high efficiency, while minimizing interference signals to negligible levels. Through the application of this advanced technique, we have successfully detected TCZ in two high-value crops, ST25 rice and dragon fruit, achieving excellent recovery values ranging from 90 to 128%. This underscores its immense potential in ensuring food quality and safety. As a proof of concept, flexible Paper/f-TiO2/Ag SERS chips, with a simple fabrication process, advanced analytical technique, and superior sensing efficiency, bring SERS one step closer to field applications beyond the laboratory.
Collapse
Affiliation(s)
- Anh-Tuan Pham
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi, 12116, Vietnam
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi, 12116, Vietnam
| | - Hanh Nhung Bui
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi, 12116, Vietnam
| | - Nguyen Trung Thanh
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi, 12116, Vietnam
| | - Ta Ngoc Bach
- Institute of Materials Science (IMS), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Quan-Doan Mai
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam.
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam.
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi, 12116, Vietnam.
| |
Collapse
|
12
|
Molina A, Oliva J, Vazquez-Lepe M, Lopez-Medina M, Ojeda L, Rios-Jara D, Flores-Zuñiga H. Effect of NiAl alloy microparticles deposited in flexible SERS substrates on the limit of detection of rhodamine B molecules. NANOSCALE 2024; 16:16183-16194. [PMID: 39136150 DOI: 10.1039/d4nr02592j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Flexible-SERS (FSERS) substrates were fabricated by depositing Ni64Al36(NiAl)-alloy-microparticles and/or spherical Ag-NPs (sizes of 10-40 nm) on recycled plastics, which had an aluminum layer on their surface. First, FSERS substrates made of Al + Ag-NPs and an area of 1 cm2 were used to detect rhodamine B (RhB) molecules. The limit-of-detection (LOD) for RhB was 8.35 × 10-22 moles (∼503 molecules), and the enhancement factor (EF) was 3.11 × 1015. After adding NiAl-microparticles to the substrate, the LOD decreased to 8.35 × 10-24 moles (∼5 molecules) and the EF was increased to 2.05 × 1017. Such EF values were calculated with respect to substrates made only with Al + NiAl-alloy (without Ag-NPs), which did not show any Raman signal. Other FSERS substrates were made with graphene-layer + Ag-NPs or graphene-layer + NiAl-alloy + Ag-Nps, and the best LOD and EF values were 8.35 × 10-22 moles and 6.89 × 1015, respectively. Overall, combining the Ag-NPs and NiAl-alloy microparticles allowed for the zeptomole detection of RhB. This was possible due to the formation of Ag aggregates around the alloy microparticles, which enhanced the number of hotspots. If no alloy is present in the FSERS substrates, the detection of RhB is lowered. Overall, we presented a low-cost FSERS substrate that does not require expensive Au films or Au-NPs (as previously reported) to detect RhB at the zeptomole level.
Collapse
Affiliation(s)
- A Molina
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216 San Luis Potosí, SLP, Mexico
| | - J Oliva
- Centro de Física Aplicada y Tecnología Avanzada Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Querétaro, Mexico.
| | - M Vazquez-Lepe
- Departamento de Ingeniería de Proyectos, CUCEI-Universidad de Guadalajara, Jalisco, Mexico
| | - M Lopez-Medina
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216 San Luis Potosí, SLP, Mexico
| | - L Ojeda
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216 San Luis Potosí, SLP, Mexico
| | - D Rios-Jara
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216 San Luis Potosí, SLP, Mexico
| | - H Flores-Zuñiga
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216 San Luis Potosí, SLP, Mexico
| |
Collapse
|
13
|
Park EY, Maehata S, Khoris IM, Achadu OJ. Signal-amplified surface-enhanced Raman scattering using core/shell satellite nanoparticles for norovirus detection. Mikrochim Acta 2024; 191:560. [PMID: 39180589 DOI: 10.1007/s00604-024-06600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
The development of an innovative approach is explored to amplify the signal of a surface-enhanced Raman scattering (SERS)-based detection system using a novel nanotag: Au@Ag NPs covered by satellite AuNPs and conjugated by 4-mercaptbenzoic acid (4-MBA) as a Raman tag (Au@Ag-MBA-AuNPs). The Au@Ag-MBA-AuNPs nanotags showed strong SERS activities with an enhancement factor in the 108 order of magnitude. This indicates the formation of many hot spots due to the combination of core-shell nanoparticles and satellite AuNPs on the surface of Au@Ag-MBA NPs. The newly fabricated nanotags were employed in a small-sized Palmtop Raman spectrometer. A concentration-dependent increase in SERS intensity was observed in the norovirus-like particle (NoV-LP) concentration range 10 fg/mL to 100 pg/mL with a detection limit of 0.76 fg/mL. Even in the severe interfering matrices, this detection method's coefficient of variation was less than 10%. This detection system was approximately 107 times more sensitive than commercially available ELISA kits. Norovirus in clinical samples was detected over a wide concentration range of 1.0 × 101 - 1.0 × 106 RNA copy number/mL with a detection limit of 7.8 RNA copy number/mL, indicating sensitivity comparable to real-time PCR. These results suggest that this detection system is stable in a complex matrix and has the potential for detecting norovirus in clinical samples with a small Palmtop Raman spectrometer.
Collapse
Affiliation(s)
- Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-Ku, Shizuoka, 422-8529, Japan.
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya Suruga-Ku, Shizuoka, 422-8529, Japan.
- Faculty of Agriculture, Shizuoka University, 836 Ohya Suruga-Ku, Shizuoka, 422-8529, Japan.
| | - Syuei Maehata
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya Suruga-Ku, Shizuoka, 422-8529, Japan
| | - Indra Memdi Khoris
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-Ku, Shizuoka, 422-8529, Japan
- National Institute Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Ojodomo J Achadu
- School of Health and Life Sciences, & National Horizon Centre, Teesside University, Middlesbrough, TS1 3BA, UK
| |
Collapse
|
14
|
Lin Z, Fu X, Zheng K, Han S, Chen C, Ye D. Cellulose Surface Nanoengineering for Visualizing Food Safety. NANO LETTERS 2024; 24:10016-10023. [PMID: 39109676 DOI: 10.1021/acs.nanolett.4c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Food safety is vital to human health, necessitating the development of nondestructive, convenient, and highly sensitive methods for detecting harmful substances. This study integrates cellulose dissolution, aligned regeneration, in situ nanoparticle synthesis, and structural reconstitution to create flexible, transparent, customizable, and nanowrinkled cellulose/Ag nanoparticle membranes (NWCM-Ag). These three-dimensional nanowrinkled structures considerably improve the spatial-electromagnetic-coupling effect of metal nanoparticles on the membrane surface, providing a 2.3 × 108 enhancement factor for the surface-enhanced Raman scattering (SERS) effect for trace detection of pesticides in foods. Notably, the distribution of pesticides in the apple peel and pulp layers is visualized through Raman imaging, confirming that the pesticides penetrate the peel layer into the pulp layer (∼30 μm depth). Thus, the risk of pesticide ingestion from fruits cannot be avoided by simple washing other than peeling. This study provides a new idea for designing nanowrinkled structures and broadening cellulose utilization in food safety.
Collapse
Affiliation(s)
- Zewan Lin
- School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
- School of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Xiaotong Fu
- School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Ke Zheng
- School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Shaobo Han
- School of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Chaoji Chen
- School of Resource and Environment Sciences, Wuhan University, Wuhan 430079, China
| | - Dongdong Ye
- School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
15
|
Moram SSB, Byram C, Soma VR. Effect of wavelength and liquid on formation of Ag, Au, Ag/Au nanoparticles via picosecond laser ablation and SERS-based detection of DMMP. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1054-1069. [PMID: 39188758 PMCID: PMC11346305 DOI: 10.3762/bjnano.15.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
The present study investigates the effects of input wavelength (1064, 532, and 355 nm) and surrounding liquid environment (distilled water and aqueous NaCl solution) on the picosecond laser ablation on silver (Ag), gold (Au), and Ag/Au alloy targets. The efficacy of the laser ablation technique was meticulously evaluated by analyzing the ablation rates, surface plasmon resonance peak positions, and particle size distributions of the obtained colloids. The nanoparticles (NPs) were characterized using the techniques of UV-visible absorption, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Furthermore, NPs of various sizes ranging from 6 to 35 nm were loaded onto a filter paper by a simple and effective drop-casting approach to achieve flexible surface-enhanced Raman spectroscopy (SERS) substrates/sensors. These substrates were tested using a simple, portable Raman device to identify various hazardous chemicals (malachite green, methyl salicylate, and thiram). The stability of the substrates was also systematically investigated by determining the decay percentages in the SERS signals over 60 days. The optimized SERS substrate was subsequently employed to detect chemical warfare agent (CWA) simulants such as methyl salicylate (a CWA simulant for sulfur mustard) and dimethyl methyl phosphonate (has some structural similarities to the G-series nerve agents) at different laser excitations (325, 532, and 633 nm). A notably higher SERS efficiency for CWA simulants was observed at a 325 nm Raman excitation. Our findings reveal that a higher ablation yield was observed at IR irradiation than those obtained at the other wavelengths. A size decrease of the NPs was noticed by changing the liquid environment to an electrolyte. These findings have significant implications for developing more efficient and stable SERS substrates for chemical detection applications.
Collapse
Affiliation(s)
- Sree Satya Bharati Moram
- Advanced Centre for Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046, Telangana, India
- Department of Physics, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Chandu Byram
- Advanced Centre for Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046, Telangana, India
- Department of Physics, College of Arts and Sciences, University of Dayton, 300 College Park, Dayton, Ohio 45469, USA
| | - Venugopal Rao Soma
- Advanced Centre for Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046, Telangana, India
- School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Hyderabad 500046, Telangana, India
| |
Collapse
|
16
|
Fan Z, Ran Q, Li Y, Xu X, Zheng L, Liu X, Jia K. Surface segregation of rigid polyarylene ether amidoxime on polyurethane nanofiber into hierarchical membranes as substrate of flexible SERS nanosensor for sulfamethoxazole detection. Talanta 2024; 276:126166. [PMID: 38714011 DOI: 10.1016/j.talanta.2024.126166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/09/2024]
Abstract
Electrospun polymeric nanofibrous membranes are emerging as the promising substrates for preparation of flexible SERS nanosensors due to their intrinsic nanoscale surface roughness, easy scalability as well as rich surface reactivity. Although the nanofiber membranes prepared from high performance thermoplastics exhibit good mechanical stability, the SERS nanosensors based on these substrates normally have lower signal-to-noise ratio because of the interference from background Raman signals of aromatic moieties. Herein, we synthesized an optically transparent polyurethane (PU) and rigid polyarylene ether amidoxime (PEA), which were electrospun into core-shell nanofibers membranes with a "beads-on-web" morphology. Furthermore, the PU-PEA membranes were coated with ultra-thin silver layer and thermally annealed to prepare the flexible SERS nanosensor without any background noises. In addition, the Raman enhancement of SERS nanosensor can be readily improved by tuning of PU-PEA composition, silver thickness as well as thermal annealing temperature. Finally, the optimized SERS nanosensor enables label-free detection of sulfamethoxazole as low as 0.1 nM with a good reproducibility and detection performance in real water sample. Meanwhile, the optimized SERS nanosensor shows long term anti-biofouling capacity. Thanks to its facile fabrication, competitive analytical performance and resistance to biofouling, the current work basically open new way for design of flexible SERS nanosensors for biomedical applications.
Collapse
Affiliation(s)
- Zilin Fan
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Qimeng Ran
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Yuanyuan Li
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China.
| | - Xiaoling Xu
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Li Zheng
- Institute of Life Science, eBond Pharmaceutical Technology Ltd., Chengdu, China
| | - Xiaobo Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu, China
| | - Kun Jia
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu, China.
| |
Collapse
|
17
|
Lv M, Pu H, Sun DW. A tailored dual core-shell magnetic SERS substrate with precise shell-thickness control for trace organophosphorus pesticides residues detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124336. [PMID: 38678838 DOI: 10.1016/j.saa.2024.124336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
For addressing the challenges of strong affinity SERS substrate to organophosphorus pesticides (OPs), herein, a rapid water-assisted layer-by-layer heteronuclear growth method was investigated to grow uniform UiO-66 shell with controllable thickness outside the magnetic core and provide abundant defect sites for OPs adsorption. By further assembling the tailored Au@Ag, a highly sensitive SERS substrate Fe3O4-COOH@UiO-66/Au@Ag (FCUAA) was synthesized with a SERS enhancement factor of 2.11 × 107. The substrate's suitability for the actual vegetable samples (cowpeas and peppers) was confirmed under both destructive and non-destructive detection conditions, showing a strong SERS response to fenthion and triazophos, with limits of detection of 1.21 × 10-5 and 2.96 × 10-3 mg/kg in the vegetables under destructive conditions, and 0.13 and 1.39 ng/cm2 for non-destructive detection, respectively. The FCUAA substrate had high SERS performance, effective adsorption capability for OPs, and demonstrated good applicability, thus exhibiting great potential for rapid detection of trace OPs residues in the food industry.
Collapse
Affiliation(s)
- Mingchun Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
18
|
Zhou J, Wang H, Chen Y, Lin D, Zhang L, Xing Z, Zhang Q, Xia J. A self-calibrating flexible SERS substrate incorporating PB@Au assemblies for reliable and reproducible detection. Analyst 2024; 149:4060-4071. [PMID: 38979998 DOI: 10.1039/d4an00151f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The precise quantitative analysis using surface-enhanced Raman spectroscopy (SERS) in an uncontrollable environment still faces a significant obstacle due to the poor reproducibility of Raman signals. Herein, we propose a facile method to fabricate a self-calibrating substrate based on a flexible polyvinyl alcohol (PVA) film comprising assemblies of Prussian blue (PB) and Au NPs (PB@Au) for reliable detection. PB cores were coated with an Au shell through simple electrostatic interaction, forming core-shell nanostructure PB@Au assemblies within the PVA film. The outer Au layer provided identical trends in enhancement for both the PB core and neighboring targets while PB cores served as an internal standard (IS) to correct signal fluctuations. The prevention of competitive adsorption on the metal surface between targets and ISs was achieved. The proposed PVA/PB@Au film exhibited enhanced stability of Raman signals after IS correction, resulting in improved spot-to-spot and batch-to-batch reproducibility with significantly reduced standard deviation (RSD) values from 11.42% and 25.02% to 4.43% and 9.39%, respectively. Simultaneously, a higher accuracy in the quantitative analysis of 4-mercaptobenzoic acid (4-MBA) and malachite green (MG) was achieved with fitting coefficient (R2) values improving from 0.9675 and 0.9418 to 0.9974 and 0.9832, respectively. Moreover, the PVA/PB@Au film was successfully applied to detect residual MG in real fish samples. This work opens up an avenue to improve the reproducibility of Raman signals for flexible SERS substrates in the detection of residues under various complex conditions.
Collapse
Affiliation(s)
- Jie Zhou
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| | - Huiting Wang
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| | - Yaxian Chen
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| | - Dongxue Lin
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| | - Ling Zhang
- College of Chemistry and Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Zhiqiang Xing
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| | - Qian Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| | - Jiarui Xia
- Institute of Health Sciences, China Medical University, Shenyang, 110122, China
| |
Collapse
|
19
|
Li J, Feng Y, Liang L, Liao F, Huang W, Li K, Cui G, Zuo Z. Flexible Multicavity SERS Substrate Based on Ag Nanoparticle-Decorated Aluminum Hydrous Oxide Nanoflake Array for Highly Sensitive In Situ Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35771-35780. [PMID: 38935816 DOI: 10.1021/acsami.4c05642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Flexible surface-enhanced Raman scattering (SERS) substrates are very promising to meet the needs for real-time and on-field detection in practical applications. However, high-performance flexible SERS substrates often suffer from complexity and high cost in fabrication, limiting their widespread applications. Herein, we developed a facile method to fabricate a flexible multicavity SERS substrate composed of a silver nanoparticle (AgNP)-decorated aluminum hydrous oxide nanoflake array (NFA) grown on a polydimethylsiloxane (PDMS) membrane. Strong plasmon couplings promoted by multiple nanocavities afford high-density hotspots within such a flexible AgNPs@NFA/PDMS film, boosting high SERS sensitivity with an enhancement factor (EF) of ∼1.54 × 109, and a limit of detection (LOD) of ∼7.4 × 10-13 M for rhodamine 6G (R6G) molecules. Furthermore, benefiting from the high sensitivity, high mechanical stability, and transparency of this substrate, in situ SERS detections of trace thiram and crystal violet (CV) molecules on the surface of cherry tomatoes and fish have been realized, with LODs much lower than the maximum allowable limit in food, demonstrating the great potential of such a flexible substrate in food safety monitoring. More importantly, the preparation processes are very simple and environmentally friendly, and the techniques involved are completely compatible with well-established silicon device technologies. Therefore, large-area fabrication with low cost can be readily realized, enabling the extensive applications of SERS sensors in daily life.
Collapse
Affiliation(s)
- Jiapu Li
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
| | - Yuan Feng
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
| | - Li Liang
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
| | - Feng Liao
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
| | - Wanxia Huang
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
| | - Kuanguo Li
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
| | - Guanglei Cui
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
| | - Zewen Zuo
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, 189 Jiuhua South Road, Wuhu 241003, China
| |
Collapse
|
20
|
Liu Z, Yan Y, Li J, Zhou W, Gao H, Lu R. Rapid visual dual-mode detection of Zr(IV) based on L-histidine functionalized gold nanoparticles. ANAL SCI 2024; 40:1269-1278. [PMID: 38575844 DOI: 10.1007/s44211-024-00557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
Heavy metal pollution has always been a great threat to human health and safety. Compared with other heavy metals, although zirconium ion (Zr(IV)) is equally harmful, due to the lack of research on Zr(IV) in the biological systems and environment, its detection does not seem to have received the attention it deserves. Herein, a rapid visual dual-mode detection (colorimetric and chrominance method) of Zr(IV) based on L-histidine functionalized gold nanoparticles (HIS-AuNPs) has been reported. AuNPs and HIS-AuNPs before and after adding Zr(IV) were characterized by UV-Vis, TEM, DLS, Zeta potential, EDS and FT-IR, etc. These results showed that L-histidine was successfully modified on the surface of AuNPs by forming a stable Au-N bond, and its modification had little effect on the dispersion degree of AuNPs. After the addition of Zr(IV), interaction of this metal ion with the imidazolyl group on L-histidine can obviously cause the aggregation of HIS-AuNPs within 12 min, and the dispersion state and particle size of HIS-AuNPs can be significantly changed. These two detection modes were established by means of absorbance and color change of solution, and being used in addition and recovery experiments of Zr(IV) in natural water. Under the optimal conditions, these two modes exhibited good linearity within 15-70 and 20-100 μmol L-1, and limit of detection of 2.62 and 6.25 μmol L-1. The proposed method was highly sensitive and selective, which provided a new convenient way to realize the detection of Zr(IV).
Collapse
Affiliation(s)
- Zhili Liu
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Yumei Yan
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Jing Li
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Wenfeng Zhou
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Haixiang Gao
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Runhua Lu
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China.
| |
Collapse
|
21
|
Sun M, Huang L, Wang H, Zhang Z, Niu H, Yang Z, Li H. Curvature-Insensitive Transparent Surface-Enhanced Raman Scattering Substrate Based on Large-Area Ag Nanoparticle-Coated Wrinkled Polystyrene/Polydimethylsiloxane Film for Reliable In Situ Detection. Molecules 2024; 29:2946. [PMID: 38931008 PMCID: PMC11206736 DOI: 10.3390/molecules29122946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Flexible and transparent surface-enhanced Raman scattering (SERS) substrates have attracted considerable attention for their ability to enable the direct in situ detection of analytes on curved surfaces. However, the curvature of an object can impact the signal enhancement of SERS during the measurement process. Herein, we propose a simple approach for fabricating a curvature-insensitive transparent SERS substrate by depositing silver nanoparticles (Ag NPs) onto a large-area wrinkled polystyrene/polydimethylsiloxane (Ag NP@W-PS/PDMS) bilayer film. Using rhodamine 6G (R6G) as a probe molecule, the optimized Ag NP@W-PS/PDMS film demonstrates a high analytical enhancement factor (AEF) of 4.83 × 105, excellent uniformity (RSD = 7.85%) and reproducibility (RSD = 3.09%), as well as superior mechanical flexibility. Additionally, in situ measurements of malachite green (MG) on objects with diverse curvatures, including fish, apple, and blueberry, are conducted using a portable Raman system, revealing a consistent SERS enhancement. Furthermore, a robust linear relationship (R2 ≥ 0.990) between Raman intensity and the logarithmic concentration of MG detected from these objects is achieved. These results demonstrate the tremendous potential of the developed curvature-insensitive SERS substrate as a point-of-care testing (POCT) platform for identifying analytes on irregular objects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hefu Li
- Key Laboratory of Optical Communication Science and Technology of Shandong Province, School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252000, China; (M.S.); (L.H.); (H.W.); (Z.Z.); (H.N.); (Z.Y.)
| |
Collapse
|
22
|
Liu S, Zhu Y, Zhao L, Li M, Liang D, Li M, Zhao G, Ma Y, Tu Q. Characteristic substance analysis and rapid detection of bacteria spores in cooked meat products by surface enhanced Raman scattering based on Ag@AuNP array substrate. Anal Chim Acta 2024; 1308:342616. [PMID: 38740451 DOI: 10.1016/j.aca.2024.342616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/13/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Bacterial spores are the main potential hazard in medium- and high-temperature sterilized meat products, and their germination and subsequent reproduction and metabolism can lead to food spoilage. Moreover, the spores of some species pose a health and safety threat to consumers. The rapid detection, prevention, and control of bacterial spores has always been a scientific problem and a major challenge for the medium and high-temperature meat industry. Early and sensitive identification of spores in meat products is a decisive factor in contributing to consumer health and safety. RESULTS In this study, we developed a novel and stable Ag@AuNP array substrate by using a two-step synthesis approach and a liquid-interface self-assembly method that can directly detect bacterial spores in actual meat product samples without the need for additional in vitro bacterial culture. The results indicate that the Ag@AuNP array substrate exhibits high reproducibility and Raman enhancement effects (1.35 × 105). The differentiation in the Surface enhanced Raman scattering (SERS) spectra of five bacterial spores primarily arises from proteins in the spore coat and inner membrane, peptidoglycan of cortex, and Ca2⁺-DPA within the spore core. The correct recognition rate of linear discriminant analysis for spores in the meat product matrix can reach 100 %. The average recovery accuracy of the SERS quantitative model was at around 101.77 %, and the limit of detection can reach below 10 CFU/mL. SIGNIFICANCE It provides a promising technological strategy for the characteristic substance analysis and timely monitoring of spores in meat products.
Collapse
Affiliation(s)
- Shijie Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Yaodi Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Lijun Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Miaoyun Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Dong Liang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Mengya Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Yangyang Ma
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Qiancheng Tu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| |
Collapse
|
23
|
Wang Y, Jing Y, Cao J, Sun Y, Guo K, Chen X, Li Z, Shi Q, Hu X. Application of Surface-Enhanced Raman Spectroscopy Combined with Immunoassay for the Detection of Adrenoceptor Agonists. Foods 2024; 13:1805. [PMID: 38928747 PMCID: PMC11202903 DOI: 10.3390/foods13121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Rapid, sensitive, and accurate detection of adrenoceptor agonists is a significant research topic in the fields of food safety and public health. Immunoassays are among the most widely used methods for detecting adrenoceptor agonists. In recent years, surface-enhanced Raman spectroscopy combined with immunoassay (SERS-IA) has become an effective technique for improving detection sensitivity. This review focuses on the innovation of Raman reporter molecules and substrate materials for the SERS-IA of adrenoceptor agonists. In addition, it also investigates the challenges involved in potentially applying SERS-IA in the detection of adrenoceptor agonists. Overall, this review provides insight into the design and application of SERS-IA for the detection of adrenoceptor agonists, which is critical for animal-derived food safety and public health.
Collapse
Affiliation(s)
- Yao Wang
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.J.); (J.C.); (Y.S.); (K.G.); (X.C.); (Z.L.)
| | - Yubing Jing
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.J.); (J.C.); (Y.S.); (K.G.); (X.C.); (Z.L.)
| | - Jinbo Cao
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.J.); (J.C.); (Y.S.); (K.G.); (X.C.); (Z.L.)
- Henan Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yingying Sun
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.J.); (J.C.); (Y.S.); (K.G.); (X.C.); (Z.L.)
| | - Kaitong Guo
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.J.); (J.C.); (Y.S.); (K.G.); (X.C.); (Z.L.)
- Henan Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiujin Chen
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.J.); (J.C.); (Y.S.); (K.G.); (X.C.); (Z.L.)
| | - Zhaozhou Li
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.J.); (J.C.); (Y.S.); (K.G.); (X.C.); (Z.L.)
| | - Qiaoqiao Shi
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| | - Xiaofei Hu
- Henan Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
24
|
Alotaibi AF, Rodriguez BJ, Rice JH. A nano-imprinted graphene oxide-cellulose composite as a SERS active substrate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3385-3391. [PMID: 38751361 DOI: 10.1039/d4ay00749b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Cellulose is a sustainable material capable of forming optically active nanoarrays on its surface. We created a composite of cellulose acetate (CA) and graphene oxide (GO), by mixing GO (0.1 mg mL-1) into CA. This was then imprinted with nanoscale surface features that form Bragg-like modes in resonance with the excitation laser when a thin layer of silver is vapor deposited onto the surface of the substrate. The addition of GO leads to improved surface-enhanced Raman scattering (SERS) signal strengths, obtaining an average SERS signal increase of 1.4-fold following the inclusion of GO. The combination of photonic and electromagnetic effects with charge transfer-based processes that support the SERS chemical mechanism and the possible presence of electromagnetic hot spots from the roughened surface results in an enhanced SERS signal strength when GO is added. This work shows the potential for nanoimprinted graphene oxide/cellulose acetate composites as flexible sensor platforms to detect target molecules.
Collapse
Affiliation(s)
- Aeshah F Alotaibi
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.
- Department of Physics, College of Science and Humanities, Shaqra University, Shaqra, Kingdom of Saudi Arabia
| | - Brian J Rodriguez
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - James H Rice
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
25
|
Xu S, Guo Y, Liang X, Lu H. Intelligent Rapid Detection Techniques for Low-Content Components in Fruits and Vegetables: A Comprehensive Review. Foods 2024; 13:1116. [PMID: 38611420 PMCID: PMC11012010 DOI: 10.3390/foods13071116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Fruits and vegetables are an important part of our daily diet and contain low-content components that are crucial for our health. Detecting these components accurately is of paramount significance. However, traditional detection methods face challenges such as complex sample processing, slow detection speed, and the need for highly skilled operators. These limitations fail to meet the growing demand for intelligent and rapid detection of low-content components in fruits and vegetables. In recent years, significant progress has been made in intelligent rapid detection technology, particularly in detecting high-content components in fruits and vegetables. However, the accurate detection of low-content components remains a challenge and has gained considerable attention in current research. This review paper aims to explore and analyze several intelligent rapid detection techniques that have been extensively studied for this purpose. These techniques include near-infrared spectroscopy, Raman spectroscopy, laser-induced breakdown spectroscopy, and terahertz spectroscopy, among others. This paper provides detailed reports and analyses of the application of these methods in detecting low-content components. Furthermore, it offers a prospective exploration of their future development in this field. The goal is to contribute to the enhancement and widespread adoption of technology for detecting low-content components in fruits and vegetables. It is expected that this review will serve as a valuable reference for researchers and practitioners in this area.
Collapse
Affiliation(s)
- Sai Xu
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Yinghua Guo
- College of Engineering, South China Agricultural University, Guangzhou 510642, China;
| | - Xin Liang
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- College of Engineering, South China Agricultural University, Guangzhou 510642, China;
| | - Huazhong Lu
- Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
26
|
Liu Y, Su G, Wang W, Wei H, Dang L. A novel multifunctional SERS microfluidic sensor based on ZnO/Ag nanoflower arrays for label-free ultrasensitive detection of bacteria. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2085-2092. [PMID: 38511545 DOI: 10.1039/d4ay00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
This study proposes a microfluidic platform for rapid enrichment and ultrasensitive SERS detection of bacteria. The platform comprises ZnO nanoflower arrays decorated with silver nanoparticles to enhance the SERS sensitivity. The ZnO nanoflower array substrate with a 3D reticular columnar structure is prepared using the hydrothermal method. SEM analysis depicts the 3.05 μm gap distribution of the substrate array to intercept the most bacteria in the particle sizes range of 0.5 to 3 μm. Then, silver nanoparticles are deposited on the ZnO nano-array surface by liquid evaporation self-assembly. TEM and SEM analysis indicate nanosize of Ag particles, evenly distributed on the substrate, enhancing the SERS efficiency and improving sensing reproducibility. The probe molecules (R6G) are tested to demonstrate the high SERS activity of the proposed microfluidic sensor. Then, Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, and Bacillus subtilis are selected, demonstrating the sensor's excellent bacterial capture and sensitive recognition capabilities, with a detection limit as low as 102 CFU mL-1. Additionally, the antibacterial properties of ZnO/Ag heterojunction nanostructures are studied, suggesting their ability to inactivate bacteria. Compared with the traditional Au-enhanced chip, the sensor preparation is easy, safe, reliable, and low-cost. Moreover, the ZnO nano-array exhibits a large specific surface area, high interception ability, stronger and uniform SERS performance, and effective and reliable detection of trace pathogens. This work provides potential future ZnO/Ag microfluidic SERS sensor applications for rapid, unlabeled, and trace pathogens detection in clinical and environmental applications, potentially achieving breakthroughs in early detection, prevention, and treatment.
Collapse
Affiliation(s)
- Yue Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Guanwen Su
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Wei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hongyuan Wei
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Leping Dang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
27
|
Zhao Y, Qian Y, Huang Q, Hu X, Gu W, Xing H. Colourimetric and SERS dual-mode aptasensor using Au@Ag and magnetic nanoparticles for the detection of Campylobacter jejuni. Talanta 2024; 270:125585. [PMID: 38150965 DOI: 10.1016/j.talanta.2023.125585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
A dual-mode aptasensor has been developed for the effective detection of Campylobacter jejuni (C. jejuni), a major cause of gastrointestinal disease worldwide. The aptasensor utilizes nanoparticles, specifically a core-shell structure consisting of gold and silver (Au@Ag NPs), along with magnetic nanoparticles (MNPs). When Campylobacter jejuni is introduced, "Au@Ag NPs-Aptamer-Campylobacter jejuni-Aptamer-MNPs" sandwich complexes are formed due to the high affinity of the aptamer for the bacterial surface membrane proteins. The dual-mode aptasensor can magnetically enrich the sample in just 15 min, and the presence of Campylobacter jejuni is determined by observing a color change. Additionally, the concentration of Campylobacter jejuni can be quantified using surface-enhanced Raman spectroscopy (SERS) and standard curves. This results in a wider linear range (1.8 × 101-108 CFU/mL) under optimal conditions, a lower limit of detection (6 CFU/mL), and a higher selectivity for the detection of bacteria compared to previously reported sensors. Compared with traditional microbial culture counting methods, the dual-mode aptasensor does not require Raman reporters. The physical action of magnetic enrichment, along with the application of Au@Ag NPs, improves the accuracy of the dual-mode aptasensor, offering the advantages of convenience and high sensitivity. Moreover, by utilizing different types of aptamers, this aptasensor can be modified to detect a wider range of harmful pathogens in various environments.
Collapse
Affiliation(s)
- Yongqiang Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yong Qian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Qi Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Wenchao Gu
- Shanghai Putuo District Disease Control Center, Shanghai, 200336, China.
| | - Haibo Xing
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
28
|
Zhang S, Jin K, Xu J, Xu J, Ding L, Wu L, Liu X, Du Z, Jiang S. Cotton swabs wrapped with three-dimensional silver nanoflowers as SERS substrates for the determination of food colorant carmine on irregular surfaces. Mikrochim Acta 2024; 191:222. [PMID: 38546789 DOI: 10.1007/s00604-024-06292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
A lightweight, portable, low-cost, and accessible cotton swab was employed as surface enhanced Raman spectroscopy (SERS) matrix template. The silver nanoflowers were in situ grown on the surface of cotton swabs to form three-dimensional Ag nanoflower@cotton swabs (AgNF@CS) SERS substrate with high-density and multi-level hot spots. The SERS performance of AgNFs@CS substrates with various reaction time was systematically studied. The optimal AgNF-120@CS SERS substrate exhibits superior detection sensitivity of 10-10 M for methylene blue, good signal reproducibility, high enhancement factor of 1.4 × 107, and excellent storage stability (over 30 days). Moreover, the AgNF-120@CS SERS substrate also exhibits prominent detection sensitivity of 10-8 M for food colorant of carmine. Besides, the portable AgNF-120@CS SERS substrate is also capable of detecting food colorant residues on irregular food surfaces.
Collapse
Affiliation(s)
- Sihang Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, Hainan, China.
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, China.
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou, 570314, China.
| | - Kejun Jin
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, China
| | - Jiechen Xu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, Hainan, China
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou, 570314, China
| | - Jiangtao Xu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, China
| | - Lei Ding
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Road, Liaocheng, 252000, China
| | - Long Wu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, Hainan, China
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou, 570314, China
| | - Xing Liu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, Hainan, China
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou, 570314, China
| | - Zoufei Du
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China.
| | - Shouxiang Jiang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, China.
| |
Collapse
|
29
|
Atta S, Canning AJ, Vo-Dinh T. A simple low-cost flexible plasmonic patch based on spiky gold nanostars for ultra-sensitive SERS sensing. Analyst 2024; 149:2084-2096. [PMID: 38415724 DOI: 10.1039/d3an02246c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Recently, transparent and flexible surface-enhanced Raman scattering (SERS) substrates have received great interest for direct point-of-care detection of analytes on irregular nonplanar surfaces. In this study, we proposed a simple cost-effective strategy to develop a flexible SERS patch utilizing multibranched sharp spiked gold nanostars (GNS) decorated on a commercially available adhesive Scotch Tape for achieving ultra-high SERS sensitivity. The experimental SERS measurements were correlated with theoretical finite element modeling (FEM), which indicates that the GNS having a 2.5 nm branch tip diameter (GNS-4) exhibits the strongest SERS enhancement. Using rhodamine 6G (R6G) as a model analyte, the SERS performance of the flexible SERS patch exhibited a minimum detection limit of R6G as low as 1 pM. The enhancement factor of the SERS patch with GNS-4 was calculated as 6.2 × 108, which indicates that our flexible SERS substrate has the potential to achieve ultra-high sensitivity. The reproducibility was tested with 30 different spots showing a relative standard deviation (RSD) of SERS intensity of about 5.4%, indicating good reproducibility of the SERS platform. To illustrate the usefulness of the flexible SERS sensor patch, we investigated the detection of a carcinogenic compound crystal violet (CV) on fish scales, which is often used as an effective antifungal agent in the aquaculture industry. The results realized the trace detection of CV with the minimum detection limit as low as 1 pM. We believe that our transparent, and flexible SERS patch based on GNS-4 has potential as a versatile, low-cost platform for real-world SERS sensing applications on nonplanar surfaces.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Aidan J Canning
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
30
|
Shameer M, Anand KV, Columbus S, Alawadhi H, Daoudi K, Gaidi M, Govindaraju K. Highly flexible copper tape decorated with Ag nanoarrays as ultrasensitive SERS platforms for multi-hazardous pollutant sensing. Mikrochim Acta 2024; 191:193. [PMID: 38470561 DOI: 10.1007/s00604-024-06276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
A highly flexible and cost-effective copper tape decorated with silver nanoparticles (Cu-TAg) has been developed for surface-enhanced Raman spectroscopy (SERS) sensing of multi-hazardous environmental pollutants. Highly ordered and spherical-shaped silver nanoarrays have been fabricated using a low-cost thermal evaporation method. The structural, morphological, and optical properties of Cu-TAg sensors have been studied and correlated to the corresponding SERS performances. The size of nanoparticles has been successively tuned by varying the deposition time from 5 to 25 s. The nanoparticle sizes were enhanced with an increase in the evaporation time. SERS investigations have revealed that the sensing potential is subsequently improved with an increase in deposition time up to 10 s and then deteriorates with further increase in Ag deposition. The highest SERS activity was acquired for an optimum size of ~ 37 nm; further simulation studies confirmed this observation. Moreover, Cu-TAg sensors exhibited high sensitivity, reproducibility, and recycling characteristics to be used as excellent chemo-sensors. The lower detection limit estimation revealed that it can sense even in the pico-molar range for sensing of rhodamine 6G and methylene blue. The estimated enhancement factor of the sensor is found to be 9.4 × 107. Molecular-specific sensing of a wide range of pollutants such as rhodamine 6G, alizarin red, methylene blue, butylated hydroxy anisole, and penicillin-streptomycin is demonstrated with high efficiencies for micromolar spiked samples. Copper tape functionalized with Ag arrays thus demonstrated to be a promising candidate for low-cost and reusable chemo-sensors for environmental remediation applications.
Collapse
Affiliation(s)
- Mohamed Shameer
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
- Department of Physics, Sathyabama Institute of Science & Technology, Tamil Nadu, Chennai, 600 119, India
| | - Kabali Vijai Anand
- Department of Physics, Sathyabama Institute of Science & Technology, Tamil Nadu, Chennai, 600 119, India.
| | - Soumya Columbus
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Hussain Alawadhi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
- Department of Applied Physics and Astronomy, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Kais Daoudi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
- Department of Applied Physics and Astronomy, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Mounir Gaidi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
- Department of Applied Physics and Astronomy, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Kasivelu Govindaraju
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India
| |
Collapse
|
31
|
Viriyakitpattana N, Rattanabut C, Lertvachirapaiboon C, Pimalai D, Bamrungsap S. Layer-by-Layer Biopolymer Assembly for the In Situ Fabrication of AuNP Plasmonic Paper-A SERS Substrate for Food Adulteration Detection. ACS OMEGA 2024; 9:10099-10109. [PMID: 38463332 PMCID: PMC10918676 DOI: 10.1021/acsomega.3c05966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 03/12/2024]
Abstract
Here, we introduce an environmentally friendly approach to fabricate a simple and cost-effective plasmonic paper for detecting food additives using surface-enhanced Raman spectroscopy (SERS). The plasmonic paper is fabricated by in situ growth of gold nanoparticles (AuNPs) on filter paper (FP). To facilitate this green fabrication process, we applied a double-layered coating of biopolymers, chitosan (CS) and alginate (ALG), onto the FP using a layer-by-layer (LbL) assembly through electrostatic interactions. Compared to single-layer biopolymer coatings, double-layered biopolymer-coated paper, ALG/CS/FP, significantly improves the reduction properties. Consequently, effective in situ growth of AuNPs can be achieved as seen in high density of AuNP formation on the substrate. The resulting plasmonic paper provides high SERS performance with an enhancement factor (EF) of 5.7 × 1010 and a low limit of detection (LOD) as low as 1.37 × 10-12 M 4-mercaptobenzoic acid (4-MBA). Furthermore, it exhibits spot-to-spot reproducibility with a relative standard deviation (RSD) of 8.2% for SERS analysis and long-term stability over 50 days. This paper-based SERS substrate is applied for melamine (MEL) detection with a low detection limit of 0.2 ppb, which is sufficient for monitoring MEL contamination in milk based on food regulations. Additionally, we demonstrate a simultaneous detection of β-agonists, including ractopamine (RAC) and salbutamol (SAL), exhibiting the multiplexing capability and versatility of the plasmonic paper in food contaminant analysis. The development of this simple plasmonic paper through the LbL biopolymer assembly not only paves the way for novel SERS substrate fabrication but also broadens the application of SERS technology in food contaminant monitoring.
Collapse
Affiliation(s)
- Nopparat Viriyakitpattana
- National
Nanotechnology Center, National Science
and Technology Development Agency, Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
- Thai
Packaging Centre, Thailand Institute of
Scientific and Technological Research, Phahonyothin Road, Chatuchak, Bangkok 10900, Thailand
| | - Chanoknan Rattanabut
- National
Nanotechnology Center, National Science
and Technology Development Agency, Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Chutiparn Lertvachirapaiboon
- National
Nanotechnology Center, National Science
and Technology Development Agency, Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Dechnarong Pimalai
- National
Nanotechnology Center, National Science
and Technology Development Agency, Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Suwussa Bamrungsap
- National
Nanotechnology Center, National Science
and Technology Development Agency, Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
32
|
Guo Z, Wu X, Jayan H, Yin L, Xue S, El-Seedi HR, Zou X. Recent developments and applications of surface enhanced Raman scattering spectroscopy in safety detection of fruits and vegetables. Food Chem 2024; 434:137469. [PMID: 37729780 DOI: 10.1016/j.foodchem.2023.137469] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
This article reviewed the latest research progress of Surface-enhanced Raman Spectroscopy (SERS) in the security detection of fruits and vegetables in recent years, especially in three aspects: pesticide residues, microbial toxin contamination and harmful microorganism infection. The binding mechanism and application potential of SERS detection materials (including universal type and special type) and carrier materials (namely rigid and flexible materials) were discussed. Finally, the application prospect of SERS in fruit and vegetable safety detection was explored, and the problems to be solved and development trends were put forward. The poor stability and reproducibility of SERS substrates make it difficult for practical applications. It is necessary to continuously optimize SERS substrates and develop small and portable Raman spectroscopy analyzers. In the future, SERS technology is expected to play an important role in human health, food safety and economy.
Collapse
Affiliation(s)
- Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xinchen Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Heera Jayan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Limei Yin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shanshan Xue
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
| |
Collapse
|
33
|
Lv M, Pu H, Sun DW. A durian-shaped multilayer core-shell SERS substrate for flow magnetic detection of pesticide residues on foods. Food Chem 2024; 433:137389. [PMID: 37690135 DOI: 10.1016/j.foodchem.2023.137389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
A new type of durian-shaped Fe3O4@Au@Ag@Au (DFAAA) multilayer core-shell composite was prepared as an efficient surface-enhanced Raman scattering (SERS) substrate. The optimization process and SERS enhancement mechanism of the substrate were further explained with finite-difference time-domain simulation. The dense and uniform spiny array on the DFAAA surface had abundant "hot spots", greatly improving sensitivity, uniformity and reproducibility, with a Raman enhancement factor of 3.01 × 107 and storage-life of 30 d. A "flow magnetic detection method" was proposed to realize rapid and flexible detection of pesticide residues on the surface of different foods including fish and apple. The limit of detection of malachite green and thiram on the fish and apple surfaces were 0.13 and 0.18 ng/cm2, respectively. With its high SERS performance and good magnetic, the DFAAA possessed great application prospects as a facile SERS substrate for rapid and non-destructive detection of trace pesticide residues on foods.
Collapse
Affiliation(s)
- Mingchun Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
34
|
Ye Q, Wu M, Xu Q, Zeng S, Jiang T, Xiong W, Fu S, Birowosuto MD, Gu C. Porous carbon film/WO 3-x nanosheets based SERS substrate combined with deep learning technique for molecule detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123962. [PMID: 38309005 DOI: 10.1016/j.saa.2024.123962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
The Surface-enhanced Raman scattering (SERS) is an attractive optical detecting method with high sensitivity and detectivity, however challenges on large-area signal uniformity and complex spectra analysis methods always retards its wide application. Herein, a highly sensitive and uniform SERS detection strategy supported by porous carbon film/WO3-x nanosheets (PorC/WO3-x) based noble-metal-free SERS substrate and deep learning algorithm are reported. Experimentally, the PorC/WO3-x substrate was prepared by high-temperature annealing the PorC/WO3 films under the argon atmosphere. The defect density of the WO3 was controlled by tuning the reducing reaction time during the annealing process. The SERS performance was evaluated by using R6G as the Raman reporter, it showed that the SERS intensity obtained on the substrate with the optimal annealing time of 3 h was about 8 times as high as that obtained on the PorC/WO3 substrate without annealing treatment. And detection limit of 10-7 M and Raman enhancement factor of 106 could be achieved. Moreover, the above optimal SERS substrate was utilized to detect flavonoids of quercetin, 3-hydroxyflavone and flavone, and a deep learning algorithms was incorporated to identify the quercetin. It revealed that quercetin can be accurately detected within the above flavonoids, and lowest detectable concentration of 10-5 M can be achieved.
Collapse
Affiliation(s)
- Qinli Ye
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Miaomiao Wu
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, Zhejiang, China; Ningbo Institute of Oceanography, Ningbo 315800, China
| | - Qian Xu
- Department of Nursing, The First Hospital of Ningbo University, Ningbo 315010, Zhejiang, China
| | - Shuwen Zeng
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-UMR 7004, Université de Technologie de Troyes, 10000 Troyes, France
| | - Tao Jiang
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Wei Xiong
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Songyin Fu
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Muhammad Danang Birowosuto
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
| | - Chenjie Gu
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, Zhejiang, China; Ningbo Institute of Oceanography, Ningbo 315800, China; Department of Nursing, The First Hospital of Ningbo University, Ningbo 315010, Zhejiang, China.
| |
Collapse
|
35
|
Yadav A, Yadav AK, Tarannum N, Kumar D. Paper-Based Flexible Nanoparticle Hybrid Substrate for Qualitative and Quantitative Analysis of Melamine in Powder Milk by SERS. ACS OMEGA 2024; 9:2687-2695. [PMID: 38250409 PMCID: PMC10795025 DOI: 10.1021/acsomega.3c07663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/12/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024]
Abstract
Melamine is a chemical compound that is added to dairy products to increase the apparent protein content for higher profit margins. However, extended consumption of melamine can cause health risks. The SERS technique has proven to be an important tool for detecting small compounds, such as melamine. Here, a paper-based flexible nanoparticles (NPs)-hybrid SERS substrate was designed by drop-casting pegylated gold nanoparticles (AuNPs) on the filter papers. In SERS characterization, this substrate exhibited an enhancement factor of 108 and a limit of detection (LOD) as low as 10-8 M for Rhodamine 6G dye. Furthermore, we successfully utilized these substrates to detect the melamine spiked milk sample with an LOD as low as 0.01 ppm. This hybrid SERS substrate offers a low-cost, biocompatible, and easy-to-use fabrication for large-scale production, which may be widely used in food safety applications.
Collapse
Affiliation(s)
- Akanksha Yadav
- Department
of Physics, Chaudhary Charan Singh University, Meerut 250004 India
| | - Anil K. Yadav
- Department
of Physics, Chaudhary Charan Singh University, Meerut 250004 India
| | - Nazia Tarannum
- Department
of Chemistry, Chaudhary Charan Singh University, Meerut 250004 India
| | - Dev Kumar
- Department
of Physics, Chaudhary Charan Singh University, Meerut 250004 India
| |
Collapse
|
36
|
Cheng JH, Zhang X, Ma J, Sun DW. Fluorescent polythymidine-templated copper nanoclusters aptasensor for sensitive detection of tropomyosin in processed shrimp products. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123271. [PMID: 37714106 DOI: 10.1016/j.saa.2023.123271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023]
Abstract
Tropomyosin (TM) is the main allergen in shellfish. Developing a novel, simple and accurate method to track and detect TM in food products is necessary. In this work, a label-free fluorescent aptasensor based on polythymidine (poly(T))-templated copper nanoclusters (CuNCs) was designed for sensitive detection of TM in processed shrimp products. Magnetic beads (MBs), aptamer and cDNA were used to construct an MBs-aptamer@cDNA complex as a detection probe, and with the presence of TM, the poly(T)-templated CuNCs attached at the end of the cDNA as the fluorescent signal was released from the complex to turn on the fluorescence. Under optimal conditions, the poly(T)-templated CuNCs aptasensor achieved a linear range from 0.1 to 50 μg/mL (R2 = 0.9980), a low limit of detection of 0.0489 μg/mL and an excellent recovery percentage of 105.29%-108.91% in the complex food matrix, providing a new approach for food safety assurance.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Xinxue Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
37
|
Wei Q, Pan C, Wang T, Pu H, Sun DW. A three-dimensional gold nanoparticles spherical liquid array for SERS sensitive detection of pesticide residues in apple. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123357. [PMID: 37776705 DOI: 10.1016/j.saa.2023.123357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 10/02/2023]
Abstract
High-performance plasmonic substrates have recently attracted much research attention. Herein, a three-dimensional gold nanoparticles (AuNPs) spherical liquid array (SLA) with high "hot spots" and tunable nanometer gap by optimizing the proportion of AuNPs colloids over chloroform was synthesized based on a water-oil interfacial self-assembly strategy. The substrate demonstrated excellent surface-enhanced Raman scattering (SERS) performance using tetrathiafulvalene and rhodamine 6G (R6G) as probe molecules. With a simple extraction and soaking pretreatment process, the SLA exhibited high sensitivity for analysing triazophos on apple peels, with a limit of detection (LOD) of 0.005 µg/mL and recovery ranging from 96 to 110 %. Particularly, the chloroform produced an inherent characteristic peak at 665 cm-1, which was used as the internal standard to correct SERS signal fluctuation, leading to an improvement of the corresponding coefficient R2 from 0.97 to 0.99, thus improving the reproducibility. Therefore the SLA substrate possesses the potential for quantitative analysis of food contaminants.
Collapse
Affiliation(s)
- Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Chaoying Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Tengfei Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
38
|
Barveen NR, Chinnapaiyan S, Wang TJ, Huang CH. Photochemical decoration of gold nanoparticles on MoS 2 nanoflowers grafted onto the flexible carbon cloth as a recyclable SERS sensor for the detection of antibiotic residues on curved surfaces. CHEMOSPHERE 2024; 346:140677. [PMID: 37949183 DOI: 10.1016/j.chemosphere.2023.140677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS)-based flexible substrate has recently been demonstrated to be effective in detecting molecules on curved surfaces, however a suitable method for fabricating the flexible SERS substrate still remains a hurdle. In this paper, we fabricated a flexible SERS substrate by anchoring the plasmonic gold nanoparticles (Au-NPs) onto the hydrothermally grown flower-like molybdenum disulfide (MoS2) grafted onto carbon cloth (CC) via a facile photoreduction route. Benefitting from the abundant hotspots generation of the Au-NPs and photo-induced charge-transfer ability of MoS2, the constructed Au-NPs/MoS2/CC substrate exhibit a superior SERS sensing ability, excellent SERS enhancement factor, high flexibility and mechanical stability towards the nitrofurantoin (NFT) with an ultra-low detection limit of 10-11 M. As a trial for practical applications, the flexible substrate was used to detect NFT (10-4 M) in the curved surfaces of meat samples via swab technique. The ability of the flexible Au-NPs/MoS2/CC substrate to sustain the robust Raman signals of NFT even after recycling up to 4 cycles validated its reusability. The proposed flexible SERS substrate with reusable capability indicates its great potential in practical applications for the detection of target molecules on the curved surfaces.
Collapse
Affiliation(s)
- Nazar Riswana Barveen
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Sathishkumar Chinnapaiyan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan; Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| |
Collapse
|
39
|
Sun M, Zhang H, Li H, Hao X, Wang C, Li L, Yang Z, Tian C. Ag microlabyrinth/nanoparticles coated large-area thin PDMS films as flexible and transparent SERS substrates for in situ detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123153. [PMID: 37473663 DOI: 10.1016/j.saa.2023.123153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Flexible and transparent surface-enhanced Raman scattering (SERS) substrates haveattractedmuchattention as a fast, sensitive and in situ detection platform for practical applications. However, the large-area fabrication of flexible and transparent SERS substrates with high performance is still challenging. Here, a flexible and transparent SERS substrate based on large-area thin PDMS film decorated with Ag microlabyrinth/nanoparticles hierarchical structures (denoted as ALNHS@PDMS) is fabricated by using the floating-on-water method and magnetron sputtering technology. By optimizing the sputtering time, the ALNHS with multiple hot spots are uniformly distributed on the PDMS surface. Based on characterizing the rhodamine 6G (R6G) with a portable Raman spectrometer, the optimal ALNHS@PDMS film exhibits a high enhancement factor (5.2 × 106), excellent uniformity and reproducibility, as well as superior mechanical stability. In addition, thanks to the good sticky feature and bi-directional activation property of the thin ALNHS@PDMS film, the prepared flexible and transparent SERS substrate can achieve in situ detection of malachite green residues (10-6 M) on apple and tomato skins. This large-area, thin, mechanically robust, flexible and transparent ALNHS@PDMS film, integrated with a portable Raman spectrometer, shows great potential for point-of-care testing (POCT)in practical applications.
Collapse
Affiliation(s)
- Meng Sun
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China
| | - Houjia Zhang
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China
| | - Hefu Li
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China
| | - Xuehui Hao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Changzheng Wang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Lijun Li
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China
| | - Zhenshan Yang
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China
| | - Cunwei Tian
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
40
|
Cao Y, Sun Y, Yu RJ, Long YT. Paper-based substrates for surface-enhanced Raman spectroscopy sensing. Mikrochim Acta 2023; 191:8. [PMID: 38052768 DOI: 10.1007/s00604-023-06086-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/04/2023] [Indexed: 12/07/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has been recognized as one of the most sensitive analytical methods by adsorbing the target of interest onto a plasmonic surface. Growing attention has been directed towards the fabrication of various substrates to broaden SERS applications. Among these, flexible SERS substrates, particularly paper-based ones, have gained popularity due to their easy-to-use features by full contact with the sample surface. Herein, we reviewed the latest advancements in flexible SERS substrates, with a focus on paper-based substrates. Firstly, it begins by introducing various methods for preparing paper-based substrates and highlights their advantages through several illustrative examples. Subsequently, we demonstrated the booming applications of these paper-based SERS substrates in abiotic and biological matrix detection, with particular emphasis on their potential application in clinical diagnosis. Finally, the prospects and challenges of paper-based SERS substrates in broader applications are discussed.
Collapse
Affiliation(s)
- Yue Cao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| | - Yang Sun
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Ru-Jia Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China.
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
41
|
Wu Z, Sun DW, Pu H. CRISPR/Cas12a and G-quadruplex DNAzyme-driven multimodal biosensor for visual detection of Aflatoxin B1. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123121. [PMID: 37579713 DOI: 10.1016/j.saa.2023.123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 08/16/2023]
Abstract
Aflatoxin B1 (AFB1) contamination severely threatens human and animal health, it is thus critical to construct a strategy for its rapid, accurate, and visual detection. Herein, a multimodal biosensor was proposed based on CRISPR/Cas12a cleaved G-quadruplex (G4) for AFB1 detection. Briefly, specific binding of AFB1 to the aptamer occupied the binding site of the complementary DNA (cDNA), and cDNA then activated Cas12a to cleave G4 into fragments. Meanwhile, the intact G4-DNAzyme could catalyze 3, 3', 5, 5'-tetramethylbenzidine (TMB) to form colourimetric/SERS/fluorescent signal-enhanced TMBox, and the yellow solution produced by TMBox under acidic conditions could be integrated with a smartphone application for visual detection. The colourimetric/SERS/fluorescent biosensor yielded detection limits of 0.85, 0.79, and 1.65 pg·mL-1, respectively, and was applied for detecting AFB1 in peanut, maize, and badam samples. The method is suitable for visual detection in naturally contaminated peanut samples and has prospective applications in the food industry.
Collapse
Affiliation(s)
- Zhihui Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
42
|
Tan L, Lou Y, Zhu JJ. High-performance SERS chips for sensitive identification and detection of antibiotic residues with self-assembled hollow Ag octahedra. Chem Commun (Camb) 2023; 59:14443-14446. [PMID: 37982297 DOI: 10.1039/d3cc05297d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
High-performance SERS chips via self-assembled hollow Ag octahedra on PDMS were employed to achieve the sensitive identification and detection of antibiotic residues. The developed SERS chips were successfully applied in the detection of ciprofloxacin (CIP), amoxicillin (AMX) and cefazolin (CZL) in wastewater and tap water samples, as well as enrofloxacin (ENR) in milk, demonstrating the sensitive determination of antibiotics in the real environment. From this perspective, these SERS chips are expected to expand the on spot sensitive detection and identification field of antibiotic residues.
Collapse
Affiliation(s)
- Lu Tan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China.
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| |
Collapse
|
43
|
Akgönüllü S, Denizli A. Plasmonic nanosensors for pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2023; 236:115671. [PMID: 37659267 DOI: 10.1016/j.jpba.2023.115671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
The detection and identification of clinical biomarkers with related sensitivity have become a source of considerable concern for biomedical analysis. There have been increasing efforts toward the development of single-molecule analytical platforms to overcome this concern. The latest developments in plasmonic nanomaterials include fascinating advances in energy, catalyst chemistry, optics, biotechnology, and medicine. Nanomaterials can be successfully applied to biomolecule and drug detection in plasmonic nanosensors for pharmaceutical and biomedical analysis. Plasmonic-based sensing technology exhibits high sensitivity and selectivity depending on surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) phenomena. In this critical paper, we offer an overview of the methodology of the SPR, LSPR, surface-enhanced Raman scattering (SERS), surface-enhanced infrared absorption (SEIRA), surface-enhanced fluorescence (SEF), and plasmonic nanoplatforms advanced for pharmaceutical and biomedical applications. First of all, we present here a brief discussion of the above trends. We have devoted the last section to the explanation of SPR, LSPR, SERS, SEIRA, and SEF platforms, which have found a wide range of applications, and reviewed recent advances for biomedical and pharmaceutical analysis.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Hacettepe University, Department of Chemistry, Ankara, Turkey
| | - Adil Denizli
- Hacettepe University, Department of Chemistry, Ankara, Turkey.
| |
Collapse
|
44
|
Zhu Y, Tian J, Li M, Zhao L, Shi J, Liu W, Liu S, Liang D, Zhao G, Xu L, Yang S. Construction of Graphene@Ag-MLF composite structure SERS platform and its differentiating performance for different foodborne bacterial spores. Mikrochim Acta 2023; 190:472. [PMID: 37987841 DOI: 10.1007/s00604-023-06031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/03/2023] [Indexed: 11/22/2023]
Abstract
A new surface-enhanced Raman spectroscopy (SERS) biosensor of Graphene@Ag-MLF composite structure has been fabricated by loading AgNPs on graphene films. The response of the biosensor is based on plasmonic sensing. The results showed that the enhancement factor of three different spores reached 107 based on the Graphene@Ag-MLF substrate. In addition, the SERS performance was stable, with good reproducibility (RSD<3%). Multivariate statistical analysis and chemometrics were used to distinguish different spores. The accumulated variance contribution rate was up to 96.35% for the top three PCs, while HCA results revealed that the spectra were differentiated completely. Based on optimal principal components, chemometrics of KNN and LS-SVM were applied to construct a model for rapid qualitative identification of different spores, of which the prediction set and training set of LS-SVM achieved 100%. Finally, based on the Graphene@Ag-MLF substrate, the LOD of three different spores was lower than 102 CFU/mL. Hence, this novel Graphene@Ag-MLF SERS substrate sensor was rapid, sensitive, and stable in detecting spores, providing strong technical support for the application of SERS technology in food safety.
Collapse
Affiliation(s)
- Yaodi Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- Henan Jiuyuquan Food Co., Ltd. Postdoctoral innovation base, Yuanyang county, Jiuquan, Henan province, 45300, People's Republic of China
| | - Jiaqi Tian
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Miaoyun Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.
- International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.
| | - Lijun Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212000, People's Republic of China
| | - Weijia Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Shijie Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Dong Liang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- Henan Jiuyuquan Food Co., Ltd. Postdoctoral innovation base, Yuanyang county, Jiuquan, Henan province, 45300, People's Republic of China
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Lina Xu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Meat Processing and Safety in Henan province, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Shufeng Yang
- Henan Jiuyuquan Food Co., Ltd. Postdoctoral innovation base, Yuanyang county, Jiuquan, Henan province, 45300, People's Republic of China
| |
Collapse
|
45
|
Peng R, Zhang T, Yan S, Song Y, Liu X, Wang J. Recent Development and Applications of Stretchable SERS Substrates. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2968. [PMID: 37999322 PMCID: PMC10675327 DOI: 10.3390/nano13222968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a cutting-edge technique for highly sensitive analysis of chemicals and molecules. Traditional SERS-active nanostructures are constructed on rigid substrates where the nanogaps providing hot-spots of Raman signals are fixed, and sample loading is unsatisfactory due to the unconformable attachment of substrates on irregular sample surfaces. A flexible SERS substrate enables conformable sample loading and, thus, highly sensitive Raman detection but still with limited detection capabilities. Stretchable SERS substrates with flexible sample loading structures and controllable hot-spot size provide a new strategy for improving the sample loading efficiency and SERS detection sensitivity. This review summarizes and discusses recent development and applications of the newly conceptual stretchable SERS substrates. A roadmap of the development of SERS substrates is reviewed, and fabrication techniques of stretchable SERS substrates are summarized, followed by an exhibition of the applications of these stretchable SERS substrates. Finally, challenges and perspectives of the stretchable SERS substrates are presented. This review provides an overview of the development of SERS substrates and sheds light on the design, fabrication, and application of stretchable SERS systems.
Collapse
Affiliation(s)
- Ran Peng
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Tingting Zhang
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yongxin Song
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Junsheng Wang
- Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
46
|
Malik U, Hubesch R, Koley P, Mazur M, Mehla S, Butti SK, Brandt M, Selvakannan PR, Bhargava S. Surface functionalized 3D printed metal structures as next generation recyclable SERS substrates. Chem Commun (Camb) 2023; 59:13406-13420. [PMID: 37850470 DOI: 10.1039/d3cc04154a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Combining the design flexibility and rapid prototyping capabilities of additive manufacturing with photocatalytic and plasmonic functionalities is promising for the development of next-generation SERS applications such as point of care diagnostics and in situ monitoring of chemical reactions in fuels and chemical processing. Laser powder bed fusion (LPBF) is a well-matured additive manufacturing technique which generates metallic structures through localised melting and joining of metal powders using a laser. LPBF reduces material wastage during manufacturing, is applicable to a wide range of metals and alloys, and allows printing of complex internal structures. This feature article elaborates the use of soot templating, chemical vapour deposition and electroless plating techniques for grafting plasmonic and semiconductor nanoparticles on the surface of LPBF manufactured metallic substrates. The capability to fabricate different types of intricate metallic lattices using additive manufacturing is demonstrated and technical challenges in their adequate functionalization are elaborated. The developed methodology allows tailoring of the substrate structure, composition, morphology, plasmonic and photocatalytic activities and thus unveils a new class of recyclable SERS substrates.
Collapse
Affiliation(s)
- Uzma Malik
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, 3001 Victoria, Australia.
| | - Roxanne Hubesch
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, 3001 Victoria, Australia.
| | - Paramita Koley
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, 3001 Victoria, Australia.
| | - Maciej Mazur
- Centre for Additive Manufacturing, School of Engineering, RMIT University, 3001 Victoria, Australia
| | - Sunil Mehla
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, 3001 Victoria, Australia.
| | - Sai Kishore Butti
- Chemical Engineering and Process Technology Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Milan Brandt
- Centre for Additive Manufacturing, School of Engineering, RMIT University, 3001 Victoria, Australia
| | - P R Selvakannan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, 3001 Victoria, Australia.
| | - Suresh Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, 3001 Victoria, Australia.
| |
Collapse
|
47
|
Wang Y, Wang Z, Chen C, Liu J, Lu J, Lu N. Fabrication of Flexible Pyramid Array as SERS Substrate for Direct Sampling and Reproducible Detection. Anal Chem 2023; 95:14184-14191. [PMID: 37721016 DOI: 10.1021/acs.analchem.3c01455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Rapid extraction and analysis of target molecules from irregular surfaces are in high demand in the field of on-site analysis. Herein, a flexible platform used for surface-enhanced Raman scattering (SERS) based on an ordered polymer pyramid structure with half-imbedded silver nanoparticles (AgNPs) was prepared to address this issue. The fabrication includes the following steps: (1) creating inverted pyramid arrays in silicon substrate, (2) preparing a layer of AgNPs on the surface of the inverted pyramids, and (3) obtaining a substrate with an ordered polymer pyramids array with half-imbedded AgNPs by the molding method. This flexible substrate is capable of rapid extraction via a simple and convenient "paste and peel off" method. In addition, the substrate exhibits great repeatability and good sensitivity thanks to the uniformity and larger surface area of the ordered pyramids. The density of "hot spots" (local electromagnetic field with high intensity) is increased on the structured surface. Semi-imbedding silver particles in the polymer pyramids makes "hot spots" robust on the substrate. In addition, the preprepared silicon template with the inverted pyramids can be reused, which greatly reduces the production cost. With this substrate, we successfully analyzed thiram molecules on the epidermis of apples, cucumbers, and oranges, and the detection limits are 2.4, 3, and 3 ng/cm2, respectively. These results demonstrate the great potential of the substrate for in situ analysis, which can provide reference for the design of ideal SERS substrates.
Collapse
Affiliation(s)
- Yalei Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Zhongshun Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Chunning Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Jiaqi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Jiaxin Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Nan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
48
|
Pham AT, Bui HN, Mai QD, Le AT. Flexible, high-performance and facile PVA/cellulose/Ag SERS chips for in-situ and rapid detection of thiram pesticide in apple juice. Heliyon 2023; 9:e19926. [PMID: 37809786 PMCID: PMC10559351 DOI: 10.1016/j.heliyon.2023.e19926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Flexible surface-enhanced Raman scattering (SERS) sensors have gained significant attention for their practical applications in detecting chemical and biological molecules. However, the fabrication of flexible SERS chips is often complex and requires advanced techniques. In this study, we present a simple and rapid method to design a flexible SERS chip based on polyvinyl alcohol (PVA), cellulose, and silver nanoparticles (AgNPs) using mechanical stirring and drying methods. Benefiting from the abundant hydroxide groups on cellulose, AgNPs easily adhere and distribute evenly on the cellulose surface. The combination of PVA and cellulose forms a bendable film-like SERS chip. This chip allows convenient immersion in liquid analyte samples. We demonstrate its effectiveness by using it to detect the thiram pesticide in apple juice using the "dip and dry" method, achieving an outstanding detection limit of 1.01 × 10-8 M. The Raman signals on the SERS chips exhibit high repeatability and reproducibility, with relative standard deviation values below 10%. These findings show that the flexible PVA/cellulose/Ag SERS chips is a strong candidate for real-world analysis.
Collapse
Affiliation(s)
- Anh-Tuan Pham
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi, 12116, Viet Nam
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi, 12116, Viet Nam
| | - Hanh Nhung Bui
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi, 12116, Viet Nam
| | - Quan-Doan Mai
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Viet Nam
| | - Anh-Tuan Le
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi, 12116, Viet Nam
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Viet Nam
| |
Collapse
|
49
|
Li C, Zhang Y, Ye Z, Bell SEJ, Xu Y. Combining surface-accessible Ag and Au colloidal nanomaterials with SERS for in situ analysis of molecule-metal interactions in complex solution environments. Nat Protoc 2023; 18:2717-2744. [PMID: 37495750 DOI: 10.1038/s41596-023-00851-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/03/2023] [Indexed: 07/28/2023]
Abstract
The interactions between molecules and noble metal nanosurfaces play a central role in many areas of nanotechnology. The surface chemistry of noble metal surfaces under ideal, clean conditions has been extensively studied; however, clean conditions are seldom met in real-world applications. We developed a sensitive and robust characterization technique for probing the surface chemistry of nanomaterials in the complex environments that are directly relevant to their applications. Surface-enhanced Raman spectroscopy (SERS) can be used to probe the interaction of plasmonic nanoparticles with light to enhance the Raman signals of molecules near the surface of nanoparticles. Here, we explain how to couple SERS with surface-accessible plasmonic-enhancing substrates, which are capped with weakly adsorbing capping ligands such as citrate and chloride ions, to allow molecule-metal interactions to be probed in situ and in real time, thus providing information on the surface orientation and the formation and breaking of chemical bonds. The procedure covers the synthesis and characterization of surface-accessible colloids, the preliminary SERS screening with agglomerated colloids, the synthesis and characterization of interfacial nanoparticle assemblies, termed metal liquid-like films, and the in situ biphasic SERS analysis with metal liquid-like films. The applications of the approach are illustrated using two examples: the probing of π-metal interactions and that of target/ligand-particle interactions on hollow bimetallic nanostars. This protocol, from the initial synthesis of the surface-accessible plasmonic nanoparticles to the final in situ biphasic SERS analysis, requires ~14 h and is ideally suited to users with basic knowledge in performing Raman spectroscopy and wet synthesis of metal nanoparticles.
Collapse
Affiliation(s)
- Chunchun Li
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
- Institute of Photochemistry and Photofunctional Materials, University of Shanghai for Science and Technology, Shanghai, China
| | - Yingrui Zhang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
| | - Ziwei Ye
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, China
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK.
| | - Yikai Xu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK.
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, China.
| |
Collapse
|
50
|
Qiu M, Tang L, Wang J, Xu Q, Zheng S, Weng S. SERS with Flexible β-CD@AuNP/PTFE Substrates for In Situ Detection and Identification of PAH Residues on Fruit and Vegetable Surfaces Combined with Lightweight Network. Foods 2023; 12:3096. [PMID: 37628095 PMCID: PMC10453087 DOI: 10.3390/foods12163096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The detection of polycyclic aromatic hydrocarbons (PAHs) on fruit and vegetable surfaces is important for protecting human health and ensuring food safety. In this study, a method for the in situ detection and identification of PAH residues on fruit and vegetable surfaces was developed using surface-enhanced Raman spectroscopy (SERS) based on a flexible substrate and lightweight deep learning network. The flexible SERS substrate was fabricated by assembling β-cyclodextrin-modified gold nanoparticles (β-CD@AuNPs) on polytetrafluoroethylene (PTFE) film coated with perfluorinated liquid (β-CD@AuNP/PTFE). The concentrations of benzo(a)pyrene (BaP), naphthalene (Nap), and pyrene (Pyr) residues on fruit and vegetable surfaces could be detected at 0.25, 0.5, and 0.25 μg/cm2, respectively, and all the relative standard deviations (RSD) were less than 10%, indicating that the β-CD@AuNP/PTFE exhibited high sensitivity and stability. The lightweight network was then used to construct a classification model for identifying various PAH residues. ShuffleNet obtained the best results with accuracies of 100%, 96.61%, and 97.63% for the training, validation, and prediction datasets, respectively. The proposed method realised the in situ detection and identification of various PAH residues on fruit and vegetables with simplicity, celerity, and sensitivity, demonstrating great potential for the rapid, nondestructive analysis of surface contaminant residues in the food-safety field.
Collapse
Affiliation(s)
- Mengqing Qiu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.Q.); (Q.X.)
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Le Tang
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230601, China; (L.T.); (J.W.)
| | - Jinghong Wang
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230601, China; (L.T.); (J.W.)
| | - Qingshan Xu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.Q.); (Q.X.)
| | - Shouguo Zheng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.Q.); (Q.X.)
- Anhui Institute of Innovation for Industrial Technology, Hefei 230088, China
| | - Shizhuang Weng
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230601, China; (L.T.); (J.W.)
| |
Collapse
|