1
|
Yuan H, Wang Q, Tan J, Wu J, Liang C, Wang Y, Deng T, Hu Z, Liu C, Ye X, Wu Q, Wu X, Zheng X, Sun W, Fan Y, Jiang L, Peng L, Zou L, Huang J, Wan Y. Ionic titanium is expected to improve the nutritional quality of Tartary buckwheat sprouts through flavonoids and amino acid metabolism. Food Chem 2024; 461:140907. [PMID: 39173266 DOI: 10.1016/j.foodchem.2024.140907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Tartary buckwheat sprouts are highly valued by consumers for their superior nutritional content. Ionic titanium (Ti) has been shown to enhance crop growth and improve nutritional quality. However, there is limited research on the impact of ionic Ti on the nutritional quality of Tartary buckwheat sprouts. This study cultivated Tartary buckwheat sprouts with ionic Ti and found that the high concentration of ionic Ti significantly increased the contents of chlorophyll a, chlorophyll b, and carotenoids (increased by 25.5%, 27.57%, and 15.11%, respectively). The lower concentration of ionic Ti has a higher accumulation of total flavonoids and total polyphenols. Metabolomics analysis by LC-MS revealed 589 differentially expressed metabolites and 54 significantly different metabolites, enriching 82 metabolic pathways, especially including amino acid biosynthesis and flavonoid biosynthesis. This study shows that ionic Ti can promote the growth of Tartary buckwheat sprouts, improve nutritional quality, and have huge development potential in food production.
Collapse
Affiliation(s)
- Hang Yuan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Qiang Wang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China; Agronomy College, Jilin Agricultural University, Changchun 130118, Jilin, PR China; Baicheng Academy of Agricultural Sciences, No. 17, Sanhe Road, Taobei District, Baicheng 137000, Jilin, PR China
| | - Jianxin Tan
- Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, Tibet, PR China
| | - Jingyu Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Chenggang Liang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, PR China
| | - Yan Wang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, PR China
| | - Tingting Deng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Zhiming Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China; Sichuan Institute of Food Inspection, Chengdu 610097, Sichuan, PR China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Xiaoqin Zheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Wenjun Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Liangzhen Jiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Jingwei Huang
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China.
| |
Collapse
|
2
|
Zhang T, Zhang C, Li X, Ren D, Zheng M, Zhang S, Yuan F, Du X, Zhang Z. Inflammation assessment and therapeutic monitoring based on highly sensitive and multi-level electrochemical detection of PGE2. Biosens Bioelectron 2024; 262:116539. [PMID: 38950517 DOI: 10.1016/j.bios.2024.116539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Prostaglandin E2 (PGE2), an eicosane, regulates the physiological activity of inflammatory cells and represents a potential therapeutic target for facilitating tissue repair in vivo. In our work, an electrochemical immunosensor employing Ketjen black-Au nanoparticles (KB-Au) and poly tannic acid nanospheres conjugated with anti-PGE2 polyclonal antibody (PTAN-Ab) was designed to ultra-sensitively analyze PGE2 levels secreted by living cells and tissues. Antibody assembly strategies were explored to achieve signal amplification. Moreover, we studied the therapy effects of docosahexaenoic acid (DHA), arachidonic acid (AA), hyaluronic acid (HA), and small molecule 15-hydroxyprostaglandin dehydrogenase inhibitor (SW033291) on inflammation and evaluated the protective functions of HA and SW033291 in a murine model subjected to colitis induced by dextran sulfate sodium (DSS) using the developed sensor. The sensor exhibited a linear range of 10-5-106 fg/mL and a detection limit (LOD) of 10-5 fg/mL. Fetal bovine serum (FBS) samples were used to achieve high recovery of target analytes. This study not only presents an effective strategy for ultra-sensitively monitoring PGE2 but also provides valuable insights into assessing the degree of inflammation and the therapeutic effect of related drugs. Research on human health monitoring and regenerative medicine could greatly benefit from the findings.
Collapse
Affiliation(s)
- Tingting Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Congcong Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xue Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Dongfang Ren
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Mingshuang Zheng
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Shuo Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Fangping Yuan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xin Du
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.
| | - Zhenguo Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.
| |
Collapse
|
3
|
Song Y, Long C, Wang Y, An Y, Lu Y. Advancements in multi-omics for nutraceutical enhancement and traits improvement in buckwheat. Crit Rev Biotechnol 2024:1-26. [PMID: 39160127 DOI: 10.1080/07388551.2024.2373282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 05/31/2024] [Indexed: 08/21/2024]
Abstract
Buckwheat (Fagopyrum spp.) is a typical pseudocereal, valued for its extensive nutraceutical potential as well as its centuries-old cultivation. Tartary buckwheat and common buckwheat have been used globally and become well-known nutritious foods due to their high quantities of: proteins, flavonoids, and minerals. Moreover, its increasing demand makes it critical to improve nutraceutical, traits and yield. In this review, bioactive compounds accumulated in buckwheat were comprehensively evaluated according to their chemical structure, properties, and physiological function. Biosynthetic pathways of flavonoids, phenolic acids, and fagopyrin were methodically summarized, with the regulation of flavonoid biosynthesis. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these certain compounds are being synthesized in buckwheat still remains uncovered. The functional genes involved in the biosynthesis of flavonols, stress response, and plant development were identified based on multi-omics research. Furthermore, it delves into the applications of multi-omics in improving buckwheat's agronomic traits, including: yield, nutritional content, stress resilience, and bioactive compounds biosynthesis. While pangenomics combined with other omics to mine elite genes, the regulatory network and mechanism of specific agronomic traits and biosynthetic of bioactive components, and developing a more efficient genetic transformation system for genetic engineering require further investigation for the execution of breeding designs aimed at enhancing desirable traits in buckwheat. This critical review will provide a comprehensive understanding of multi-omics for nutraceutical enhancement and traits improvement in buckwheat.
Collapse
Affiliation(s)
- Yingjie Song
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, P.R. China
| | - Chunlin Long
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuxing An
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, P.R. China
| | - Yinglin Lu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, P.R. China
| |
Collapse
|
4
|
Kurćubić VS, Stajić SB, Jakovljević V, Živković V, Stanišić N, Mašković PZ, Matejić V, Kurćubić LV. Contemporary Speculations and Insightful Thoughts on Buckwheat-A Functional Pseudocereal as a Smart Biologically Active Supplement. Foods 2024; 13:2491. [PMID: 39200418 PMCID: PMC11353853 DOI: 10.3390/foods13162491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Today, food scientists are interested in more rational use of crops that possess desirable nutritional properties, and buckwheat is one of the functional pseudocereals that represents a rich source of bioactive compounds (BACs) and nutrients, phytochemicals, antimicrobial (AM) agents and antioxidants (AOs), which can be effectively applied in the prevention of malnutrition and celiac disease and treatment of various important health problems. There is ample evidence of the high potential of buckwheat consumption in various forms (food, dietary supplements, home remedies or alone, or in synergy with pharmaceutical drugs) with concrete benefits for human health. Contamination as well as other side-effects of all the aforementioned forms for application in different ways in humans must be seriously considered. This review paper presents an overview of the most important recent research related to buckwheat bioactive compounds (BACs), highlighting their various functions and proven positive effects on human health.
Collapse
Affiliation(s)
- Vladimir S. Kurćubić
- Department of Food Technology, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32102 Čačak, Serbia
| | - Slaviša B. Stajić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Vladimir Jakovljević
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (V.J.); (V.Ž.)
- Department of Human Pathology, Sechenov First Moscow State Medical University, 8 Trubetskaya St., 119991 Moscow, Russia
| | - Vladimir Živković
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (V.J.); (V.Ž.)
- Department of Human Pathology, Sechenov First Moscow State Medical University, 8 Trubetskaya St., 119991 Moscow, Russia
| | - Nikola Stanišić
- Institute for Animal Husbandry, Belgrade-Zemun, Highway to Zagreb 16, 11000 Belgrade, Serbia;
| | - Pavle Z. Mašković
- Department of Chemistry and Chemical Engineering, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia;
| | - Vesna Matejić
- Department of Chemistry and Chemical Engineering, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia;
| | - Luka V. Kurćubić
- Department of Medical Microbiology, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia;
| |
Collapse
|
5
|
Caminhas LD, Freitas Pereira de Souza G, Rath S. Assessment of tropane alkaloid levels in Brazilian buckwheat flour products: A novel LC-UHPLC-MS/MS approach using solid-liquid extraction at low temperature. Food Chem 2024; 438:138010. [PMID: 37983999 DOI: 10.1016/j.foodchem.2023.138010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
In recent years, the monitoring of tropane alkaloids, specifically hyoscyamine and scopolamine, in food has become a pressing concern. This is due to increasing reports of food contamination with these compounds worldwide, raising awareness about the potential risks associated with their consumption. A novel method is proposed here for the determination of the sum of (+)-hyoscyamine, (-)-hyoscyamine, and (-)-scopolamine in buckwheat-based matrices, using solid-liquid extraction at low temperature and quantification by bidimensional chromatography coupled to tandem mass spectrometry. The validated method presented a linear response in the concentration range of 2.5-15 μg kg-1 (r > 0.99). The precision and accuracy were in the ranges from 0.8 to 11.0 % and from 96 to 103 %, respectively. The limit of quantification (LOQ) was 2.5 μg kg-1. No contamination was found at levels above the LOQ in any of the 18 samples analyzed (buckwheat flour, grains, and gluten-free mix).
Collapse
Affiliation(s)
- Larissa D Caminhas
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Rua Monteiro Lobato, 270, Cidade Universitária, Campinas, SP 13083-862, Brazil
| | - Gabriela Freitas Pereira de Souza
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Rua Monteiro Lobato, 270, Cidade Universitária, Campinas, SP 13083-862, Brazil
| | - Susanne Rath
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Rua Monteiro Lobato, 270, Cidade Universitária, Campinas, SP 13083-862, Brazil.
| |
Collapse
|
6
|
Borgonovi SM, Iametti S, Speranza AR, Di Nunzio M. Cell culture models for assessing the effects of bioactive compounds in common buckwheat ( Fagopyrum esculentum): a systematic review. Food Funct 2024; 15:2799-2813. [PMID: 38390666 DOI: 10.1039/d4fo00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Common buckwheat (CBW) is grown and consumed worldwide. In addition to its already established reputation as an excellent source of nutrients, CBW is gaining popularity as a possible component of functional foods. Whereas human studies remain the gold standard for evaluating the relationship between nutrition and health, the development of reliable in vitro or ex vivo models has made it possible to investigate the cellular and molecular mechanisms of CBW effects on human health. Herein is a systematic review of studies on the biological effect of CBW supplementation, as assessed on various types of cellular models. Although the studies reported here have been conducted in very different experimental conditions, the overall effects of CBW supplementation were found to involve a decrease in cytokine secretion and oxidation products, related mainly to CBW polyphenols and protein or peptide fractions. These chemical species also appeared to be involved in the modulation of cell signaling and hormone secretion. Although further studies are undoubtedly necessary, as is their extension to in vivo systems, these reports suggest that CBW-based foods could be relevant to maintaining and/or improving human health and the quality of life.
Collapse
Affiliation(s)
- Sara Margherita Borgonovi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy.
| | - Stefania Iametti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy.
| | - Anna Ramona Speranza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy.
| | - Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
7
|
Hua XY, Sim SYJ, Henry CJ, Chiang JH. The extraction of buckwheat protein and its interaction with kappa-carrageenan: Textural, rheological, microstructural, and chemical properties. Int J Biol Macromol 2024; 260:129427. [PMID: 38219932 DOI: 10.1016/j.ijbiomac.2024.129427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/09/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Current plant-based foods use plant proteins as a key structuring and texturing ingredient. The use of water for extraction can replace conventional protein extraction methods. Water extraction of protein is environmentally friendly and could prevent the loss of protein functionality due to extreme pH changes. This study demonstrates an aqueous extraction method, coupled with ultrasound as pre-treatment, to obtain buckwheat protein (BWPE) and assess its gelling property and composited gel with kappa-carrageenan (k-carr). Textural and rheological analyses showed that the hardness and storage modulus of the composited gel containing 1 % w/w BWPE and 1 % w/w k-carr was 4.2-fold and 100-fold, respectively, higher than k-carr gel at 1 % w/w. Light microscopy showed a mixed bi-continuous gel system, with k-carr reinforcing the protein gel network. Besides volume exclusion effects, chemical bond and FTIR analyses revealed that adding k-carr to BWPE altered the protein's secondary structure and mediated protein denaturation during heating. This results in greater β-sheet content, which creates a more organised gel structure. These results demonstrated that ultrasound-assisted water-extracted BWPE, together with varying concentrations of k-carr, can be used to develop composited gels of tailorable textural and rheological properties to suit different food applications.
Collapse
Affiliation(s)
- Xin Yi Hua
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), 138669, Singapore
| | - Shaun Yong Jie Sim
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), 138669, Singapore.
| | - Christiani Jeyakumar Henry
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), 138669, Singapore
| | - Jie Hong Chiang
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), 138669, Singapore.
| |
Collapse
|
8
|
Zhang Z, Bai Y, Qiao J, Liang Y, Zhou J, Guo S, Zhao C, Xing B, Qin P, Zhang L, Ren G. Effect of high moisture extrusion on the structure and physicochemical properties of Tartary buckwheat protein and its in vitro digestion. Food Res Int 2024; 180:114065. [PMID: 38395582 DOI: 10.1016/j.foodres.2024.114065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Tartary buckwheat is rich in nutrients and its protein supports numerous biological functions. However, the digestibility of Tartary buckwheat protein (TBP) poses a significant limitation owing to its inherent structure. This study aimed to assess the impact of high moisture extrusion (HME, 60 % moisture content) on the structural and physicochemical attributes, as well as the in vitro digestibility of TBP. Our results indicated that TBP exhibited unfolded and amorphous microstructures after HME. The protein molecular weight of TBP decreased after HME, and a greater degradation was observed at 70 °C than 100 °C. In particular, HME at 70 °C caused an almost complete disappearance of bands near 35 kDa compared with HME at 100 °C. In addition, compared with native TBP (NTBP, 44.53 µmol/g protein), TBP subjected to HME at 70 °C showed a lower disulfide bond (SS) content (42.67 µmol/g protein), whereas TBP subjected to HME at 100 °C demonstrated a higher SS content (45.70 µmol/g protein). These changes endowed TBP with good solubility (from 55.96 % to 83.31 % at pH 7), foaming ability (20.00 %-28.57 %), and surface hydrophobicity (8.34-23.07). Furthermore, the emulsifying activity (EA) and in vitro digestibility are closely related to SS content. Notably, extruded TBP (ETBP) obtained at 70 °C exhibited higher EA and digestibility than NTBP, whereas ETBP obtained at 100 °C showed the opposite trend. Consequently, HME (especially at 70 °C) demonstrated significant potential as a processing technique for improving the functional and digestive properties of TBP.
Collapse
Affiliation(s)
- Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yu Bai
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jiawei Qiao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yongqiang Liang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jiankang Zhou
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Shengyuan Guo
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Chaofan Zhao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Bao Xing
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Peiyou Qin
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Guixing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
9
|
Qi Y, Cheng J, Chen Y, Xu B. Effect of sodium carbonate on the properties of seventy percent of Tartary buckwheat composite flour-based doughs and noodles and the underlying mechanism. J Texture Stud 2023; 54:947-957. [PMID: 37661756 DOI: 10.1111/jtxs.12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
The impact of Na2 CO3 on the properties of doughs and noodles containing 70% Tartary buckwheat flour was investigated. Low-field 1 H nuclear magnetic resonance showed the mobility of water in the doughs significantly declined with the addition content of alkali from 0% to 0.9%. Na2 CO3 promoted the transformation from free sulfhydryl groups to disulfide bonds in doughs because the sulfhydryl groups in cysteine preferred to form thiolate anion and then oxidate under alkaline conditions. As for non-covalent chemical interactions, a significant increase of hydrogen bonds and a decrease of hydrophobic interactions were observed after Na2 CO3 addition. Quantitative analysis of microstructure showed that more uniform and denser gluten networks with higher branching rate and shorter average protein length and width formed in the doughs with 0.3%-0.6% of Na2 CO3 . The aggregated glutenin macropolymer and enhanced protein structure led to significantly stronger tensile of Tartary buckwheat dough sheets, which could meet the demand of continuous processing in the factory. Dough with alkali had higher swelling power and pasting viscosities, contributing to higher water absorption, and improved textural attributes of cooked noodles. This study demonstrated the possibility of adding Na2 CO3 at a moderate level for promoting the sheeting, cooking, and eating properties of high Tartary buckwheat flour composite noodles.
Collapse
Affiliation(s)
- Yajing Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jiahao Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yu Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Benković M, Jurinjak Tušek A, Sokač Cvetnić T, Jurina T, Valinger D, Gajdoš Kljusurić J. An Overview of Ingredients Used for Plant-Based Meat Analogue Production and Their Influence on Structural and Textural Properties of the Final Product. Gels 2023; 9:921. [PMID: 38131907 PMCID: PMC10743084 DOI: 10.3390/gels9120921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Plant-based meat analogues are food products made from vegetarian or vegan ingredients that are intended to mimic taste, texture and appearance of meat. They are becoming increasingly popular as people look for more sustainable and healthy protein sources. Furthermore, plant-based foods are marketed as foods with a low carbon footprint and represent a contribution of the consumers and the food industry to a cleaner and a climate-change-free Earth. Production processes of plant-based meat analogues often include technologies such as 3D printing, extrusion or shear cell where the ingredients have to be carefully picked because of their influence on structural and textural properties of the final product, and, in consequence, consumer perception and acceptance of the plant-based product. This review paper gives an extensive overview of meat analogue components, which affect the texture and the structure of the final product, discusses the complex interaction of those ingredients and reflects on numerous studies that have been performed in that area, but also emphasizes the need for future research and optimization of the mixture used in plant-based meat analogue production, as well as for optimization of the production process.
Collapse
Affiliation(s)
- Maja Benković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.J.T.); (T.S.C.); (T.J.); (D.V.); (J.G.K.)
| | | | | | | | | | | |
Collapse
|
11
|
Li Y, Yang N, Shi F, Ye F, Huang J. Isolation and identification of angiotensin-converting enzyme inhibitory peptides from Tartary buckwheat albumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:5019-5027. [PMID: 36967483 DOI: 10.1002/jsfa.12573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Tartary buckwheat protein peptides have been shown to be able to inhibit angiotensin-converting enzyme (ACE), but the exact protein type has been less studied for ACE activity inhibition, and only a few types of ACE inhibitory peptides have been reported. In this study, we purified and identified ACE inhibitory peptides from albumin hydrolysate (AH). RESULTS Albumin, globulin, prolamin and glutelin were extracted from Tartary buckwheat, and their ACE active peptides were obtained by a pepsin-trypsin sequential hydrolysis process. All four hydrolysates exhibited ACE inhibitory activity, and AH displayed the strongest ACE inhibition activity and the highest peptide yield (82.28%). At 0.2 mg mL-1 , the inhibition rate of AH was 79.89%, followed by globulin hydrolysate at 71.84%, while prolamin hydrolysate and glutelin hydrolysate showed lower inhibition rates. The peptides with the highest inhibition rate were then isolated from AH using gel filtration chromatography and reversed-phase high-performance liquid chromatography, and identified using nanoscale high-performance liquid chromatography-tandem mass spectrometry. After isolation and purification, 42 ACE inhibitory peptides were identified in the fraction with the highest inhibition rate, 14 of which were completely novel discoveries in this study. These 14 peptides showed potent ACE inhibitory effects through computer analysis. CONCLUSION Tartary buckwheat albumin can be used as a good source of ACE inhibitory peptides and can be further developed and utilized as edible supplements or drugs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongfu Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Nan Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Feng Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fei Ye
- Wuxi Zhengda Biology Co. Ltd, Wuxi, China
| | - Jinrong Huang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Song H, Wang Q, Shao Z, Wang X, Cao H, Huang K, Sun Q, Sun Z, Guan X. In vitro gastrointestinal digestion of buckwheat ( Fagopyrum esculentum Moench) protein: release and structural characteristics of novel bioactive peptides stimulating gut cholecystokinin secretion. Food Funct 2023; 14:7469-7477. [PMID: 37489980 DOI: 10.1039/d3fo01951a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Satiety hormone cholecystokinin (CCK) plays a vital role in appetite inhibition. Its secretion is regulated by dietary components. The search for bioactive compounds that stimulate CCK secretion is currently an active area of research. The objective of this study was to evaluate the ability of buckwheat (Fagopyrum esculentum Moench) protein digest (BPD) to stimulate CCK secretion in vitro and in vivo and clarify the structural characteristics of peptides stimulating CCK secretion. BPD was prepared by an in vitro gastrointestinal digestion model. The relative molecular weight of BPD was <10 000 Da, and peptides with <3000 Da accounted for 70%. BPD was rich in essential amino acids Lys, Leu, and Val but lacked sulfur amino acids Met and Cys. It had a stimulatory effect on CCK secretion in vitro and in vivo. Chromatographic separation was performed to isolate peptide fractions involved in CCK secretion, and five novel CCK-releasing peptides including QFDLDD, PAFKEEHL, SFHFPI, IPPLFP, and RVTVQPDS were successfully identified. A sequence length range of 6-8 and marked hydrophobicity (18-28) were observed among the most CCK-releasing peptides. The present study demonstrated for the first time that BPD could stimulate CCK secretion and clarify the structural characteristics of bioactive peptides having CCK secretagogue activity in BPD.
Collapse
Affiliation(s)
- Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Qingyu Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhuwei Shao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xinyue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Qiqi Sun
- Fengxian Central Hospital, Shanghai 201499, China.
| | | | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| |
Collapse
|
13
|
Burešová I, Lullien-Pellerin V, Červenka L, Mlček J, Šebestíková R, Masaříková L. The Comparison of the Effect of Flour Particle Size and Content of Damaged Starch on Rice and Buckwheat Slurry, Dough, and Bread Characteristics. Foods 2023; 12:2604. [PMID: 37444342 DOI: 10.3390/foods12132604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The effect of botanical origin, the flour particle size, and the content of damaged starch on flour pasting properties, dough behavior during a uniaxial deformation test, and bread characteristics were evaluated on rice and buckwheat flours. The rice flour with a median particle size D(0.5) of 60.2, 70.6, 106.8, and 189.4 μm, and buckwheat flour with a D(0.5) of 56.4, 68.4, and 95.8 μm were prepared using the same milling technology. The botanical origin of the flours was the strongest factor influencing the flour pasting properties, stress accumulated in dough during the uniaxial deformation test, loaf characteristics, texture, and sensory characteristics of breads. The flour particle size significantly influenced mainly the flour pasting properties. The effect of the content of damaged starch was the weakest among the studied factors. The flour particle size and the content of damaged starch were closely related. The flour botanical origin was the strongest factor; therefore, it seems not to be possible to predict the bread-baking potential of gluten-free flours based on the results obtained for flour of a different botanical origin. More research on flours from different plants prepared by the same milling process is required to support this hypothesis.
Collapse
Affiliation(s)
- Iva Burešová
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Valérie Lullien-Pellerin
- INRAE, Institut Agro, IATE, University Montpellier, 2 place VIALA, Bât. 31, 34060 Montpellier, France
| | - Libor Červenka
- Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic
| | - Jiří Mlček
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Romana Šebestíková
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Lucie Masaříková
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| |
Collapse
|
14
|
Ashfaq A, Osama K, Yousuf O, Younis K. Sustainable Nonfarm Approaches to Achieve Zero Hunger and Its Unveiled Reality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37399190 DOI: 10.1021/acs.jafc.2c09095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Millions of people worldwide are deprived of sufficient, safe, and nutritious food required for an everyday and healthy life. The hunger crisis is worsening over time, even though many attempts have been made to minimize it. Increasing world population and competition for natural resources, climate change, natural disasters, urbanization, poverty, and illiteracy are the main causes that need to be addressed to reduce the hunger crisis. Various nonfarm technologies are being used to eradicate hunger but their long-term impact on the environment should also be considered. The real sustainability of several novel technologies being implemented to deal with hunger is an issue to tackle. This paper discusses the potential applications of storage facilities, underutilized crops, waste valorization, food preservation, nutritionally enriched novel food products, and technological advancement in food processing to achieve zero hunger. An attempt has also been made to address the sustainability of various nonfarm technology utilized to minimize the global hunger crisis.
Collapse
Affiliation(s)
- Alweera Ashfaq
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Khwaja Osama
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Owais Yousuf
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh 226026, India
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir 192122, India
| | - Kaiser Younis
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh 226026, India
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir 192122, India
| |
Collapse
|
15
|
Borgonovi SM, Chiarello E, Pasini F, Picone G, Marzocchi S, Capozzi F, Bordoni A, Barbiroli A, Marti A, Iametti S, Di Nunzio M. Effect of Sprouting on Biomolecular and Antioxidant Features of Common Buckwheat ( Fagopyrum esculentum). Foods 2023; 12:foods12102047. [PMID: 37238865 DOI: 10.3390/foods12102047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Buckwheat is a pseudo-cereal widely grown and consumed throughout the world. Buckwheat is recognized as a good source of nutrients and, in combination with other health-promoting components, is receiving increasing attention as a potential functional food. Despite the high nutritional value of buckwheat, a variety of anti-nutritional features makes it difficult to exploit its full potential. In this framework, sprouting (or germination) may represent a process capable of improving the macromolecular profile, including reducing anti-nutritional factors and/or synthesizing or releasing bioactives. This study addressed changes in the biomolecular profile and composition of buckwheat that was sprouted for 48 and 72 h. Sprouting increased the content of peptides and free-phenolic compounds and the antioxidant activity, caused a marked decline in the concentration of several anti-nutritional components, and affected the metabolomic profile with an overall improvement in the nutritional characteristics. These results further confirm sprouting as a process suitable for improving the compositional traits of cereals and pseudo-cereals, and are further steps towards the exploitation of sprouted buckwheat as a high-quality ingredient in innovative products of industrial interest.
Collapse
Affiliation(s)
- Sara Margherita Borgonovi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Elena Chiarello
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Federica Pasini
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Gianfranco Picone
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Silvia Marzocchi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Francesco Capozzi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Alessandra Bordoni
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Alberto Barbiroli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Alessandra Marti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Stefania Iametti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
16
|
Dhiman A, Thakur K, Parmar V, Sharma S, Sharma R, Kaur G, Singh B, Suhag R. New insights into tailoring physicochemical and techno-functional properties of plant proteins using conventional and emerging technologies. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
17
|
Guo Y, Zhang ZG, Hu WW, Li WR, Zhang JM, Zhang CC, Liu DQ, Wu WC. Fabrication of buckwheat-shellac complex by pH-driven enhances the viability of Lactiplantibacillus plantarum during simulated gastrointestinal and storage conditions. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
18
|
Song S, Li Y, Zhu Q, Zhang X, Wang Y, Tao L, Yu L. Structure and properties of Pickering emulsions stabilized solely with novel buckwheat protein colloidal particles. Int J Biol Macromol 2023; 226:61-71. [PMID: 36493922 DOI: 10.1016/j.ijbiomac.2022.12.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
In this paper, buckwheat protein colloidal particles (BPCPs) were prepared by heat treatment to stabilize oil-water interface. The results of particle size, surface hydrophobicity and wettability indicated that the prepared BPCPs could be used as novel Pickering emulsifier. The effects of BPCPs concentration, ionic strength and heat treatment on the structure and properties of Pickering emulsions were explored. The microstructure results showed that BPCPs could tightly coated on the surface of oil droplets to form a tight interfacial film, confirming that BPCPs could be used as an effective Pickering-like stabilizer. With the increase of BPCPs concentration, the droplet size of the Pickering emulsion gradually decreased, and the viscoelasticity and storage stability of the emulsion were effectively improved. Different from the effect of ionic strength, heat treatment was beneficial to increasing the viscoelasticity of BPCPs-stabilized Pickering emulsion. The Pickering emulsions exhibited certain flocculation at different temperatures and ionic strengths, while still maintained good solid-like behavior. These results suggest that the structure and properties of BPCPs-stabilized Pickering emulsion could be regulated by changing the ionic strength and temperature.
Collapse
Affiliation(s)
- Shixin Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Yufei Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Qiyuan Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Xin Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Yang Wang
- National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, PR China
| | - Li Tao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Lei Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, PR China.
| |
Collapse
|
19
|
Screening of xanthine oxidase inhibitory peptides by ligand fishing and molecular docking technology. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Ilie GI, Milea ȘA, Râpeanu G, Cîrciumaru A, Stănciuc N. Sustainable Design of Innovative Kiwi Byproducts-Based Ingredients Containing Probiotics. Foods 2022; 11:foods11152334. [PMID: 35954100 PMCID: PMC9368325 DOI: 10.3390/foods11152334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/21/2022] Open
Abstract
Industrial processing of kiwifruits generates a large quantity of byproducts, estimated to be one million tons per year. The resulting byproducts are rich sources of bioactive components that may be used as additives, hence minimizing economic and environmental issues. In this study, kiwifruit byproducts were used to develop added-value food-grade ingredients containing probiotics. The byproducts were divided into peels and pomace. Both residues were inoculated with a selected strain of probiotic (Lacticaseibacillus casei 431®), and two variants were additionally enhanced with prebiotic sources (buckwheat and black rice flours). The inoculated powders were obtained by freeze-drying, and the final ingredients were coded as KP (freeze-dried kiwi peels), KBR (freeze-dried kiwi pomace and black rice flour), KPB (freeze-dried kiwi pomace and buckwheat flour), and KPO (freeze-dried kiwi pomace). The phytochemical profile was assessed using different spectrophotometric methods, such as the determination of polyphenols, flavonoids, and carotenoids. The kiwi byproduct-based formulations showed a polyphenolic content varying from 10.56 ± 0.30 mg AGE/g DW to 13.16 ± 0.33 mg AGE/g, and the survival rate of lactic acid bacteria after freeze-drying ranged from 73% to 88%. The results showed an increase in total flavonoid content from the oral to gastric environment and controlled release in the intestinal environment, whereas a maximum survival rate of probiotics at the intestinal end stage was 48%. The results of SEM and droplet size measurements revealed vesicular and polyhedral structures on curved surfaces linked by ridge sections. The CIEL*a*b* color data were strongly associated with the particular pigment in kiwi pulp, as well as the color of the additional flour. Finally, the ingredients were tested in protein bars and enhanced the value of the final food product regarding its phytochemical and probiotic content.
Collapse
Affiliation(s)
- Gheorghe-Ionuț Ilie
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 800201 Galați, Romania
| | - Ștefania-Adelina Milea
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 800201 Galați, Romania
| | - Gabriela Râpeanu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 800201 Galați, Romania
| | - Adrian Cîrciumaru
- Cross-Border Faculty, Dunarea de Jos University of Galati, 800201 Galați, Romania
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 800201 Galați, Romania
- Correspondence:
| |
Collapse
|
21
|
Chiang JH, Hua XY, Yu AHM, Peh EWY, See E, Jeyakumar Henry C. A Review on Buckwheat and Its Hypoglycemic Bioactive Components in Food Systems. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2103706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jie Hong Chiang
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Xin Yi Hua
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ashley Hui Min Yu
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Elaine Wan Yi Peh
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - E’Ein See
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
22
|
Sarker A. A Review on the Application of Bioactive Peptides as Preservatives and Functional Ingredients in Food Model Systems. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ayesha Sarker
- Assistant Professor for Food Science Agricultural and Environmental Research Station, West Virginia State University Institute WV USA
| |
Collapse
|
23
|
Lee H, Lim T, Kim J, Kim RH, Hwang KT. Phenolics in buckwheat hull extracts and their antioxidant activities on bulk oil and emulsions. J Food Sci 2022; 87:2831-2846. [PMID: 35661363 DOI: 10.1111/1750-3841.16175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
Abstract
Buckwheat hulls are discarded as waste, although they have more phenolic compounds than buckwheat groats. The antioxidant activities of buckwheat hull extracts prepared with water, 50% ethanol, and 100% ethanol were investigated in bulk oil, oil-in-water (O/W), and water-in-oil (W/O) emulsions. The relationship between the phenolic compositions of the extracts and their antioxidant activities in the three different lipid systems was also evaluated. Fifty percent ethanol extract had the highest total phenolic content (327 mg gallic acid equivalent [GAE]/g extract) followed by water and 100% ethanol extracts (211 and 163 mg GAE/g extract, respectively). The total oxidation rate (k) was not significantly different among the bulk oils added with the buckwheat hull extracts. However, in the O/W emulsion, the k was more reduced by the 50% and 100% ethanol extracts than by the water extract at the concentration of 100 µg GAE/g (2.9, 2.8, and 3.7 Totox/day, respectively). The k of the W/O emulsion was more reduced by the 100% ethanol extract than by the water and 50% ethanol extract at the concentration of 100 µg GAE/g (3.8, 4.7, and 4.5 Totox/day, respectively). Multivariate statistical analysis revealed that the contents of phenolic acids and their derivatives were the highest in the water extract among the extracts, while the contents of flavonoid glycosides and methylated polyphenols were the highest in the 50% and 100% ethanol extracts, respectively. The results suggest that flavonoid glycosides and methylated polyphenols could be potential candidates for retarding the oxidation of the emulsion system. PRACTICAL APPLICATION: Buckwheat hull extracts could retard lipid oxidation. Flavonoid glycosides and methylated polyphenols in buckwheat hull extracts may have an antioxidative effect on lipids. Thus, buckwheat hulls could be used as an antioxidant in lipid systems, as flavonoid glycosides and methylated polyphenols are properly extracted from buckwheat hulls.
Collapse
Affiliation(s)
- Haeseong Lee
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Taehwan Lim
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Jaecheol Kim
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea.,BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul, Republic of Korea
| | - Ryun Hee Kim
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea.,BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul, Republic of Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea.,BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Effects of Microwave Treatment on Structure, Functional Properties and Antioxidant Activities of Germinated Tartary Buckwheat Protein. Foods 2022; 11:foods11101373. [PMID: 35626943 PMCID: PMC9142102 DOI: 10.3390/foods11101373] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 12/13/2022] Open
Abstract
Tartary buckwheat protein (TBP) has promise as a potential source of novel natural nutrient plant protein ingredients. The modulating effects of microwave pretreatment at varying powers and times on the structure, functional properties, and antioxidant activities of germinated TBP were investigated. Compared with native germinated TBP, after microwave pretreatment, the content of free sulfhydryl groups in the germinated TBP increased, and the secondary structure changes showed a significant decrease in α-helix and an increase in random coil contents, and the intensity of the ultraviolet absorption peak increased (p < 0.05). In addition, microwave pretreatment significantly improved the solubility (24.37%), water-holding capacity (38.95%), emulsifying activity index (17.21%), emulsifying stability index (11.22%), foaming capacity (71.43%), and foaming stability (33.60%) of germinated TBP (p < 0.05), and the in vitro protein digestibility (5.56%) and antioxidant activities (DPPH (32.35%), ABTS (41.95%), and FRAP (41.46%)) of germinated TBP have also been improved. Among different treatment levels, a microwave level of 300 W/50 s gave the best results for the studied parameters. Specifically, microwave pretreatment could be a promising approach for modulating other germinated plant protein resources, as well as expanding the application of TBP.
Collapse
|
25
|
Zhang Y, Capanoglu E, Jiao L, Yin L, Liu X, Wang R, Xiao J, Lu B. Coarse cereals modulating chronic low-grade inflammation: review. Crit Rev Food Sci Nutr 2022; 63:9694-9715. [PMID: 35503432 DOI: 10.1080/10408398.2022.2070596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic low-grade inflammation (CLGI) is closely associated with various chronic diseases. Researchers have paid attention to the comprehensive application and development of food materials with potential anti-inflammatory activity. Owing to their abundant nutrients and biological activities, coarse cereals have emerged as an important component of human diet. Increasing evidence has revealed their potential protective effects against CLGI in chronic conditions. However, this property has not been systematically discussed and summarized. In the present work, numerous published reports were reviewed to systematically analyze and summarize the protective effects of coarse cereals and their main active ingredients against CLGI. Their current utilization state was investigated. The future prospects, such as the synergistic effects among the active compounds in coarse cereals and the biomarker signatures of CLGI, were also discussed. Coarse cereals show promise as food diet resources for preventing CLGI in diseased individuals. Their active ingredients, including β-glucan, resistant starch, arabinoxylan, phenolic acids, flavonoids, phytosterols and lignans, function against CLGI through multiple possible intracellular signaling pathways and immunomodulatory effects. Therefore, coarse cereals play a crucial role in the food industry due to their health effects on chronic diseases and are worthy of further development for possible application in modulating chronic inflammation.
Collapse
Affiliation(s)
- Yongzhu Zhang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Linshu Jiao
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liqing Yin
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
| | - Xianjin Liu
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ran Wang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Baiyi Lu
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Tian S, Yu B, Du K, Li Y. Purification of wheat germ albumin hydrolysates by membrane separation and gel chromatography and evaluating their antioxidant activities. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Blancas-Benitez FJ, Montaño-Leyva B, Aguirre-Güitrón L, Moreno-Hernández CL, Fonseca-Cantabrana A, Romero-Islas LDC, González-Estrada RR. Impact of edible coatings on quality of fruits: A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Li H, Zou L, Li XY, Wu DT, Liu HY, Li HB, Gan RY. Adzuki bean (Vigna angularis): Chemical compositions, physicochemical properties, health benefits, and food applications. Compr Rev Food Sci Food Saf 2022; 21:2335-2362. [PMID: 35365946 DOI: 10.1111/1541-4337.12945] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022]
Abstract
Adzuki bean (Vigna angularis), also called red bean, is a legume of Fabaceae (Leguminosae) family. This crop is native to East Asia and is also commercially available in other parts of the world. It is becoming a research focus owing to its distinct nutritional properties (e.g., abundant in polyphenols). The diverse health benefits and multiple utilization of this pulse are associated with its unique composition. However, there is a paucity of reviews focusing on the nutritional properties and potent applications of adzuki beans. This review summarizes the chemical compositions, physicochemical properties, health benefits, processing, and applications of adzuki beans. Suggestions on how to better utilize the adzuki bean are also provided to facilitate its development as a functional grain. Adzuki bean and its components can be further developed into value-added and nutritionally enhanced products.
Collapse
Affiliation(s)
- Hang Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xin-Yan Li
- Department of Neonatology, Longquanyi District of Chengdu Maternal and Child Healthcare Hospital, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
29
|
Kreft I, Germ M, Golob A, Vombergar B, Bonafaccia F, Luthar Z. Impact of Rutin and Other Phenolic Substances on the Digestibility of Buckwheat Grain Metabolites. Int J Mol Sci 2022; 23:3923. [PMID: 35409281 PMCID: PMC8999605 DOI: 10.3390/ijms23073923] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) is grown in eastern and central Asia (the Himalayan regions of China, Nepal, Bhutan and India) and in central and eastern Europe (Luxemburg, Germany, Slovenia and Bosnia and Herzegovina). It is known for its high concentration of rutin and other phenolic metabolites. Besides the grain, the other aboveground parts of Tartary buckwheat contain rutin as well. After the mixing of the milled buckwheat products with water, the flavonoid quercetin is obtained in the flour-water mixture, a result of rutin degradation by rutinosidase. Heating by hot water or steam inactivates the rutin-degrading enzymes in buckwheat flour and dough. The low buckwheat protein digestibility is due to the high content of phenolic substances. Phenolic compounds have low absorption after food intake, so, after ingestion, they remain for some time in the gastrointestinal tract. They can act in an inhibitory manner on enzymes, degrading proteins and other food constituents. In common and Tartary buckwheat, the rutin and quercetin complexation with protein and starch molecules has an impact on the in vitro digestibility and the appearance of resistant starch and slowly digestible proteins. Slowly digestible starch and proteins are important for the functional and health-promoting properties of buckwheat products.
Collapse
Affiliation(s)
- Ivan Kreft
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.G.); (A.G.); (F.B.)
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.G.); (A.G.); (F.B.)
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.G.); (A.G.); (F.B.)
| | - Blanka Vombergar
- The Education Centre Piramida Maribor, SI-2000 Maribor, Slovenia;
| | - Francesco Bonafaccia
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.G.); (A.G.); (F.B.)
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.G.); (A.G.); (F.B.)
| |
Collapse
|
30
|
Yu M, Lin S, Ge R, Xiong C, Xu L, Zhao M, Fan J. Buckwheat self-assembling peptide-based hydrogel: Preparation, characteristics and forming mechanism. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Dabija A, Ciocan ME, Chetrariu A, Codină GG. Buckwheat and Amaranth as Raw Materials for Brewing, a Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:756. [PMID: 35336638 PMCID: PMC8954860 DOI: 10.3390/plants11060756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 05/08/2023]
Abstract
Globally, beer is considered the most-consumed low-alcohol beverage, it ranks third, after water and tea, in the top sales of these drinks. New types of beer are the result of the influence of several factors, including innovations in science and technology, changing requirements for food consumption of the population, competition between producers, promotion of food for health, flavor, and quality, the limited nature of traditional food resource raw materials, and the interest of producers in reducing production costs. Manufacturers are looking for new solutions for obtaining products that meet the requirements of consumers, authentic products of superior quality, with distinctive taste and aroma. This review proposes the use of two pseudocereals as raw materials in the manufacture of beer: buckwheat and amaranth, focusing on the characteristics that recommend them in this regard. Due to their functional and nutraceutical properties, these pseudocereals can improve the quality of beer-a finished product. Additionally, all types of beer obtained from these pseudocereals are recommended for diets with particular nutritional requirements, especially gluten-free diets. Researchers and producers will continue to improve and optimize the sensory and technological properties of the new types of beer obtained from these pseudocereals.
Collapse
Affiliation(s)
| | | | | | - Georgiana Gabriela Codină
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (A.D.); (M.E.C.); (A.C.)
| |
Collapse
|
32
|
Wang Y, Nie Z, Ma T. The Effects of Plasma-Activated Water Treatment on the Growth of Tartary Buckwheat Sprouts. Front Nutr 2022; 9:849615. [PMID: 35284468 PMCID: PMC8908094 DOI: 10.3389/fnut.2022.849615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
The aim was to investigate the effects of buckwheat sprout treated with plasma-activated water (PAW) and their quality, nutrients (protein, amino acids, fat, and carbohydrates), functional active ingredients (total flavonoids, total phenolic acids, γ-gamma aminobutyric acid (GABA), and polysaccharides), and antioxidant activity during germination. PAW had no negative effects on the germination rate, but promoted the stem growth instead, which indicated 1.12-fold higher germination rate compared with the control group. The results of sensory evaluation demonstrated that the obtained sprouts were bright green, shinning, crisp and smooth, with sufficient moisture, and easy to chew. During germination (1–9 days), the water content, amino acids, and reducing sugars of sprouts showed an increasing trend and were basically higher in the PAW group than in the control group, while protein, carbohydrate, and crude fat presented a decreasing trend. The results were that the flavonoid, phenolic acid, γ-GABA, polysaccharides content, and antioxidant activity during germination showed a gradual upward trend but with slight differences, and the antioxidant properties of buckwheat sprouts might be related to the phenolic acid and polysaccharides content. These data show that the PAW treatment on buckwheat sprout have great potential as a dietary source of antioxidant function with health benefits.
Collapse
|
33
|
Zhang X, Zhang H, Jiao P, Xia M, Tang B. Preparation and Evaluation of Antioxidant Activities of Bioactive Peptides Obtained from Cornus officinalis. Molecules 2022; 27:molecules27041232. [PMID: 35209021 PMCID: PMC8878057 DOI: 10.3390/molecules27041232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
The present study is a preparation of bioactive peptides from Cornus officinalis proteins by the compound enzymatic hydrolysis method. Response surface methodology (RSM) coupled with Box–Behnken design (BBD) is used to optimize the preparation process of Cornus officinalis peptides. The effects of independent variables, such as the amount of enzyme, pH value, time, extraction times and the ratio of material to liquid on the yield of peptides, are also investigated. The analysis results of the RSM model show that the optimum conditions for the extraction of Cornus officinalis peptides were a pH value of 6.76, temperature of 48.84 °C and the amount of enzyme of 0.19%. Under optimal conditions, the yield of peptides was 36.18 ± 0.26 %, which was close to the predicted yield by the RSM model. Additionally, the prepared Cornus officinalis peptides showed significant antioxidant activity; the scavenging rates of the peptides for DPPH and ·OH were 48.47% and 29.41%, respectively. The results of the cell proliferation assay revealed that the prepared Cornus officinalis peptides could promote embryo fibroblast cells proliferation and repair oxidative damage cells. These results have a practical application value in the design of novel functional food formulations by using Cornus officinalis.
Collapse
Affiliation(s)
- Xin Zhang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, Nanyang 473061, China
| | - Hao Zhang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Pengfei Jiao
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Mengrong Xia
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Bo Tang
- College of Food and Bioengineering, Bengbu University, Bengbu 233030, China
| |
Collapse
|
34
|
Comparative evaluation of pseudocereals peptides: A review of their nutritional contribution. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Kan X, Chen G, Zhou W, Zeng X. Application of protein-polysaccharide Maillard conjugates as emulsifiers: Source, preparation and functional properties. Food Res Int 2021; 150:110740. [PMID: 34865759 DOI: 10.1016/j.foodres.2021.110740] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 01/13/2023]
Abstract
The protein-polysaccharide conjugates formed by Maillard reaction can be used as novel emulsifiers in the food industry. Proteins and polysaccharides have extensive sources, and their emulsifying properties are highly dependent on their structural features. The Maillard conjugates can be prepared from conventional and novel methods, and these methods have different advantages and limitations in industrial applications. After an appropriate glycation, the conjugates show some modified or enhanced functional properties, including solubility, emulsifying property, thermal stability, foaming capacity, and gelation property. However, the research on the structure-function relationship of both proteins and polysaccharides is limited. It is necessary to well understand the characteristics of these biopolymers, and select appropriate conditions to control the process of Maillard reaction. Overall, the Maillard conjugates show great potential as the emulsifiers and stabilizers in the emulsion system. This review introduces the sources and structural characteristics of commonly used proteins and polysaccharides for Maillard reaction, outlines the methods (dry-heating, wet-heating, electrospinning, ultrasound, pulsed electric field, and microwave) for preparing Maillard conjugates and focuses on the improved functional properties (solubility, emulsifying, foaming and thermal properties) and the potential mechanisms.
Collapse
Affiliation(s)
- Xuhui Kan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
36
|
Kwon Y, Ryu J, Ju S. Sensory Attributes of Buckwheat Jelly (Memilmuk) with Mung Bean Starch Added to Improve Texture and Taste. Foods 2021; 10:foods10112860. [PMID: 34829141 PMCID: PMC8621154 DOI: 10.3390/foods10112860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/17/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023] Open
Abstract
Buckwheat contains more essential proteins, dietary fiber, vitamins, minerals, and diverse phytochemicals than wheat and rice. The aims of this study are to develop the descriptive sensory attributes and evaluate the consumer acceptability of six buckwheat jellies (memilmuk) with added mung bean starch and to analyze the relationship between their descriptive sensory attributes and consumer acceptability. Statistical analyses were performed by one-way analysis of variance (ANOVA), principal component analysis (PCA), and partial least squares regression (PLSR). A total of 18 sensory attributes of buckwheat jelly, including appearance (brown, brightness, and roughness), odor/aroma (soymilk smell, grain smell, red bean porridge smell, and buckwheat tea smell), flavor or taste (savory flavor, plain taste, buckwheat taste, sweet taste, salty taste, and umami), and texture (squashed, dry, smooth, elasticity and stickiness) were developed. Consumer acceptability tests of six buckwheat jellies were conducted by 93 consumers evaluating for color, smell, savory taste, aftertaste, harmony with the sauce, overall liking, and would recommend or try again. Buckwheat jelly with 25% of mung bean starch (BJ_916) was the most favorable jelly sample among the six samples. All attributes except color, smell, and the savory taste of samples showed a significant difference (p < 0.001). BJ_916 showed a close relationship with a grain smell, elasticity, red bean porridge smell, and sweet taste of descriptive attributes and also all attributes of consumer acceptability. The determination of sensory attributes and consumer acceptability of buckwheat jelly will help to improve sensory characteristics to fulfill consumer needs and desires. Furthermore, this current study will help facilitate the expansion of the buckwheat consumption market.
Collapse
Affiliation(s)
- Yongseok Kwon
- National Institute of Agricultural Sciences, 166 Nongsaengmyeong-ro, Wanju-gun 55365, Korea; (Y.K.); (J.R.)
| | - Jihye Ryu
- National Institute of Agricultural Sciences, 166 Nongsaengmyeong-ro, Wanju-gun 55365, Korea; (Y.K.); (J.R.)
| | - Seyoung Ju
- Major in Food Science, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea
- Correspondence: ; Tel.: +82-43-840-3582
| |
Collapse
|
37
|
Bender D, Schönlechner R. Recent developments and knowledge in pseudocereals including technological aspects. ACTA ALIMENTARIA 2021. [DOI: 10.1556/066.2021.00136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Amaranth, buckwheat, quinoa, and less known, canihua are the most important pseudocereals. Their high nutritional value is well recognized and they are increasingly used for the development of a wide range of starch-based foods, which has been fostered by intensified research data performed in recent years. In addition to health driven motivations, also environmental aspects like the ongoing climate change are an important stimulus to increase agricultural biodiversity again. As pseudocereals are botanically classified as dicotyledonous plants their chemical, physical and processing properties differ significantly from the monocotyledonous cereals. Most important factors that need to be addressed for processing is their smaller seed kernel size, their specific starch structure and granule architecture, their gluten-free protein, but also their dietary fibre and secondary plant metabolites composition. This review gives a condensed overview of the recent developments and gained knowledge with special attention to the technological and food processing aspects of these pseudocereals.
Collapse
Affiliation(s)
- D. Bender
- Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - R. Schönlechner
- Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
38
|
Shi J, Tong G, Yang Q, Huang M, Ye H, Liu Y, Wu J, Zhang J, Sun X, Zhao D. Characterization of Key Aroma Compounds in Tartary Buckwheat ( Fagopyrum tataricum Gaertn.) by Means of Sensory-Directed Flavor Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11361-11371. [PMID: 34530609 DOI: 10.1021/acs.jafc.1c03708] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The key odorants of tartary buckwheat (TB) were researched by a sensory-directed flavor analysis approach for the first time. After the volatiles of TB were isolated by solvent-assisted flavor evaporation (SAFE), 49 aroma-active components with flavor dilution (FD) factors in the range of 1-2187 were identified using gas chromatography-olfactometry-mass spectrometry (GC-O-MS) combined with aroma extract dilution analysis (AEDA). Geranylacetone, phenethyl alcohol, and β-damascone showed the highest FD factors of 2187. All 49 odorants were further quantitated by the internal standard curve method, and their odor activity values (OAVs) were obtained. The overall aroma of TB was successfully simulated (similarity > 98.16%) by mixing 16 odorants (OAV ≥ 1) with their natural concentrations. The omission tests revealed that geosmin, α-isomethylionone, α-methylionone, β-ionone, linalool, β-damascone, geranylacetone, guaiacol, ethyl hexanoate, geraniol, vanillin, tetrahydrolinalool, and 2,5-dimethyl-4-hydroxy-3-(2H)-furanone were the key odorants of TB. Chiral analysis showed that tetrahydrolinalool and linalool existed as racemics in the commercial TB. The relative content of R-enantiomers of α-isomethylionone and α-methylionone was slightly higher than that of their S-enantiomers. The odor thresholds of R- and S-enantiomer of tetrahydrolinalool were first detected as 0.029 and 3.8 μg/L in air, respectively.
Collapse
Affiliation(s)
- Jie Shi
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
| | | | - Qiang Yang
- Jingpai Co. Ltd., Huangshi, Hubei 435000, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Hong Ye
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Yuancai Liu
- Jingpai Co. Ltd., Huangshi, Hubei 435000, China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Jinglin Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaotao Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Dongrui Zhao
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
39
|
Zou L, Wu D, Ren G, Hu Y, Peng L, Zhao J, Garcia-Perez P, Carpena M, Prieto MA, Cao H, Cheng KW, Wang M, Simal-Gandara J, John OD, Rengasamy KRR, Zhao G, Xiao J. Bioactive compounds, health benefits, and industrial applications of Tartary buckwheat ( Fagopyrum tataricum). Crit Rev Food Sci Nutr 2021; 63:657-673. [PMID: 34278850 DOI: 10.1080/10408398.2021.1952161] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tartary buckwheat belongs to the family Polygonaceae, which is a traditionally edible and medicinal plant. Due to its various bioactive compounds, the consumption of Tartary buckwheat is correlated to a wide range of health benefits, and increasing attention has been paid to its potential as a functional food. This review summarizes the main bioactive compounds and important bioactivities and health benefits of Tartary buckwheat, emphasizing its protective effects on metabolic diseases and relevant molecular mechanisms. Tartary buckwheat contains a wide range of bioactive compounds, such as flavonoids, phenolic acids, triterpenoids, phenylpropanoid glycosides, bioactive polysaccharides, and bioactive proteins and peptides, as well as D-chiro-inositol and its derivatives. Consumption of Tartary buckwheat and Tartary buckwheat-enriched products is linked to multiple health benefits, e.g., antioxidant, anti-inflammatory, antihyperlipidemic, anticancer, antidiabetic, antiobesity, antihypertensive, and hepatoprotective activities. Especially, clinical studies indicate that Tartary buckwheat exhibits remarkable antidiabetic activities. Various tartary buckwheat -based foods presenting major health benefits as fat and blood glucose-lowering agents have been commercialized. Additionally, to address the safety concerns, i.e., allergic reactions, heavy metal and mycotoxin contaminations, the quality control standards for Tartary buckwheat and its products should be drafted and completed in the future.
Collapse
Affiliation(s)
- Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Guixing Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jianglin Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Pascual Garcia-Perez
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Maria Carpena
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Miguel A Prieto
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Hui Cao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain.,Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Ka-Wing Cheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Oliver D John
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
40
|
Chernova E, Bazhenova I, Bazhenova T. Development of the composition of cereal dishes of higher biological value. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20212901022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Main food products of Russians are cereals, various meat and fish. The phenomenon of Russian and another national cuisines are balance of main nutrients in their dishes. Traditional Russian dishes are different kinds of porridge and culinary products made of cereals. Grits themselves are the source of protein, carbohydrates, lipids, fiber, vitamins of B group, biologically active substances and minerals but unbalanced grain protein in amino acid content is considered to be a serious deficiency. There is the lack of lysine, threonine, tryptophan in the majority of grains, so vegetable protein is digested and processed harder than animal protein. That is why, while developing compositions of dishes, it is necessary to consider availability and digestibility of the protein. Level of digestion of protein can be estimated during the process of digestion of food products by the system of ferments in vitro. In this work you can see the results of the research of amino acid composition of protein and their hydrolyzates after enzymatic hydrolysis in boiled grains. It can be seen that hydrolyzates have bigger coefficient of utilized protein and lower percentage of unutilized protein comparing with untreated grits. According to these results they developed two-, three-, four-component compositions from buckwheat, barley, oats and millet grains and elaborated more than 100 optimal compositions of dishes from grains.
Collapse
|