1
|
Taraszkiewicz A, Sinkiewicz I, Sommer A, Kusznierewicz B, Giblin L, Staroszczyk H. Chemical composition and techno-functional properties of high-purity water-soluble keratein and its enzymatic hydrolysates. Food Chem 2025; 472:142641. [PMID: 39855141 DOI: 10.1016/j.foodchem.2024.142641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2024] [Revised: 12/12/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025]
Abstract
This study compared the effectiveness of urea-containing and urea-free L-cysteine solutions in extracting high-quality feather keratin and evaluated commercial proteases for producing keratin-derived bioactive peptides. The urea-assisted extraction was crucial for achieving high structural integrity and yield of soluble keratin. The keratin isolate exhibited oil-holding capacity of 9.37 g/g, foaming capacity of up to 127 %, and emulsifying capacity of up to 49 %. Its proteolysis with trypsin, chymotrypsin, pepsin and subtilisin resulted in peptides with average molecular weight between 2.10 and 5.96 kDa and degree of hydrolysis from 6 to 36 %. The subtilisin hydrolysate had the highest degree of hydrolysis, 63 % of peptides <1 kDa, and excellent solubility across a wide pH range, but negligible water and oil-binding, foaming, and emulsifying properties. This study highlights the need to optimize each step in keratin extraction and hydrolysis processes to produce high-quality bioactive keratin preparations for diverse applications, including food and pharmaceutical.
Collapse
Affiliation(s)
- Antoni Taraszkiewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Narutowicza Street 11/12, 80-233, Poland; Department of Food Bioscience, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - Izabela Sinkiewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Narutowicza Street 11/12, 80-233, Poland.
| | - Agata Sommer
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Narutowicza Street 11/12, 80-233, Poland.
| | - Barbara Kusznierewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Narutowicza Street 11/12, 80-233, Poland.
| | - Linda Giblin
- Department of Food Bioscience, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - Hanna Staroszczyk
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Narutowicza Street 11/12, 80-233, Poland.
| |
Collapse
|
2
|
Bayati M, Poojary MM. Polyphenol autoxidation and prooxidative activity induce protein oxidation and protein-polyphenol adduct formation in model systems. Food Chem 2025; 466:142208. [PMID: 39615353 DOI: 10.1016/j.foodchem.2024.142208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2024] [Revised: 11/09/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
Polyphenols are well-known for their antioxidant properties, but their prooxidative activity remain less understood. This study quantitatively examined the formation of hydrogen peroxide (H2O2) during the autooxidation of nine different polyphenols in model systems, investigating how it impacts protein oxidation and protein-polyphenol covalent adduct formation. Polyphenols (4 mM) generated H2O2 in the range of 0.2-242 μM, depending on type of polyphenol, incubation time, temperature, and pH, but no clear relationship between polyphenol structure and H2O2 production was observed. The presence of free amino acids and proteins (bovine serum albumin and β-lactoglobulin) inhibited H2O2 formation, with Cys completely scavenging H2O2. Met was highly susceptible to oxidation with a 25-75% loss, forming methionine sulfoxide through a two-electron oxidation pathway. Trp and Tyr were oxidized to produce dioxindolyl-ʟ-alanine, kynurenine, 3,4-dihydroxyphenylalanine, N'-formylkynurenine, and 5-hydroxytryptophan in the nmol/mol-mmol/mol amino acid range. Furthermore, autoxidation of polyphenols resulted in >177 distinct amino acid/protein-polyphenol adducts as identified using LC-Orbitrap-MS/MS analysis.
Collapse
Affiliation(s)
- Mohammad Bayati
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Mahesha M Poojary
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
| |
Collapse
|
3
|
Pokorski P, Michałowska D, Moczkowska-Wyrwisz M, Strojny-Cieślak B, Custodio-Mendoza JA, Aktaş H, Kurek MA. Edible insect protein concentrates: Optimized salt-assisted extraction methods evaluation. Food Chem 2025; 466:142225. [PMID: 39615357 DOI: 10.1016/j.foodchem.2024.142225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2024] [Revised: 10/28/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
This study explores the extraction of proteins from edible insects such as Tenebrio molitor, Acheta domesticus, and Locusta migratoria using alkaline extraction and acid precipitation (AEAP) as a control method and evaluates the influence of salting-in (NaCl-assisted), salting-out ((NH₄)₂SO₄), and combined salting-in/out techniques on the resulting protein quality and functional properties. We hypothesized that salt-assisted methods would enhance protein extraction efficiency and functionality compared to AEAP. Molecular size distribution analysis confirmed that the salting-out method preferentially aggregated smaller proteins (<30 kDa). FT-IR spectroscopy revealed notable changes in protein secondary structure across extraction methods, while amino acid profiling identified 17 amino acids, with essential amino acids (EAAs) comprising 37.8-44.2 % of total amino acids. Salt-assisted methods significantly increased the zeta potential (up to -62.67 mV) and modulated particle size distribution (180-492 nm) compared to the control samples. Rheological properties varied with extraction techniques, with potential fluid-type transitions. Proteins extracted via salt-assisted methods demonstrated high purity (>70 %), enhanced solubility (>60 % at pH 7.4), improved oil- and water-holding capacities (1.40-8.09 g/g, 2.41-4.4 g/g), and superior emulsifying properties (EAI >47 m2 g-1, ESI >50 %). These findings highlight that salt-assisted extraction methods can improve the quality and functionality of insect protein concentrates, supporting their potential for food-grade applications.
Collapse
Affiliation(s)
- Patryk Pokorski
- Department of Technique and Food Product Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Dorota Michałowska
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland
| | - Małgorzata Moczkowska-Wyrwisz
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Barbara Strojny-Cieślak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Jorge A Custodio-Mendoza
- Department of Technique and Food Product Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Havva Aktaş
- Department of Technique and Food Product Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Marcin A Kurek
- Department of Technique and Food Product Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland.
| |
Collapse
|
4
|
Yu J, Shin WS. Optimizing aquasoya protein: Insights of various pre-treatments for enhancing the upcycling potential from small black bean by-product. Food Chem 2025; 465:142029. [PMID: 39546991 DOI: 10.1016/j.foodchem.2024.142029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
To minimize resource waste and promote recycling, it is essential to recover nutritional components from by-products. This study aimed to optimize of Aquasoya protein (AS-P) recovery from small black bean by-products, focusing on the effects of pH adjustments, sonication, and fractionation on protein yield, solubility, and structural integrity. Alkaline treatment at pH 8.5 significantly enhanced AS-P recovery yield (77.60 %) and protein concentration (421.16 μg/mL), attributed to the increased solubility and effective removal of non-protein components. Sonication for 10 min exhibited the highest protein solubility (88.69 %) post-fractionation, indicating reduced protein aggregation. Fractionation was crucial in minimizing browning reactions and enhancing protein purity by eliminating oligosaccharides and impurities. SDS-PAGE analysis revealed distinct protein bands from alkaline treatment, while sonication resulted in lipoxygenase (LOX) protein degradation. Principal Component Analysis (PCA) emphasized that fractionation notably enhances the stability and quality of AS-P, making it as a viable ingredient for food applications.
Collapse
Affiliation(s)
- JingChao Yu
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, South Korea
| | - Weon-Sun Shin
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, South Korea.
| |
Collapse
|
5
|
Patra A, V AP. Protein extraction from detoxified cassava leaves using various deep eutectic solvents: A sustainable strategy to enhance nutritional and functional properties. Food Chem 2025; 474:143200. [PMID: 39951852 DOI: 10.1016/j.foodchem.2025.143200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2024] [Revised: 01/08/2025] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
Cassava (Manihot esculenta) leaves, containing 20-30 % protein and essential amino acids (EAAs), present a promising source of sustainable plant-based protein alternatives. Deep eutectic solvent (DES) offers an eco-friendly, emerging solution for qualitative protein with great functionality, superior to the alkaline extraction-isoelectric precipitation (AE-IP). In this study, the protein extraction from detoxified cassava leaves using eight DESs composed of various HBAs and HBDs. Their physical properties, strong hydrogen bonds, and hydroxyl interactions were most effective for protein extraction. DES-8 (lactic acid: glycerol), emerged as optimal, providing higher protein content and recovery yield 22.16 ± 0.36 mg/g dm and 73.77 ± 1.05 %, respectively while slight reduction in extraction yield (16.85 ± 0.41 %) In addition, the extracted protein (DCPI-D8) exhibited superior EAAs (40.36 %) leading hydrophilic amino acids (60.16 %). Lactic acid's mild acidity and glycerol's stabilizing properties preserved DCPI-D8's nutritional properties, significantly reducing antinutrients while maintaining protein integrity and enhancing its structural and functional qualities compared to AE-IP.
Collapse
Affiliation(s)
- Abhipriya Patra
- National Institute of Technology, Rourkela, Odisha 769008, India
| | - Arun Prasath V
- National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
6
|
Ghelichi S, Hajfathalian M, Falcione S, Jacobsen C. Antioxidant and Anti-Obesity Properties of Acidic and Alkaline Seaweed Extracts Adjusted to Different pH Levels. Mar Drugs 2025; 23:35. [PMID: 39852537 PMCID: PMC11767166 DOI: 10.3390/md23010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
This research examined antioxidant and anti-obesity effects of Palmaria palmata extracts obtained through acidic or alkaline treatments and subsequent pH adjustments. After two rounds of acidic or alkaline extraction, the extracts were separated from biomass and adjusted to different pH values: for acidic extracts, pH 3 (no adjustment), pH 6, pH 9, and pH 12; for alkaline extracts, pH 12 (no adjustment), pH 9, pH 6, and pH 3. The findings revealed that extraction medium as well as subsequent pH adjustments significantly influenced composition of the extracts in terms of protein content and recovery, amino acids, and phenolic compounds (p < 0.05). Acidic conditions produced extracts with potent radical scavenging, especially at pH 6 (IC50 = 0.30 ± 0.04 mg.mL-1), while alkaline conditions favored metal chelating, with the highest Fe2+ chelation at pH 12 (IC50 = 0.65 ± 0.03 mg.mL-1). Moreover, extracts showed inhibitory activities against porcine pancreatic lipase and α-amylase, with the acidic extract at pH 9 showing the best anti-obesity properties (IC50 = 5.38 ± 0.34 mg.mL-1 for lipase and IC50 = 5.79 ± 0.30 mg.mL-1 for α-amylase). However, the highest α-amylase activity was in the alkaline extract at pH 12 (IC50 = 3.05 ± 0.66 mg.mL-1). In conclusion, adjusting the pH of seaweed extracts notably influences their bioactive properties, likely due to changes in the reactivity and interactions of bioactive compounds such as peptides, carbohydrates, and polyphenols.
Collapse
Affiliation(s)
- Sakhi Ghelichi
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.G.); (M.H.)
| | - Mona Hajfathalian
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.G.); (M.H.)
| | - Sara Falcione
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.G.); (M.H.)
| |
Collapse
|
7
|
Barozzi L, Plazzotta S, Nucci A, Manzocco L. Elucidating the role of compositional and processing variables in tailoring the technological functionalities of plant protein ingredients. Curr Res Food Sci 2025; 10:100971. [PMID: 39911601 PMCID: PMC11795097 DOI: 10.1016/j.crfs.2025.100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Although various plant protein (PP) ingredients are available on the market, their application in foods is not trivial, and food companies are struggling to identify PP ingredients fitting the intended use. To fill this gap, abundant literature has appeared but data are hardly comparable due to the absence of a recognized classification of PP ingredients accounting not only for protein purity but also for the process history, and of standardised protocols for technological functionality assessment. In this review, a comprehensive analysis of comparable literature data was thus carried out to elucidate the effect of composition and processing variables on PP technological functionalities. The review presents four sections describing: (i) the approach followed for the construction of a database of PP ingredient functionalities; (ii) the composition and processing factors relevant to PP ingredients; (iii) PP ingredient functional properties and methods used for their determination; (iv) the effect of composition and processing factors on PP ingredient functionalities. This analysis showed legume proteins to present the highest solubility and interfacial properties while pseudocereal ones the highest water-holding capacity. Although pure ingredients show higher functionalities, non-protein components could contribute to interfacial properties. Alkaline extraction, isoelectric precipitation and freeze-drying is the process mostly used in academic research to obtain PP ingredients. However, other extraction, purification, and drying methods can be properly combined, resulting in specific PP ingredient functionalities. Overall, this review highlights that, besides protein purity and source, knowledge of the processing history is required to select PP ingredients with desired functionalities.
Collapse
Affiliation(s)
- Lorenzo Barozzi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/a, 33100, Udine, Italy
| | - Stella Plazzotta
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/a, 33100, Udine, Italy
| | - Ada Nucci
- Lavazza innovation Center, Luigi Lavazza s.p.a., Str. di Settimo, 10156, Famolenta, Italy
| | - Lara Manzocco
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/a, 33100, Udine, Italy
| |
Collapse
|
8
|
Jiang Y, Tian Q, Chen C, Deng Y, Hu X, Yi Y. Impact of salting-in/out assisted extraction on rheological, biological, and digestive, and proteomic properties of Tenebrio molitor larvae protein isolates. Int J Biol Macromol 2024; 282:137044. [PMID: 39476913 DOI: 10.1016/j.ijbiomac.2024.137044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
In this study, NaCl (salting-in) and (NH4)2SO4 (salting-out) treatments were employed in alkaline extraction and acid precipitation procedures, respectively, to enhance the extraction of Tenebrio molitor larvae protein isolates (TPIs). The in vitro digestibility, rheological properties, biological activities, and proteomic analysis of TPIs were investigated. The results showed that salting-in treatment did not result in significant differences (P > 0.05) in antioxidant activities (except for ABTS radical scavenging), but increased tumor necrosis factor β (TNF-β) and the degree of hydrolysis (DH). Salting-out treatment significantly (P < 0.05) enhanced trichloroacetic acid-soluble peptide yield (Tsp) and ACE inhibitory activities but negatively affected antioxidant and antibacterial activities. The combined salting-in-out treatment produced the highest values of DH (45.80 %), Tsp (72.46 %), and TNF-β (0.86 mg/kg). Proteomic analysis using UPLC-MS/MS identified 141 proteins, including metabolic enzymes and actin, in the TPIs. While the salting treatments did not significantly alter the protein compositions, they primarily affected protein content. Overall, salting-in and salting-out treatments can effectively enhance specific biological properties of T. molitor protein isolates, particularly digestibility and ACE inhibitory activities, while salting-out treatments may reduce antioxidant functions. These findings suggest the potential of salting-assisted extractions for optimizing insect protein functionality in food and nutraceutical applications.
Collapse
Affiliation(s)
- Yongli Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; Department of Food Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qi Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
| | - Chongyang Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
| | - Yun Deng
- Department of Food Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan province 650500, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan province 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China.
| |
Collapse
|
9
|
Aquinas N, Ramananda BM, Selvaraj S. Optimization of curdlan production and ultrasound assisted extraction processes from Priestia megaterium. Sci Rep 2024; 14:26709. [PMID: 39496699 PMCID: PMC11535322 DOI: 10.1038/s41598-024-77880-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
In this study, the upstream and downstream production processes of curdlan from Priestia megaterium were optimized to enhance its yield. Additionally, a novel extraction method was developed for curdlan recovery. Optimization studies were conducted using Central composite design (CCD). Curdlan yield improved from 0.15 g/L (unoptimized) to 0.46 g/L (3-fold increase) when fermentation was carried out in CCD-optimized media of (w/v) sucrose 20%, urea 0.1%, KH2PO4 0.02%, agitation speed 250 rpm. To further enhance curdlan yield during extraction, ultrasonication was incorporated as a novel step into the conventional method of acid/alkali-assisted curdlan recovery. A two-step optimization was chosen for extraction, namely, one-factor-at-a-time (OFAT) and CCD, wherein the optimized extraction parameters were determined to be 25 s sonication, 1 N NaOH, and 2 h solubilization time. The curdlan yield improved by 1.5-fold (0.70 g/L) post optimization, in comparison with unoptimized conventional extraction step. Finally, the biopolymer was validated through characterization by nuclear magnetic resonance (NMR) which showed characteristic curdlan spectra in the13C and1H NMR studies. To the best of our knowledge, this study represents the first documented report on curdlan extraction using this novel method of ultrasonication.
Collapse
Affiliation(s)
- Natasha Aquinas
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | - Bhat M Ramananda
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India.
| | - Subbalaxmi Selvaraj
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India.
| |
Collapse
|
10
|
Tang J, Yao D, Xia S, Cheong L, Tu M. Recent progress in plant-based proteins: From extraction and modification methods to applications in the food industry. Food Chem X 2024; 23:101540. [PMID: 39007110 PMCID: PMC11239452 DOI: 10.1016/j.fochx.2024.101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024] Open
Abstract
Plant proteins can meet consumers' demand for healthy and sustainable alternatives to animal proteins. It has been reported to possess numerous health benefits and is widely used in the food industry. However, conventional extraction methods are time-consuming, energy-intensive, as well as environmentally unfriendly. Plant proteins are also limited in application due to off-flavors, allergies, and anti-nutritional factors. Therefore, this paper discusses the challenges and limitations of conventional extraction processes. The current advances in green extraction technologies are also summarized. In addition, methods to improve the nutritional value, bioactivity, functional and organoleptic properties of plant proteins, and strategies to reduce their allergenicity are mentioned. Finally, examples of applications of plant proteins in the food industry are presented. This review aims to stimulate thinking and generate new ideas for future research. It will also provide new ideas and broad perspectives for the application of plant proteins in the food industry.
Collapse
Affiliation(s)
- Jiayue Tang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Dan Yao
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Shuaibo Xia
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Lingzhi Cheong
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, 3010, Australia
| | - Maolin Tu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
11
|
Seguchi M, Yamaguchi S, Tanaka M, Mori Y, Tsurudome M, Ito M. Effects of Alkaline Solutions on the Structure and Function of Influenza A Virus. Viruses 2024; 16:1636. [PMID: 39459968 PMCID: PMC11512367 DOI: 10.3390/v16101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Influenza A virus (IAV) infection contributes to high annual morbidity and mortality, thus necessitating measures aimed at protecting against the disease. Alcohol-based disinfectants are commonly used to inactivate IAV, but they have several undesirable properties. In search of other means which would inactivate IAV, we focused on the effect of alkaline solutions on IAV. We found the viral infectivity remarkably decreased with treatment of an alkaline solution at pH 12.0 for 1 min, where destruction of the viral spikes was observed using an electron microscope. A more detailed examination revealed that the infectivity of IAV was remarkedly reduced by brief treatment with the alkaline solution at pH 11.75 or above, most likely due to the degradation of viral hemagglutinin protein. These results show that at a high pH, the haemagglutinin protein is degraded, resulting in very rapid inactivation of IAV.
Collapse
Affiliation(s)
- Manato Seguchi
- Graduate School of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Aichi, Japan; (M.S.); (S.Y.); (M.T.)
- Support for Pioneering Research Initiated by the Next Generation (SPRING), Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Japan
| | - Seiji Yamaguchi
- Graduate School of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Aichi, Japan; (M.S.); (S.Y.); (M.T.)
- Department of Biomedical Sciences, College of Life and Health Science, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Aichi, Japan
| | - Mamoru Tanaka
- Department of Food and Nutritional Sciences, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Aichi, Japan;
| | - Yukihiro Mori
- Department of Nursing, College of Life and Health Science, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Aichi, Japan;
| | - Masato Tsurudome
- Graduate School of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Aichi, Japan; (M.S.); (S.Y.); (M.T.)
- Department of Biomedical Sciences, College of Life and Health Science, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Aichi, Japan
| | - Morihiro Ito
- Graduate School of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Aichi, Japan; (M.S.); (S.Y.); (M.T.)
- Department of Biomedical Sciences, College of Life and Health Science, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Aichi, Japan
- Department of Lifelong Sports and Health Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Aichi, Japan
| |
Collapse
|
12
|
Fan X, Gao X, Zhou C. l-arginine and l-lysine supplementation to NaCl tenderizes porcine meat by promoting myosin extraction and actomyosin dissociation. Food Chem 2024; 446:138809. [PMID: 38402768 DOI: 10.1016/j.foodchem.2024.138809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
This study investigated the individual and combined effects of l-arginine, l-lysine, and NaCl on the ultrastructure of porcine myofibrils to uncover the mechanism underlying meat tenderization. Arg or Lys alone shortened A-bands and damaged M-lines, while NaCl alone destroyed M- and Z-lines. Overall, Arg and Lys cooperated with NaCl to destroy the myofibrillar ultrastructure. Moreover, these two amino acids conjoined with NaCl to increase myosin solubility, actin band intensity, and the protein concentration of the actomyosin supernatant. However, they decreased the turbidity and particle size of both myosin and actomyosin solutions, and the remaining activities of Ca2+- and Mg2+-ATPase. The current results revealed that Arg/Lys combined with NaCl to extract myosin and dissociate actomyosin, thereby aggravating the destruction of the myofibrillar ultrastructure. The present results provide a good explanation for the previous phenomenon that Arg and Lys cooperated with NaCl to improve meat tenderness.
Collapse
Affiliation(s)
- Xiaokang Fan
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, China; School of Food and Biological Enginereing, Hefei University of Technology, Hefei 230009, China
| | - Xun Gao
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, China; School of Food and Biological Enginereing, Hefei University of Technology, Hefei 230009, China
| | - Cunliu Zhou
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, China; School of Food and Biological Enginereing, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
13
|
Xia B, Liu Y, Dong C, Shen Y, Wang C. Enhancing the usability of pea protein in emulsion applications through modification by various approaches: A comparative study. Food Res Int 2024; 188:114477. [PMID: 38823839 DOI: 10.1016/j.foodres.2024.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2024] [Revised: 03/29/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The extensive utilization in food industry of pea protein is often impeded by its low water solubility, resulting in poor functional properties. Various methods, including pH-shifting (PS), ultrasonication (US), high-pressure micro-fluidization (MF), pH-shifting combined with ultrasonication (PS-US), and pH-shifting with micro-fluidization (PS-MF), were utilized to modify pea protein isolate (PPI) in order to enhance its functionality in emulsion formulation. The physicochemical properties and structural changes of the protein were investigated by assessing solubility, particle size, surface charge, protein profile, surface hydrophobicity, free sulfhydryl groups, and secondary structure content. The extent of modification induced by each treatment method on PPI-stabilized emulsions was compared based on parameters such as adsorbed interfacial protein concentration, particle size, zeta potential, and microstructure of the prepared emulsions. All modification increased the solubility of pea protein in the sequence of PS (4-fold) < MF (7-fold) < US (11-fold) < PS-US (13-fold) < PS-MF (14-fold). For single treatments, proteins dissolved more readily under US, resulting in the most uniform emulsions with small particle. The combined processes of PS-US and PS-MF further improved solubility, decreased emulsions particle size, promoted uniformity of emulsions. PS-US-stabilized emulsions displayed more smaller droplet size, narrower size distribution, and slightly higher stability than those prepared by PS-MF. The relatively higher emulsifying capacity of PPI treated by PS-US than those by PS-MF may be attributed to its higher surface hydrophobicity.
Collapse
Affiliation(s)
- Boxue Xia
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yilin Liu
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yi Shen
- Center for Food Evaluation, State Administration for Market Regulation, Beijing 100070, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
14
|
Kamani MH, Neji C, Fitzsimons SM, Fenelon MA, Murphy EG. Unlocking the nutritional and functional potential of legume waste to produce protein ingredients. Crit Rev Food Sci Nutr 2024; 64:7311-7329. [PMID: 36876476 DOI: 10.1080/10408398.2023.2184322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/07/2023]
Abstract
Worldwide, many production supply chains generate a considerable amount of legume by-products (e.g., leaves, husks, broken seeds, defatted cakes). These wastes can be revalorized to develop sustainable protein ingredients, with positive economic and environmental effects. To separate protein from legume by-products, a broad spectrum of conventional (e.g., alkaline solubilization, isoelectric precipitation, membrane filtration) and novel methodologies (e.g., ultrasound, high-pressure homogenization, enzymatic approaches) have been studied. In this review, these techniques and their efficiency are discussed in detail. The present paper also provides an overview of the nutritional and functional characteristics of proteins extracted from legume by-products. Moreover, existing challenges and limitations associated with the valorization of by-product proteins are highlighted, and future perspectives are proposed.
Collapse
Affiliation(s)
- Mohammad Hassan Kamani
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, County Cork, Ireland
| | - Chaima Neji
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Sinead M Fitzsimons
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, County Cork, Ireland
| | - Mark A Fenelon
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, County Cork, Ireland
| | - Eoin G Murphy
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, County Cork, Ireland
| |
Collapse
|
15
|
Kheto A, Sehrawat R, Gul K, Kumar L. Effect of extraction pH on amino acids, nutritional, in-vitro protein digestibility, intermolecular interactions, and functional properties of guar germ proteins. Food Chem 2024; 444:138628. [PMID: 38320335 DOI: 10.1016/j.foodchem.2024.138628] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2023] [Revised: 01/13/2024] [Accepted: 01/28/2024] [Indexed: 02/08/2024]
Abstract
The chemical compositions, intermolecular interactions, and functional properties of guar germ proteins (GGP) were investigated at different extraction pH (7 to 11). The protein efficiency ratio, essential amino acid index (46.53), predicted biological value (39.02), nutritional index (42.67), and protein purity (91.69 %) were found to be highest at pH 9. The in-vitro protein digestibility of GGP sample was highest at pH 11. From SDS-PAGE, the band intensity (<10 kDa) became thinner with an increase in extraction pH from 7 to 9 and then thicker. Meanwhile, smallest particle size and weaker ionic and hydrogen bonds were found at pH 11. The β-sheet content was more dominating in GGP samples. Moreover, higher denaturation temperatures of GGP samples indicated that protein molecules had a compact tertiary structure. Furthermore, the GGP extracted at pH 7 showed better functional properties. The principal component analysis suggested that pH 9 was more suitable for isolating GGP.
Collapse
Affiliation(s)
- Ankan Kheto
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Rachna Sehrawat
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, India.
| | - Khalid Gul
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Lokesh Kumar
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
16
|
Lemus-Conejo A, Villanueva-Lazo A, Martin ME, Millan F, Millan-Linares MC. Sacha Inchi ( Plukenetia volubilis L.) Protein Hydrolysate as a New Ingredient of Functional Foods. Foods 2024; 13:2045. [PMID: 38998552 PMCID: PMC11241537 DOI: 10.3390/foods13132045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Sacha inchi (Plukenetia volubilis L.) is an under-exploited crop with great potential due to its nutritional and medicinal characteristics. A Sacha inchi protein isolate (SII), obtained from defatted Sacha inchi flour (SIF), was hydrolyzed by Bioprotease LA 660 under specific conditions. The hydrolysates were characterized chemically, and their digestibility and antioxidant capacity were evaluated by in vitro cell-free experiments to select the hydrolysate with major antioxidant activity. Sacha inchi protein hydrolysate at 20 min (SIH20B) was selected, and the anti-inflammatory capacity was evaluated by RT-qPCR and ELISA techniques, using two different doses in monocytes THP-1 stimulated with lipopolysaccharide (LPS). The results obtained showed that the in vitro administration of SIH20B down-regulated the TNF-α gene and reduced the release of this cytokine, whereas the anti-inflammatory cytokines IL-10 and IL-4 were up-regulated in LPS-stimulated monocytes and co-administrated with SIH20B. The peptides contained in SIH20B were identified, and the 20 more relatively abundant peptides with a mass by 1 kDa were subjected to in silico analysis to hypothesize those that could be responsible for the bioactivity reported in the hydrolysate. From the identified peptides, the peptides AAGALKKFL and LGVKFKGGL, among others, are proposed as the most biologically actives. In conclusion, SIH20B is a novel, natural source of high-value-added biopeptides that could be used as an ingredient in formulations of food or nutraceutical compounds.
Collapse
Affiliation(s)
- Ana Lemus-Conejo
- Foundation Centre for Research and Development of Functional Food-CIDAF, Avda del Conocimiento 37, 18100 Granade, Spain
| | - Alvaro Villanueva-Lazo
- Food Protein and Immunonutrition Group, Department of Food and Health, Instituto de la Grasa, CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, Km. 1, 41013 Seville, Spain
| | - Maria E Martin
- Department of Cell Biology, Faculty of Biology, University of Seville, Av. Reina Mercedes s/n, 41012 Seville, Spain
| | - Francisco Millan
- Food Protein and Immunonutrition Group, Department of Food and Health, Instituto de la Grasa, CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, Km. 1, 41013 Seville, Spain
| | - Maria C Millan-Linares
- Food Protein and Immunonutrition Group, Department of Food and Health, Instituto de la Grasa, CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, Km. 1, 41013 Seville, Spain
| |
Collapse
|
17
|
Ling JKU, Gorelik S, Subramanian GS, Sarwono AEY, Lee D, Antipina MN, Ng SB. Development and Validation of Miniaturized Assays to Assess Protein Techno-functional Properties. Curr Protoc 2024; 4:e1071. [PMID: 38896109 DOI: 10.1002/cpz1.1071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/21/2024]
Abstract
Techno-functional properties of protein isolates such as emulsification, foaming, and gelling serve as key indicators to determine their food applications. Conventional macro-volume techniques used to measure these techno-functional properties are usually time consuming, require large amounts of protein samples, and are impractical when diverse protein samples are handled at the early screening stage. To overcome these issues, we have developed scaled-down (miniaturized) assays to test techno-functional properties of protein samples. These assays are simple, efficient, and require <400 μl of protein solution. Specifically, the miniaturized emulsification and gelling assays require 25-fold less protein than conventional macro-volume techniques and the miniaturized foaming assay requires 100-fold less sample. The performance of these assays has been thoroughly validated using conventional techno-functional tests for each parameter. The protocols described herein offer high-throughput screening capabilities, accelerating the testing process for protein techno-functional properties and allowing for quick identification of samples of interest from diverse samples. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Miniaturized emulsification assay Alternate Protocol 1: Conventional macro-volume emulsification assay Basic Protocol 2: Miniaturized foaming assay Alternate Protocol 2: Conventional macro-volume foaming assay Basic Protocol 3: Miniaturized gelling assay Alternate Protocol 3: Conventional macro-volume gelling assay.
Collapse
Affiliation(s)
- Jordy Kim Ung Ling
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Republic of Singapore
| | - Sergey Gorelik
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Republic of Singapore
| | - Gomathy Sandhya Subramanian
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Republic of Singapore
| | - Albertus Eka Yudistira Sarwono
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Republic of Singapore
- Allium Biotechnology, Singapore, Republic of Singapore
| | - Daryl Lee
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Republic of Singapore
| | - Maria N Antipina
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Republic of Singapore
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Republic of Singapore
| |
Collapse
|
18
|
Thuraphan P, Suang S, Bunrod A, Kanjanakawinkul W, Chaiyana W. Potential of Bioactive Protein and Protein Hydrolysate from Apis mellifera Larvae as Cosmeceutical Active Ingredients for Anti-Skin Aging. Pharmaceuticals (Basel) 2024; 17:679. [PMID: 38931346 PMCID: PMC11206733 DOI: 10.3390/ph17060679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/29/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to extract bioactive proteins and protein hydrolysates from Apis mellifera larvae and assess their potential application in cosmetics as well as their irritation properties. The larvae were defatted and extracted using various mediums, including DI water, along with 0.5 M aqueous solutions of sodium hydroxide, ascorbic acid, citric acid, and hydrochloric acid. Subsequently, the crude proteins were hydrolyzed using the Alcalase® enzyme. All extracts underwent testing for antioxidant activities via the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and Griess assays. Anti-aging properties were evaluated in terms of anti-collagenase and anti-hyaluronidase effects. Irritation potential was assessed using the hen's egg chorioallantoic membrane (HET-CAM) test. The results revealed that the sodium hydroxide extraction showed promising outcomes in terms of yield, protein content, and effectiveness in inhibiting hyaluronidase, with the highest inhibition at 78.1 ± 1.5%, comparable to that of oleanolic acid. Conversely, crude protein extracted with ascorbic acid and its hydrolysate showed notable antioxidant and collagenase-inhibitory activities. Remarkably, their anti-collagenase effects were comparable to those of ascorbic acid and lysine. Additionally, it demonstrated safety upon testing with the CAM. In conclusion, the findings provided valuable insights into the utilization of A. mellifera larval proteins as active ingredients with a wide range of cosmeceutical applications, particularly due to their antioxidant, anti-aging, and low irritation properties, which hold significant promise for anti-skin wrinkles.
Collapse
Affiliation(s)
- Paphawarin Thuraphan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.)
| | - Suphawan Suang
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.)
| | - Anurak Bunrod
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (A.B.); (W.K.)
| | - Watchara Kanjanakawinkul
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (A.B.); (W.K.)
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.)
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
19
|
Zhang C, Wang Z, Liu Q, Chen Q, Sun F, Liu H, Kong B. Solubilization strategy of myofibrillar proteins in low-ionic media (prototype soup): The effect of high-intensity ultrasound combined with non-covalent or covalent modification of polyphenols on myosin molecular assembly. Food Chem 2024; 436:137701. [PMID: 37839118 DOI: 10.1016/j.foodchem.2023.137701] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2023] [Revised: 09/17/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
This study investigated the effect of (-)-Epigallocatechin-3-gallate (EGCG) non-covalent/covalent grafting onto myofibrillar protein (MP) by high-intensity ultrasound (HIU) on its water-solubility and filament forming behavior. The results showed that the introduction of EGCG, especially in the case of covalent grafting, could inhibit the molecular assembly of myosin and improve the MP water solubility from 2.7% to 53.1% (P < 0.05). The HIU pretreatment provided more opportunities for EGCG grafting onto the ultrasound-treated protein (UMP) by disrupting the filamentous polymerization of myosin and thus further facilitated MP dissolution. Additionally, compared with the UMP-EGCG non-covalent complexes, the covalent complexes with a yellow appearance exhibited a higher absolute zeta potential (35.9 mV) and a lower particle size (53.7 μm) (P < 0.05). Overall, the combination of HIU pretreatment and EGCG covalent modification may provide a promising method for improving the solubility and processing properties of MP in low ionic media (prototype soup).
Collapse
Affiliation(s)
- Chao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ziyi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
20
|
Lee S, Kim E, Jo M, Choi YJ. Characterization of yeast protein isolates extracted via high-pressure homogenization and pH shift: A promising protein source enriched with essential amino acids and branched-chain amino acids. J Food Sci 2024; 89:900-912. [PMID: 38193157 DOI: 10.1111/1750-3841.16918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024]
Abstract
In the global food industry, plant-based protein isolates are gaining prominence as an alternative to animal-based counterparts. However, their nutritional value often falters due to insufficient essential amino acids. To address this issue, our study introduces a sustainable protein isolate derived from yeast cells, achieved through high-pressure homogenization (HPH) and alkali pH-shifting treatment. Subjected to HPH pressures ranging from 60 to 120 MPa and 1 to 10 cycles, higher pressure and cycle numbers resulted in enhanced disruption of yeast cells. Combining HPH with alkali pH-shifting treatment significantly augmented protein extraction. Four cycles of HPH at 100 MPa yielded the optimized protein content, resulting in a yeast protein isolate (YPI) with 75.3 g protein per 100 g powder, including 30.0 g of essential amino acids and 18.4 g of branched-chain amino acids per 100 g protein. YPI exhibited superior water and oil-holding capacities compared to pea protein isolate, whey protein isolate (WPI), and soy protein isolate. Although YPI exhibited lower emulsifying ability than WPI, it excelled in stabilizing protein-stabilized emulsions. For foaming, YPI outperformed others in both foaming ability and stabilizing protein-based foam. In conclusion, YPI surpasses numerous plant-based protein alternatives in essential amino acids and branched-chain amino acids contents, positioning it as an excellent candidate for widespread utilization as a sustainable protein source in the food industry, owing to its exceptional nutritional advantages, as well as emulsifying and foaming properties. PRACTICAL APPLICATION: This study introduces a sustainable protein isolate derived from yeast cells. YPI exhibited considerable promise as a protein source. Nutritionally, YPI notably surpassed plant-based protein isolates in EAA and BCAA contents. Functionally, YPI demonstrated superior water-holding and oil-holding capacities, as well as an effective emulsion and foam stabilizer.
Collapse
Affiliation(s)
- Suyoon Lee
- Department of Agricultural Biotechnology, Seoul National University, Gwanakgu, Seoul, Republic of Korea
| | - Eunghee Kim
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju, Republic of Korea
| | - Myeongsu Jo
- Center for Food and Bioconvergence, Seoul National University, Gwanakgu, Seoul, Republic of Korea
| | - Young Jin Choi
- Department of Agricultural Biotechnology, Seoul National University, Gwanakgu, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Gwanakgu, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Gwanakgu, Seoul, Republic of Korea
| |
Collapse
|
21
|
Falsafi SR, Topuz F, Esfandiari Z, Can Karaca A, Jafari SM, Rostamabadi H. Recent trends in the application of protein electrospun fibers for loading food bioactive compounds. Food Chem X 2023; 20:100922. [PMID: 38144745 PMCID: PMC10740046 DOI: 10.1016/j.fochx.2023.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2023] [Revised: 09/09/2023] [Accepted: 10/02/2023] [Indexed: 12/26/2023] Open
Abstract
Electrospun fibers (EFs) have emerged as promising one-dimensional materials for a myriad of research/commercial applications due to their outstanding structural and physicochemical features. Polymers of either synthetic or natural precursors are applied to design EFs as carriers for bioactive compounds. For engineering food systems, it is crucial to exploit polymers characterized by non-toxicity, non-immunogenicity, biocompatibility, slow/controllable biodegradability, and structural integrity. The unique attributes of protein-based biomaterials endow a wide diversity of desirable features to EFs for meeting the requirements of advanced food/biomedical applications. In this review paper, after an overview on electrospinning, different protein materials (plant- and animal-based) as biodegradable/biocompatible building blocks for designing EFs will be highlighted. The potential application of protein-based EFs in loading bioactive compounds with the intention to inspire interests in both academia and industry will be summarized. This review concludes with a discussion of prevailing challenges in using protein EFs for the bioactive vehicle development.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Safiabad Agricultural Research and Education and Natural Resources Center, Agricultural Research, Education and Extension Organization (AREEO), Dezful P.O. Box 333, Iran
| | - Fuat Topuz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Sariyer, 34469 Istanbul, Turkey
| | - Zahra Esfandiari
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
22
|
Wang Y, Liu Q, Yang Y, Qiu C, Jiao A, Jin Z. Impact of pH on pea protein-hydroxypropyl starch hydrogel based on interpenetrating network and its application in 3D-printing. Food Res Int 2023; 170:112966. [PMID: 37316054 DOI: 10.1016/j.foodres.2023.112966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/04/2022] [Revised: 04/05/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
Improving the mechanical and 3D printing performance of pea protein (PeaP) hydrogels contributes to the development of innovative plant-based gel products. Herein, we proposed a strategy for constructing PeaP-hydroxypropyl starch (HPS) interpenetrating network hydrogels, in which the structure, strength, and 3D printing properties of the hydrogels were regulated by changing pH. Results showed that pH significantly affected the gelation process of PeaP/HPS hydrogels. The hydrogels formed a lamellar structure at pH 3, a granule aggregation network structure at pH 5, porous structures at pH 7 and 9, and a honeycomb structure at pH 11. The strength of hydrogels formed at different pH values had the following order: pH 3 >pH 11 > pH 7 >pH 9 >pH 5. The storage modulus (G') of the hydrogel at pH 3 was up to 4149 Pa, but only 695 Pa at pH 5. Moreover, hydrogel at pH 3 had the best self-recovery of 55%. 3D printed objects from gel inks at pH 3 exhibited high structural integrity and fidelity at 60 °C. Gelling force analysis indicated hydrogen bonds were the dominant interaction within all hydrogels. Overall, this study suggested that PeaP/HPS hydrogel formed at pH 3 possessed the most excellent mechanical properties and 3D printing capabilities, which may provide insights into the development of novel PeaP-based gel food ingredients and promote the application of PeaP in the food industry.
Collapse
Affiliation(s)
- Yihui Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Qing Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Yueyue Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Chao Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
23
|
Hadidi M, Hossienpour Y, Nooshkam M, Mahfouzi M, Gharagozlou M, Aliakbari FS, Aghababaei F, McClement DJ. Green leaf proteins: a sustainable source of edible plant-based proteins. Crit Rev Food Sci Nutr 2023; 64:10855-10872. [PMID: 37395603 DOI: 10.1080/10408398.2023.2229436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/04/2023]
Abstract
The rise in the global population, which is projected to reach 9.7 billion by 2050, has resulted in an increased demand for proteins in the human diet. The green leaves of many plants are an affordable, abundant, and sustainable source of proteins suitable for human consumption. This article reviews the various sources of green leaf proteins that may play an important role in alleviating global malnutrition, including those from alfalfa, amaranth, cabbage, cassava, duckweed, moringa, olive, radish, spinach, sugar beet, and tea. The structure of green leaves and the location of the proteins within these leaves are described, as well as methods for extracting and purifying these proteins. The composition, nutritional profile, and functional attributes of green leaf proteins are then discussed. The potential advantages and disadvantages of using green leaf proteins as functional food ingredients are highlighted. The importance of obtaining a better understanding of the composition and structure of different green leaves and the proteins extracted from them is highlighted. This includes an assessment of non-protein nitrogen and anti-nutritional compounds that may be present. Furthermore, the impact of isolation and purification techniques on the functionality of the plant protein ingredients obtained must be carefully evaluated.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Yasaman Hossienpour
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Maryam Mahfouzi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Maryam Gharagozlou
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Faezeh Sadat Aliakbari
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources
| | - Fatemeh Aghababaei
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO-UAB, XIA, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | |
Collapse
|
24
|
Huang X, Yan C, Xu Y, Ling M, He C, Zhou Z. High internal phase emulsions stabilized by alkaline-extracted walnut protein isolates and their application in food 3D printing. Food Res Int 2023; 169:112858. [PMID: 37254432 DOI: 10.1016/j.foodres.2023.112858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/04/2022] [Revised: 03/25/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023]
Abstract
Alkaline-extracted walnut protein isolates showed relatively poor solubility and emulsifying properties in many previous studies. However, whether they can be used as potential emulsifiers to stabilize high internal phase emulsions (HIPEs) remains unknown. Herein, walnut protein isolates were prepared by alkaline extraction from walnut kernels with or without pellicles (named PAWPI and AWPI, respectively). PAWPI conjugated with pellicle polyphenols showed improved solubility and higher antioxidant capacity than AWPI. HIPEs were fabricated via a one-step method using AWPI or PAWPI as the sole protein emulsifier. HIPEs (oil fraction of 0.8, with 0.1% β-carotene) could be stabilized by PAWPI at a relatively low concentration of 0.2% (w/v), while at least 1% (w/v) AWPI was required to effectively stabilize HIPEs. HIPEs stabilized by PAWPI had smaller oil droplet sizes than those stabilized by AWPI. Rheological analysis indicated that PAWPI-stabilized HIPEs showed higher viscosity and better viscoelasticity than AWPI-stabilized HIPEs. Large-amplitude oscillation shearing analysis suggested that PAWPI-stabilized HIPEs were stiffer but more brittle than AWPI-stabilized HIPEs. Moreover, both PAWPI- and AWPI-stabilized HIPEs exhibited good storage stability and were relatively stable against heat treatment and ionic strength. PAWPI-stabilized HIPEs showed a higher protective capacity for encapsulated β-carotene than AWPI-stabilized HIPEs. In addition, PAWPI-stabilized HIPEs showed good 3D printability and could be used as a promising edible ink.
Collapse
Affiliation(s)
- Xuan Huang
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Chunjun Yan
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yanfei Xu
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Min Ling
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Changwei He
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Zheng Zhou
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
25
|
Rahim FNA, Ibadullah WZW, Saari N, Brishti FH, Mustapha NA, Ahmad N, Arulrajah B. The effect of alkaline extraction and drying techniques on the physicochemical, structural properties and functionality of rice bran protein concentrates. Int J Biol Macromol 2023:124908. [PMID: 37217045 DOI: 10.1016/j.ijbiomac.2023.124908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2023] [Revised: 04/25/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
Rice bran protein concentrates (RBPC) were extracted using mild alkaline solvents (pH: 8, 9, 10). The physicochemical, thermal, functional, and structural aspects of freeze-drying (FD) and spray-drying (SD) were compared. FD and SD of RBPC had porous and grooved surfaces, with FD having non-collapsed plates and SD being spherical. Alkaline extraction increases FD's protein concentration and browning, whereas SD inhibits browning. According to amino acid profiling, RBPC-FD9's extraction optimizes and preserves amino acids. A tremendous particle size difference was prominent in FD, thermally stable at a minimal maximum of 92 °C. Increased pH extraction gives FD greater exposal surface hydrophobicity and positively relates to denaturation enthalpy. Mild pH extraction and drying significantly impacted solubility, improved emulsion properties, and foaming properties of RBPC as observed in acidic, neutral, and alkaline environments. RBPC-FD9 and RBPC-SD10 extracts exhibit outstanding foaming and emulsion activity in all pH conditions, respectively. Appropriate drying selection, RBPC-FD or SD potentially employed as foaming/emulsifier agent or meat analog.
Collapse
Affiliation(s)
- Farah Nadiah Abd Rahim
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Wan Zunairah Wan Ibadullah
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Fatema Hossain Brishti
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nor Afizah Mustapha
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Noorlaila Ahmad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Brisha Arulrajah
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
26
|
Song H, Zhong M, Sun Y, Yue Q, Qi B. Ultrasound-assisted alkali removal of proteins from wastewater generated during oil bodies extraction. ULTRASONICS SONOCHEMISTRY 2023; 96:106436. [PMID: 37172539 DOI: 10.1016/j.ultsonch.2023.106436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/09/2022] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
In this study, an ultrasonic-assisted alkaline method was used to remove proteins from wastewater generated during oil-body extraction, and the effects of different ultrasonic power settings (0, 150, 300, and 450 W) on protein recovery were investigated. The recoveries of the ultrasonically treated samples were higher than those of the samples without ultrasonic treatment, and the protein recoveries increased with increasing power, with a protein recovery of 50.10 % ± 0.19 % when the ultrasonic power was 450 W. Amino acid analysis showed that the amino acids comprising the recovered samples were consistent, regardless of the ultrasonic power used, but significant differences in the contents of amino acids were observed. No significant changes were observed in the protein electrophoretic profile using dodecyl polyacrylamide gel, indicating that sonication did not change the primary structures of the recovered samples. Fourier transform infrared and fluorescence spectroscopy revealed that the molecular structures of the samples changed after sonication, and the fluorescence intensity increased gradually with increasing sonication power. The contents of α-helices and random coils obtained at an ultrasonic power of 450 W decreased to 13.44 % and 14.31 %, respectively, whereas the β-sheet content generally increased. The denaturation temperatures of the proteins were determined using differential scanning calorimetry, and ultrasound treatment reduced the denaturation temperatures of the samples, which was associated with the structural and conformational changes caused by their chemical bonding. The solubility of the recovered protein increased with increasing ultrasound power, and a high solubility was essential in good emulsification. The emulsification of the samples was improved well. In conclusion, ultrasound treatment changed the structure and thus improved the functional properties of the protein.
Collapse
Affiliation(s)
- Hanyu Song
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingming Zhong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yufan Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qiang Yue
- Heilongjiang Open University, Harbin, Heilongjiang 150030, China.
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
27
|
Momen S, Aider M. Production of highly soluble and functional whey/canola proteins through complexation using alkaline electro-activation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
|
28
|
Song H, Zhong M, Sun Y, Li Y, Qi B. Recovery of proteins from soybean oil-body wastewater at various pH levels and their structural and functional characterization. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023]
|
29
|
Derkach SR, Kuchina YA, Kolotova DS, Petrova LA, Volchenko VI, Glukharev AY, Grokhovsky VA. Properties of Protein Isolates from Marine Hydrobionts Obtained by Isoelectric Solubilisation/Precipitation: Influence of Temperature and Processing Time. Int J Mol Sci 2022; 23:ijms232214221. [PMID: 36430697 PMCID: PMC9698196 DOI: 10.3390/ijms232214221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Protein isolates were obtained from marine hydrobionts by the method of isoelectric precipitation with a preliminary stage of protein alkaline solubilisation. Northern blue whiting was chosen as the raw material. Various technological modes of the solubilisation stage were used: the temperature of the reaction mixture was 4 or 20 °C, and the duration was 4 or 16 h. The yield of the product was 44-45% with a high content of the main component (protein) equal to about 95%. It has been shown that a decrease in the temperature and duration of the alkaline solubilisation stage provides the production of protein isolates with good technological properties, a low solubility, high swelling and high emulsifying ability, necessary for its use in the production of functional food products, including therapeutic and prophylactic effects. These technological properties are explained by a change in the composition and structure of the protein, the change being an increase in the content of essential amino acids and the proportion of α-helices in the polypeptide chain. The main patterns obtained will be used to obtain protein isolates from marine molluscs.
Collapse
Affiliation(s)
- Svetlana R. Derkach
- Laboratory of Chemistry and Technology of Marine Bioresources, Murmansk State Technical University, 183010 Murmansk, Russia
- Correspondence: ; Tel.: +7-815-240-3330
| | - Yuliya A. Kuchina
- Laboratory of Chemistry and Technology of Marine Bioresources, Murmansk State Technical University, 183010 Murmansk, Russia
| | - Daria S. Kolotova
- Laboratory of Chemistry and Technology of Marine Bioresources, Murmansk State Technical University, 183010 Murmansk, Russia
| | - Ludmila A. Petrova
- Department of Chemistry, Murmansk State Technical University, 183010 Murmansk, Russia
| | - Vasily I. Volchenko
- Department of Food Production Technology, Murmansk State Technical University, 183010 Murmansk, Russia
| | - Andrei Yu. Glukharev
- Laboratory of Chemistry and Technology of Marine Bioresources, Murmansk State Technical University, 183010 Murmansk, Russia
| | - Vladimir A. Grokhovsky
- Department of Food Production Technology, Murmansk State Technical University, 183010 Murmansk, Russia
| |
Collapse
|
30
|
Immonen M, Chandrakusuma A, Hokkanen S, Partanen R, Mäkelä-Salmi N, Myllärinen P. The effect of deamidation and lipids on the interfacial and foaming properties of ultrafiltered oat protein concentrates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
|
31
|
Zhang B, Li H, Li F, Zhou Q, Wu X, Wu W. Effects of rice bran phenolics on the structure of rice bran protein under different degrees of rancidity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
|
32
|
Viana L, English M. The Impact of Dehulling and Germination on the Physiochemical, Protein Solubility and Water and Oil Holding Capacities of Yellow Eye Bean (Phaseolus vulgaris L.) Protein Concentrates. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.855788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
Pulse varieties including Yellow Eye (YE) beans (Phaseolus vulgaris L.) are a rich source of protein (~26.5%) that can be utilized to create value-added protein concentrates. Pre-treatments including dehulling and germination have been shown to be effective at improving the nutritional and functional properties of extracted protein concentrates. However, the composition and functionality of these protein concentrates can vary depending on the pre-treatments and the method of extraction used (salt vs. alkaline). Furthermore, little is known about the impact of combining these different processing methods on the properties of YE bean protein concentrates. The objective of this study was to evaluate how germination and dehulling pre-treatments individually and when combined influence protein extraction efficiency, physiochemical properties (surface hydrophobicity and intrinsic fluorescence), and the functionality (solubility, oil and water holding capacities) of salt and alkaline extracted protein concentrates. Compared to the salt extracted concentrates, the alkaline protein concentrates exhibited higher protein recovery yields (16–23% vs. 43–56%) respectively. Conversely, the salt extracted protein concentrates exhibited superior functional properties as observed by improved water holding capacities and less variation in their solubilities at different pH values (4 to 10). When the pre-treatments were combined, the salt extracted concentrates exhibited improved extraction efficiencies and improved hydrophobicity and intrinsic fluorescence, whereas the opposite trend was observed in the alkaline protein concentrates. These observations were attributed to differences in the protein content and composition of the salt vs. alkaline protein concentrates. Overall, these findings suggest that dehulling and germination are potential processing methods that may be used to improve the physiochemical characteristics of salt extracted protein concentrates from yellow eye beans. Future research may investigate the potential application of these ingredients in different food formulations.
Collapse
|
33
|
Preparation and characterization of a novel antibacterial hydrogel based on thiolated ovalbumin/gelatin with silver ions. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
|
34
|
Accardo F, Leni G, Tedeschi T, Prandi B, Sforza S. Structural and chemical changes induced by temperature and pH hinder the digestibility of whey proteins. Food Chem 2022; 387:132884. [PMID: 35397269 DOI: 10.1016/j.foodchem.2022.132884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2021] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
In the food and feed industry, protein extraction is commonly performed under acid or basic conditions, combined with heat, in order to increase the extraction yield. Under severe processing conditions, proteins may undergo molecular modifications. Here, the effects of heating (30, 60, 90 °C) at different pH values (2, 7, 9, 11, 13) were evaluated on commercial whey proteins, used as a simplified protein model. The main structure and chemical modifications concerning protein aggregation, hydrolysis, insolubilization, amino acid degradation and racemization were investigated in detail. Using in vitro static models, the degree of protein hydrolysis and the released peptides were determined after the digestive process. Accumulation of molecular modifications was mostly observed after basic pH and high temperatures treatments, together with a marked decrease and modification of the digestibility profile. Instead, protein digestibility increased in neutral and acidic conditions in a temperature-dependent manner, even if some modification in the structure occurs.
Collapse
Affiliation(s)
- Francesca Accardo
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy.
| | - Giulia Leni
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy.
| | - Tullia Tedeschi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy.
| | - Barbara Prandi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy.
| | - Stefano Sforza
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy.
| |
Collapse
|
35
|
Momen S, Alavi F, Aider M. Impact of alkaline electro-activation treatment on physicochemical and functional properties of sweet whey. Food Chem 2022; 373:131428. [PMID: 34710696 DOI: 10.1016/j.foodchem.2021.131428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2021] [Revised: 10/06/2021] [Accepted: 10/17/2021] [Indexed: 12/22/2022]
Abstract
The impact of alkaline electro-activation (EA) on the protein solubility, foaming, and emulsifying characteristics of whey was investigated. EA caused protein aggregation and conjugation. At low electric current and holding time, proteins aggregation through disulfide bonds was observed, whereas increasing currents and holding times caused proteins to conjugate with sugars such as lactose, lactulose and galactose. The EA process improved the protein solubility at the pH range of 4.0-7.0. Compared to untreated whey, which produced micron-sized and unstable emulsions at pH 3, whey samples treated under 750 mA and 24-48 h holding time formed nano-sized and stable emulsions at this pH. Furthermore, although both untreated and EA-whey produced stable emulsions at pH 7, those emulsions prepared with EA-whey had smaller particle size and were more stable against droplet flocculation. EA-treated whey tended to generate foams with significantly higher overrun and stability. The present study demonstrated that EA can enhance the functionality of whey.
Collapse
Affiliation(s)
- Shima Momen
- Department of Food Sciences, Université Laval, Quebec, QC G1V 0A6, Canada; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Farhad Alavi
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, United States
| | - Mohammed Aider
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada; Department of Soil Sciences and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada.
| |
Collapse
|
36
|
Optimization of Soybean Protein Extraction Using By-Products from NaCl Electrolysis as an Application of the Industrial Symbiosis Concept. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
Defatted soybean flour is generated during the oil extraction process of soybean, and it has a protein content of ~50%. On the other hand, an alkaline solution of NaOH is produced during the electrolysis process of NaCl in a novel method used to make a potent disinfectant/antiseptic (HOCl). In the present work, we suggest using these two products to produce soy protein isolate (SPI), aiming to create an industrial symbiosis. A Box–Behnken experimental design was executed, and a surface response analysis was performed to optimize temperature, alkaline solution, and time used for SPI extraction. The SPI produced at optimal conditions was then characterized. The experimental results fit well with a second-order polynomial equation that could predict 93.15% of the variability under a combination of 70 °C, alkaline solution 3 (pH 12.68), and 44.7 min of the process. The model predicts a 49.79% extraction yield, and when tested, we obtained 48.30% within the confidence interval (46.66–52.93%). The obtained SPI was comparable in content and structure with a commercial SPI by molecular weight and molecular spectroscopy characterization. Finally, the urease activity (UA) test was negative, indicating no activity for trypsin inhibitor. Based on the functional properties, the SPI is suitable for food applications.
Collapse
|
37
|
Pilot-Scale Protein Recovery from Cold-Pressed Rapeseed Press Cake: Influence of Solids Recirculation. Processes (Basel) 2022. [DOI: 10.3390/pr10030557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
Abstract
The agricultural sector is responsible for about 30% of greenhouse gas emissions, and thus there is a need to develop new plant-based proteins with lower climate impact. Rapeseed press cake, a by-product from rapeseed oil production, contains 30% high-quality protein. The purpose of this study was to recover protein from cold-pressed rapeseed press cakes on a pilot scale using a decanter and investigate the effect of recirculation of the spent solids fraction on protein yield. Proteins were extracted under alkaline conditions (pH 10.5) followed by precipitation at pH 3.5. Recirculating the spent solids fraction once increased the accumulated protein yield from 70% to 83%. The efficiency of the recovery process was highest in the first and second cycles. The additional yield after the third and fourth cycles was only 2%. The amino acid composition showed high levels of essential amino acids and was not reduced throughout the recovery process. The glucosinolate and phytate content was reduced in the precipitate after one cycle, although additional process steps are needed to further reduce the phytate content and limit the negative effect on mineral uptake.
Collapse
|
38
|
Gong X, Hui X, Wu G, Morton JD, Brennan MA, Brennan CS. In vitro digestion characteristics of cereal protein concentrates as assessed using a pepsin-pancreatin digestion model. Food Res Int 2022; 152:110715. [PMID: 35181112 DOI: 10.1016/j.foodres.2021.110715] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2021] [Revised: 08/16/2021] [Accepted: 09/12/2021] [Indexed: 11/17/2022]
Abstract
An alkaline extraction method has been used in many studies to extract total protein from cereal samples. Wheat bran protein concentrate (WBPC), oat bran protein concentrate (OBPC), and barley protein concentrate (BPC) were prepared by alkaline extraction and isoelectric precipitation to study their functional and nutritional properties. The three protein concentrates were hydrolysed by an in vitro pepsin-pancreatin digestion model. Their digestibility (%) and degree of hydrolysis (DH%) were evaluated, and SDS-PAGE electrophoresis was used to illustrate the protein and peptides patterns. The change of the particle sizes and the release of the essential amino acids was followed during the digestion process. The in vitro digestibility of WBPC, OBPC and BPC was 87.4%, 96.1% and 76.9%, respectively. The DH% of protein concentrates were between 50 and 60%. The change of the particle size distribution values Dv(50) was assumed to be related to protein aggregations during the digestion. The protein fractions were identified and the degradation during the digestion and were analysed by SDS-PAGE; the gels of WBPC and OBPC digestion showed virtually complete degradation whereas the intensive bands of undigested protein were presented for BPC. The generation of the free amino acids and short chain peptides were significantly higher at the end of the intestinal digestion compared to the stages of before and after gastric digestion. Higher content of the deficient amino acids such as lysine and threonine were found comparing to the level of deficient amino acids in cereal grains but does not meet the daily recommended intake.
Collapse
Affiliation(s)
- Xi Gong
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Xiaodan Hui
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Gang Wu
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Margaret A Brennan
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Charles S Brennan
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; Biosciences and Food Technologies, School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| |
Collapse
|
39
|
Zhao R, Wang Y, An Y, Yang L, Sun Q, Ma J, Zheng H. Chitin-biocalcium as a novel superior composite for ciprofloxacin removal: Synergism of adsorption and flocculation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126917. [PMID: 34464865 DOI: 10.1016/j.jhazmat.2021.126917] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/03/2021] [Revised: 08/02/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The ubiquitous present antibiotics in aquatic environment is attracting increasing concern due to the dual problems of bioaccumulation toxicity and antibiotic resistance. In this study, a low-cost chitin-biocalcium (CC) composite was developed by a facile alkali activation process from shell waste for typical antibiotics ciprofloxacin (CIP) removal. Response surface methodology (RSM) was utilized to optimize synthesis methodology. The optimized CC products featured superior CIP removal capacity of 2432 mg/g at 25 °C (adsorption combined with flocculation), rapid adsorption kinetics, high removal efficiency (95.58%) and wide pH adaptability (under pH range 4.0-10.0). The functional groups in chitin and high content of biocalcium (Ca2+) endowed CC abundant active sites. The kinetic experimental data was fitted well by pseudo-second-order and intraparticle diffusion model at different concentrations, revealing the removal was controlled by chemisorption and mass transport step. From the macroscopic aspect, flocs were produced with the increase of CIP concentration during the reaction, adsorption combined with flocculation were related to the CIP removal. From the microcosmic aspect, the superior removal performance was attributed to cation bridging, cation complexation among biocalcium-CIP and hydrogen bond between functional groups of chitin and CIP.
Collapse
Affiliation(s)
- Rui Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yuxuan Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yanyan An
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Liuwei Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Qiang Sun
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
40
|
Zhao T, Sheng B, Ying X, Sanmartin C, Benjakul S, Ma L, Xiao G, Liu G. Role of lipid deterioration on the quality of aquatic products during low‐temperature storage: a lipidomics‐based study using large yellow croaker (
Larimichthys crocea
). Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tengfei Zhao
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood Collaborative Innovation Center of Seafood Deep Processing College of Food and Pharmacy Zhejiang Ocean University Zhoushan China
| | - Bulei Sheng
- Department of Food Science Aarhus University Aarhus Denmark
| | - Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood Collaborative Innovation Center of Seafood Deep Processing College of Food and Pharmacy Zhejiang Ocean University Zhoushan China
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment (DAFE) Pisa University Pisa Italy
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla Thailand
| | - Lukai Ma
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou China
- Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Guoqin Liu
- School of Food Science and Engineering South China University of Technology Guangzhou China
| |
Collapse
|
41
|
Pogorelov A, Ipatova L, Pogorelova M, Kuznetsov A, Suvorov O. Properties of serum albumin in electrolyzed water. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2022-1-117-126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Electrochemical activation of water controls the physicochemical parameters of aquatic food environment without any reagents. Electrolyzed water affects the properties of macronutrient solutions. The present research studied the effect of anodic and cathodic fractions of electrochemically activated water on protein molecules and their interaction patterns.
Study objects and methods. The study featured bovine serum albumin and its properties in electrochemically activated water with nonstandard redox and acidity values. The aqueous solution of bovine serum albumin was studied by viscometry, UV spectrometry, time-of-flight secondary ion mass spectrometry, and electrophoresis.
Results and discussion. By knowing the interaction patterns of electrochemically activated water and protein molecules, food producers can control the properties of biological raw materials. Bovine serum albumin was studied in metastable fractions of electrochemically activated water obtained in the anode or cathode chamber of an electrochemical reactor. Both fractions of electrochemically activated water appeared to modify the properties of bovine serum albumin. The oxidized fraction of electrochemically activated water (anolyte) converted the protein solution into a more homogeneous molecular composition. The solution of bovine serum albumin in the reduced fraction of electrochemically activated water (catholyte) had an abnormally negative redox potential (–800 mV). The aqueous solution of bovine serum albumin in catholyte retained its initial viscosity for a long time, and its level was lower than in the control sample. This effect was consistent with other physicochemical characteristics of the solution.
Conclusion. The research revealed some patterns that make it possible to apply reagent-free viscosity regulation to protein media in the food industry.
Collapse
Affiliation(s)
- Alexander Pogorelov
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences
| | - Larisa Ipatova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences
| | - Maria Pogorelova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences
| | - Alexander Kuznetsov
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences
| | - Oleg Suvorov
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences
| |
Collapse
|
42
|
Wu W, Jia J, Wen C, Yu C, Zhao Q, Hu J. Optimization of ultrasound assisted extraction of abalone viscera protein and its effect on the iron-chelating activity. ULTRASONICS SONOCHEMISTRY 2021; 77:105670. [PMID: 34304120 PMCID: PMC8327653 DOI: 10.1016/j.ultsonch.2021.105670] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/04/2021] [Revised: 06/07/2021] [Accepted: 07/11/2021] [Indexed: 05/08/2023]
Abstract
This study aims to investigate effects of ultrasound assisted extraction on the abalone viscera protein extraction rate and iron-chelating activity of peptides. The optimal conditions for ultrasound assisted extraction by response surface methodology was at sodium hydroxide concentration 14 g/kg, ultrasonic power 428 W and extraction time 52 min. Under the optimal conditions, protein extraction rate was 64.89%, compared with alkaline extraction of 55.67%. The iron-chelating activity of peptides affected by ultrasound technology was further evaluated by iron-chelating rate, FTIR spectroscopy and LC-HRMS/MS. Alcalase was the suitable enzyme for the preparation of iron-chelating peptides from two abalone viscera proteins, showing no significant difference between their iron-chelating rate of 16.24% (ultrasound assisted extraction) and 16.60% (alkaline extraction). Iron binding sites from the two hydrolysates include amino and carboxylate terminal groups and peptide bond of the peptide backbone as well as amino, imine and carboxylate from side chain groups. Moreover, 24 iron-chelating peptides were identified from hydrolysate (alcalase, ultrasound assisted extraction), which were different from the 27 iron-chelating peptides from hydrolysate (alcalase, alkaline extraction). This study suggests the application of ultrasound technology in the generation of abalone viscera-derived iron-chelating peptides which have the ability to combat iron deficiency.
Collapse
Affiliation(s)
- Wenfei Wu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Jiao Jia
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chengrong Wen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Cuiping Yu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Qi Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|