1
|
Liu S, Li J, Qin Y, Yang T, Guo X, Dong X, Zhu B, Tu J. High-pressure homogenization transformed salmon protein filament into micelle structure: Improvement on the stability and swallowing rheology of dysphagia-oriented salmon emulsion gels. Food Chem 2024; 468:142460. [PMID: 39700809 DOI: 10.1016/j.foodchem.2024.142460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
The aging population is stimulating increased demand for dysphagia-oriented foods, yet most current options are made of ultra-processed macronutrients and lack high-quality protein and ω-3 fatty acids. This study explores the use of whole salmon fillets as a myofibrillar protein source to stabilize salmon backbone oil, creating ω-3-rich emulsion gels (50-60 vol%) for dysphasia individuals. Two-step high-pressure homogenization (HPH; 50 MPa) improved emulsion texture, storage stability, and swallowability (IDDSI level 4) by reducing oil droplet size (from 20 to 2 μm) and increasing elastic modulus by 6-8 times and viscosity by more than 10 times. These emulsion gels, rich in PUFAs, support cardiovascular health. HPH altered the structure of salmon myofibrillar proteins, transforming from micro-sized filament (2.5 μm) to assembled nano-sized micelle aggregate (400 nm) through reducing α-helix structure, crystallization, particle size, and aggregation. The protein interfacial stiffness and stability were improved, thus exhibiting greater oil droplet stabilization. The study offers a compelling reference for applying HPH in producing dysphagia-oriented products.
Collapse
Affiliation(s)
- Shenghai Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China
| | - Jinjin Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yuxin Qin
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Tingqi Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China
| | - Xiaoming Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China
| | - Xiuping Dong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Beiwei Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Juncai Tu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Nagy K, Iacob BC, Bodoki E, Oprean R. Investigating the Thermal Stability of Omega Fatty Acid-Enriched Vegetable Oils. Foods 2024; 13:2961. [PMID: 39335890 PMCID: PMC11431109 DOI: 10.3390/foods13182961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigates the thermal stability of omega fatty acid-enriched vegetable oils, focusing on their behavior under high-temperature conditions commonly encountered during frying. This research aims to evaluate changes in fatty acid composition, particularly the degradation of essential omega-3, -6, and -9 fatty acids, and the formation of harmful compounds such as trans fatty acids (TFAs). Various commercially available vegetable oils labeled as containing omega-3, omega-6, and omega-9, including refined sunflower, high-oleic sunflower, rapeseed, and blends, were analyzed under temperatures from 180 °C to 230 °C for varying durations. The fatty acid profiles were determined using gas chromatography-mass spectrometry (GC-MS). The results indicated a significant degradation of polyunsaturated fatty acids (PUFAs) and an increase in saturated fatty acids (SFAs) and TFAs with prolonged heating. The findings highlight the varying degrees of thermal stability among different oils, with high-oleic sunflower and blended oils exhibiting greater resistance to thermal degradation compared to conventional sunflower oils. This study underscores the importance of selecting oils with favorable fatty acid compositions for high-temperature cooking to minimize adverse health effects associated with degraded oil consumption. Furthermore, it provides insights into optimizing oil blends to enhance thermal stability and maintain nutritional quality, crucial for consumer health and food industry practices.
Collapse
Affiliation(s)
- Katalin Nagy
- Analytical Chemistry Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur St., 400349 Cluj-Napoca, Romania
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur St., 400349 Cluj-Napoca, Romania
| | - Ede Bodoki
- Analytical Chemistry Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur St., 400349 Cluj-Napoca, Romania
| | - Radu Oprean
- Analytical Chemistry Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur St., 400349 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Pizzone DM, Angellotti G, Carabetta S, Di Sanzo R, Russo M, Mauriello F, Ciriminna R, Pagliaro M. The LimoFish Circular Economy Process for the Marine Bioeconomy. CHEMSUSCHEM 2024; 17:e202301826. [PMID: 38804683 DOI: 10.1002/cssc.202301826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 05/29/2024]
Abstract
The outcomes of applying the zero-waste extraction "LimoFish" process based on defatting fish processing waste with limonene to leftovers of European sardine (Sardina pilchardus) and European anchovy (Engraulis encrasicolus), compared to conventional extraction with oil-derived solvents such as n-hexane and with petroleum ether, show that the process has general applicability. Meeting the principles of green extraction and those of the marine biorefinery requiring high process efficiency, the process establishes an "innovation through integration" circular economy production route enabling the marine bioeconomy.
Collapse
Affiliation(s)
- Daniela Maria Pizzone
- Dipartimento di Ingegneria Civile, dell'Energia, dell'Ambiente e dei Materiali, Università degli Studi Mediterranea di Reggio Calabria, 89122, Reggio Calabria, Italy
| | - Giuseppe Angellotti
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146, Palermo, Italy
| | - Sonia Carabetta
- Dipartimento di Agraria, Università degli Studi Mediterranea di Reggio Calabria, 89122, Reggio Calabria, Italy
| | - Rosa Di Sanzo
- Dipartimento di Agraria, Università degli Studi Mediterranea di Reggio Calabria, 89122, Reggio Calabria, Italy
| | - Mariateresa Russo
- Dipartimento di Agraria, Università degli Studi Mediterranea di Reggio Calabria, 89122, Reggio Calabria, Italy
| | - Francesco Mauriello
- Dipartimento di Ingegneria Civile, dell'Energia, dell'Ambiente e dei Materiali, Università degli Studi Mediterranea di Reggio Calabria, 89122, Reggio Calabria, Italy
| | - Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146, Palermo, Italy
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146, Palermo, Italy
| |
Collapse
|
4
|
Su D, Wang X, Liu X, Miao J, Zhang Z, Zhang Y, Zhao L, Yu Y, Leng K, Yu Y. A comprehensive study of the colloidal properties, biocompatibility, and synergistic antioxidant actions of Antarctic krill phospholipids. Food Chem 2024; 451:139469. [PMID: 38703727 DOI: 10.1016/j.foodchem.2024.139469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Excipient selection is crucial to address the oxidation and solubility challenges of bioactive substances, impacting their safety and efficacy. AKPL, a novel ω-3 polyunsaturated fatty acids (PUFAs) esterified phospholipid derived from Antarctic krill, demonstrates unique antioxidant capabilities and synergistic effects. It exhibits pronounced surface activity and electronegativity at physiological pH, as evidenced by a critical micelle concentration (CMC) of 0.15 g/L and ζ-potential of -49.9 mV. In aqueous environments, AKPL self-assembles into liposomal structures, offering high biocompatibility and promoting cell proliferation. Its polyunsaturated bond-rich structure provides additional oxidation sites, imparting antioxidant properties superior to other phospholipids like DSPC and DOPC. Additionally, AKPL augments the efficacy of lipophilic antioxidants, such as alpha-tocopherol and curcumin, in aqueous media through both intermolecular and intramolecular interactions. In sum, AKPL emerges as an innovative unsaturated phospholipid, offering new strategies for encapsulating and delivering oxygen-sensitive agents.
Collapse
Affiliation(s)
- Dong Su
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR China
| | - Xixi Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR China
| | - Xiaofang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR China
| | - Junkui Miao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR China
| | - Zipeng Zhang
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yating Zhang
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ling Zhao
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuan Yu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR China
| | - Kailiang Leng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No.1 Wenhai Road, Qingdao 266200, China.
| | - Yueqin Yu
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
5
|
Palmina N, Kononikhin A, Chagovets V, Tokareva A, Antipova A, Martirosova E, Semenova M. Dietary liposomal complexes change the fatty acid composition of hepatic bioactive phospholipids in F1(C57blxDBA2\6) mice, as shown by a lipidomic approach. Biomater Sci 2024; 12:3956-3969. [PMID: 38975900 DOI: 10.1039/d4bm00431k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Essential polyunsaturated fatty acids (PUFAs) of the n-3 and n-6 classes are crucial for maintaining many physiological functions of the human body. It has previously been suggested that the beneficial effects of n-3 PUFAs are mediated by the action of bioactive lipid components, although it remains unclear which specific lipids are metabolically active. The aim of this study was to assess the impact of various liposomal diets on the content and ratio of liver phospholipids, containing n-3 and n-6 PUFAs, in F1 (C57blxDBA2\6) mice. Lipidomic analysis using chromatography-mass spectrometry was employed to investigate changes in the fatty acid profile of liver phospholipids in six groups of mice. These mice were fed liposomal complexes of different compositions in drinks replacing water for a long-term diet (3 months). Two additional groups of mice, aged 2 and 5 months, were used as control groups. The six liposomal complexes included different combinations of phosphatidylcholine (PC), a natural antioxidant (clove bud essential oil (CEO)), fish oil (FO), and sodium caseinate (SC). The consumption of the PC-CEO-FO-SC liposomal complex significantly increased the amount of liver phospholipids containing n-3 docosahexaenoic acid, including phosphatidylcholines, phosphatidylethanolamines (PE), phosphatidylserines (PS), and lysophosphatidylcholine (LPC). This increase was accompanied by a marked decrease in the amount of phospholipids containing n-6 arachidonic acid. As a result, the weight ratio of phospholipids containing n-6 PUFAs to those containing n-3 PUFAs decreased significantly, especially for PC and PE subclasses. Therefore, the PC-CEO-FO-SC liposomal complex has the potential to enhance resistance to inflammation and reduce the risk of non-communicable diseases.
Collapse
Affiliation(s)
- Nadezhda Palmina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences 119334 Moscow, Russian Federation.
| | - Alexey Kononikhin
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences 119334 Moscow, Russian Federation.
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Healthcare of Russian Federation, 117198 Moscow, Russian Federation
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russian Federation
| | - Vitaliy Chagovets
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Healthcare of Russian Federation, 117198 Moscow, Russian Federation
| | - Alisa Tokareva
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Healthcare of Russian Federation, 117198 Moscow, Russian Federation
| | - Anna Antipova
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences 119334 Moscow, Russian Federation.
| | - Elena Martirosova
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences 119334 Moscow, Russian Federation.
| | - Maria Semenova
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences 119334 Moscow, Russian Federation.
| |
Collapse
|
6
|
Huang H, Wang Q, Tan J, Zeng C, Wang J, Huang J, Hu Y, Wu Q, Wu X, Liu C, Ye X, Fan Y, Sun W, Guo Z, Peng L, Zou L, Xiang D, Song Y, Zheng X, Wan Y. Quinoa greens as a novel plant food: a review of its nutritional composition, functional activities, and food applications. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38993144 DOI: 10.1080/10408398.2024.2370483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Quinoa (Chenopodium quinoa Willd) is widely regarded as a versatile pseudo-cereal native to the Andes Mountains in South America. It has gained global recognition as a superfood due to its rich nutritional profile. While quinoa grains are well-known, there is an undiscovered potential in quinoa greens, such as sprouts, leaves, and microgreens. These verdant parts of quinoa are rich in a diverse array of essential nutrients and bioactive compounds, including proteins, amino acids, bioactive proteins, peptides, polyphenols, and flavonoids. They have powerful antioxidant properties, combat cancer, and help prevent diabetes. Quinoa greens offer comparable or even superior benefits when compared to other sprouts and leafy greens, yet they have not gained widespread recognition. Limited research exists on the nutritional composition and biological activities of quinoa greens, underscoring the necessity for thorough systematic reviews in this field. This review paper aims to highlight the nutritional value, bioactivity, and health potential of quinoa greens, as well as explore their possibilities within the food sector. The goal is to generate interest within the research community and promote further exploration and wider utilization of quinoa greens in diets. This focus may lead to new opportunities for enhancing health and well-being through innovative dietary approaches.
Collapse
Affiliation(s)
- Huange Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qiang Wang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jianxin Tan
- Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lasa, China
| | - Chunxiang Zeng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Junying Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenjun Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhanbin Guo
- College of Agronomy, Inner Mongolia Agricultural University, Inner Mongolia, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Song
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaoqin Zheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
7
|
Białowąs W, Blicharska E, Drabik K. Biofortification of Plant- and Animal-Based Foods in Limiting the Problem of Microelement Deficiencies-A Narrative Review. Nutrients 2024; 16:1481. [PMID: 38794719 PMCID: PMC11124325 DOI: 10.3390/nu16101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
With a burgeoning global population, meeting the demand for increased food production presents challenges, particularly concerning mineral deficiencies in diets. Micronutrient shortages like iron, iodine, zinc, selenium, and magnesium carry severe health implications, especially in developing nations. Biofortification of plants and plant products emerges as a promising remedy to enhance micronutrient levels in food. Utilizing agronomic biofortification, conventional plant breeding, and genetic engineering yields raw materials with heightened micronutrient contents and improved bioavailability. A similar strategy extends to animal-derived foods by fortifying eggs, meat, and dairy products with micronutrients. Employing "dual" biofortification, utilizing previously enriched plant materials as a micronutrient source for livestock, proves an innovative solution. Amid biofortification research, conducting in vitro and in vivo experiments is essential to assess the bioactivity of micronutrients from enriched materials, emphasizing digestibility, bioavailability, and safety. Mineral deficiencies in human diets present a significant health challenge. Biofortification of plants and animal products emerges as a promising approach to alleviate micronutrient deficiencies, necessitating further research into the utilization of biofortified raw materials in the human diet, with a focus on bioavailability, digestibility, and safety.
Collapse
Affiliation(s)
- Wojciech Białowąs
- Faculty of Medicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Eliza Blicharska
- Department of Pathobiochemistry and Interdyscyplinary Applications of Ion Chromatography, Faculty of Biomedicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Kamil Drabik
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
8
|
Cabrita ARJ, Maia MRG, Alves AP, Aires T, Rosa A, Almeida A, Martins R, Fonseca AJM. Protein hydrolysate and oil from fish waste reveal potential as dog food ingredients. Front Vet Sci 2024; 11:1372023. [PMID: 38711535 PMCID: PMC11071340 DOI: 10.3389/fvets.2024.1372023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
The increased fish consumption by the growing human population in the world translates into an increase in fish waste. The reintroduction of these fish by-products into food and feed chains presents economic benefits and contributes to counteracting their negative environmental impact. Under this context, the present study aimed to evaluate the effects of the dietary inclusion of fish hydrolysate and oil obtained from fish waste (experimental diet) in substitution of shrimp hydrolysate and salmon oil (control diet) mainly imported from third countries on palatability, apparent total tract digestibility, fecal characteristics and metabolites, blood fatty acid profile, flatulence, and coat quality of adult dogs. A two-bowl test was performed to evaluate palatability by the pairwise comparison between the two diets. A feeding trial was conducted according to a crossover design with two diets (control and experimental diets), six adult Beagle dogs per diet, and two periods of 6 weeks each. The replacement of shrimp hydrolysate and salmon oil with fish hydrolysate and oil did not affect the first diet approach and taste, as well as the intake ratio. Generally, the digestibility of dry matter, nutrients, and energy was not affected by diet, but the intake of digestible crude protein (CP) and ether extract was higher, respectively, with the control and the experimental diet. The higher intake of eicosapentaenoic acid and docosahexaenoic acid with the experimental diet was reflected in a higher content of these long-chain polyunsaturated fatty acids and the omega-3 index of red blood cells, but it did not affect coat quality. The significantly higher intake of digestible CP with the control diet might have contributed to the higher fecal ammonia-N and valerate concentrations. Daily fecal output and characteristics were similar between diets. Overall, results suggest that fish hydrolysate and oil from the agrifood industry might constitute sustainable functional ingredients for dog feeding while adding value for wild fisheries, aquaculture, and fish farming under a circular economy approach and reducing dependence on imports from third countries with a high carbon footprint.
Collapse
Affiliation(s)
- Ana R. J. Cabrita
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Margarida R. G. Maia
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Ana P. Alves
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Tiago Aires
- SORGAL, Sociedade de Óleos e Rações, S.A., Lugar da Pardala, S. João Ovar, Portugal
| | - Ana Rosa
- SEBOL, Comércio e Indústria de Sebo, S.A., Santo Antão do Tojal, Portugal
| | - André Almeida
- Indústria Transformadora de Subprodutos, S.A., Herdade da Palmeira—Olheiros do Meio—São José da Lamarosa Agolada Coruche, Coruche, Portugal
| | - Rui Martins
- Indústria Transformadora de Subprodutos, S.A., Herdade da Palmeira—Olheiros do Meio—São José da Lamarosa Agolada Coruche, Coruche, Portugal
| | - António J. M. Fonseca
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Otto JR, Mwangi FW, Pewan SB, Adegboye OA, Malau-Aduli AEO. Muscle biopsy long-chain omega-3 polyunsaturated fatty acid compositions, IMF and FMP in Australian pasture-based Bowen Genetics Forest Pastoral Angus, Hereford, and Wagyu Beef Cattle. BMC Vet Res 2024; 20:95. [PMID: 38461255 PMCID: PMC10924329 DOI: 10.1186/s12917-024-03906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/02/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND We investigated breed and gender variations in the compositions of long-chain (≥ C20) omega-3 polyunsaturated fatty acids (LC omega-3 PUFA), fat melting point (FMP) and intramuscular fat (IMF) contents in biopsy samples of the M. longissimus dorsi muscle of grazing beef cattle. The hypothesis that biopsy compositions of health-beneficial LC omega-3 PUFA, FMP and IMF in a pasture-based production system will vary with breed, was tested. Muscle biopsies were taken from 127 yearling pasture-based Angus, Hereford, and Wagyu heifers and young bulls exclusive to the Australian Bowen Genetics Forest Pastoral breeding stud averaging 12 ± 2.43 months of age and under the same management routine. RESULTS Breed had a significant influence on IMF, FMP, and the compositions of oleic acid, α-linolenic acid (ALA), eicosapentaenoic (EPA), docosahexaenoic (DHA), docosapentaenoic (DPA), and total EPA + DHA + DPA in the M. longissimus dorsi muscle biopsies (P ≤ 0.03). The Wagyu breed had the highest (11.1%) and Hereford the lowest (5.9%) IMF (P = 0.03). The reverse trend was observed in FMP values where the Hereford breed had the highest (55 °C), Angus intermediate (46.5 °C), and Wagyu the lowest (33 °C) FMP. The Wagyu and Angus breeds had similar oleic fatty acid (18:1n-9) content, while the Hereford breed had the lowest (P < 0.01). The highest ALA, DPA, total EPA + DHA, total EPA + DHA + DPA and total ALA + EPA + DHA + DPA contents were detected in the Wagyu breed (P ≤ 0.03). The Hereford had similar EPA and DPA contents to the Angus (P ≥ 0.46). Total EPA + DHA + DPA contents in Wagyu, Angus, and Hereford were 28.8, 21.5, and 22.1 mg/100g tissue (P = 0.01), respectively. Sex was an important source of variation that influenced LC omega-3 PUFA composition, FMP and IMF, where yearling heifers had higher IMF (11.9% vs 5.3%), lower FMP (33°C vs 37°C), and higher LC omega-3 PUFA than bulls. CONCLUSION All the results taken together indicate that the Wagyu breed at 28.8 mg/100g tissue, was the closest to meeting the Australia and New Zealand recommended source level threshold of 30 mg/100g tissue of health-beneficial ≥ C20 omega-3 FA content. Since gender was a significant determinant of LC omega-3 PUFA composition, IMF content and FMP, it should be factored into enhancement strategies of healthy meat eating quality traits in grazing cattle. These findings also suggest that the Bowen Genetics Forest Pastoral beef cattle studs are important sources of LC omega-3 PUFA that can be used to cover the deficit in these health claimable fatty acids in Western diets.
Collapse
Affiliation(s)
- John Roger Otto
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Felista Waithira Mwangi
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Shedrach Benjamin Pewan
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
- National Veterinary Research Institute, Private Mail Bag 01 Vom, Jos, Plateau State, Nigeria
| | | | - Aduli Enoch Othniel Malau-Aduli
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
10
|
Semenova MG, Antipova AS, Martirosova EI, Palmina NP, Zelikina DV, Chebotarev SA, Bogdanova NG, Anokhina MS, Kasparov VV. Key structural factors and intermolecular interactions underlying the formation, functional properties and behaviour in the gastrointestinal tract in vitro of the liposomal form of nutraceuticals coated with whey proteins and chitosan. Food Funct 2024; 15:2008-2021. [PMID: 38289251 DOI: 10.1039/d3fo04285e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The aim of this study was to gain a better understanding of the key structural factors and intermolecular interactions underlying the formation, functionality, and in vitro gastrointestinal behaviour of the liposomal form of nutraceuticals coated with whey proteins (WPI) and chitosan (CHIT). Phosphatidylcholine (PC) liposomes were used to encapsulate a combination of hydrophobic and hydrophilic nutraceuticals. The hydrophobic constituents were long-chain (LC) n-3 PUFAs (DHA and EPA) from fish oil (FO), vitamin D3, and clove essential oil (CEO), while the hydrophilic component was γ-aminobutyric acid (GABA). A combination of physicochemical methods was used to achieve this goal, including electron paramagnetic resonance spectroscopy (EPRS), laser light scattering in dynamic, static, and electrophoretic modes, transmission electron microscopy, spectrophotometry and tensiometry. The efficiency of encapsulating the nutraceuticals in PC liposomes simultaneously was as follows: 100 ± 1% for both FO triglycerides and CEO, 82 ± 2% for vitamin D3, and 50 ± 1% for GABA. According to EPRS data, encapsulating LC PUFA reduced microviscosity at a depth of 20 Å in the PC bilayer. The co-encapsulation of other nutraceuticals in PC liposomes at selected concentrations did not alter this effect. The upper part (8 Å) of PC liposome bilayers showed an increase in rigidity parameter S, indicating the presence of D3, CEO, and partially GABA. The liposome layer-by-layer encapsulation efficiency (EE%) was achieved by using WPI to form the binary complex [WPI-(PC-FO-D3-GABA-CEO)] (EE = 50% at pH 7.0 and I = 0.001 M), followed by coating with chitosan to form the ternary complex [WPI-(PC-FO-D3-GABA-CEO)]-CHIT (EE = 80% at pH 5.1 and I = 0.001 M). The biopolymer-coated liposomes displayed high water solubility owing to their submicron sizes, thermodynamic affinity for the aqueous medium, and 20 mV ζ-potential values. The chitosan shell regulated the release of liposomes from the ternary complex during in vitro gastrointestinal digestion. In the stomach, the hydrolysis of chitosan by pepsin resulted in a 40% release of liposomes. In the small intestine, chitosan was separated from the WPI-liposome core, facilitatig its hydrolysis and resulting in a 60% release of liposomes. The bioavailability of nutraceuticals encapsulated in PC liposomes in the small intestine may be enhanced by the interactions of both non-hydrolysed and hydrolysed liposomes with bile salts and mucin.
Collapse
Affiliation(s)
- Maria G Semenova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Russian Federation.
| | - Anna S Antipova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Russian Federation.
| | - Elena I Martirosova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Russian Federation.
| | - Nadezhda P Palmina
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Russian Federation.
| | - Daria V Zelikina
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Russian Federation.
| | - Sergey A Chebotarev
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Russian Federation.
| | - Natalya G Bogdanova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Russian Federation.
| | - Maria S Anokhina
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Russian Federation.
| | - Valery V Kasparov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Russian Federation.
| |
Collapse
|
11
|
Gómez MJR, Magro PC, Blázquez MR, Maestro-Gaitán I, Iñiguez FMS, Sobrado VC, Prieto JM. Nutritional composition of quinoa leafy greens: An underutilized plant-based food with the potential of contributing to current dietary trends. Food Res Int 2024; 178:113862. [PMID: 38309894 DOI: 10.1016/j.foodres.2023.113862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 02/05/2024]
Abstract
Quinoa (Chenopodium quinoa Willd.) leafy greens (QLGs) are plant-based foods of high nutritional value that have been scarcely studied. In this work, the nutritional and functional composition of three QLGs varieties was evaluated. A protein content higher than 35 g 100 g-1 dw with a well-balanced essential amino acid composition was found making them a good source of vegetable protein. In addition, elevated contents of dietary fibre and minerals, higher than those detected in quinoa seeds and other leafy vegetables, were found. The lipid profile showed higher contents of linoleic (C18:2, ω6) (20.2 %) and linolenic acids (C18:3, ω3) (52.8 %) with low ω6/ ω3 ratios (∼0.4/1). A total sugar content <1 g 100 g-1 dw was found for all varieties tested, lower than that obtained in seeds. The saponin content varied between 0.76 and 0.87 %. Also, high values of total phenolic compounds (969.8-1195.4 mg gallic acid 100 g-1), mainly hydroxycinnamic acids and flavonoids, and great antioxidant activities (7.64-8.90 g Trolox kg-1) were found. Multivariate analysis here used allowed us to classify the samples according to the quinoa variety evaluated, and the sequential stepwise multiple regression applied revealed that the PUFA and sucrose contents negatively influenced the protein content while the palmitic acid content affected positively this parameter. Overall, this study shows that QLGs are promising nutritious and functional plant-based foods supporting the necessity of promoting their cultivation, commercialization, and consumption.
Collapse
Affiliation(s)
- M José Rodríguez Gómez
- Área de Vegetales, Instituto Tecnológico Agroalimentario de Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura, Avenida Adolfo Suárez, s/n, 06007 Badajoz, Spain.
| | - Patricia Calvo Magro
- Área de Vegetales, Instituto Tecnológico Agroalimentario de Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura, Avenida Adolfo Suárez, s/n, 06007 Badajoz, Spain
| | - María Reguera Blázquez
- Departamento de Biología, Campus de Cantoblanco, c/Darwin 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Isaac Maestro-Gaitán
- Departamento de Biología, Campus de Cantoblanco, c/Darwin 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - F M Sánchez Iñiguez
- Área de Vegetales, Instituto Tecnológico Agroalimentario de Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura, Avenida Adolfo Suárez, s/n, 06007 Badajoz, Spain
| | - Verónica Cruz Sobrado
- Centro de Investigación Finca La Orden-Valdesequera, Centro de Investigaciones Científicas y Tecnológicas de Extremadura, Autovía Madrid-Lisboa s/n, 06187 Badajoz, Spain
| | - Javier Matías Prieto
- Centro de Investigación Finca La Orden-Valdesequera, Centro de Investigaciones Científicas y Tecnológicas de Extremadura, Autovía Madrid-Lisboa s/n, 06187 Badajoz, Spain
| |
Collapse
|
12
|
Magro PC, Maestro-Gaitán I, Blázquez MR, Prieto JM, Iñiguez FMS, Sobrado VC, Gómez MJR. Determination of nutritional signatures of vegetable snacks formulated with quinoa, amaranth, or wheat flour. Food Chem 2024; 433:137370. [PMID: 37688824 DOI: 10.1016/j.foodchem.2023.137370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
Consumers demand food products that can impact positively health. Those made from quinoa or amaranth flours could meet these expectations. Thus, the main goal of this work was to evaluate the nutritional composition of easy-to-eat snacks combining red pepper, carrot, or zucchini with quinoa or amaranth flours, well-recognized superfoods. In addition, these were compared with snacks incorporating wheat flour, a widely used conventional cereal. The results showed higher protein content in quinoa or amaranth snacks. The snacks with quinoa showed lower saturated fatty acid contents and the highest contents of unsaturated fatty acids. Furthermore, the discriminant model obtained could be used as a powerful predictive model to classify the samples according to the vegetable and flours used. Besides, the canonical discriminant analysis showed that the most influential grouping variable was the flour rather than the vegetable.
Collapse
Affiliation(s)
- Patricia Calvo Magro
- Área de Vegetales. Instituto Tecnológico Agroalimentario de Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Avda. Adolfo Suárez, s/n, 06007 Badajoz, Spain
| | - Isaac Maestro-Gaitán
- Departamento de Biología, Campus de Cantoblanco, c/Darwin 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María Reguera Blázquez
- Departamento de Biología, Campus de Cantoblanco, c/Darwin 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Javier Matías Prieto
- Centro de Investigación Finca La Orden-Valdesequera, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Autovía Madrid-Lisboa s/n, 06187 Badajoz, Spain
| | - Francisco Manuel Sánchez Iñiguez
- Área de Vegetales. Instituto Tecnológico Agroalimentario de Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Avda. Adolfo Suárez, s/n, 06007 Badajoz, Spain
| | - Verónica Cruz Sobrado
- Centro de Investigación Finca La Orden-Valdesequera, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Autovía Madrid-Lisboa s/n, 06187 Badajoz, Spain
| | - María José Rodríguez Gómez
- Área de Vegetales. Instituto Tecnológico Agroalimentario de Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Avda. Adolfo Suárez, s/n, 06007 Badajoz, Spain.
| |
Collapse
|
13
|
Monteiro JP, Domingues MR, Calado R. Marine Animal Co-Products-How Improving Their Use as Rich Sources of Health-Promoting Lipids Can Foster Sustainability. Mar Drugs 2024; 22:73. [PMID: 38393044 PMCID: PMC10890326 DOI: 10.3390/md22020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Marine lipids are recognized for their-health promoting features, mainly for being the primary sources of omega-3 fatty acids, and are therefore critical for human nutrition in an age when the global supply for these nutrients is experiencing an unprecedent pressure due to an ever-increasing demand. The seafood industry originates a considerable yield of co-products worldwide that, while already explored for other purposes, remain mostly undervalued as sustainable sources of healthy lipids, often being explored for low-value oil production. These co-products are especially appealing as lipid sources since, besides the well-known nutritional upside of marine animal fat, which is particularly rich in omega-3 polyunsaturated fatty acids, they also have interesting bioactive properties, which may garner them further interest, not only as food, but also for other high-end applications. Besides the added value that these co-products may represent as valuable lipid sources, there is also the obvious ecological upside of reducing seafood industry waste. In this sense, repurposing these bioresources will contribute to a more sustainable use of marine animal food, reducing the strain on already heavily depleted seafood stocks. Therefore, untapping the potential of marine animal co-products as valuable lipid sources aligns with both health and environmental goals by guaranteeing additional sources of healthy lipids and promoting more eco-conscious practices.
Collapse
Affiliation(s)
- João Pedro Monteiro
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M. Rosário Domingues
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE, CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
14
|
Anand V, Ksh V, Kar A, Varghese E, Vasudev S, Kaur C. Encapsulation efficiency and fatty acid analysis of chia seed oil microencapsulated by freeze-drying using combinations of wall material. Food Chem 2024; 430:136960. [PMID: 37531916 DOI: 10.1016/j.foodchem.2023.136960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
Chia seed oil (CSO) was encapsulated using whey protein concentrate (WPC) and modified tapioca starch (MTS) through freeze-drying. A central composite design was used to evaluate the effect of independent variables (MTS:WPC ratio, homogenization pressure, and oil content). Encapsulation efficiency (EE) and α-linolenic acid content (ALA) were evaluated for all runs. The results showed that higher MTS ratios led to maximum ALA retention, while higher WPC ratios led to maximum EE. The optimized conditions resulted in high EE (97 %), ALA content (59.54 %), and a Ω-3:Ω-6 ratio (3.34). The fatty acid composition, oxidative and thermal stability showed that the MTS:WPC ratio of 25:75 was the best combination for encapsulating CSO. The encapsulated CSO with a balanced Ω-3:Ω-6 ratio can be used as a functional ingredient in foods for health benefits.
Collapse
Affiliation(s)
- Vishnu Anand
- Division of Food Science & Post Harvest Technology, ICAR-IARI, New Delhi 110012, India
| | - Vikono Ksh
- Division of Food Science & Post Harvest Technology, ICAR-IARI, New Delhi 110012, India
| | - Abhijit Kar
- ICAR - National Institute of Secondary Agriculture, Namkum, Ranchi 834010, India.
| | - Eldho Varghese
- Fishery Resources Assessment Division (FRAD), ICAR-Central Marine Fisheries Research Institute, Kochi 682018, India
| | - Sujata Vasudev
- Division of Genetics, ICAR-IARI, New Delhi 110012, India
| | - Charanjit Kaur
- Division of Food Science & Post Harvest Technology, ICAR-IARI, New Delhi 110012, India.
| |
Collapse
|
15
|
Naeem S, Ali L, Jaffar N, Khan SS, Shafiq Y, Suri S, Tahir A. Shark fish oil prevents scopolamine-induced memory impairment in an experimental model. Metab Brain Dis 2024; 39:15-27. [PMID: 38008885 DOI: 10.1007/s11011-023-01320-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023]
Abstract
Fish oil has been known for its antioxidant, cardioprotective, anti-inflammatory, and neuroprotective characteristics due to the presence of polyunsaturated fatty acids (PUFAs) that are essential for optimal brain function and mental health. The present study investigated the effect of Carcharhinus Bleekeri (Shark Fish) oil on learning and memory functions in scopolamine-induced amnesia in rats. Locomotor and memory-enhancing activity in scopolamine-induced amnesic rats was investigated by assessing the open field and passive avoidance paradigm. Forty male Albino mice were divided into 4 equal groups (n = 10) as bellow: 1 - control (received 0.9% saline), 2 - SCOP (received scopolamine 2 mg/kg for 21 days), 3 - SCOP + SFO (received scopolamine and fish oil 5 mg/kg/ day for 21 days), 4 - SCOP + Donepezil groups (received 3 mg/kg/day for 21 days). SFO produced significant (P < 0.01) locomotor and memory-enhancing activities in open-field and passive avoidance paradigm models. Additionally, SFO restored the Acetylcholine (ACh) concentration in the hippocampus (p < 0.05) and remarkably prevented the degradation of monoamines. Histology of brain tissue showed marked cellular distortion in the scopolamine-treated group, while the SFO treatment restored distortion in the brain's hippocampus region. These results suggest that the SFO significantly ameliorates scopolamine-induced spatial memory impairment by attenuating the ACh and monoamine concentrations in the rat's hippocampus.
Collapse
Affiliation(s)
- Sadaf Naeem
- Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi, Pakistan.
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, Karachi, Pakistan.
| | - Liaquat Ali
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, Karachi, Pakistan
| | - Nazish Jaffar
- Department of Pathology, Sindh Medical College, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Saira Saeed Khan
- Department of Pharmacology, Faculty of Pharmacy, University of Karachi, Karachi, Pakistan
| | - Yousra Shafiq
- Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Sadia Suri
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Anosh Tahir
- Dow Institute of Medical Technology, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
16
|
Lakshimi VI, Kavitha M. New Insights into Prospective Health Potential of ω-3 PUFAs. Curr Nutr Rep 2023; 12:813-829. [PMID: 37996669 DOI: 10.1007/s13668-023-00508-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE OF REVIEW Docosahexaenoic acid and eicosapentaenoic acid are the two essential long-chain ω-3 polyunsaturated fatty acids (ω-3 PUFAs) promoting human health which are obtained from diet or supplementation. The eicosanoids derived from ω-6 and ω-3 PUFAs have opposite characteristics of pro- and anti-inflammatory activities. The proinflammatory effects of ω-6 PUFAs are behind the pathology of the adverse health conditions of PUFA metabolism like cardiovascular diseases, neurological disorders, and inflammatory diseases. A balanced ω-6 to ω-3 ratio of 1-4:1 is critical to prevent the associated disorders. But due to modern agricultural practices, there is a disastrous shift in this ratio to 10-20:1. This review primarily aims to discuss the myriad health potentials of ω-3 PUFAs uncovered through recent research. It further manifests the importance of maintaining a balanced ω-6 to ω-3 PUFA ratio. RECENT FINDINGS ω-3 PUFAs exhibit protective effects against diabetes mellitus-associated complications including diabetic retinopathy, diabetic nephropathy, and proteinuria. COVID-19 is also not an exception to the health benefits of ω-3 PUFAs. Supplementation of ω-3 PUFAs improved the respiratory and clinical symptoms in COVID-19 patients. ω-3 PUFAs exhibit a variety of health benefits including anti-inflammatory property and antimicrobial property and are effective in protecting against various health conditions like atherosclerosis, cardiovascular diseases, diabetes mellitus, COVID-19, and neurological disorders. In the present review, various health potentials of ω-3 PUFAs are extensively reviewed and summarized. Further, the importance of a balanced ω-6 to ω-3 PUFA ratio has been emphasized besides stating the diverse sources of ω-3 PUFA.
Collapse
Affiliation(s)
- V Iswareya Lakshimi
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - M Kavitha
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
17
|
Han D, Deng S, Wang H, Huang F, Fauconnier ML, Li H, Zheng J, Meng L, Zhang C, Li X. Lipid oxidation and flavor changes in saturated and unsaturated fat fractions from chicken fat during a thermal process. Food Funct 2023; 14:6554-6569. [PMID: 37382231 DOI: 10.1039/d3fo01061a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Chicken fat, due to its rich fatty acids (FAs), is more prone to lipid oxidation and the production of volatile compounds. The aim of the present study was to investigate the oxidative characteristics and flavor changes of saturated (SFF) and unsaturated fat fractions (USFF) from chicken fat induced by heating (140 °C at 70 rpm min-1 for 1 h and 2 h: SFF1, USFF1, SFF2 and USFF2). The FAs and volatile compounds were analyzed by gas chromatography-mass spectrometry (GC-MS) and two-dimensional gas chromatography time of flight mass spectrometry (GC × GC-ToFMS), respectively. The results showed that higher contents of unsaturated fatty acids (UFAs) were found in USFF compared to that in SFF, whereas USFF showed lower levels of saturated fatty acids (SFAs). With the extension of heating time, the SFA/UFA ratio in USFF and SFF significantly increased (p < 0.05), and more aldehydes, alcohols, ketones, and lactones were formed. Moreover, the odor activity values of 23 important compounds in USFF1-2 were significantly higher (p < 0.05) than those in SFF1-2. As revealed by principal component analysis (PCA) and cluster analysis (CA), it was obviously observed that all samples were divided into four clusters (USFF-SFF, USFF1-SFF1, USFF2, and SFF2). According to correlation analysis between FAs and volatile compounds, C18:2 ω6, C18:3 ω6 and C18:3 ω3 were significantly associated with dodecanal, (Z)-3-hexenal, (E)-2-decenal, 2-undecenal, (E)-2-dodecenal, (E,E)-2,4-nonadienal, (E,E)-2,4-decadienal, 2-decanone, γ-octalactone and γ-nonalactone. Our data elucidated that fat fractions from chicken fat with varying degrees of saturation could impart different flavor characteristics during a thermal process.
Collapse
Affiliation(s)
- Dong Han
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Siyang Deng
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Hang Wang
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Feng Huang
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Hong Li
- Shanxi Bangda Food Co., Ltd., Linfen 041000, China
| | - Jian Zheng
- Inner Mongolia Xibei Catering Group Co., Ltd., Huhhot 010000, China
| | - Linchun Meng
- Shanxi Yifa Tongcheng Agricultural Development Co., Ltd., Datong 037000, China
| | - Chunhui Zhang
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xia Li
- Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
18
|
Aidoo OF, Osei-Owusu J, Asante K, Dofuor AK, Boateng BO, Debrah SK, Ninsin KD, Siddiqui SA, Chia SY. Insects as food and medicine: a sustainable solution for global health and environmental challenges. Front Nutr 2023; 10:1113219. [PMID: 37388630 PMCID: PMC10303143 DOI: 10.3389/fnut.2023.1113219] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/22/2023] [Indexed: 07/01/2023] Open
Abstract
Insects are a significant source of food for millions of people worldwide. Since ancient times, insects in medicine have been contributing to the treatment of diseases in humans and animals. Compared to conventional animal farming, the production of insects for food and feed generates significantly less greenhouse gas emissions and uses considerably less land. Edible insects provide many ecosystem services, including pollination, environmental health monitoring, and the decomposition of organic waste materials. Some wild edible insects are pests of cash crops. Thus, harvesting and consuming edible insect pests as food and utilizing them for therapeutic purposes could be a significant progress in the biological control of insect pests. Our review discusses the contribution of edible insects to food and nutritional security. It highlights therapeutic uses of insects and recommends ways to ensure a sustainable insect diet. We stress that the design and implementation of guidelines for producing, harvesting, processing, and consuming edible insects must be prioritized to ensure safe and sustainable use.
Collapse
Affiliation(s)
- Owusu Fordjour Aidoo
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Jonathan Osei-Owusu
- Department of Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Kwasi Asante
- Coconut Research Programme, Council for Scientific and Industrial Research, Sekondi, Ghana
| | - Aboagye Kwarteng Dofuor
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | | | - Shadrack Kwaku Debrah
- Department of Horticulture and Crop Production Sunyani, University of Energy and Natural Resources, Sunyani, Ghana
| | - Kodwo Dadzie Ninsin
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Shaphan Yong Chia
- Laboratory of Entomology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
19
|
Onyeaka H, Nwaiwu O, Obileke K, Miri T, Al‐Sharify ZT. Global nutritional challenges of reformulated food: A review. Food Sci Nutr 2023; 11:2483-2499. [PMID: 37324840 PMCID: PMC10261815 DOI: 10.1002/fsn3.3286] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Food reformulation, the process of redesigning processed food products to make them healthier, is considered a crucial step in the fight against noncommunicable diseases. The reasons for reformulating food vary, with a common focus on reducing the levels of harmful substances, such as fats, sugars, and salts. Although this topic is broad, this review aims to shed light on the current challenges faced in the reformulation of food and to explore different approaches that can be taken to overcome these challenges. The review highlights the perception of consumer risk, the reasons for reformulating food, and the challenges involved. The review also emphasizes the importance of fortifying artisanal food processing and modifying microbial fermentation in order to meet the nutrient requirements of people in developing countries. The literature suggests that while the traditional reductionist approach remains relevant and yields quicker results, the food matrix approach, which involves engineering food microstructure, is a more complex process that may take longer to implement in developing economies. The findings of the review indicate that food reformulation policies are more likely to succeed if the private sector collaborates with or responds to the government regulatory process, and further research is conducted to establish newly developed reformulation concepts from different countries. In conclusion, food reformulation holds great promise in reducing the burden of noncommunicable diseases and improving the health of people around the world.
Collapse
Affiliation(s)
- Helen Onyeaka
- School of Chemical EngineeringUniversity of Birmingham, EdgbastonBirminghamUK
| | - Ogueri Nwaiwu
- School of Chemical EngineeringUniversity of Birmingham, EdgbastonBirminghamUK
| | - KeChrist Obileke
- Faculty of Science and AgricultureUniversity of Fort HareAliceSouth Africa
| | - Taghi Miri
- School of Chemical EngineeringUniversity of Birmingham, EdgbastonBirminghamUK
| | - Zainab T. Al‐Sharify
- School of Chemical EngineeringUniversity of Birmingham, EdgbastonBirminghamUK
- Department of Environmental Engineering, College of EngineeringUniversity of Al‐MustansiriyaBaghdadIraq
| |
Collapse
|
20
|
Chen M, Wang F, Wu X, Si B, Pan J, Zheng N, Zhang Y, Wang J. Updating the fatty acid profiles of retail bovine milk in China based on an improved GC-MS method: implications for nutrition. Front Nutr 2023; 10:1204005. [PMID: 37305087 PMCID: PMC10248175 DOI: 10.3389/fnut.2023.1204005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
The importance of food components to potential benefits and risks to human health is gradually being consumer awareness. Milk is an important part of the lipid content of the human diet, and there are few detailed reports on the fatty acid (FA) profiles of retail milk. In the study, we developed a gas chromatography-mass spectrometry (GC-MS) method to simultaneously determine 82 FAs, including 11 even-chain saturated FAs, 10 odd-chain saturated FAs, 9 branched-chain saturated FAs, 30 monounsaturated FAs, and 22 polyunsaturated FAs; this was applied to analyze samples (186 samples) of commercially available milk from 22 provinces throughout China and to evaluate the nutritional value of these samples based on FA-related indices. The results showed that the overall composition of milk FAs among the different regions was numerically similar, and minor FAs showed few differences. When considering the retail milk FA composition and dairy fat intake in China, regional variations have a limited impact on FA consumption. Moreover, milk accounts for approximately one-third and <10% of the maximum recommended intake of saturated FAs and trans-FAs in consumer diets, respectively. This study provides an updated report on the composition of FAs and the nutritional value of retail milk across China, which can serve as a reference for producers for future research on regulating milk FAs, for consumers to select milk, and for nutrition departments to formulate relevant nutritional guidance recommendations.
Collapse
Affiliation(s)
- Meiqing Chen
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengen Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xufang Wu
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Boxue Si
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junyu Pan
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangdong Zhang
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Kalia S, Magnuson AD, Sun T, Liu G, Kim WK, Johnson Z, Lei XG. Supranutrition of microalgal docosahexaenoic acid and calcidiol improved growth performance, tissue lipid profiles, and tibia characteristics of broiler chickens. J Anim Sci Biotechnol 2023; 14:27. [PMID: 36922887 PMCID: PMC10018906 DOI: 10.1186/s40104-023-00842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/13/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA) and calcidiol could be enriched in chicken for improving public nutrition and health. It remains unclear if supranutritional levels of DHA and calcidiol impair growth performance or metabolism of broiler chickens. This study was to determine singular and combined effects of high levels of supplemental DHA-rich microalgal biomass or oil and calcidiol on growth performance, concentrations of triglycerides, cholesterol, and nonesterfied fatty acids in plasma, liver, breast, and thigh, and biophysical properties of tibia. METHODS In Exp. 1, 144 day-old Cornish chicks were divided into 4 groups (6 cages/treatment, 6 birds/cage), and were fed a corn-soybean meal basal diet (BD), BD + 10,000 IU calcidiol/kg (BD + Cal), BD + 1% DHA-rich Aurantiochytrium (1.2 g DHA/kg; BD + DHA), and BD + Cal + DHA for 6 weeks. In Exp. 2, 180 day-old chicks were divided into 5 groups, and were fed: BD, BD + DHA (0.33% to 0.66% oil, 1.5 to 3.0 g DHA/kg), BD + DHA + EPA (1.9% to 3.8% eicosapentaenoic acid-rich Nannochloropsis sp. CO18, 0.3 to 0.6 g EPA/kg), BD + DHA + calcidiol (6000 to 12,000 IU/kg diet), and BD + DHA + EPA + Cal for 6 weeks. RESULTS Birds fed BD + Cal diet in Exp. 1 and BD + DHA + EPA diet in Exp. 2 had higher (P < 0.05) body weight gain (10%-11%) and gain:feed ratio (7%), and lower (P < 0.05) total cholesterol and triglyceride concentrations in plasma (18%-54%), liver (8%-26%), breast (19%-26%), and thigh (10%-19%), respectively, over the controls. The two diets also improved (P < 0.05) tibial breaking strength (8%-24%), total bone volume (2%-13%), and (or) bone mineral density (3%-19%) of chickens. CONCLUSION Supranutrition of dietary calcidiol and DHA alone or together did not produce adverse effects, but led to moderate improvements of growth performance, lipid profiles of plasma and muscle, and bone properties of broiler chickens.
Collapse
Affiliation(s)
- Sahil Kalia
- Department of Animal Science, Cornell University, 252 Morrison Hall, Ithaca, NY, 14850, USA
| | - Andrew D Magnuson
- Department of Animal Science, Cornell University, 252 Morrison Hall, Ithaca, NY, 14850, USA
| | - Tao Sun
- Department of Animal Science, Cornell University, 252 Morrison Hall, Ithaca, NY, 14850, USA
| | - Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Zackary Johnson
- Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, 252 Morrison Hall, Ithaca, NY, 14850, USA.
| |
Collapse
|
22
|
Indelicato S, Di Stefano V, Avellone G, Piazzese D, Vazzana M, Mauro M, Arizza V, Bongiorno D. HPLC/HRMS and GC/MS for Triacylglycerols Characterization of Tuna Fish Oils Obtained from Green Extraction. Foods 2023; 12:foods12061193. [PMID: 36981119 PMCID: PMC10048091 DOI: 10.3390/foods12061193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Fish oil is one of the most common lipidic substances that is consumed as a dietary supplement. The high omega-3 fatty acid content in fish oil is responsible for its numerous health benefits. Fish species such as mackerel, herring, tuna, and salmon are particularly rich in these lipids, which contain two essential omega-3 fatty acids, known as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Objectives: Due to the scarcity of information in the literature, this study aimed to conduct a qualitative and quantitative characterization of triglycerides (TAGs) in crude tuna fish oil using HPLC/HRMS. Fatty acid (FA) determination was also performed using GC/MS. The tuna fish oils analyzed were produced using a green, low-temperature process from the remnants of fish production, avoiding the use of any extraction solvents. Results: The analyses led to the tentative identification and semi-quantitation of 81 TAGs. In silico saponification and comparison with fatty acid methyl ester results helped to confirm the identified TAGs and their quantities. The study found that the produced oil is rich in EPA, DHA, and erucic acid, while the negligible isomerization of fatty acids to trans-derivatives was observed.
Collapse
Affiliation(s)
- Serena Indelicato
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Giuseppe Avellone
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Daniela Piazzese
- Department of Earth and Marine Sciences (DISTEM), University of Palermo, Via Archirafi 22, 90123 Palermo, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - David Bongiorno
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
- Correspondence: ; Tel.: +39-09123891900
| |
Collapse
|
23
|
Athanasiadis V, Chatzimitakos T, Kalompatsios D, Palaiogiannis D, Makrygiannis I, Bozinou E, Lalas SI. Evaluation of the Efficacy and Synergistic Effect of α- and δ-Tocopherol as Natural Antioxidants in the Stabilization of Sunflower Oil and Olive Pomace Oil during Storage Conditions. Int J Mol Sci 2023; 24:ijms24021113. [PMID: 36674630 PMCID: PMC9864270 DOI: 10.3390/ijms24021113] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Tocopherols are natural bioactive compounds with several health benefits. This study evaluated the effect of different ratios of α- and δ- tocopherol homologs to protect sunflower oil (SO) and olive pomace oil (OPO) against oxidation. A synergistic effect was recorded when the two tocopherols were combined at a ratio of 7:1 (α-T/δ-T). The oil samples were exposed to accelerated oxidation conditions using a Rancimat (90 °C and airflow of 15 L/h for 24 h) and protection from tocopherols was compared with that from butylated hydroxytoluene (BHT). Assessment of oil stability was examined using well-known parameters such as peroxide value (PV), thiobarbituric acid reactive substances (TBARS), p-anisidine value (p-AV), conjugated dienes (CD) and trienes (CT), and total oxidation (Totox) value, which were all significantly reduced when tocopherols were added at a ratio of 7:1 α-T/δ-T. Primary oxidative compounds measured according to PV were only reduced in SO samples (6.11%). Off-flavor compounds measured via TBARS assay in SO samples were reduced by above 20%, while p-AV was also reduced. CDvalue was correlated with PV in SO samples, while the 7:1 mixture was more effective than BHT for CTvalue. Total oxidation values in SO samples and OPO samples were reduced by 6.02% and 12.62%, respectively. These values in SO samples also provided a remarkable correlation (R2 > 0.95) with incubation time. Moreover, the synergistic effect was not only effective in reducing the oxidation values of oil samples, but also in lowering the degradation rate of tocopherols. Protective effects from tocopherols were mainly observed in SO samples, as OPO samples were more resistant to oxidation processes. This effect was even observed in fatty acid analysis, where the 7:1 mixture provided better results than BHT-spiked samples. Thus, it is suggested that tocopherol mixtures might be used as a natural preservative in the food industry to restrain lipid oxidation processes.
Collapse
|
24
|
An Efficient Processing Strategy to Improve the Flavor Profile of Egg Yolk: Ozone-Mediated Oxidation. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010124. [PMID: 36615317 PMCID: PMC9822375 DOI: 10.3390/molecules28010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022]
Abstract
This study investigated the effect of ozone treatment on egg yolk volatiles and fatty acids. The composition and content of volatile substances and the fatty acid content of the egg yolk were changed significantly after ozonation. With proper ozone treatment (30 min), the aldehyde content in the egg yolk increased from 78.08% to 94.63%, and the relative content of dibutyl amine decreased from 1.50% to 0.00%. There were no significant differences among the types of fatty acids in the egg yolks after being treated with ozone, but there were differences in their relative contents. The results of SDS-PAGE showed no significant difference in yolk protein composition and contents among the groups. SEM results showed that moderate ozone treatment (20 min and 30 min) led to a regular and dense network structure of egg yolk. These results provided a theoretical basis for expanding the application of ozone technology in the egg yolk processing industry.
Collapse
|
25
|
Yang L, Yang C, Chu C, Wan M, Xu D, Pan D, Xia H, Wang SK, Shu G, Chen S, Sun G. Beneficial effects of monounsaturated fatty acid-rich blended oils with an appropriate polyunsaturated/saturated fatty acid ratio and a low n-6/n-3 fatty acid ratio on the health of rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7172-7185. [PMID: 35727941 DOI: 10.1002/jsfa.12083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The effects of dietary fat on health are influenced by its fatty acid profile. We aimed to determine the effects of monounsaturated fatty acid (MUFA)-rich blended oils (BO) containing a balance of polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) and with a low n-6/n-3 PUFA ratio on the health of rats fed normal or high-fat diets. The BO was obtained by mixing red palm oil, rice bran oil (RO), tea seed oil and flaxseed oil in appropriate proportions. RESULTS BO consumption reduced the serum low-density lipoprotein cholesterol (LDL-C), non-esterified fatty acid (NEFA), insulin (INS), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1 (IL-1), high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), lipid peroxide (LPO) and oxidized LDL (ox-LDL) concentrations and the homeostasis model assessment of insulin resistance (HOMA-IR); it increased the high-density lipoprotein cholesterol (HDL-C), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) concentrations, and the bone mineral density (BMD) versus control oil-containing normal and high-fat diets. BO also reduced the triglyceride (TG), hs-CRP, MDA, ox-LDL and reactive oxygen species (ROS) concentrations; and increased the serum HDL-C and SOD, and BMD versus RO-containing high-fat diets. Finally, BO reduced the glucose (GLU) and INS, and HOMA-IR; it increased HDL-C, SOD, femoral weight and BMD versus RO-containing normal diets. CONCLUSION BOs with an appropriate fatty acid profile have beneficial effects on the glucolipid metabolism, inflammation, oxidative stress and bone quality of rats when included in both normal and high-fat diets. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Chu Chu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Min Wan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Shao Kang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Guofang Shu
- Department of Clinical Laboratory Medicine, Zhongda Hospital of Southeast University, Nanjing, China
| | - Shiqing Chen
- Palm Oil Research and Technical Service Institute of Malaysian Palm Oil Board, Shanghai, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
26
|
Hao N, Liu Z, Hou Y, Fan Z, Li Y, Chen F, Zhao L. Small peptide glutathione-induced bioflocculation for enhancing the food application potential of Chlorella pyrenoidosa. BIORESOURCE TECHNOLOGY 2022; 365:128138. [PMID: 36252754 DOI: 10.1016/j.biortech.2022.128138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Existing flocculants are used to enhance the harvesting efficiency of microalgae; however, harvesting biomass containing residues is unsuitable for food applications. In this study, a small peptide-induced bioflocculation technique was developed for harvesting microalgae, and the biomass was free of impurities. After seven days of cultivation with glutathione, 72 % flocculation efficiency of Chlorella pyrenoidosa was achieved after settling for 1 h. The nutrient composition of flocs depicted a higher protein (68.94 mg/L) and lipid (48.97 mg/L) content than those of the control (65.91 and 41.44 mg/L). The amino acid profiles of flocs showed the presence of more essential amino acids than in untreated cells. More omega polyunsaturated fatty acids, such as ω-3 and ω-9, accumulate in flocs. Extracellular polymeric substances, which induced bioflocculation, appeared markedly in flocs (150.02 mg/L) compared to the control (32.30 mg/L). This study provides novel insights into the residue-free algal harvesting method and obtained nutrition-enriched biomass.
Collapse
Affiliation(s)
- Nahui Hao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zhiyong Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Yuyong Hou
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zhihua Fan
- College of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin 300384, China
| | - Yu Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fangjian Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| | - Lei Zhao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
27
|
Effects of Omega-3-Rich Pork Lard on Serum Lipid Profile and Gut Microbiome in C57BL/6NJ Mice. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:9269968. [DOI: 10.1155/2022/9269968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 11/23/2022]
Abstract
Background and Aims. Hyperlipidemia is a risk factor for cardiovascular diseases. This study is aimed at investigating the effects of consuming omega-3-rich pork lard on the serum lipid profile and gut microbiome of the mice model. Methods and Results. We divided 23 C57BL/6NJ males (16-week-old) into 3 groups, and each group received either a control diet, a high-fat diet of coconut oil (coconut oil), or a high-fat diet of omega-3-rich pork lard (omega lard) for 28 days. Thereafter, fasting serum lipids and fecal microbiomes were analyzed. The serum cholesterol, triglyceride, and LDL levels of the omega lard-treated group were significantly reduced compared to the coconut oil-treated group (
). However, the microbiome analysis revealed a significant increase in the abundance of Lachnospiraceae in the omega lard-treated group compared to the coconut oil-treated group (
). Furthermore, Spearman’s correlation analysis revealed that the increased serum lipid content was positively correlated with the abundance of Bacteroidaceae (
) and negatively correlated with the abundance of Lachnospiraceae (
). Conclusions. These findings suggested that omega-3-rich pork lard altered the serum lipid profile and gut microbiome in the mice model. Practical Application. The excellent protection offered by omega-3-rich pork lard against hyperlipidemia indicated that pork lard could be used as alternative cooking oil for health-conscious individuals. It could also be introduced as a functional ingredient for patients with hyperlipidemia.
Collapse
|
28
|
Song W, Yin H, Zhong Y, Wang D, Xu W, Deng Y. Regional differentiation based on volatile compounds via HS-SPME/GC-MS and chemical compositions comparison of hemp (Cannabis sativa L.) seeds. Food Res Int 2022; 162:112151. [DOI: 10.1016/j.foodres.2022.112151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
29
|
Granato D. Functional foods to counterbalance low-grade inflammation and oxidative stress in cardiovascular diseases: a multilayered strategy combining food and health sciences. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Otto JR, Mwangi FW, Pewan SB, Adegboye OA, Malau-Aduli AEO. Lipogenic Gene Single Nucleotide Polymorphic DNA Markers Associated with Intramuscular Fat, Fat Melting Point, and Health-Beneficial Omega-3 Long-Chain Polyunsaturated Fatty Acids in Australian Pasture-Based Bowen Genetics Forest Pastoral Angus, Hereford, and Wagyu Beef Cattle. Genes (Basel) 2022; 13:1411. [PMID: 36011322 PMCID: PMC9407580 DOI: 10.3390/genes13081411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
This study used targeted sequencing aimed at identifying single nucleotide polymorphisms (SNP) in lipogenic genes and their associations with health-beneficial omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA), intramuscular fat (IMF), and fat melting point (FMP) of the M. longissimus dorsi muscle in Australian pasture-based Bowen Genetics Forest Pastoral Angus, Hereford, and Wagyu cattle. It was hypothesized that SNP encoding for the fatty acid-binding protein 4 (FABP4), stearoyl-CoA desaturase (SCD), and fatty acid synthase (FASN) genes will be significantly associated with health-beneficial n-3 LC-PUFA and the meat eating quality traits of IMF and FMP in an Australian pasture-based beef production system. Two SNP mutations, g.21267406 T>C and g.21271264 C>A, in the SCD gene were significantly (p < 0.05) associated with IMF, FMP, oleic acid (18:1n-9), linoleic acid (LA) 18:2n-6, alpha-linolenic acid (ALA) 18:3n-3, eicosapentaenoic acid (EPA) 20:5n-3, docosahexaenoic acid (DHA) 22:6-n-3, and docosapentaenoic acid (DPA) 22:5n-3. Significant positive correlations (p < 0.05) between FASN SNP g. 50787138 A>G and FMP, 18:1n-9, ALA, EPA, DHA, DPA, and total n-3 LC-PUFA were also detected. An SNP (g.44678794 G>A) in the FABP4 gene was associated with FMP. These results provide significant insights into the contributions of lipogenic genes to intramuscular fat deposition and the biosynthesis of health-beneficial n-3 LC-PUFA. The findings also unravel the potential use of lipogenic gene polymorphisms in marker-assisted selection to improve the content of health-promoting n-3 LC-PUFA and meat eating quality traits in Australian pasture-based Bowen Genetics Forest Pastoral Angus, Hereford, and Wagyu beef cattle.
Collapse
Affiliation(s)
- John R. Otto
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Felista W. Mwangi
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Shedrach B. Pewan
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- National Veterinary Research Institute, PMB 01, Vom 930001, Plateau State, Nigeria
| | - Oyelola A. Adegboye
- Public Health and Tropical Medicine Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Aduli E. O. Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
31
|
Resveratrol inhibits lipid and protein co-oxidation in sodium caseinate-walnut oil emulsions by reinforcing oil-water interface. Food Res Int 2022; 158:111541. [DOI: 10.1016/j.foodres.2022.111541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022]
|
32
|
Tassoni L, Cappellozza S, Dalle Zotte A, Belluco S, Antonelli P, Marzoli F, Saviane A. Nutritional Composition of Bombyx mori Pupae: A Systematic Review. INSECTS 2022; 13:insects13070644. [PMID: 35886820 PMCID: PMC9325104 DOI: 10.3390/insects13070644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary The mulberry silkworm (Bombyx mori) is a domesticated insect traditionally reared to produce silk. Its pupae are historically eaten in Asian countries and are obtained as waste products from the silk reeling industry. Pupae are a promising novel food in Western countries as well as a source of proteins, lipids, and minerals. Several varied results are reported in the literature regarding the nutrient composition of silkworm pupa, and several factors must be considered when comparing the research. Some of the variables that could affect the pupal nutritional content include rearing techniques, diets, silkworm strains, killing, and drying techniques. This literature systematic review identifies the most important research areas and aids authorities and producers in the evaluation and development of silkworm pupae for novel uses. Abstract As insects have started to enter the eating habits of Western countries, an increasing amount of literature regarding the mulberry silkworm (Bombyx mori) prospective application as food has been published. Despite this growing interest, there is currently no systematic review of silkworm nutritional composition available. In this paper, we performed a systematic review of the recent available literature on the nutrient composition of mulberry silkworm pupae. After screening the titles and abstracts of 14,008 studies retrieved from three scientific databases, data about nutrients was extracted from 29 selected papers, together with their related variables. This systematic review provides an overview of the variety of data reported in the literature and highlights that many elements contribute to hindering a sound comparison of the different nutritional values reported for silkworm pupae. The observed variability of the composition data reported could be due to differences in diet, strains, pretreatments, and origin of the silkworm analyzed. However, all these variables were not always available and should be reported in future studies to simplify the data comparison.
Collapse
Affiliation(s)
- Luca Tassoni
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), 35143 Padova, Italy; (S.C.); (A.S.)
- Department of Animal Medicine, Production and Health, University of Padova, Agripolis, Viale dell’Università 16, 35020 Padova, Italy;
- Correspondence:
| | - Silvia Cappellozza
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), 35143 Padova, Italy; (S.C.); (A.S.)
| | - Antonella Dalle Zotte
- Department of Animal Medicine, Production and Health, University of Padova, Agripolis, Viale dell’Università 16, 35020 Padova, Italy;
| | - Simone Belluco
- IZSVe, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Padova, Italy; (S.B.); (P.A.); (F.M.)
| | - Pietro Antonelli
- IZSVe, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Padova, Italy; (S.B.); (P.A.); (F.M.)
| | - Filippo Marzoli
- IZSVe, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Padova, Italy; (S.B.); (P.A.); (F.M.)
| | - Alessio Saviane
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), 35143 Padova, Italy; (S.C.); (A.S.)
| |
Collapse
|
33
|
Towards Sustainable Sources of Omega-3 Long-Chain Polyunsaturated Fatty Acids in Northern Australian Tropical Crossbred Beef Steers through Single Nucleotide Polymorphisms in Lipogenic Genes for Meat Eating Quality. SUSTAINABILITY 2022. [DOI: 10.3390/su14148409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study aimed to identify single nucleotide polymorphisms (SNP) in lipogenic genes of northern Australian tropically adapted crossbred beef cattle and to evaluate associations with healthy lipid traits of the Longissimus dorsi (loin eye) muscle. The hypothesis tested was that there are significant associations between SNP loci encoding for the fatty acid binding protein 4 (FABP4), stearoyl-CoA desaturase (SCD) and fatty acid synthase (FASN) genes and human health beneficial omega-3 long-chain polyunsaturated fatty acids (ω3 LC-PUFA) within the loin eye muscle of northern Australian crossbred beef cattle. Brahman, Charbray, and Droughtmaster crossbred steers were fed on Rhodes grass hay augmented with desmanthus, lucerne, or both, for 140 days and the loin eye muscle sampled for intramuscular fat (IMF), fat melting point (FMP), and fatty acid composition. Polymorphisms in FABP4, SCD, and FASN genes with significant effects on lipid traits were identified with next-generation sequencing. The GG genotype at the FABP4 g.44677239C>G locus was associated with higher proportion of linoleic acid than the CC and CG genotypes (p < 0.05). Multiple comparisons of genotypes at the SCD g.21266629G>T locus indicated that the TT genotype had significantly higher eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids than GG genotype (p < 0.05). Significant correlations (p < 0.05) between FASN SNP and IMF, saturated and monounsaturated fatty acids were observed. These results provide insights into the contribution of lipogenic genes to intramuscular fat deposition and SNP marker-assisted selection for improvement of meat-eating quality, with emphasis on alternate and sustainable sources of ω3 LC-PUFA, in northern Australian tropical crossbred beef cattle, hence an acceptance of the tested hypothesis.
Collapse
|
34
|
Zelikina D, Chebotarev S, Komarova A, Balakina E, Antipova A, Martirosova E, Anokhina M, Palmina N, Bogdanova N, Lysakova E, Borisova M, Semenova M. Efficiency of an oral delivery system based on a liposomal form of a combination of curcumin with a balanced amount of n-3 and n-6 PUFAs encapsulated in an electrostatic complex of WPI with chitosan. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Ren X, Liu Y, Fan C, Hong H, Wu W, Zhang W, Wang Y. Production, Processing, and Protection of Microalgal n-3 PUFA-Rich Oil. Foods 2022; 11:foods11091215. [PMID: 35563938 PMCID: PMC9101592 DOI: 10.3390/foods11091215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Microalgae have been increasingly considered as a sustainable “biofactory” with huge potentials to fill up the current and future shortages of food and nutrition. They have become an economically and technologically viable solution to produce a great diversity of high-value bioactive compounds, including n-3 polyunsaturated fatty acids (PUFA). The n-3 PUFA, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), possess an array of biological activities and positively affect a number of diseases, including cardiovascular and neurodegenerative disorders. As such, the global market of n-3 PUFA has been increasing at a fast pace in the past two decades. Nowadays, the supply of n-3 PUFA is facing serious challenges as a result of global warming and maximal/over marine fisheries catches. Although increasing rapidly in recent years, aquaculture as an alternative source of n-3 PUFA appears insufficient to meet the fast increase in consumption and market demand. Therefore, the cultivation of microalgae stands out as a potential solution to meet the shortages of the n-3 PUFA market and provides unique fatty acids for the special groups of the population. This review focuses on the biosynthesis pathways and recombinant engineering approaches that can be used to enhance the production of n-3 PUFA, the impact of environmental conditions in heterotrophic cultivation on n-3 PUFA production, and the technologies that have been applied in the food industry to extract and purify oil in microalgae and protect n-3 PUFA from oxidation.
Collapse
Affiliation(s)
- Xiang Ren
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| | - Yanjun Liu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Chao Fan
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Hao Hong
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wenzhong Wu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wei Zhang
- DeOxiTech Consulting, 30 Cloverfield Court, Dartmouth, NS B2W 0B3, Canada;
| | - Yanwen Wang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| |
Collapse
|
36
|
Cruz-López SO, Álvarez-Cisneros YM, Domínguez-Soberanes J, Escalona-Buendía HB, Sánchez CN. Physicochemical and Sensory Characteristics of Sausages Made with Grasshopper (Sphenarium purpurascens) Flour. Foods 2022; 11:foods11050704. [PMID: 35267337 PMCID: PMC8909260 DOI: 10.3390/foods11050704] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Insects are currently of interest due to their high nutritional value, in particular for the high concentration of quality protein. Moreover, it can also be used as an extender or binder in meat products. The objective was to evaluate grasshopper flour (GF) as a partial or total replacement for potato starch to increase the protein content of sausages and achieve good acceptability by consumers. GF has 48% moisture, 6.7% fat and 45% total protein. Sausages were analyzed by NIR and formulations with GF in all concentrations (10, 7, 5 and 3%) combined with starch (3, 5 and 7%) increased protein content. Results obtained for the sausages formulations with grasshoppers showed an increase in hardness, springiness, gumminess and chewiness through a Texture-Profile-Analysis. Moreover, a* and b* are similar to the control, but L* decreased. The check-all-that-apply test showed the attributes highlighted for sausages with GF possessed herbal flavor, brown color, and granular texture. The liking-product-landscape map showed that the incorporation of 7 and 10% of GF had an overall liking of 3.2 and 3.3, respectively, considered as “do not like much”. GF can be used as a binder in meat products up to 10% substitution. However, it is important to improve the overall liking of the sausage.
Collapse
Affiliation(s)
- Salvador O. Cruz-López
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Ciudad de México 09310, Mexico; (S.O.C.-L.); (H.B.E.-B.)
| | - Yenizey M. Álvarez-Cisneros
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Ciudad de México 09310, Mexico; (S.O.C.-L.); (H.B.E.-B.)
- Correspondence:
| | - Julieta Domínguez-Soberanes
- Escuela de Dirección de Negocios Alimentarios, Universidad Panamericana, Josemaría Escrivá de Balaguer 101, Aguascalientes 20296, Mexico;
| | - Héctor B. Escalona-Buendía
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Ciudad de México 09310, Mexico; (S.O.C.-L.); (H.B.E.-B.)
| | - Claudia N. Sánchez
- Facultad de Ingeniería, Universidad Panamericana, Josemaría Escrivá de Balaguer 101, Aguascalientes 20296, Mexico;
| |
Collapse
|