1
|
Plaza-Jennings A, Akbarian S. Genomic Exploration of the Brain in People Infected with HIV-Recent Progress and the Road Ahead. Curr HIV/AIDS Rep 2023; 20:357-367. [PMID: 37947981 PMCID: PMC10719125 DOI: 10.1007/s11904-023-00675-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE OF REVIEW The adult human brain harbors billions of microglia and other myeloid and lymphoid cells highly susceptible to HIV infection and retroviral insertion into the nuclear DNA. HIV infection of the brain is important because the brain is a potentially large reservoir site that may be a barrier to HIV cure strategies and because infection can lead to the development of HIV-associated neurocognitive disorder. To better understand both the central nervous system (CNS) reservoir and how it can cause neurologic dysfunction, novel genomic, epigenomic, transcriptomic, and proteomic approaches need to be employed. Several characteristics of the reservoir are important to learn, including where the virus integrates, whether integrated proviruses are intact or defective, whether integrated proviruses can be reactivated from a latent state to seed ongoing infection, and how this all impacts brain function. RECENT FINDINGS Here, we discuss similarities and differences of viral integration sites between brain and blood and discuss evidence for and against the hypothesis that in the absence of susceptible T-lymphocytes in the periphery, the virus housing in the infected brain is not able to sustain a systemic infection. Moreover, microglia from HIV + brains across a wide range of disease severity appear to share one type of common alteration, which is defined by downregulated expression, and repressive chromosomal compartmentalization, for microglial genes regulating synaptic connectivity. Therefore, viral infection of the brain, including in immunocompetent cases with near-normal levels of CD4 blood lymphocytes, could be associated with an early disruption in microglia-dependent neuronal support functions, contributing to cognitive and neurological deficits in people living with HIV.
Collapse
Affiliation(s)
- Amara Plaza-Jennings
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
2
|
Habib A, Liang Y, Zhu N. Exosomes multifunctional roles in HIV-1: insight into the immune regulation, vaccine development and current progress in delivery system. Front Immunol 2023; 14:1249133. [PMID: 37965312 PMCID: PMC10642161 DOI: 10.3389/fimmu.2023.1249133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Human Immunodeficiency Virus (HIV-1) is known to establish a persistent latent infection. The use of combination antiretroviral therapy (cART) can effectively reduce the viral load, but the treatment can be costly and may lead to the development of drug resistance and life-shortening side effects. It is important to develop an ideal and safer in vivo target therapy that will effectively block viral replication and expression in the body. Exosomes have recently emerged as a promising drug delivery vehicle due to their low immunogenicity, nanoscale size (30-150nm), high biocompatibility, and stability in the targeted area. Exosomes, which are genetically produced by different types of cells such as dendritic cells, neurons, T and B cells, epithelial cells, tumor cells, and mast cells, are designed for efficient delivery to targeted cells. In this article, we review and highlight recent developments in the strategy and application of exosome-based HIV-1 vaccines. We also discuss the use of exosome-based antigen delivery systems in vaccine development. HIV-1 antigen can be loaded into exosomes, and this modified cargo can be delivered to target cells or tissues through different loading approaches. This review also discusses the immunological prospects of exosomes and their role as biomarkers in disease progression. However, there are significant administrative and technological obstacles that need to be overcome to fully harness the potential of exosome drug delivery systems.
Collapse
Affiliation(s)
- Arslan Habib
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yulai Liang
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Naishuo Zhu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Institute of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Feng C, Jin C, Liu K, Yang Z. Microbiota-derived short chain fatty acids: Their role and mechanisms in viral infections. Biomed Pharmacother 2023. [DOI: 10.1016/j.biopha.2023.114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
|
4
|
Andre M, Nair M, Raymond AD. HIV Latency and Nanomedicine Strategies for Anti-HIV Treatment and Eradication. Biomedicines 2023; 11:biomedicines11020617. [PMID: 36831153 PMCID: PMC9953021 DOI: 10.3390/biomedicines11020617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
Antiretrovirals (ARVs) reduce Human Immunodeficiency Virus (HIV) loads to undetectable levels in infected patients. However, HIV can persist throughout the body in cellular reservoirs partly due to the inability of some ARVs to cross anatomical barriers and the capacity of HIV-1 to establish latent infection in resting CD4+ T cells and monocytes/macrophages. A cure for HIV is not likely unless latency is addressed and delivery of ARVs to cellular reservoir sites is improved. Nanomedicine has been used in ARV formulations to improve delivery and efficacy. More specifically, researchers are exploring the benefit of using nanoparticles to improve ARVs and nanomedicine in HIV eradication strategies such as shock and kill, block and lock, and others. This review will focus on mechanisms of HIV-1 latency and nanomedicine-based approaches to treat HIV.
Collapse
Affiliation(s)
- Mickensone Andre
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Madhavan Nair
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Andrea D. Raymond
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Correspondence: ; Tel.: +1-305-348-6430
| |
Collapse
|
5
|
Borrajo López A, Penedo MA, Rivera-Baltanas T, Pérez-Rodríguez D, Alonso-Crespo D, Fernández-Pereira C, Olivares JM, Agís-Balboa RC. Microglia: The Real Foe in HIV-1-Associated Neurocognitive Disorders? Biomedicines 2021; 9:925. [PMID: 34440127 PMCID: PMC8389599 DOI: 10.3390/biomedicines9080925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
The current use of combined antiretroviral therapy (cART) is leading to a significant decrease in deaths and comorbidities associated with human immunodeficiency virus type 1 (HIV-1) infection. Nonetheless, none of these therapies can extinguish the virus from the long-lived cellular reservoir, including microglia, thereby representing an important obstacle to curing HIV. Microglia are the foremost cells infected by HIV-1 in the central nervous system (CNS) and are believed to be involved in the development of HIV-1-associated neurocognitive disorder (HAND). At present, the pathological mechanisms contributing to HAND remain unclear, but evidence suggests that removing these infected cells from the brain, as well as obtaining a better understanding of the specific molecular mechanisms of HIV-1 latency in these cells, should help in the design of new strategies to prevent HAND and achieve a cure for these diseases. The goal of this review was to study the current state of knowledge of the neuropathology and research models of HAND containing virus susceptible target cells (microglial cells) and potential pharmacological treatment approaches under investigation.
Collapse
Affiliation(s)
- Ana Borrajo López
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Maria Aránzazu Penedo
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
- Neuro Epigenetics Laboratory, University Hospital Complex of Vigo, SERGAS-UVIGO, 36213 Virgo, Spain
| | - Tania Rivera-Baltanas
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
| | - Daniel Pérez-Rodríguez
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
- Neuro Epigenetics Laboratory, University Hospital Complex of Vigo, SERGAS-UVIGO, 36213 Virgo, Spain
| | - David Alonso-Crespo
- Nursing Team-Intensive Care Unit, Área Sanitaria de Vigo, Estrada de Clara Campoamor 341, SERGAS-UVigo, 36312 Virgo, Spain;
| | - Carlos Fernández-Pereira
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
- Neuro Epigenetics Laboratory, University Hospital Complex of Vigo, SERGAS-UVIGO, 36213 Virgo, Spain
| | - José Manuel Olivares
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
- Department of Psychiatry, Área Sanitaria de Vigo, Estrada de Clara Campoamor 341, SERGAS-UVigo, 36312 Vigo, Spain
| | - Roberto Carlos Agís-Balboa
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
| |
Collapse
|
6
|
Abstract
Human immunodeficiency virus 1 (HIV-1) replicates through the integration of its viral DNA into the genome of human immune target cells. Chronically infected individuals thus carry a genomic burden of virus-derived sequences that persists through antiretroviral therapy. This burden consists of a small fraction of intact, but transcriptionally silenced, i.e. latent, viral genomes and a dominant fraction of defective sequences. Remarkably, all viral-derived sequences are subject to interaction with host cellular physiology at various levels. In this review, we focus on epigenetic aspects of this interaction. We provide a comprehensive overview of how epigenetic mechanisms contribute to establishment and maintenance of HIV-1 gene repression during latency. We furthermore summarize findings indicating that HIV-1 infection leads to changes in the epigenome of target and bystander immune cells. Finally, we discuss how an improved understanding of epigenetic features and mechanisms involved in HIV-1 infection could be exploited for clinical use.
Collapse
|
7
|
Aguilera LU, Rodríguez-González J. Modeling the effect of tat inhibitors on HIV latency. J Theor Biol 2019; 473:20-27. [PMID: 31004612 DOI: 10.1016/j.jtbi.2019.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/07/2019] [Accepted: 04/16/2019] [Indexed: 11/28/2022]
Abstract
Even in the presence of a successful combination therapy stalling the progress of AIDS, developing a cure for this disease is still an open question. One of the major steps towards a cure would be to be able to eradicate latent HIV reservoirs present in patients. During the last decade, multiple findings point to the dominant role of the viral protein Tat in the establishment of latency. Here we present a mathematical study to understand the potential role of Tat inhibitors as virus-suppressing agents. For this aim, we implemented a computational model that reproduces intracellular dynamics. Simulating an HIV-infected cell and its intracellular feedback we observed that removing Tat protein from the system via inhibitors resulted in a temporary and reversible viral suppression. In contrast, we observed that compounds that interact with Tat protein and disrupt the integrated viral genome produced a more permanent viral suppression.
Collapse
Affiliation(s)
- Luis U Aguilera
- Department of Modeling of Biological Processes, COS Heidelberg / Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg 69120, Germany; Colorado State University
| | - Jesús Rodríguez-González
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Via del Conocimiento 201, Parque PIIT, Apodaca CP 66600 NL, México.
| |
Collapse
|
8
|
Margolis DM, Archin NM. Proviral Latency, Persistent Human Immunodeficiency Virus Infection, and the Development of Latency Reversing Agents. J Infect Dis 2017; 215:S111-S118. [PMID: 28520964 DOI: 10.1093/infdis/jiw618] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Quiescent proviral genomes that persist during human immunodeficiency virus type 1 (HIV-1) infection despite effective antiretroviral therapy (ART) can fuel rebound viremia after ART interruption and is a central obstacle to the cure of HIV infection. The induction of quiescent provirus is the goal of a new class of potential therapeutics, latency reversing agents (LRAs). The discovery, development, and testing of HIV LRAs is a key part of current efforts to develop latency reversal and viral clearance strategies to eradicate established HIV infection. The development of LRAs is burdened by many uncertainties that make drug discovery difficult. The biology of HIV latency is complex and incompletely understood. Potential targets for LRAs are host factors, and the potential toxicities of host-directed therapies in individuals that are otherwise clinically stable may be unacceptable. Assays to measure latency reversal and assess the effectiveness of potential therapeutics are complex and incompletely validated. Despite these obstacles, novel LRAs are under development and beginning to enter combination testing with viral clearance strategies. It is hoped that the steady advances in the development of LRAs now being paired with emerging immunotherapeutics to clear persistently infected cells will soon allow measurable clinical advances toward an HIV cure.
Collapse
Affiliation(s)
- David M Margolis
- UNC HIV Cure Center.,Department of Medicine, and.,Department of Microbiology & Immunology, University of North Carolina at Chapel Hill School of Medicine ; and.,Department of Epidemiology, University of North Carolina at Chapel Hill School of Public Health
| | | |
Collapse
|
9
|
Graci JD, Michaels D, Chen G, Schiralli Lester GM, Nodder S, Weetall M, Karp GM, Gu Z, Colacino JM, Henderson AJ. Identification of benzazole compounds that induce HIV-1 transcription. PLoS One 2017; 12:e0179100. [PMID: 28658263 PMCID: PMC5489165 DOI: 10.1371/journal.pone.0179100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/24/2017] [Indexed: 02/07/2023] Open
Abstract
Despite advances in antiretroviral therapy, HIV-1 infection remains incurable in patients and continues to present a significant public health burden worldwide. While a number of factors contribute to persistent HIV-1 infection in patients, the presence of a stable, long-lived reservoir of latent provirus represents a significant hurdle in realizing an effective cure. One potential strategy to eliminate HIV-1 reservoirs in patients is reactivation of latent provirus with latency reversing agents in combination with antiretroviral therapy, a strategy termed "shock and kill". This strategy has shown limited clinical effectiveness thus far, potentially due to limitations of the few therapeutics currently available. We have identified a novel class of benzazole compounds effective at inducing HIV-1 expression in several cellular models. These compounds do not act via histone deacetylase inhibition or T cell activation, and show specificity in activating HIV-1 in vitro. Initial exploration of structure-activity relationships and pharmaceutical properties indicates that these compounds represent a potential scaffold for development of more potent HIV-1 latency reversing agents.
Collapse
Affiliation(s)
- Jason D. Graci
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Daniel Michaels
- Department of Medicine and Microbiology, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Guangming Chen
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Gillian M. Schiralli Lester
- Department of Pediatrics, Neonatology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Sarah Nodder
- Department of Medicine and Microbiology, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Marla Weetall
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Gary M. Karp
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Zhengxian Gu
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Joseph M. Colacino
- PTC Therapeutics, Inc., South Plainfield, New Jersey, United States of America
| | - Andrew J. Henderson
- Department of Medicine and Microbiology, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
10
|
Vyshenska D, Lam KC, Shulzhenko N, Morgun A. Interplay between viruses and bacterial microbiota in cancer development. Semin Immunol 2017; 32:14-24. [PMID: 28602713 DOI: 10.1016/j.smim.2017.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/03/2017] [Accepted: 05/30/2017] [Indexed: 12/29/2022]
Abstract
During the last few decades we have become accustomed to the idea that viruses can cause tumors. It is much less considered and discussed, however, that most people infected with oncoviruses will never develop cancer. Therefore, the genetic and environmental factors that tip the scales from clearance of viral infection to development of cancer are currently an area of active investigation. Microbiota has recently emerged as a potentially critical factor that would affect this balance by increasing or decreasing the ability of viral infection to promote carcinogenesis. In this review, we provide a model of microbiome contribution to the development of oncogenic viral infections and viral associated cancers, give examples of this process in human tumors, and describe the challenges that prevent progress in the field as well as their potential solutions.
Collapse
Affiliation(s)
- Dariia Vyshenska
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, OR 97331, USA
| | - Khiem C Lam
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, OR 97331, USA
| | - Natalia Shulzhenko
- College of Veterinary Medicine, Oregon State University, 208 Dryden Hall, Corvallis, OR 97331, USA.
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, OR 97331, USA.
| |
Collapse
|
11
|
Lim H, Kim KC, Son J, Shin Y, Yoon CH, Kang C, Choi BS. Synergistic reactivation of latent HIV-1 provirus by PKA activator dibutyryl-cAMP in combination with an HDAC inhibitor. Virus Res 2016; 227:1-5. [PMID: 27677464 DOI: 10.1016/j.virusres.2016.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 12/29/2022]
Abstract
HIV-1 reservoirs remain a major barrier to HIV-1 eradication. Although combination antiretroviral therapy (cART) can successfully reduce viral replication, it cannot reactivate HIV-1 provirus in this reservoir. Therefore, HIV-1 provirus reactivation strategies by cell activation or epigenetic modification are proposed for the eradication of HIV-1 reservoirs. Although treatment with the protein kinase A (PKA) activator cyclic AMP (cAMP) or epigenetic modifying agents such as histone deacetylase inhibitors (HDACi) alone can induce HIV-1 reactivation in latently infected cells, the synergism of these agents has not been fully evaluated. In the present study, we observed that treatment with 500μM of dibutyryl-cAMP, 1μM of vorinostat, or 1μM of trichostatin A alone effectively reactivated HIV-1 in both ACH2 and NCHA1 cells latently infected with HIV-1 without cytotoxicity. In addition, treatment with the PKA inhibitor KT5720 reduced the increased HIV-1 p24 level in the supernatant of these cells. After dibutyryl-cAMP treatment, we found an increased level of the PKA substrate phosphorylated cyclic AMP response element-binding protein. When we treated cells with a combination of dibutyryl-cAMP and vorinostat or trichostatin A, the levels of HIV-1 p24 in the supernatant and levels of intracellular HIV-1 p24 were dramatically increased in both ACH2 and NCHA1 cells compared with those treated with a single agent. These results suggest that combined treatment with a PKA activator and an HDACi is effective for reactivating HIV-1 in latently infected cells, and may be an important approach to eradicate HIV-1 reservoirs.
Collapse
Affiliation(s)
- Hoyong Lim
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Kyung-Chang Kim
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Junseock Son
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Younghyun Shin
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Cheol-Hee Yoon
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Chun Kang
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, Republic of Korea
| | - Byeong-Sun Choi
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, Republic of Korea.
| |
Collapse
|
12
|
Abstract
HIV seeds reservoirs of latent proviruses in the earliest phases of infection. These reservoirs are found in many sites, including circulating cells, the lymphoid system, the brain, and other tissues. The "shock and kill" strategy, where HIV transcription is reactivated so that antiretroviral therapy and the immune system clear the infection, has been proposed as one approach to curing AIDS. In addition to many defective viruses, resting hematopoietic cells harbor transcriptionally latent HIV. Understanding basic mechanisms of HIV gene expression provides a road map for this strategy, allowing for manipulation of critical cellular and viral transcription factors in such a way as to maximize HIV gene expression while avoiding global T cell activation. These transcription factors include NF-κB and the HIV transactivator of transcription (Tat) as well as the cyclin-dependent kinases CDK13 and CDK11 and positive transcription elongation factor b (P-TEFb). Possible therapies involve agents that activate these proteins or release P-TEFb from the inactive 7SK small nuclear ribonucleoprotein (snRNP). These proposed therapies include PKC and MAPK agonists as well as histone deacetylase inhibitors (HDACis) and bromodomain and extraterminal (BET) bromodomain inhibitors (BETis), which act synergistically to reactivate HIV in latently infected cells.
Collapse
|
13
|
Bose D, Gagnon J, Chebloune Y. Comparative Analysis of Tat-Dependent and Tat-Deficient Natural Lentiviruses. Vet Sci 2015; 2:293-348. [PMID: 29061947 PMCID: PMC5644649 DOI: 10.3390/vetsci2040293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 01/10/2023] Open
Abstract
The emergence of human immunodeficiency virus (HIV) causing acquired immunodeficiency syndrome (AIDS) in infected humans has resulted in a global pandemic that has killed millions. HIV-1 and HIV-2 belong to the lentivirus genus of the Retroviridae family. This genus also includes viruses that infect other vertebrate animals, among them caprine arthritis-encephalitis virus (CAEV) and Maedi-Visna virus (MVV), the prototypes of a heterogeneous group of viruses known as small ruminant lentiviruses (SRLVs), affecting both goat and sheep worldwide. Despite their long host-SRLV natural history, SRLVs were never found to be responsible for immunodeficiency in contrast to primate lentiviruses. SRLVs only replicate productively in monocytes/macrophages in infected animals but not in CD4+ T cells. The focus of this review is to examine and compare the biological and pathological properties of SRLVs as prototypic Tat-independent lentiviruses with HIV-1 as prototypic Tat-dependent lentiviruses. Results from this analysis will help to improve the understanding of why and how these two prototypic lentiviruses evolved in opposite directions in term of virulence and pathogenicity. Results may also help develop new strategies based on the attenuation of SRLVs to control the highly pathogenic HIV-1 in humans.
Collapse
Affiliation(s)
- Deepanwita Bose
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| | - Jean Gagnon
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| | - Yahia Chebloune
- Pathogénèse et Vaccination Lentivirales, PAVAL Lab., Université Joseph Fourier Grenoble 1, Bat. NanoBio2, 570 rue de la Chimie, BP 53, 38041, Grenoble Cedex 9, France.
| |
Collapse
|
14
|
Aguilera LU, Rodríguez-González J. Studying HIV latency by modeling the interaction between HIV proteins and the innate immune response. J Theor Biol 2014; 360:67-77. [DOI: 10.1016/j.jtbi.2014.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 05/30/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
|
15
|
Sivro A, Su RC, Plummer FA, Ball TB. HIV and interferon regulatory factor 1: a story of manipulation and control. AIDS Res Hum Retroviruses 2013; 29:1428-33. [PMID: 23984938 DOI: 10.1089/aid.2013.0098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Members of the interferon regulatory factor (IRF) family control the expression of numerous proteins, many of which are central to regulating host immune responses. IRF1 is one of the central mediators of the innate and adaptive immune responses required for antigen processing and presentation, Th1/Th2 differentiation, and natural killer (NK) cell and macrophage function. Many viruses have evolved mechanisms to target the IRF1 pathway in order to promote viral pathogenesis. During early HIV infection, IRF1 acts as a double-edged sword, critical for driving viral replication as well as eliciting antiviral responses. In this review, we describe the strategies that HIV-1 has evolved to modulate IRF1 in order to enhance viral replication and to disarm the host immune system. IRF1 has been shown to be an important factor in natural protection against HIV in highly exposed seronegative (HESN) individuals and is crucial in regulating the initial stages of HIV replication and HIV disease progression, as well as the establishment of latency. An understanding of how the protective effects of IRF1 responses are controlled in HESN individuals, naturally resistant to HIV infection, may provide important clues on how to regain control of HIV and tip the balance of immunity in favor of the host, or provide new opportunities to eliminate HIV in its host altogether.
Collapse
Affiliation(s)
- Aida Sivro
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ruey-Chyi Su
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Francis A. Plummer
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - T. Blake Ball
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
16
|
Park SY, Kim KC, Hong KJ, Kim SS, Choi BS. Histone deactylase inhibitor SAHA induces a synergistic HIV-1 reactivation by 12-O-tetradecanoylphorbol-13-acetate in latently infected cells. Intervirology 2013; 56:242-8. [PMID: 23735807 DOI: 10.1159/000350563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 03/07/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Recent studies have reported that human immunodeficiency virus type 1 (HIV-1) proviruses are strongly suppressed in the unique epigenetic environments caused by chromatin modifications such as acetylation and methylation. Therefore, optimized therapeutic strategies directed against the virus reservoir using these epigenetic modifying agents (EMAs) should cure HIV infection. METHODS Cytotoxicity and HIV-1 reactivation were determined using the PrestoBlue™ Cell Viability Reagent and p24 HIV ELISA, respectively. RESULTS EMAs, including histone deacetylase inhibitors (VPA and SAHA), DNA methyltransferase inhibitor (5'-Aza-CdR), histone methyltransferase inhibitor (ADOX) and 12-O-tetradecanoylphorbol-13-acetate (TPA), were used to reactivate proviruses in HIV-1 latently infected cells. The effect of monotreatment with these EMAs on HIV-1 reactivation was VPA or SAHA > 5'-Aza-CdR > ADOX. Even though cotreatment with these potential HIV-1 reactivating agents did not show any significant reactivation effects in HIV-1 latently infected cells, employing SAHA under TPA treatment demonstrated a dramatic synergistic effect on purging HIV-1 proviruses in all HIV-1 latently infected cells via the ERK and AP-1 pathways. CONCLUSIONS These results suggest that the combined approaches of EMAs, cotreatment of SAHA and TPA, could provide an effective way to lead a decline of HIV-1 reservoirs in patients.
Collapse
Affiliation(s)
- Soon Young Park
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chungbuk, Republic of Korea
| | | | | | | | | |
Collapse
|
17
|
Saxena SK, Shrivastava G, Tiwari S, Swamy MA, Nair MP. Modulation of HIV pathogenesis and T-cell signaling by HIV-1 Nef. Future Virol 2012; 7:609-620. [PMID: 22844345 DOI: 10.2217/fvl.12.42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HIV-1 Nef protein is an approximately 27-kDa myristoylated protein that is a virulence factor essential for efficient viral replication and infection in CD4(+) T cells. The functions of CD4(+) T cells are directly impeded after HIV infection. HIV-1 Nef plays a crucial role in manipulating host cellular machinery and in HIV pathogenesis by reducing the ability of infected lymphocytes to form immunological synapses by promoting virological synapses with APCs, and by affecting T-cell stimulation. This article reviews the current status of the efficient Nef-mediated spread of virus in the unreceptive environment of the immune system by altering CD4(+) T-lymphocyte signaling, intracellular trafficking, cell migration and apoptotic pathways.
Collapse
Affiliation(s)
- Shailendra K Saxena
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Hyderabad 500007 (AP), India
| | | | | | | | | |
Collapse
|
18
|
Della Chiara G, Crotti A, Liboi E, Giacca M, Poli G, Lusic M. Negative regulation of HIV-1 transcription by a heterodimeric NF-κB1/p50 and C-terminally truncated STAT5 complex. J Mol Biol 2011; 410:933-43. [PMID: 21763497 DOI: 10.1016/j.jmb.2011.03.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/18/2011] [Accepted: 03/18/2011] [Indexed: 02/04/2023]
Abstract
Signal transducers and activator of transcription (STAT) proteins are often constitutively activated in leukocytes of HIV-1(+) individuals, which frequently show a dominant expression of a C-terminally truncated isoform of STAT5 (STAT5Δ). STAT5Δ can act as a negative regulator of human immunodeficiency virus type 1 (HIV-1) expression in both CD8-depleted primary leukocytes and chronically infected promonocytic U1 cells stimulated with granulocyte-macrophage colony-stimulating factor (GM-CSF). Activated STAT5Δ can directly bind to two consensus sequences in the HIV-1 long terminal repeat (LTR) promoter; binding impairs recruitment of RNA polymerase II (Crotti, A., Lusic, M., Lupo, R., Lievens, P. M., Liboi, E., Della Chiara, G., et al. (2007). Naturally occurring C-terminally truncated STAT5 is a negative regulator of HIV-1 expression. Blood, 109, 5380-5389). One of the STAT consensus sequences overlaps with one nuclear factor κB (NF-κB) binding site; interestingly, NF-κB1/p50 homodimers, frequently detected in monocytic cells, are negative regulators of HIV transcription. Here, we show that GM-CSF stimulation of U1 cells, while not inducing NF-κB activation, leads to STAT5Δ phosphorylation and binding to the NF-κB/STAT target sequence in the HIV LTR promoter, which already associates with p50 under unstimulated conditions. STAT5Δ was found to associate with p50, but not with RelA/p65, in both U1 cells expressing endogenous proteins and 293T cells overexpressing these factors. Furthermore, GM-CSF stimulation promoted concurrent binding of STAT5Δ and p50 at the HIV LTR promoter in U1 cells. Immunoprecipitation of chromatin from GM-CSF-stimulated U1 cells confirmed in vivo binding of p50 to the viral promoter together with STAT5Δ. Thus, cytokine-activated STAT5Δ/p50 complexes can contribute to the maintenance of HIV-1 latency in monocytic cells.
Collapse
Affiliation(s)
- Giulia Della Chiara
- AIDS Immunopathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milano, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Kim HG, Kim KC, Roh TY, Park J, Jung KM, Lee JS, Choi SY, Kim SS, Choi BS. Gene silencing in HIV-1 latency by polycomb repressive group. Virol J 2011; 8:179. [PMID: 21496352 PMCID: PMC3094299 DOI: 10.1186/1743-422x-8-179] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 04/18/2011] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The persistence of latently human immunodeficiency virus-1 (HIV-1) infected cellular reservoirs in resting CD4+ T cells is a major obstacle to HIV-1 eradication. The detailed mechanism of HIV-1 latency remains unclear. We investigated histones and their post-translational modification associated with HIV-1 latency in novel HIV-1 latently infected cell lines established previously, NCHA cells. METHODS To examine histones and their modification linked with HIV-1 latency, the expression profiles for core histone proteins and histone deacetylases (HDACs) in NCHA cells were characterized by RT-PCR, ELISA, and western blot. The levels of histone acetylation and methylation at histone H3 Lys9 (H3K9) and Lys27 (H3K27) in HIV-1 latently infected cells were analyzed by western blot and chromatin immunoprecipitation-sequencing (ChIP-seq). RESULTS The expression levels for four core histone proteins (H2A, H2B, H3 and H4) and HDACs (HDAC1-8) in NCHA cells were not significantly different from those in their parental cells. Histone H3K9 and H3K27 acetylations in NCHA cells showed no difference in parental and NCHA cells, whereas the levels of di- and tri-methylation were increased in NCHA cells. The expression of EED which is a component of polycomb repressive complex 2 (PRC2), and BMI1 and RING2 which are constituents of PRC1, were upregulated in NCHA cells. In addition, more ubiquitylation at histone H2A was detected in NCHA cells. CONCLUSIONS Our results suggest that tri-methylation of histone H3K27 and H2A ubiquitylation via polycomb group protein may play a crucial role in epigenetic silencing accounting for HIV-1 latency in NCHA cells.
Collapse
Affiliation(s)
- Hyeon Guk Kim
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Chung-buk, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Valproic acid antagonizes the capacity of other histone deacetylase inhibitors to activate the Epstein-barr virus lytic cycle. J Virol 2011; 85:5628-43. [PMID: 21411522 DOI: 10.1128/jvi.02659-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diverse stimuli reactivate the Epstein-Barr virus (EBV) lytic cycle in Burkitt lymphoma (BL) cells. In HH514-16 BL cells, two histone deacetylase (HDAC) inhibitors, sodium butyrate (NaB) and trichostatin A (TSA), and the DNA methyltransferase inhibitor azacytidine (AzaCdR) promote lytic reactivation. Valproic acid (VPA), which, like NaB, belongs to the short-chain fatty acid class of HDAC inhibitors, fails to induce the EBV lytic cycle in these cells. Nonetheless, VPA behaves as an HDAC inhibitor; it causes hyperacetylation of histone H3 (J. K. Countryman, L. Gradoville, and G. Miller, J. Virol. 82:4706-4719, 2008). Here we show that VPA blocked the induction of EBV early lytic proteins ZEBRA and EA-D in response to NaB, TSA, or AzaCdR. The block in lytic activation occurred prior to the accumulation of BZLF1 transcripts. Reactivation of EBV in Akata cells, in response to anti-IgG, and in Raji cells, in response to tetradecanoyl phorbol acetate (TPA), was also inhibited by VPA. MS-275 and apicidin, representing two additional classes of HDAC inhibitors, and suberoylanilide hydroxamic acid (SAHA) reactivated EBV in HH514-16 cells; this activity was also inhibited by VPA. Although VPA potently blocked the expression of viral lytic-cycle transcripts, it did not generally block the transcription of cellular genes and was not toxic. The levels and kinetics of specific cellular transcripts, such as Stat3, Frmd6, Mad1, Sepp1, c-fos, c-jun, and egr1, which were activated by NaB and TSA, were similar in HH514-16 cells treated with VPA. When combined with NaB or TSA, VPA did not inhibit the activation of these cellular genes. Changes in cellular gene expression in response to VPA, NaB, or TSA were globally similar as assessed by human genome arrays; however, VPA selectively stimulated the expression of some cellular genes, such as MEF2D, YY1, and ZEB1, that could repress the EBV lytic cycle. We describe a novel example of functional antagonism between HDAC inhibitors.
Collapse
|
21
|
Pace MJ, Agosto L, Graf EH, O’Doherty U. HIV reservoirs and latency models. Virology 2011; 411:344-54. [PMID: 21284992 PMCID: PMC3618966 DOI: 10.1016/j.virol.2010.12.041] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 12/19/2010] [Accepted: 12/21/2010] [Indexed: 11/19/2022]
Abstract
The main impediment to a cure for HIV is the existence of long-lasting treatment resistant viral reservoirs. In this review, we discuss what is currently known about reservoirs, including their formation and maintenance, while focusing on latently infected CD4+ T cells. In addition, we compare several different in vivo and in vitro models of latency. We comment on how each model may reflect the properties of reservoirs in vivo, especially with regard to cell phenotype, since recent studies demonstrate that multiple CD4+ T cell subsets contribute to HIV reservoirs and that with HAART and disease progression the relative contribution of different subsets may change. Finally, we focus on the direct infection of resting CD4+ T cells as a source of reservoir formation and as a model of latency, since recent results help explain the misconception that resting CD4+ T cells appeared to be resistant to HIV in vitro.
Collapse
Affiliation(s)
- Matthew J. Pace
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104
| | - Luis Agosto
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104
| | - Erin H. Graf
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104
| | - Una O’Doherty
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104
| |
Collapse
|
22
|
Abstract
Histone deacetylase plays an important role in HIV latency. Novel histone deacetylase inhibitors, CG05 and CG06, were evaluated for their roles in HIV latency using ACH2 cells. Both inhibitors were highly efficient in reactivation of provirus and exerted lesser toxicity compared with other known histone deacetylase inhibitors. Histone acetylation increased when proviruses were reactivated by the compounds. These new inhibitors may contribute to the reduction of the HIV reservoir when used in conjunction with highly active antiretroviral therapy.
Collapse
|
23
|
Imai K, Ochiai K, Okamoto T. Reactivation of latent HIV-1 infection by the periodontopathic bacterium Porphyromonas gingivalis involves histone modification. THE JOURNAL OF IMMUNOLOGY 2009; 182:3688-95. [PMID: 19265147 DOI: 10.4049/jimmunol.0802906] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Latently infected cells harbor the HIV-1 proviral DNA genome primarily integrated into heterochromatin, allowing the persistence of transcriptionally silent proviruses. Hypoacetylation of histone proteins by histone deacetylases (HDAC) is involved in the maintenance of HIV-1 latency by repressing viral transcription. In addition, periodontal diseases, caused by polymicrobial subgingival bacteria including Porphyromonas gingivalis, are among the most prevalent infections of mankind. Here we demonstrate the effects of P. gingivalis on HIV-1 replication. This activity could be ascribable to the bacterial culture supernatant but not to other bacterial components such as fimbriae or LPS. We found that this HIV-1-inducing activity was recovered in the lower molecular mass (<3 kDa) fraction of the culture supernatant. We also demonstrated that P. gingivalis produces high concentrations of butyric acid, acting as a potent inhibitor of HDACs and causing histone acetylation. Chromatin immunoprecipitation assays revealed that the corepressor complex containing HDAC1 and AP-4 was dissociated from the HIV-1 long terminal repeat promoter upon stimulation with bacterial culture supernatant concomitantly with the association of acetylated histone and RNA polymerase II. We thus found that P. gingivalis could induce HIV-1 reactivation via chromatin modification and that butyric acid, one of the bacterial metabolites, is responsible for this effect. These results suggest that periodontal diseases could act as a risk factor for HIV-1 reactivation in infected individuals and might contribute to the systemic dissemination of the virus.
Collapse
Affiliation(s)
- Kenichi Imai
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | |
Collapse
|
24
|
Abstract
Highly active antiretroviral therapy (HAART) has markedly decreased morbidity and mortality in human immunodeficiency virus type 1 (HIV-1)-infected individuals in the developed world. Successful therapy often results in stable plasma levels of HIV-1 RNA below the limits of detection of commercial assays. Nonetheless, HIV-1 has not been cured by HAART. The causes of persistence of HIV infection in the face of current therapy appear to be multifactorial: latent but replication-competent provirus in resting CD4+ T cells, cryptic viral expression below the limits of detection of clinical assays, and viral sanctuary sites might all contribute to persistence. Clearance of HIV infection will almost certainly require a multimodality approach that includes potent suppression of HIV replication, therapies that reach all compartments of residual HIV replication and depletion of any reservoirs of persistent, quiescent proviral infection. This review highlights the basic mechanisms for the establishment and maintenance of viral reservoirs and pharmaceutical approaches towards their elimination.
Collapse
|
25
|
Murakami T, Harada H, Suico MA, Shuto T, Suzu S, Kai H, Okada S. Ephedrae herba, a component of Japanese herbal medicine Mao-to, efficiently activates the replication of latent human immunodeficiency virus type 1 (HIV-1) in a monocytic cell line. Biol Pharm Bull 2009; 31:2334-7. [PMID: 19043222 DOI: 10.1248/bpb.31.2334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The persistence of latent human immunodeficiency virus type 1 (HIV-1)-infected cellular reservoirs, despite prolonged treatment with highly active antiretroviral therapy (HAART), represents a major hurdle to virus eradication. In this study, we evaluated the effect of Japanese herbal medicine on the induction of HIV-1 replication in latently infected monocytic cell line, U1, in order to eradicate virus efficiently. We found that Mao-to was able to induce HIV-1 replication either alone or in combination with tumor necrosis factor-alpha (TNF-alpha). Among the four components of Mao-to, only Ephedrae herba had strong effects in inducing HIV-1 replication. Analysis by Western blotting revealed that Ephedrae herba induced the nuclear translocation of nuclear factor-kappa B (NF-kappaB). Reporter assay data also showed that Ephedrae herba and, slightly, Mao-to activated the NF-kappaB promoter, indicating that these herbal agents may induce HIV-1 replication through NF-kappaB activation. These findings suggest that Mao-to and its component, Ephedrea herba, may be good candidates to augment HAART by inducing the expression of latent HIV-1 with the ultimate goal of eliminating persistent viral reservoirs in individuals infected with HIV-1.
Collapse
Affiliation(s)
- Toru Murakami
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Many viruses introduce DNA into the host-cell nucleus, where they must either embrace or confront chromatin factors as a support or obstacle to completion of their life cycle. Compared to the eukaryotic cell, viruses have compact and rapidly evolving genomes. Despite their smaller size, viruses have complex life cycles that involve dynamic changes in DNA structure. Nuclear entry, transcription, replication, genome stabilization, and virion packaging involve complex changes in chromosome organization and structure. Chromatin dynamics and epigenetic modifications play major roles in viral and host chromosome biology. In some cases, viruses may use novel or viral-specific epigenetic modifying activities, which may reflect variant pathways that distinguish their behavior from the bulk of the cellular chromosome. This review examines several recent discoveries that highlight the role of chromatin dynamics in the life cycle of DNA viruses.
Collapse
|
27
|
Abstract
The course of HIV infection is arrested by antiretroviral therapy (ART). However, life-long ART is undesirable. To eradicate infection, strategies are needed to deplete the rare population of proviral genomes that persist and reemerge if ART is interrupted. Proviral HIV persists due to the simultaneous deficiency of factors required to allow proviral expression and virion production, and a predominance of factors that obstruct proviral expression. Combining ART with global inducers of T-cell activation has so far failed to eradicate HIV infection. One approach to the selective removal of obstacles to proviral expression, inhibition of the chromatin remodeling enzyme histone deacetylase, has entered clinical testing. Additional approaches may be needed. Ultimately, therapies that eliminate rare cells that persistently express HIV and interrupt low levels of viremia that persist in some patients may be required to render depletion of proviral HIV infection clinically relevant, and lead to the clearance of HIV infection.
Collapse
Affiliation(s)
- David M Margolis
- Department of Medicine, 3302 Michael Hooker Research Building, CB#7435, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7435, USA.
| |
Collapse
|
28
|
HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR. BMC Mol Biol 2007; 8:63. [PMID: 17663774 PMCID: PMC1955452 DOI: 10.1186/1471-2199-8-63] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 07/30/2007] [Indexed: 12/27/2022] Open
Abstract
Background RNA interference (RNAi) is a regulatory mechanism conserved in higher eukaryotes. The RNAi pathway generates small interfering RNA (siRNA) or micro RNA (miRNA) from either long double stranded stretches of RNA or RNA hairpins, respectively. The siRNA or miRNA then guides an effector complex to a homologous sequence of mRNA and regulates suppression of gene expression through one of several mechanisms. The suppression of gene expression through these mechanisms serves to regulate endogenous gene expression and protect the cell from foreign nucleic acids. There is growing evidence that many viruses have developed in the context of RNAi and express either a suppressor of RNAi or their own viral miRNA. Results In this study we investigated the possibility that the HIV-1 TAR element, a hairpin structure of ~50 nucleotides found at the 5' end of the HIV viral mRNA, is recognized by the RNAi machinery and processed to yield a viral miRNA. We show that the protein Dicer, the enzyme responsible for cleaving miRNA and siRNA from longer RNA sequences, is expressed in CD4+ T-cells. Interestingly, the level of expression of Dicer in monocytes is sub-optimal, suggesting a possible role for RNAi in maintaining latency in T-cells. Using a biotin labeled TAR element we demonstrate that Dicer binds to this structure. We show that recombinant Dicer is capable of cleaving the TAR element in vitro and that TAR derived miRNA is present in HIV-1 infected cell lines and primary T-cell blasts. Finally, we show that a TAR derived miRNA is capable of regulating viral gene expression and may be involved in repressing gene expression through transcriptional silencing. Conclusion HIV-1 TAR element is processed by the Dicer enzyme to create a viral miRNA. This viral miRNA is detectable in infected cells and appears to contribute to viral latency.
Collapse
|
29
|
Fackler OT, Alcover A, Schwartz O. Modulation of the immunological synapse: a key to HIV-1 pathogenesis? Nat Rev Immunol 2007; 7:310-7. [PMID: 17380160 DOI: 10.1038/nri2041] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIDS is the result of a constant struggle between the lentivirus HIV and the immune system. Infection with HIV interferes directly with the function of CD4(+) T cells and manipulates the host immune response to the virus. Recent studies indicate that the viral protein Nef, a central player in HIV pathogenesis, impairs the ability of infected lymphocytes to form immunological synapses with antigen-presenting cells and affects T-cell-receptor-mediated stimulation. An integrative picture of the abnormal behaviour of HIV-infected lymphocytes is therefore emerging. We propose that modulating lymphocyte signalling, apoptosis and intracellular trafficking ensures efficient spread of the virus in the hostile environment of the immune system.
Collapse
Affiliation(s)
- Oliver T Fackler
- Oliver T. Fackler is at the Department of Virology, University of Heidelberg, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
30
|
Münk C, Zielonka J, Constabel H, Kloke BP, Rengstl B, Battenberg M, Bonci F, Pistello M, Löchelt M, Cichutek K. Multiple restrictions of human immunodeficiency virus type 1 in feline cells. J Virol 2007; 81:7048-60. [PMID: 17459941 PMCID: PMC1933292 DOI: 10.1128/jvi.02714-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The productive replication of human immunodeficiency virus type 1 (HIV-1) occurs exclusively in defined cells of human or chimpanzee origin, explaining why heterologous animal models for HIV replication, pathogenesis, vaccination, and therapy are not available. This lack of an animal model for HIV-1 studies prompted us to examine the susceptibility of feline cells in order to evaluate the cat (Felis catus) as an animal model for studying HIV-1. Here, we report that feline cell lines harbor multiple restrictions with respect to HIV-1 replication. The feline CD4 receptor does not permit virus infection. Feline T-cell lines MYA-1 and FeT-1C showed postentry restrictions resulting in low HIV-1 luciferase reporter activity and low expression of viral Gag-Pol proteins when pseudotyped vectors were used. Feline fibroblastic CrFK and KE-R cells, expressing human CD4 and CCR5, were very permissive for viral entry and HIV-long terminal repeat-driven expression but failed to support spreading infection. KE-R cells displayed a profound block with respect to release of HIV-1 particles. In contrast, CrFK cells allowed very efficient particle production; however, the CrFK cell-derived HIV-1 particles had low specific infectivity. We subsequently identified feline apolipoprotein B-editing catalytic polypeptide 3 (feAPOBEC3) proteins as active inhibitors of HIV-1 particle infectivity. CrFK cells express at least three different APOBEC3s: APOBEC3C, APOBEC3H, and APOBEC3CH. While the feAPOBEC3C did not significantly inhibit HIV-1, the feAPOBEC3H and feAPOBEC3CH induced G to A hypermutations of the viral cDNA and reduced the infectivity approximately 10- to approximately 40-fold.
Collapse
Affiliation(s)
- Carsten Münk
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Giri MS, Nebozhyn M, Showe L, Montaner LJ. Microarray data on gene modulation by HIV-1 in immune cells: 2000-2006. J Leukoc Biol 2006; 80:1031-43. [PMID: 16940334 DOI: 10.1189/jlb.0306157] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Here, we review 34 HIV microarray studies in human immune cells over the period of 2000-March 2006 with emphasis on analytical approaches used and conceptual advances on HIV modulation of target cells (CD4 T cell, macrophage) and nontargets such as NK cell, B cell, and dendritic cell subsets. Results to date address advances on gene modulation associated with immune dysregulation, susceptibility to apoptosis, virus replication, and viral persistence following in vitro or in vivo infection/exposure to HIV-1 virus or HIV-1 accessory proteins. In addition to gene modulation associated with known functional correlates of HIV infection and replication (e.g., T cell apoptosis), microarray data have yielded novel, potential mechanisms of HIV-mediated pathogenesis such as modulation of cholesterol biosynthetic genes in CD4 T cells (relevant to virus replication and infectivity) and modulation of proteasomes and histone deacetylases in chronically infected cell lines (relevant to virus latency). Intrinsic challenges in summarizing gene modulation studies remain in development of sound approaches for comparing data obtained using different platforms and analytical tools, deriving unifying concepts to distil the large volumes of data collected, and the necessity to impose a focus for validation on a small fraction of genes. Notwithstanding these challenges, the field overall continues to demonstrate progress in expanding the pool of target genes validated to date in in vitro and in vivo datasets and understanding the functional correlates of gene modulation to HIV-1 pathogenesis in vivo.
Collapse
Affiliation(s)
- Malavika S Giri
- HIV Immunopathogenesis Laboratory, Wistar Institute, 3601 Spruce St., Room 480, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
32
|
Thoulouze MI, Sol-Foulon N, Blanchet F, Dautry-Varsat A, Schwartz O, Alcover A. Human immunodeficiency virus type-1 infection impairs the formation of the immunological synapse. Immunity 2006; 24:547-61. [PMID: 16713973 DOI: 10.1016/j.immuni.2006.02.016] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 02/08/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
HIV-1-infected lymphocytes improperly respond to T cell antigen receptor (TCR) stimulation. To document this phenomenon, we studied the capacity of HIV-1-infected lymphocytes to form immunological synapses. We show here that HIV-1-infected T cells poorly conjugated with antigen-presenting cells, and when they formed conjugates, the synapses were abnormal. TCR and Lck accumulated in the recycling endosomal compartment, and their clustering at the synapse was severely reduced. These phenomena were, to a large extent, caused by Nef, a viral protein affecting intracellular trafficking and signaling pathways. Concomitantly, in HIV-infected cells, tyrosine phosphorylation at the synapse and the patterns of tyrosine phosphorylated proteins were disturbed in a Nef-dependent manner. These findings underscore the importance of Lck and TCR endosomal trafficking in synapse formation and early T cell signaling. Alteration of endocytic and signaling networks at the immunological synapse likely impacts the function and fate of HIV-1-infected cells.
Collapse
Affiliation(s)
- Maria Isabel Thoulouze
- Unité de Biologie Cellulaire des Lymphocytes, Centre National de la Recherche Scientifique Unité de Recherche Associée-1930, Institut Pasteur, 25-28 rue Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Yamashita M, Emerman M. Retroviral infection of non-dividing cells: old and new perspectives. Virology 2006; 344:88-93. [PMID: 16364740 DOI: 10.1016/j.virol.2005.09.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 09/10/2005] [Indexed: 12/16/2022]
Abstract
The dependence of retroviral replication on cell proliferation was described as early as 1958, although different classes of retroviruses are able to infect non-dividing cells with different efficiencies. For example, the human immunodeficiency virus (HIV) and other lentiviruses infect most non-dividing cells nearly as well as dividing cells, while the gammaretroviruses such as the murine leukemia virus (MLV) cannot infect non-dividing cells, and other retroviruses have intermediate phenotypes. One exception to the ability of HIV to infect non-dividing cells involves resting CD4+ T cells in vitro where there are multiple restrictions. However, recent data show that there is massive infection of non-activated CD4+ T cell during acute infection which suggests that the situation is different in vivo. Finally, much work trying to explain the difference between HIV and MLV in non-dividing cells has focused on describing the ability of HIV to enter the nucleus during interphase. However, we suggest that events in the viral life-cycle other than nuclear import may be more important in determining the ability of a given retrovirus to infect non-dividing cells.
Collapse
Affiliation(s)
- Masahiro Yamashita
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109-1024, USA
| | | |
Collapse
|
35
|
Lieberman PM. Chromatin regulation of virus infection. Trends Microbiol 2006; 14:132-40. [PMID: 16458005 DOI: 10.1016/j.tim.2006.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 12/14/2005] [Accepted: 01/16/2006] [Indexed: 02/02/2023]
Abstract
Cellular chromatin forms a dynamic structure that maintains the stability and accessibility of the host DNA genome. Viruses that enter and persist in the nucleus must, therefore, contend with the forces that drive chromatin formation and regulate chromatin structure. In some cases, cellular chromatin inhibits viral gene expression and replication by suppressing DNA accessibility. In other cases, cellular chromatin provides essential structure and organization to the viral genome and is necessary for successful completion of the viral life cycle. Consequently, viruses have acquired numerous mechanisms to manipulate cellular chromatin to ensure viral genome survival and propagation.
Collapse
|
36
|
Swiggard WJ, Baytop C, Yu JJ, Dai J, Li C, Schretzenmair R, Theodosopoulos T, O'Doherty U. Human immunodeficiency virus type 1 can establish latent infection in resting CD4+ T cells in the absence of activating stimuli. J Virol 2006; 79:14179-88. [PMID: 16254353 PMCID: PMC1280214 DOI: 10.1128/jvi.79.22.14179-14188.2005] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resting CD4(+) T cells are the best-defined reservoir of latent human immunodeficiency virus type 1 (HIV-1) infection, but how the reservoir is formed is unclear. Understanding how the reservoir of latently infected cells forms is critical because it is a major barrier to curing HIV infection. The system described here may provide an in vitro model of latent HIV-1 infection in resting CD4(+) T cells. We demonstrated that HIV-1 integrates into the genomes of in vitro-inoculated resting CD4(+) T cells that have not received activating stimuli and have not entered cell cycle stage G(1b). A percentage of the resting CD4(+) T cells that contain integrated DNA produce virus upon stimulation, i.e., are latently infected. Our results show that latent HIV-1 infection occurs in unstimulated resting CD4(+) T cells and suggest a new route for HIV-1 reservoir formation.
Collapse
|
37
|
Deresinski S. In The Literature. Clin Infect Dis 2005. [DOI: 10.1086/499078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
38
|
Munier S, Delcroix-Genête D, Carthagéna L, Gumez A, Hazan U. Characterization of two candidate genes, NCoA3 and IRF8, potentially involved in the control of HIV-1 latency. Retrovirology 2005; 2:73. [PMID: 16305739 PMCID: PMC1310520 DOI: 10.1186/1742-4690-2-73] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 11/23/2005] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The persistence of latent HIV-1 reservoirs is the principal barrier preventing the eradication of HIV-1 infection in patients by current antiretroviral therapy. It is thus crucial to understand the molecular mechanisms involved in the establishment, maintenance and reactivation of HIV-1 latency. Since chromatin remodeling has been implicated in the transcriptional reactivation of the HIV-1 promoter, we assessed the role of the histone deacetylase inhibitor sodium butyrate (NaB) on two HIV-1 latently infected cell lines (U1 and ACH-2) gene expression. RESULTS Analysis of microarrays data led us to select two candidate genes: NCoA3 (Nuclear Receptor Coactivator 3), a nuclear receptor coactivator and IRF8 (Interferon Regulatory Factor 8), an interferon regulatory factor. NCoA3 gene expression is upregulated following NaB treatment of latently infected cells whereas IRF8 gene expression is strongly downregulated in the promonocytic cell line following NaB treatment. Their differential expressions were confirmed at the transcriptional and translational levels. Moreover, NCoA3 gene expression was also upregulated after treatment of U1 and ACH-2 cells with phorbol myristyl acetate (PMA) but not trichostatin A (TSA) and after treatment with NaB of two others HIV-1 latently infected cell lines (OM10.1 and J1.1). IRF8 gene is only expressed in U1 cells and was also downregulated after treatment with PMA or TSA. Functional analyses confirmed that NCoA3 synergizes with Tat to enhance HIV-1 promoter transcription and that IRF8 represses the IRF1-mediated activation through the HIV-1 promoter Interferon-stimulated response element (ISRE). CONCLUSION These results led us to postulate that NCoA3 could be involved in the transcriptional reactivation of the HIV-1 promoter from latency and that IRF8 may contribute to the maintenance of the latent state in the promonocytic cell line. Implication of these factors in the maintenance or reactivation of the viral latency may provide potential new targets to control HIV-1 replication in latent viral reservoirs.
Collapse
Affiliation(s)
- Sandie Munier
- Département des Maladies Infectieuses, Institut Cochin, INSERM U567/CNRS UMR-S 8104/Université Paris 5-René Descartes, 22 rue Méchain, 75014 Paris, France
| | - Delphine Delcroix-Genête
- Département des Maladies Infectieuses, Institut Cochin, INSERM U567/CNRS UMR-S 8104/Université Paris 5-René Descartes, 22 rue Méchain, 75014 Paris, France
| | - Laëtitia Carthagéna
- Département des Maladies Infectieuses, Institut Cochin, INSERM U567/CNRS UMR-S 8104/Université Paris 5-René Descartes, 22 rue Méchain, 75014 Paris, France
| | - Audrey Gumez
- Département des Maladies Infectieuses, Institut Cochin, INSERM U567/CNRS UMR-S 8104/Université Paris 5-René Descartes, 22 rue Méchain, 75014 Paris, France
| | - Uriel Hazan
- Département des Maladies Infectieuses, Institut Cochin, INSERM U567/CNRS UMR-S 8104/Université Paris 5-René Descartes, 22 rue Méchain, 75014 Paris, France
- UFR de Biochimie, Université Paris 7-Denis Diderot, 2 Place Jussieu, 75251 Paris, France
| |
Collapse
|