1
|
Li L, Chen J, Cao Z, Guo Z, Liu J, Zhou Y, Tong G, Gao F. Engineering a live-attenuated porcine reproductive and respiratory syndrome virus vaccine to prevent RNA recombination by rewiring transcriptional regulatory sequences. mBio 2025; 16:e0235024. [PMID: 39714179 PMCID: PMC11796407 DOI: 10.1128/mbio.02350-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Recombination is a significant factor driving the evolution of RNA viruses. The prevalence and variation of porcine reproductive and respiratory syndrome virus (PRRSV) in China have been increasing in complexity due to extensive interlineage recombination. When this recombination phenomenon occurs in live vaccine strains, it becomes increasingly difficult to prevent and control PRRSV. Reverse genetic manipulation to engineer a different transcriptional regulatory sequence (TRS) circuit introduces genetic traps into the viral genome that are lethal to recombinant RNA progeny viruses. In this study, major interlineage recombination patterns were identified between lineage 1 (L1) PRRSVs and lineage 8 (L8) PRRSVs in China, from 2019 to 2023. The recombinant mutant virus, vA-TRSall, was constructed and successfully rescued by rewiring the entire TRS circuit without changing the amino acid-coding sequence in the genome of the PRRSV live vaccine strain vHuN4-F112. The vA-TRSall, with a brand new TRS circuit, provided effective immune protection against the highly pathogenic L8 PRRSV (vHuN4) and epidemic NADC30-like L1 PRRSV (vZJqz21). Recombination analysis in vitro and in vivo showed that, compared with the vHuN4-F112 and vZJqz21 co-infection groups, the incidence rates of mutation breakpoints and template-switching recombination in the vA-TRSall and vZJqz21 co-infected groups were effectively reduced. The results have enriched our understanding of the critical role of TRS circuits in PRRSV recombination mechanisms and indicate a successful redesign that can endow PRRSV live vaccines with recombination-resistant capabilities. IMPORTANCE Porcine reproductive and respiratory syndrome viruses (PRRSVs) are genetically diverse, and this is due in part to their extensive recombination. Live vaccines are widely used to prevent and control PRRS in China. However, owing to the wide variety of live vaccines, non-standard use, and the wild viruses prevalent on pig farms, new strains, generated via RNA recombination, are continuously emerging. Vaccine strains are also involved in PRRSV recombination, which leads to the emergence of new variants and alterations in virulence and pathogenesis. A recombination-resistant genome was engineered by rewiring the entire transcriptional regulatory sequence (TRS) circuit of the live PRRSV vaccine strain. Theoretically, after clinical application, once the virus recombines with the genome of the epidemic strain, the base pairing between the two sets of TRS circuits should be disrupted, resulting in a fatal genetic trap for the generation of an RNA recombinant progeny virus. Therefore, the remodeled PRRSV TRS mutant generated in this study can serve as a recombination-resistant platform for the rational design of safe PRRS vaccines in the future.
Collapse
Affiliation(s)
- Liwei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jinxia Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhengda Cao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ziqiang Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jiachen Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Jose-Abrego A, Laguna-Meraz S, Roman S, Mariscal-Martinez IM, Panduro A. Hepatitis C Virus Resistance-Associated Substitutions in Mexico. Viruses 2025; 17:169. [PMID: 40006924 PMCID: PMC11860613 DOI: 10.3390/v17020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
Hepatitis C virus (HCV) is susceptible to resistance-associated substitutions (RASs) in the NS3, NS5A, and NS5B nonstructural genes, key targets of the direct-acting antivirals (DAAs). This study aimed to assess the prevalence and distribution of RASs across different HCV subtypes in Mexico. A Genbank dataset of 566 HCV sequences was analyzed. Most sequences were from Mexico City (49.1%, 278/566) and Jalisco (39.4%, 223/566). The NS5B region was the most sequenced (59.7%, 338/566). The most frequent HCV subtypes were 1a (44.0%, 249/566), 1b (28.6%, 162/566), 2b (9.5%, 54/566), and 3a (6.2%, 35/566). Subtypes 1a (57.4%, 128/223) and 3a (12.6%, 28/223) were significantly higher in Jalisco than in Mexico City (34.2%, 95/278 and 2.5%, 7/278), whereas subtype 1b was higher in Mexico City (34.5%, 96/278 vs. 14.8%, 33/223). Subtype 1a increased from 2019 to 2024, representing 49.4% (123/249) of all reported cases. RASs were detected in NS3 (6.7%, 1/15), NS5A (2.9%, 3/102), and NS5B (0.3%, 1/349), with the most frequent mutations being Q80K, Y93H, and S282T, respectively, and detected in subtypes 1b (n = 3), 1a (n = 1), and 2a (n = 1). In conclusion, Mexico's HCV sequencing-based surveillance is limited. Subtype 1a predominated, but frequencies varied across states. The prevalence of RASs varied by gene from 0.3% to 6.7%. Establishing regional sequencing centers for NS3, NS5A, and NS5B is crucial to monitoring Mexico's DAA-resistant mutations and HCV subtype genetic diversity.
Collapse
Affiliation(s)
- Alexis Jose-Abrego
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Guadalajara 44280, Mexico; (A.J.-A.); (S.L.-M.); (S.R.); (I.M.M.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Saul Laguna-Meraz
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Guadalajara 44280, Mexico; (A.J.-A.); (S.L.-M.); (S.R.); (I.M.M.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Sonia Roman
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Guadalajara 44280, Mexico; (A.J.-A.); (S.L.-M.); (S.R.); (I.M.M.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Irene M. Mariscal-Martinez
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Guadalajara 44280, Mexico; (A.J.-A.); (S.L.-M.); (S.R.); (I.M.M.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
- Doctoral Program Molecular Biology in Medicine, Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Arturo Panduro
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, Fray Antonio Alcalde, Guadalajara 44280, Mexico; (A.J.-A.); (S.L.-M.); (S.R.); (I.M.M.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
3
|
Mustafa A, Davlidova S, Abidi SH, Begimbetova D, Heimer R, Vermund SH, Ali S. Prevalence of resistance-associated substitutions (RAS) in hepatitis C virus in the Former Soviet Union countries. BMJ Open Gastroenterol 2025; 12:e001657. [PMID: 39848793 PMCID: PMC11758705 DOI: 10.1136/bmjgast-2024-001657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVE The emergence of resistance-associated substitutions (RASs) poses a significant challenge to the effective treatment of hepatitis C virus (HCV) infection using direct-acting antivirals. This study's objective was to observe the prevalence of HCV genotypes and RAS within the Former Soviet Union (FSU) countries. METHODS We analysed 60 NS3, 313 NS5A and 1119 NS5B sequences of HCV deposited in open-access databases from 11 FSU countries for the prevalence of genotypes and the presence of RAS using the Geno2Pheno software. RESULTS The following NS3 RASs were revealed through our analyses: 156P/S/T, 168del, 80K, 55A and 174S. The most prevalent NS5A RAS was 30K (12.69%) in genotype 3a, associated with resistance to daclatasvir, elbasvir and ledipasvir, followed by 62S (8.96% in genotype 3a), linked with resistance to daclatasvir, and 93H (3.95% and 6.72% in genotypes 1b and 3a, respectively), conferring resistance to daclatasvir, ombitasvir, elbasvir, ledipasvir and velpatasvir. The NS5B RASs found in this study were 451S and 556G, associated with resistance to dasabuvir. CONCLUSION The high prevalence of HCV genotypes 1b and 3a in the FSU region and the presence of specific RASs should be considered when determining the most effective treatment regimen for HCV-infected individuals in the FSU countries.
Collapse
Affiliation(s)
- Aidana Mustafa
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | | | - Syed Hani Abidi
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | | | | | | | - Syed Ali
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| |
Collapse
|
4
|
Tang J, Hung YF, Yoo D. Genomic RNA recombination of porcine reproductive and respiratory syndrome virus and other arteriviruses. Virology 2025; 601:110284. [PMID: 39531889 DOI: 10.1016/j.virol.2024.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Arteriviruses in the Nidovirales order are single-stranded positive-sense RNA viruses infecting mammals. Arteriviruses are recognized for causing various clinical diseases, ranging from asymptomatic infections to severe conditions like respiratory syndromes and viral hemorrhagic fever. Notably, arteriviruses exhibit a high frequency of RNA recombination, and their robust recombination rates are a crucial factor in recurrent outbreaks. The recombination events also shape the countermeasures employed by arteriviruses during virus-host co-evolution and confer specific evolutionary benefits to viruses, implicating a role as a selective advantage in viral adaptation. This review delves into the molecular basis of RNA recombination in arteriviruses, the bioinformatics tools and methodologies used to visualize evolutionary relationships, and the identification of recombination breakpoints. Significant recombination events are highlighted for PRRSV and other arteriviruses, illustrating the profound implications of recombination for viral evolution and pathogenesis. Recombination between field viruses and between field viruses and vaccine strains can generate new variants with altered antigenic profiles and virulence, leading to diagnostic failure, severe clinical outcomes, and reduced vaccine efficacy. Despite the advances, further research is needed to understand recombination rates and hotspots, as well as to develop potential antiviral strategies and diagnostic approaches for arteriviruses.
Collapse
Affiliation(s)
- Junyu Tang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Yu Fan Hung
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
5
|
Liu S, Deng Z, Li J, Zou L, Sun X, Liu X, Shi Y, Huang S, Wu Y, Lei J, Liu P, Zhang P, Xiong Y, Long ZE. Isolation and characterization of genetic variants of Orthohantavirus hantanense from clinical cases of HFRS in Jiangxi Province, China. PLoS Negl Trop Dis 2024; 18:e0012439. [PMID: 39235995 PMCID: PMC11376573 DOI: 10.1371/journal.pntd.0012439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Hemorrhagic fever with renal syndrome (HFRS) is a severe public health problem in Jiangxi province, China. Previous studies reported genetic variants of Orthohantavirus hantanense (Hantaan virus, HTNV) in rodents in this area. However, the relationship between HTNV variants and human infection needs to be confirmed. This study aimed to identify the HTNV variants in patients and to understand the clinical characteristics of HFRS caused by these variants. METHODS Samples were collected from hospitalized suspected cases of HFRS during the acute phase. HFRS cases were confirmed using quantitative real-time RT-PCR. Peripheral blood mononuclear cells (PBMC) from patients with HFRS were inoculated into Vero-E6 cells for viral isolation. The genomic sequences of HTNV from patients were obtained by amplicon-based next-generation sequencing. A retrospective analysis was conducted on the clinical characteristics of the patients. RESULTS HTNV RNA was detected in 53 of 183 suspected HFRS patients. Thirteen HTNVs were isolated from 32 PBMCs of HFRS cases. Whole genome sequences of 14 HTNVs were obtained, including 13 isolates in cell culture from 13 patients, and one from plasma of the fatal case which was not isolated successfully in cell culture. Genetic analysis revealed that the HTNV sequence from the 14 patients showed significant variations in nucleotide and amino acid to the HTNV strains found in other areas. Fever (100%, 53/53), thrombocytopenia (100%, 53/53), increased serum aspartate aminotransferase (100%, 53/53), and increased lactate dehydrogenase (96.2%, 51/53) were the most common characteristics. Severe acute kidney injury was observed in 13.2% (7/53) of cases. Clinical symptoms, such as pain, petechiae, and gastrointestinal or respiratory symptoms were uncommon. CONCLUSION The HTNV genetic variants cause human infections in Jiangxi. The clinical symptoms of HFRS caused by the HTNV genetic variant during the acute phase are atypical. In addition to renal dysfunction, attention should be paid to the common liver injuries caused by these genetic variants.
Collapse
Affiliation(s)
- Shiwen Liu
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
- Laboratory of Viral Infectious Disease, the Key Laboratory of Important and Emerging Viral Infectious Diseases of Jiangxi Health Commission, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Zhishi Deng
- Department of Infectious Diseases, Gao'an People's Hospital, Gao'an, Jiangxi, China
| | - Jianxiong Li
- Laboratory of Viral Infectious Disease, the Key Laboratory of Important and Emerging Viral Infectious Diseases of Jiangxi Health Commission, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Long Zou
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Xiuhui Sun
- Laboratory Department, Chongren County Center for Disease Prevention and Control, Chongren, Jiangxi, China
| | - Xiaoqing Liu
- Laboratory of Viral Infectious Disease, the Key Laboratory of Important and Emerging Viral Infectious Diseases of Jiangxi Health Commission, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Yong Shi
- Laboratory of Viral Infectious Disease, the Key Laboratory of Important and Emerging Viral Infectious Diseases of Jiangxi Health Commission, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Shunqiang Huang
- Department of Infectious Diseases, Gao'an People's Hospital, Gao'an, Jiangxi, China
| | - Yangbowen Wu
- Laboratory of Viral Infectious Disease, the Key Laboratory of Important and Emerging Viral Infectious Diseases of Jiangxi Health Commission, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Jinhui Lei
- Department of Infectious Diseases, Gao'an People's Hospital, Gao'an, Jiangxi, China
| | - Peipei Liu
- Department of Infectious Diseases, Gao'an People's Hospital, Gao'an, Jiangxi, China
| | - Pei Zhang
- Institutional Center for Shared Technologies and Facilities, Wuhan Institute of Virology, Wuhan, Hubei, China
| | - Ying Xiong
- Laboratory of Viral Infectious Disease, the Key Laboratory of Important and Emerging Viral Infectious Diseases of Jiangxi Health Commission, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Zhong-Er Long
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Cui XY, Xia DS, Luo LZ, An TQ. Recombination of Porcine Reproductive and Respiratory Syndrome Virus: Features, Possible Mechanisms, and Future Directions. Viruses 2024; 16:929. [PMID: 38932221 PMCID: PMC11209122 DOI: 10.3390/v16060929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Recombination is a pervasive phenomenon in RNA viruses and an important strategy for accelerating the evolution of RNA virus populations. Recombination in the porcine reproductive and respiratory syndrome virus (PRRSV) was first reported in 1999, and many case reports have been published in recent years. In this review, all the existing reports on PRRSV recombination events were collected, and the genotypes, parental strains, and locations of the recombination breakpoints have been summarized and analyzed. The results showed that the recombination pattern constantly changes; whether inter- or intra-lineage recombination, the recombination hotspots vary in different recombination patterns. The virulence of recombinant PRRSVs was higher than that of the parental strains, and the emergence of virulence reversion was caused by recombination after using MLV vaccines. This could be attributed to the enhanced adaptability of recombinant PRRSV for entry and replication, facilitating their rapid propagation. The aim of this paper was to identify common features of recombinant PRRSV strains, reduce the recombination risk, and provide a foundation for future research into the mechanism of PRRSV recombination.
Collapse
Affiliation(s)
- Xing-Yang Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Da-Song Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ling-Zhi Luo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tong-Qing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
7
|
Łukaszuk E, Dziewulska D, Stenzel T. Recombinant Viruses from the Picornaviridae Family Occurring in Racing Pigeons. Viruses 2024; 16:917. [PMID: 38932208 PMCID: PMC11209253 DOI: 10.3390/v16060917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Viruses from Picornaviridae family are known pathogens of poultry, although the information on their occurrence and pathogenicity in pigeons is scarce. In this research, efforts are made to broaden the knowledge on Megrivirus B and Pigeon picornavirus B prevalence, phylogenetic relationship with other avian picornaviruses and their possible connection with enteric disease in racing pigeons. As a result of Oxford Nanopore Sequencing, five Megrivirus and two pigeon picornavirus B-like genome sequences were recovered, among which three recombinant strains were detected. The recombinant fragments represented an average of 10.9% and 25.5% of the genome length of the Pigeon picornavirus B and Megrivirus B reference strains, respectively. The phylogenetic analysis revealed that pigeons are carriers of species-specific picornaviruses. TaqMan qPCR assays revealed 7.8% and 19.0% prevalence of Megrivirus B and 32.2% and 39.7% prevalence of Pigeon picornavirus B in the group of pigeons exhibiting signs of enteropathy and in the group of asymptomatic pigeons, respectively. In turn, digital droplet PCR showed a considerably higher number of genome copies of both viruses in sick than in asymptomatic pigeons. The results of quantitative analysis leave the role of picornaviruses in enteropathies of pigeons unclear.
Collapse
Affiliation(s)
| | | | - Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (E.Ł.); (D.D.)
| |
Collapse
|
8
|
Liu HM, Deng MC, Huang YL, Tsai KJ, Chang HW, Chang CY. In vivo characterization of the superior fitness of classical swine fever virus genotype 2.1 to genotype 3.4. Vet Microbiol 2023; 285:109854. [PMID: 37633061 DOI: 10.1016/j.vetmic.2023.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is a highly contagious disease in pigs. In Taiwan, the emerging genotype 2.1 (G2.1) CSFV caused sporadic outbreaks in 1994 and replaced the previous G3.4 CSFV in the field. The shift of CSFV genotypes to G2 CSFV was also observed in several CSFV-affected countries. The present study aimed to explore the mechanism of the genotype shift of CSFV. Two groups of specific pathogen-free (SPF) pigs were first inoculated with either G2.1 or G3.4 CSFV (single-inoculated group) and housed together with naïve SPF pigs (cohabitating group). The results showed that peak viremia, viral loads in blood and tissues, and viral shedding of G2.1 were consistently higher than those of G3.4 CSFV in single-inoculated and cohabitating pigs. The phenomenon of superinfection exclusion (SIE), characterized by the prevention of secondary infection by a primary infection, was readily observed in CSFV single-inoculated pigs. Interestingly, coinfection of both genotypes of CSFV was observed in 3 out of 4 cohabitating pigs, while only one pig was infected with G2.1 CSFV alone. These findings suggest that the genetic shift in CSFV in the field may be in part the consequence of SIE.
Collapse
Affiliation(s)
- Hsin-Meng Liu
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei 106319, Taiwan, ROC; Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan, ROC
| | - Ming-Chung Deng
- Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan, ROC
| | - Yu-Liang Huang
- Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan, ROC
| | - Kuo-Jung Tsai
- Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan, ROC
| | - Hui-Wen Chang
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei 106319, Taiwan, ROC
| | - Chia-Yi Chang
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei 106319, Taiwan, ROC.
| |
Collapse
|
9
|
Mechanisms and Consequences of Genetic Variation in Hepatitis C Virus (HCV). Curr Top Microbiol Immunol 2023; 439:237-264. [PMID: 36592248 DOI: 10.1007/978-3-031-15640-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chronic infection with hepatitis C virus (HCV) is an important contributor to the global incidence of liver diseases, including liver cirrhosis and hepatocellular carcinoma. Although common for single-stranded RNA viruses, HCV displays a remarkable high level of genetic diversity, produced primarily by the error-prone viral polymerase and host immune pressure. The high genetic heterogeneity of HCV has led to the evolution of several distinct genotypes and subtypes, with important consequences for pathogenesis, and clinical outcomes. Genetic variability constitutes an evasion mechanism against immune suppression, allowing the virus to evolve epitope escape mutants that avoid immune recognition. Thus, heterogeneity and variability of the HCV genome represent a great hindrance for the development of vaccines against HCV. In addition, the high genetic plasticity of HCV allows the virus to rapidly develop antiviral resistance mutations, leading to treatment failure and potentially representing a major hindrance for the cure of chronic HCV patients. In this chapter, we will present the central role that genetic diversity has in the viral life cycle and epidemiology of HCV. Incorporation errors and recombination, both the result of HCV polymerase activity, represent the main mechanisms of HCV evolution. The molecular details of both mechanisms have been only partially clarified and will be presented in the following sections. Finally, we will discuss the major consequences of HCV genetic diversity, namely its capacity to rapidly evolve antiviral and immunological escape variants that represent an important limitation for clearance of acute HCV, for treatment of chronic hepatitis C and for broadly protective vaccines.
Collapse
|
10
|
Tariq M, Shoukat AB, Akbar S, Hameed S, Naqvi MZ, Azher A, Saad M, Rizwan M, Nadeem M, Javed A, Ali A, Aziz S. Epidemiology, risk factors, and pathogenesis associated with a superbug: A comprehensive literature review on hepatitis C virus infection. SAGE Open Med 2022; 10:20503121221105957. [PMID: 35795865 PMCID: PMC9252020 DOI: 10.1177/20503121221105957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/20/2022] [Indexed: 12/20/2022] Open
Abstract
Viral hepatitis is a major public health concern. It is associated with life threatening conditions including liver cirrhosis and hepatocellular carcinoma. Hepatitis C virus infects around 71 million people annually, resultantly 700,000 deaths worldwide. Extrahepatic associated chronic hepatitis C virus accounts for one fourth of total healthcare load. This review included a total of 150 studies that revealed almost 19 million people are infected with hepatitis C virus and 240,000 new cases are being reported each year. This trend is continually rising in developing countries like Pakistan where intravenous drug abuse, street barbers, unsafe blood transfusions, use of unsterilized surgical instruments and recycled syringes plays a major role in virus transmission. Almost 123–180 million people are found to be hepatitis C virus infected or carrier that accounts for 2%–3% of world’s population. The general symptoms of hepatitis C virus infection include fatigue, jaundice, dark urine, anorexia, fever malaise, nausea and constipation varying on severity and chronicity of infection. More than 90% of hepatitis C virus infected patients are treated with direct-acting antiviral agents that prevent progression of liver disease, decreasing the elevation of hepatocellular carcinoma. Standardizing the healthcare techniques, minimizing the street practices, and screening for viral hepatitis on mass levels for early diagnosis and prompt treatment may help in decreasing the burden on already fragmented healthcare system. However, more advanced studies on larger populations focusing on mode of transmission and treatment protocols are warranted to understand and minimize the overall infection and death stigma among masses.
Collapse
Affiliation(s)
- Mehlayl Tariq
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abu Bakar Shoukat
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sedrah Akbar
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Samaia Hameed
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muniba Zainab Naqvi
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Azher
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Saad
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,BreathMAT Lab, IAD, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad, Pakistan
| | - Muhammad Rizwan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Nadeem
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Anum Javed
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asad Ali
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Punjab, Pakistan
| | - Shahid Aziz
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,BreathMAT Lab, IAD, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad, Pakistan
| |
Collapse
|
11
|
Yamauchi K, Sato M, Osawa L, Matsuda S, Komiyama Y, Nakakuki N, Takada H, Katoh R, Muraoka M, Suzuki Y, Tatsumi A, Miura M, Takano S, Amemiya F, Fukasawa M, Nakayama Y, Yamaguchi T, Inoue T, Maekawa S, Enomoto N. Analysis of direct-acting antiviral-resistant hepatitis C virus haplotype diversity by single-molecule and long-read sequencing. Hepatol Commun 2022; 6:1634-1651. [PMID: 35357088 PMCID: PMC9234623 DOI: 10.1002/hep4.1929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/08/2022] Open
Abstract
The method of analyzing individual resistant hepatitis C virus (HCV) by a combination of haplotyping and resistance-associated substitution (RAS) has not been fully elucidated because conventional sequencing has only yielded short and fragmented viral genomes. We performed haplotype analysis of HCV mutations in 12 asunaprevir/daclatasvir treatment-failure cases using the Oxford Nanopore sequencer. This enabled single-molecule long-read sequencing using rolling circle amplification (RCA) for correction of the sequencing error. RCA of the circularized reverse-transcription polymerase chain reaction products successfully produced DNA longer than 30 kilobase pairs (kb) containing multiple tandem repeats of a target 3 kb HCV genome. The long-read sequencing of these RCA products could determine the original sequence of the target single molecule as the consensus nucleotide sequence of the tandem repeats and revealed the presence of multiple viral haplotypes with the combination of various mutations in each host. In addition to already known signature RASs, such as NS3-D168 and NS5A-L31/Y93, there were various RASs specific to a different haplotype after treatment failure. The distribution of viral haplotype changed over time; some haplotypes disappeared without acquiring resistant mutations, and other haplotypes, which were not observed before treatment, appeared after treatment. Conclusion: The combination of various mutations other than the known signature RAS was suggested to influence the kinetics of individual HCV quasispecies in the direct-acting antiviral treatment. HCV haplotype dynamic analysis will provide novel information on the role of HCV diversity within the host, which will be useful for elucidating the pathological mechanism of HCV-related diseases.
Collapse
Affiliation(s)
- Kozue Yamauchi
- Department of Gastroenterology and HepatologyFaculty of MedicineUniversity of YamanashiYamanashiJapan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Recombination in Papillomavirus: Controversy and Possibility. Virus Res 2022; 314:198756. [DOI: 10.1016/j.virusres.2022.198756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
|
13
|
A Highly Divergent Hepacivirus Identified in Domestic Ducks Further Reveals the Genetic Diversity of Hepaciviruses. Viruses 2022; 14:v14020371. [PMID: 35215964 PMCID: PMC8879383 DOI: 10.3390/v14020371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
Hepaciviruses represent a group of viruses that pose a significant threat to the health of humans and animals. During the last decade, new members of the genus Hepacivirus have been identified in various host species worldwide, indicating the widespread distribution of genetically diversified hepaciviruses among animals. By applying unbiased high-throughput sequencing, a novel hepacivirus, provisionally designated Hepacivirus Q, was discovered in duck liver samples collected in Guangdong province of China. Genetic analysis revealed that the complete polyprotein of Hepacivirus Q shares 23.9–46.6% amino acid identity with other representatives of the genus Hepacivirus. Considering the species demarcation criteria for hepaciviruses, Hepacivirus Q should be regarded as a novel hepacivirus species of the genus Hepacivirus within the family Flaviviridae. Phylogenetic analyses also indicate the large genetic distance between Hepacivirus Q and other known hepaciviruses. Molecular detection of this novel hepacivirus showed an overall prevalence of 15.9% in duck populations in partial areas of Guangdong province. These results expand knowledge about the genetic diversity and evolution of hepaciviruses and indicate that genetically divergent hepaciviruses are circulating in duck populations in China.
Collapse
|
14
|
Galli A, Fahnøe U, Bukh J. High Recombination Rate of Hepatitis C Virus Revealed by a Green Fluorescent Protein Reconstitution Cell System. Virus Evol 2021; 8:veab106. [PMID: 35223082 PMCID: PMC8865082 DOI: 10.1093/ve/veab106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/11/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022] Open
Abstract
Genetic recombination is an important evolutionary mechanism for RNA viruses and can facilitate escape from immune and drug pressure. Recombinant hepatitis C virus (HCV) variants have rarely been detected in patients, suggesting that HCV has intrinsic low recombination rate. Recombination of HCV has been demonstrated in vitro between non-functional genomes, but its frequency and relevance for viral evolution and life cycle has not been clarified. We developed a cell-based assay to detect and quantify recombination between fully viable HCV genomes, using the reconstitution of green fluorescent protein (GFP) as a surrogate marker for recombination. Here, two GFP-expressing HCV genomes carrying different inactivating GFP mutations can produce a virus carrying a functional GFP by recombining within the GFP region. Generated constructs allowed quantification of recombination rates between markers spaced 603 and 553 nucleotides apart by flow cytometry and next-generation sequencing (NGS). Viral constructs showed comparable spread kinetics and reached similar infectivity titers in Huh7.5 cells, allowing their use in co-transfections and co-infections. Single-cycle co-transfection experiments, performed in CD81-deficient S29 cells, showed GFP expression in double-infected cells, demonstrating genome mixing and occurrence of recombination. Quantification of recombinant genomes by NGS revealed an average rate of 6.1 per cent, corresponding to 49 per cent of maximum detectable recombination (MDR). Experiments examining recombination during the full replication cycle of HCV, performed in Huh7.5 cells, demonstrated average recombination rates of 5.0 per cent (40.0 per cent MDR) and 3.6 per cent (28.8 per cent MDR) for markers spaced by 603 and 553 nucleotides, respectively, supporting a linear relationship between marker distance and recombination rates. First passage infections using recombinant virus supernatant resulted in comparable recombination rates of 5.9 per cent (47.2 per cent MDR) and 3.5 per cent (28.0 per cent MDR), respectively, for markers spaced by 603 and 553 nucleotides. We developed a functional cell-based assay that, to the best of our knowledge, allows for the first time detailed quantification of recombination rates using fully viable HCV constructs. Our data indicate that HCV recombines at high frequency between highly similar genomes and that the frequency of recombination increases with the distance between marker sites. These results have implication for our understanding of HCV evolution and emphasize the importance of recombination in the reassortment of mutations in the HCV genome.
Collapse
Affiliation(s)
- Andrea Galli
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Akimov IA, Timofeev DI, Mavzyutov AR, Ivanov MK. Detection of circulating HCV recombinant form RF1_2k/1b in blood serum of patients by real-time RT-PCR. Klin Lab Diagn 2021; 66:122-128. [PMID: 33734647 DOI: 10.51620/0869-2084-2021-66-2-122-128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Globally, about 70 million people are infected with the hepatitis C virus (HCV), and about 400 thousand people die annually from chronic hepatitis C complications. The management of patients with chronic hepatitis C may require HCV genotyping, since the efficiency of some widely used antiviral drugs strongly depend on the viral genotype and/or subtype. The most prevalent HCV circulating recombinant form, RF1_2k/1b, is misclassified as genotype 2 by many commercial HCV genotyping kits, based on the RT-PCR analysis of the 5' untranslated region of the HCV genome. This leads to inappropriate patient treatment, since the accepted treatment schemes for HCV genotype 2 are ineffective for the RF1_2k/1b. Here we describe a method for detecting the RNA HCV RF1_2k/1b in blood samples by RT-PCR analysis of two regions in HCV genome (5'UTR and NS5b). The method was tested on 240 blood serum samples from HCV infected patients, in which HCV genotype was defined as 2 or mixed (2+1 or 2+3) by the two commercial genotyping kits "OT-Hepatogen-C genotype" ("DNA-Technology", Moscow) and "RealBest RNA HCV-1/2/3" ("Vector- Best ", Novosibirsk). 50 (20.8%) RF1_2k/1b cases were revealed, including three mixed infections: RF1_2k/1b + 1a, RF1_2k/1b + 3a, RF1_2k/1b + 1b. In all cases, the accuracy of HCV typing by the proposed method was confirmed by Sanger sequencing and phylogenetic analysis. The method is easy to implement into clinical practice and may be used in clinical settings equipped for RT-PCR analysis to correctly identify the recombinant variant RF1_2k/1b.
Collapse
Affiliation(s)
| | | | - A R Mavzyutov
- Research Center «Laboratory».,Bashkir State Medical University
| | | |
Collapse
|
16
|
Martinez MA, Franco S. Therapy Implications of Hepatitis C Virus Genetic Diversity. Viruses 2020; 13:E41. [PMID: 33383891 PMCID: PMC7824680 DOI: 10.3390/v13010041] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) is an important human pathogen with a high chronicity rate. An estimated 71 million people worldwide are living with chronic hepatitis C (CHC) infection, which carries the risk of progression to hepatic fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Similar to other RNA viruses, HCV has a high rate of genetic variability generated by its high mutation rate and the actions of evolutionary forces over time. There are two levels of HCV genetic variability: intra-host variability, characterized by the distribution of HCV mutant genomes present in an infected individual, and inter-host variability, represented by the globally circulating viruses that give rise to different HCV genotypes and subtypes. HCV genetic diversity has important implications for virus persistence, pathogenesis, immune responses, transmission, and the development of successful vaccines and antiviral strategies. Here we will discuss how HCV genetic heterogeneity impacts viral spread and therapeutic control.
Collapse
Affiliation(s)
- Miguel Angel Martinez
- Miguel Angel Martínez, IrsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain;
| | | |
Collapse
|
17
|
Ágoston J, Almási A, Salánki K, Palkovics L. Genetic Diversity of Potyviruses Associated with Tulip Breaking Syndrome. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1807. [PMID: 33352796 PMCID: PMC7766433 DOI: 10.3390/plants9121807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022]
Abstract
Tulip breaking is economically the most important viral disease of modern-day tulip growing. It is characterized by irregular flame and feather-like patterns in the flowers and mosaic on the foliage. Thirty-two leaf samples were collected from cultivated tulip plants showing tulip breaking syndrome from Hungary in 2017 and 2018. Virus identification was performed by serological (ELISA) and molecular (RT-PCR) methods. All samples proved to be infected with a potyvirus and evidence was provided that three potyvirus species could be identified in the samples: Lily mottle virus (LMoV), Tulip breaking virus (TBV) and Rembrandt tulip-breaking virus (ReTBV). Recombination prediction accomplished with Recombination Detection Program (RDP) v4.98 revealed potential intraspecies recombination in the case of TBV and LMoV. Phylogenetic analyses of the coat protein (CP) regions proved the monophyletic origin of these viruses and verified them as three different species according to current International Committee on Taxonomy of Viruses (ICTV) species demarcation criteria. Based on these results, we analyzed taxonomic relations concerning potyviruses associated with tulip breaking syndrome. We propose the elevation of ReTBV to species level, and emergence of two new subgroups in ReTBV.
Collapse
Affiliation(s)
- János Ágoston
- Department of Plant Pathology, Faculty of Horticultural Science, Szent István University, 1118 Budapest, Hungary;
- Department of Agriculture, Faculty of Horticulture and Rural Development, John von Neumann University, 6000 Kecskemét, Hungary
| | - Asztéria Almási
- Plant Protection Institute, Centre for Agricultural Research, 1022 Budapest, Hungary; (A.A.); (K.S.)
| | - Katalin Salánki
- Plant Protection Institute, Centre for Agricultural Research, 1022 Budapest, Hungary; (A.A.); (K.S.)
| | - László Palkovics
- Department of Plant Pathology, Faculty of Horticultural Science, Szent István University, 1118 Budapest, Hungary;
| |
Collapse
|
18
|
Scholz GE, Linard B, Romashchenko N, Rivals E, Pardi F. Rapid screening and detection of inter-type viral recombinants using Phylo-K-Mers. Bioinformatics 2020; 36:5351-5360. [PMID: 33331849 PMCID: PMC8016494 DOI: 10.1093/bioinformatics/btaa1020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/23/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
Motivation Novel recombinant viruses may have important medical and evolutionary significance, as they sometimes display new traits not present in the parental strains. This is particularly concerning when the new viruses combine fragments coming from phylogenetically distinct viral types. Here, we consider the task of screening large collections of sequences for such novel recombinants. A number of methods already exist for this task. However, these methods rely on complex models and heavy computations that are not always practical for a quick scan of a large number of sequences. Results We have developed SHERPAS, a new program to detect novel recombinants and provide a first estimate of their parental composition. Our approach is based on the precomputation of a large database of ‘phylogenetically-informed k-mers’, an idea recently introduced in the context of phylogenetic placement in metagenomics. Our experiments show that SHERPAS is hundreds to thousands of times faster than existing software, and enables the analysis of thousands of whole genomes, or long-sequencing reads, within minutes or seconds, and with limited loss of accuracy. Availability and implementation The source code is freely available for download at https://github.com/phylo42/sherpas. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Benjamin Linard
- LIRMM, University of Montpellier, CNRS, Montpellier, France.,SPYGEN, 17 Rue du Lac Saint-André, Le Bourget-du-Lac, France
| | | | - Eric Rivals
- LIRMM, University of Montpellier, CNRS, Montpellier, France
| | - Fabio Pardi
- LIRMM, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
19
|
Kautz TF, Jaworski E, Routh A, Forrester NL. A Low Fidelity Virus Shows Increased Recombination during the Removal of an Alphavirus Reporter Gene. Viruses 2020; 12:E660. [PMID: 32575413 PMCID: PMC7354468 DOI: 10.3390/v12060660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 01/18/2023] Open
Abstract
Reporter genes for RNA viruses are well-known to be unstable due to putative RNA recombination events that excise inserted nucleic acids. RNA recombination has been demonstrated to be co-regulated with replication fidelity in alphaviruses, but it is unknown how recombination events at the minority variant level act, which is important for vaccine and trans-gene delivery design. Therefore, we sought to characterize the removal of a reporter gene by a low-fidelity alphavirus mutant over multiple replication cycles. To examine this, GFP was inserted into TC-83, a live-attenuated vaccine for the alphavirus Venezuelan equine encephalitis virus, as well as a low-fidelity variant of TC-83, and passaged until fluorescence was no longer observed. Short-read RNA sequencing using ClickSeq was performed to determine which regions of the viral genome underwent recombination and how this changed over multiple replication cycles. A rapid removal of the GFP gene was observed, where minority variants in the virus population accumulated small deletions that increased in size over the course of passaging. Eventually, these small deletions merged to fully remove the GFP gene. The removal was significantly enhanced during the passaging of low-fidelity TC-83, suggesting that increased levels of recombination are a defining characteristic of this mutant.
Collapse
Affiliation(s)
- Tiffany F Kautz
- Institute for Human Infections and Immunity, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, University of Medical Branch, Galveston, TX 77555-0645, USA
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, University of Medical Branch, Galveston, TX 77555-0645, USA
| | - Naomi L Forrester
- Institute for Human Infections and Immunity, Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- School of Life Sciences, University of Keele, Keele ST5 5BG, UK
| |
Collapse
|
20
|
Abstract
Genetic variation is a necessity of all biological systems. Viruses use all known mechanisms of variation; mutation, several forms of recombination, and segment reassortment in the case of viruses with a segmented genome. These processes are intimately connected with the replicative machineries of viruses, as well as with fundamental physical-chemical properties of nucleotides when acting as template or substrate residues. Recombination has been viewed as a means to rescue viable genomes from unfit parents or to produce large modifications for the exploration of phenotypic novelty. All types of genetic variation can act conjointly as blind processes to provide the raw materials for adaptation to the changing environments in which viruses must replicate. A distinction is made between mechanistically unavoidable and evolutionarily relevant mutation and recombination.
Collapse
|
21
|
Kovalev N, Pogany J, Nagy PD. Interviral Recombination between Plant, Insect, and Fungal RNA Viruses: Role of the Intracellular Ca 2+/Mn 2+ Pump. J Virol 2019; 94:e01015-19. [PMID: 31597780 PMCID: PMC6912095 DOI: 10.1128/jvi.01015-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/07/2019] [Indexed: 01/18/2023] Open
Abstract
Recombination is one of the driving forces of viral evolution. RNA recombination events among similar RNA viruses are frequent, although RNA recombination could also take place among unrelated viruses. In this paper, we have established efficient interviral recombination systems based on yeast and plants. We show that diverse RNA viruses, including the plant viruses tomato bushy stunt virus, carnation Italian ringspot virus, and turnip crinkle virus-associated RNA; the insect plus-strand RNA [(+)RNA] viruses Flock House virus and Nodamura virus; and the double-stranded L-A virus of yeast, are involved in interviral recombination events. Most interviral recombinants are minus-strand recombinant RNAs, and the junction sites are not randomly distributed, but there are certain hot spot regions. Formation of interviral recombinants in yeast and plants is accelerated by depletion of the cellular SERCA-like Pmr1 ATPase-driven Ca2+/Mn2+ pump, regulating intracellular Ca2+ and Mn2+ influx into the Golgi apparatus from the cytosol. The interviral recombinants are generated by a template-switching mechanism during RNA replication by the viral replicase. Replication studies revealed that a group of interviral recombinants is replication competent in cell-free extracts, in yeast, and in the plant Nicotiana benthamiana We propose that there are major differences among the viral replicases to generate and maintain interviral recombinants. Altogether, the obtained data promote the model that host factors greatly contribute to the formation of recombinants among related and unrelated viruses. This is the first time that a host factor's role in affecting interviral recombination is established.IMPORTANCE Viruses with RNA genomes are abundant, and their genomic sequences show astonishing variation. Genetic recombination in RNA viruses is a major force behind their rapid evolution, enhanced pathogenesis, and adaptation to their hosts. We utilized a previously identified intracellular Ca2+/Mn2+ pump-deficient yeast to search for interviral recombinants. Noninfectious viral replication systems were used to avoid generating unwanted infectious interviral recombinants. Altogether, interviral RNA recombinants were observed between plant and insect viruses, and between a fungal double-stranded RNA (dsRNA) virus and an insect virus, in the yeast host. In addition, interviral recombinants between two plant virus replicon RNAs were identified in N. benthamiana plants, in which the intracellular Ca2+/Mn2+ pump was depleted. These findings underline the crucial role of the host in promoting RNA recombination among unrelated viruses.
Collapse
Affiliation(s)
- Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Judit Pogany
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
22
|
Parr JB, Lodge EK, Holzmayer V, Pepin J, Frost EH, Fried MW, McGivern DR, Lemon SM, Keeler C, Emch M, Mwandagalirwa K, Tshefu A, Fwamba F, Muwonga J, Meshnick SR, Cloherty G. An Efficient, Large-Scale Survey of Hepatitis C Viremia in the Democratic Republic of the Congo Using Dried Blood Spots. Clin Infect Dis 2019; 66:254-260. [PMID: 29048459 DOI: 10.1093/cid/cix771] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023] Open
Abstract
Background Efficient viral load testing is needed for hepatitis C (HCV) surveillance and diagnosis. HCV viral load testing using dried blood spots (DBSs), made with a single drop of finger-prick whole blood on filter paper, is a promising alternative to traditional serum- or plasma-based approaches. Methods We adapted the Abbott Molecular m2000 instrument for high-throughput HCV viremia testing using DBSs with simple specimen processing and applied these methods to estimate the national burden of infection in the Democratic Republic of the Congo (DRC). We tested DBSs collected during the 2013-2014 DRC Demographic and Health Survey, including 1309 adults ≥40 years of age. HCV-positive samples underwent targeted sequencing, genotyping, and phylogenetic analyses. Results This high-throughput screening approach reliably identified HCV RNA extracted from DBSs prepared using whole blood, with a 95% limit of detection of 1196 (95% confidence interval [CI], 866-2280) IU/mL for individual 6-mm punches and 494 (95% CI, 372-1228) IU/mL for larger 12-mm punches. Fifteen infections were identified among samples from the DRC Demographic and Health Survey; the weighted country-wide prevalence of HCV viremia was 0.9% (95% CI, 0.3%-1.6%) among adults ≥40 years of age and 0.7% (95% CI, .6%-.8%) among human immunodeficiency virus-infected subjects. All successfully genotyped cases were due to genotype 4 infection. Conclusions DBS-based HCV testing represents a useful tool for the diagnosis and surveillance of HCV viremia and can easily be incorporated into specimen referral systems. Among adults ≥40 years of age in the DRC, 100000-200000 may have active infection and be eligible for treatment.
Collapse
Affiliation(s)
- Jonathan B Parr
- Division of Infectious Diseases, Department of Medicine, University of North Carolina, Chapel Hill
| | - Evans K Lodge
- School of Medicine, University of North Carolina, Chapel Hill
| | | | | | | | - Michael W Fried
- Division of Gastroenterology, Department of Medicine, University of North Carolina, Chapel Hill
| | - David R McGivern
- Division of Infectious Diseases, Department of Medicine, University of North Carolina, Chapel Hill
| | - Stanley M Lemon
- Division of Infectious Diseases, Department of Medicine, University of North Carolina, Chapel Hill
| | - Corinna Keeler
- Department of Geography, University of North Carolina, Chapel Hill
| | - Michael Emch
- Department of Geography, University of North Carolina, Chapel Hill.,Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill
| | - Kashamuka Mwandagalirwa
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill.,Kinshasa School of Public Health, Kinshasa, Democratic Republic of Congo
| | - Antoinette Tshefu
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of Congo
| | - Franck Fwamba
- National AIDS Control Program, Kinshasa, Democratic Republic of Congo
| | - Jérémie Muwonga
- National AIDS Control Program, Kinshasa, Democratic Republic of Congo
| | - Steven R Meshnick
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill
| | | |
Collapse
|
23
|
Tatte VS, Maran D, Walimbe AM, Gopalkrishna V. Rotavirus G9P[4], G9P[6] and G1P[6] strains isolated from children with acute gastroenteritis in Pune, western India, 2013-2015: evidence for recombination in genes encoding VP3, VP4 and NSP1. J Gen Virol 2019; 100:1605-1630. [PMID: 31553304 DOI: 10.1099/jgv.0.001323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Species A rotaviruses (RVAs) are genetically diverse pathogens. These are the most evolutionarily adaptable organisms, with a multitude of mechanisms for evolutionary change. To date, full-genome classification has been proved to be an excellent tool for studying the evolution of unusual rotavirus strains. As limited data are available from Pune (Maharashtra), western India, the current study was undertaken with the aim of understanding the genetic diversity in three (G1P[6], G9P[4] and G9P[4]) unusual RVA strains circulating in Pune, India during 2013-2015. Full-genome analysis of these strains classified them as G1-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1, G9-P[4]-I2-R2-C2-[M1-M2_R]-[A1-A2_R]-N2-T2-E6-H2 and G9-[P4-P6_R]-I1-R1-C1-M1-A1-N1-T1-E1-H1. Sequencing and phylogenetic analysis of the structural and non-structural genes of these unusual RVA strains showed nucleotide/amino acid identities of 82.3-98.5 %/77.3-99.8 % and 86.6-97.6 %/89.6-97.8 % between the strains of the study. Evidence of recombination events was found within the genes encoding VP3, VP4 and NSP1, which showed a combination of genetic information for genogroup 1 [M1/P[6]/A1] and genogroup 2 [M2/P[4]/A2] strains. This study will facilitate future investigations into the molecular pathogenesis of such RVAs as the exchange of whole or partial genetic material between rotaviruses through recombination contributes directly to their diversification, adaptation and evolution.
Collapse
Affiliation(s)
- Vaishali S Tatte
- Enteric Viruses Group, National Institute of Virology, Pune, India
| | - Deepthy Maran
- Enteric Viruses Group, National Institute of Virology, Pune, India
| | - Atul M Walimbe
- Bioinformatics Group, National Institute of Virology, Pune, India
| | | |
Collapse
|
24
|
Muslin C, Mac Kain A, Bessaud M, Blondel B, Delpeyroux F. Recombination in Enteroviruses, a Multi-Step Modular Evolutionary Process. Viruses 2019; 11:E859. [PMID: 31540135 PMCID: PMC6784155 DOI: 10.3390/v11090859] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/15/2023] Open
Abstract
RNA recombination is a major driving force in the evolution and genetic architecture shaping of enteroviruses. In particular, intertypic recombination is implicated in the emergence of most pathogenic circulating vaccine-derived polioviruses, which have caused numerous outbreaks of paralytic poliomyelitis worldwide. Recent experimental studies that relied on recombination cellular systems mimicking natural genetic exchanges between enteroviruses provided new insights into the molecular mechanisms of enterovirus recombination and enabled to define a new model of genetic plasticity for enteroviruses. Homologous intertypic recombinant enteroviruses that were observed in nature would be the final products of a multi-step process, during which precursor nonhomologous recombinant genomes are generated through an initial inter-genomic RNA recombination event and can then evolve into a diversity of fitter homologous recombinant genomes over subsequent intra-genomic rearrangements. Moreover, these experimental studies demonstrated that the enterovirus genome could be defined as a combination of genomic modules that can be preferentially exchanged through recombination, and enabled defining the boundaries of these recombination modules. These results provided the first experimental evidence supporting the theoretical model of enterovirus modular evolution previously elaborated from phylogenetic studies of circulating enterovirus strains. This review summarizes our current knowledge regarding the mechanisms of recombination in enteroviruses and presents a new evolutionary process that may apply to other RNA viruses.
Collapse
Affiliation(s)
- Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de las Américas, Quito EC170125, Pichincha, Ecuador.
| | - Alice Mac Kain
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Maël Bessaud
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Bruno Blondel
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| | - Francis Delpeyroux
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| |
Collapse
|
25
|
Cuypers L, Thijssen M, Shakibzadeh A, Sabahi F, Ravanshad M, Pourkarim MR. Next-generation sequencing for the clinical management of hepatitis C virus infections: does one test fits all purposes? Crit Rev Clin Lab Sci 2019; 56:420-434. [PMID: 31317801 DOI: 10.1080/10408363.2019.1637394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
While the prospect of viral cure is higher than ever for individuals infected with the hepatitis C virus (HCV) due to ground-breaking progress in antiviral treatment, success rates are still negatively influenced by HCV's high genetic variability. This genetic diversity is represented in the circulation of various genotypes and subtypes, mixed infections, recombinant forms and the presence of numerous drug resistant variants among infected individuals. Common misclassifications by commercial genotyping assays in combination with the limitations of currently used targeted population sequencing approaches have encouraged researchers to exploit alternative methods for the clinical management of HCV infections. Next-generation sequencing (NGS), a revolutionary and powerful tool with a variety of applications in clinical virology, can characterize viral diversity and depict viral dynamics in an ultra-wide and ultra-deep manner. The level of detail it provides makes it the method of choice for the diagnosis and clinical assessment of HCV infections. The sequence library provided by NGS is of a higher magnitude and sensitivity than data generated by conventional methods. Therefore, these technologies are helpful to guide clinical practice and at the same time highly valuable for epidemiological studies. The decreasing costs of NGS to determine genotypes, mixed infections, recombinant strains and drug resistant variants will soon make it feasible to employ NGS in clinical laboratories, to assist in the daily care of patients with HCV.
Collapse
Affiliation(s)
- Lize Cuypers
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven , Leuven , Belgium
| | - Marijn Thijssen
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven , Leuven , Belgium
| | - Arash Shakibzadeh
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran , Iran
| | - Farzaneh Sabahi
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran , Iran
| | - Mehrdad Ravanshad
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran , Iran
| | - Mahmoud Reza Pourkarim
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven , Leuven , Belgium.,Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences , Shiraz , Iran.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran , Iran
| |
Collapse
|
26
|
Dábilla N, Almeida TNV, Franco FC, Cunha MDP, Fiaccadori FS, Souza M. Recombinant noroviruses detected in Mid-West region of Brazil in two different periods 2009-2011 and 2014-2015: Atypical breakpoints of recombination and detection of distinct GII.P7-GII.6 lineages. INFECTION GENETICS AND EVOLUTION 2018; 68:47-53. [PMID: 30529559 DOI: 10.1016/j.meegid.2018.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022]
Abstract
Noroviruses are an important cause of acute gastroenteritis. The high incidence of norovirus is a reflection of its great genomic and antigenic variability resultant of evolutionary mechanisms, such as recombination. Herein, the main objective of this study was to characterize partially two regions of norovirus genome (RdRp and VP1) from fecal samples, collected in two different time periods (2009-2011 and 2014-2015) in the Mid-West region of Brazil. Twenty samples were sequenced and characterized (GI.P5-GI.5, GII.P16-GII.3, GI.P7-GI.7, GII.Pe-GII.4 and GII.P7-GII.6). Sequences of GII.Pe-GII.4 genotype were also characterized as Sydney 2012 variant. Genotypes GII.P7-GII.6, GII.P16-GII.3 and GII.Pe-GII.4 (16/20-80%) were identified as norovirus recombinants by phylogeny and bioinformatic analyzes. The GII.P7-GII.6 (62.5%) and GII.Pe-GII.4 (25%) genotypes had recombination point's upstream ORF1/2 overlapping region, whereas GII.P16-GII.3 (12.5%) genotype had the recombination point in the overlapping region. Furthermore, the GII.P7-GII.6, from samples collected in 2009-2011 had different recombinant points than the GII.P7-GII.6 from samples obtained in 2014-2015, forming two different clusters in the phylogenetic analysis. Our study brings information on the circulation of recombinant norovirus genotypes in Mid-West of Brazil, including recombinants with atypical recombination breakpoints, and provides evidence for the circulation of different lineages of the same recombinant genotype.
Collapse
Affiliation(s)
- Nathânia Dábilla
- Laboratory of Virology and Cell Culture, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Tâmera Nunes Vieira Almeida
- Laboratory of Virology and Cell Culture, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Fernanda Craveiro Franco
- Laboratory of Virology and Cell Culture, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Marielton Dos Passos Cunha
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Fabíola Souza Fiaccadori
- Laboratory of Virology and Cell Culture, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Menira Souza
- Laboratory of Virology and Cell Culture, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
27
|
Using high-throughput sequencing for investigating intra-host hepatitis C evolution over long retrospective periods. INFECTION GENETICS AND EVOLUTION 2018; 67:136-144. [PMID: 30395998 DOI: 10.1016/j.meegid.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 09/11/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Abstract
Collections of biological samples held by hospitals represent invaluable resources for conducting retrospective evolutionary studies of chronic infections. Using high-throughput sequencing, those collections permit analysis of within-host genetic diversity over long follow-up periods, and allow a better understanding of resistance to treatment regimes during disease evolution. Here, we studied the evolution of hepatitis C virus (HCV) populations in two patients with an absence of response to dual therapies. We implemented amplicon sequencing to survey genomic variation at the Core and NS5B regions of HCV over a period of 13 years from blood samples obtained at multiple time points. We observed mixed infection by multiple HCV genotypes in both patients. Genetic heterogeneity and sample composition analysis provided information about the changes in viral population over the course of clinical treatment, with NS5B experiencing an increase in diversity after treatment initiation. Secondary infections were estimated to predate treatment year, and our results pointed towards diversifying selection occurring post-treatment, acting on standing genomic variation and maintaining high genetic heterogeneity during infection. For these two patients infected with multiple HCV genotypes, the maintenance of viral diversity was explained with the hypothesis of soft selective sweep started at the same time as antiviral treatment was initiated.
Collapse
|
28
|
Ludwig-Begall LF, Mauroy A, Thiry E. Norovirus recombinants: recurrent in the field, recalcitrant in the lab - a scoping review of recombination and recombinant types of noroviruses. J Gen Virol 2018; 99:970-988. [PMID: 29906257 DOI: 10.1099/jgv.0.001103] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Noroviruses are recognized as the major global cause of sporadic and epidemic non-bacterial gastroenteritis in humans. Molecular mechanisms driving norovirus evolution are the accumulation of point mutations and recombination. Intragenotypic recombination has long been postulated to be a driving force of GII.4 noroviruses, the predominant genotype circulating in humans for over two decades. Increasingly, emergence and re-emergence of different intragenotype recombinants have been reported. The number and types of norovirus recombinants remained undefined until the 2007 Journal of General Virology research article 'Norovirus recombination' reported an assembly of 20 hitherto unclassified intergenotypic norovirus recombinant types. In the intervening decade, a host of novel recombinants has been analysed. New recombination breakpoints have been described, in vitro and in vivo studies supplement in silico analyses, and advances have been made in analysing factors driving norovirus recombination. This work presents a timely overview of these data and focuses on important aspects of norovirus recombination and its role in norovirus molecular evolution. An overview of intergenogroup, intergenotype, intragenotype and 'obligatory' norovirus recombinants as detected via in silico methods in the field is provided, enlarging the scope of intergenotypic recombinant types to 80 in total, and notably including three intergenogroup recombinants. A recap of advances made studying norovirus recombination in the laboratory is given. Putative drivers and constraints of norovirus recombination are discussed and the potential link between recombination and norovirus zoonosis risk is examined.
Collapse
Affiliation(s)
- Louisa F Ludwig-Begall
- 1Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B43b, Quartier Vallée 2, Avenue de Cureghem, 10, B-4000 Liège, Belgium
| | - Axel Mauroy
- 2Staff direction for risk assessment, Control Policy, Federal Agency for the Safety of the Food Chain, Blv du Jardin Botanique 55, 1000 Brussels, Belgium
| | - Etienne Thiry
- 1Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B43b, Quartier Vallée 2, Avenue de Cureghem, 10, B-4000 Liège, Belgium
| |
Collapse
|
29
|
Todt D, Schlevogt B, Deterding K, Grundhoff A, Manns MP, Wedemeyer H, Fischer N, Cornberg M, Steinmann E. Successful retreatment of a patient with chronic hepatitis C genotype 2k/1b virus with ombitasvir/paritaprevir/ritonavir plus dasabuvir. J Antimicrob Chemother 2018; 72:1541-1543. [PMID: 28100444 DOI: 10.1093/jac/dkw572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Daniel Todt
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research [a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI)], Hannover, Germany
| | - Bernhard Schlevogt
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Katja Deterding
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Adam Grundhoff
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner-site Hamburg-Borstel-Lübeck, Hamburg, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), partner-site Hannover-Braunschweig, Braunschweig, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), partner-site Hannover-Braunschweig, Braunschweig, Germany
| | - Nicole Fischer
- German Centre for Infection Research (DZIF), partner-site Hamburg-Borstel-Lübeck, Hamburg, Germany.,University Medical Centre Hamburg-Eppendorf, Institute for Medical Microbiology, Virology and Hygiene, Hamburg, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), partner-site Hannover-Braunschweig, Braunschweig, Germany
| | - Eike Steinmann
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research [a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI)], Hannover, Germany
| |
Collapse
|
30
|
Berenstein AJ, Lorenzetti MA, Preciado MV. Recombination rates along the entire Epstein Barr virus genome display a highly heterogeneous landscape. INFECTION GENETICS AND EVOLUTION 2018; 65:96-103. [PMID: 30031929 DOI: 10.1016/j.meegid.2018.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 12/30/2022]
Abstract
Epstein Barr virus (EBV) has a large DNA genome assumed to be stable, but also subject to mutational processes such as nucleotide substitution and recombination, the latter explored to a lesser extent. Moreover, differences in the extent of recombination events across herpes sub-families were recently reported. Given the relevance of recombination in viral evolution and its possible impact in pathogenesis, we aimed to fully characterize and quantify its extension in all available EBV complete genome by assessing global and local recombination rate values (⍴/bp). Our results provide the first EBV recombination map based on recombination rates assessment, both at a global and gene by gene level, where the mean value for the entire genome was 0.035 (HPDI 0.020-0.062) ⍴/bp. We quantified how this evolutionary process changes along the EBV genome, and proved it to be non-homogeneous, since regulatory regions depicted the lowest recombination rate values while repetitive regions the highest signal. Moreover, GC content rich regions seem not to be linked to high recombination rates as previously reported. At an intragenic level, four genes (EBNA3C, EBNA3B, BRRF2 and BBLF2-BBLF3) presented a recombination rate above genome average. We specifically quantified the signal strength among different recombination-initiators previously described features and concluded that those which elicited the greatest amount of changes in ⍴/bp, TGGAG and CCCAG, were two well characterized recombination inducing motifs in eukaryotic cells. Strikingly, although TGGAG was not the most frequently detected DNA motif across the EBV genome (697 hits), it still induced a significantly greater proportion of initiation events (0.025 events/hits) than other more represented motifs, p-value = 0.04; one tailed proportion test. Present results support the idea that diversity and evolution of herpesviruses are impacted by mechanisms, such as recombination, which extends beyond the usual consideration of point mutations.
Collapse
Affiliation(s)
- Ariel José Berenstein
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Mario Alejandro Lorenzetti
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Victoria Preciado
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.
| |
Collapse
|
31
|
Uribe-Noguez LA, Ocaña-Mondragón A, Mata-Marín JA, Gómez-Torres ME, Ribas-Aparicio RM, de la Luz Martínez-Rodríguez M. Presence of rare hepatitis C virus subtypes, 2j, 2k, and 2r in Mexico City as identified by sequencing. J Med Virol 2018; 90:1277-1282. [PMID: 29508903 DOI: 10.1002/jmv.25070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/21/2018] [Indexed: 12/21/2022]
Abstract
The HCV 5'UTR, Core/E1, and NS5B regions of samples from fifty patients infected with the hepatitis C virus (HCV) were analyzed. Seventeen patients were identified with genotype (GT) 1b, eleven with GT-1a, nine with GT-2b and four with GT-3a. Two rare subtypes were detected: GT-2j in two patients and GT-2r in one patient. Three patients had mixed infections: one with GT-2k + 2j and two with GT-1b + 2b. This work identifies HCV GTs, 2j, 2k, and 2r for the first time in Mexico.
Collapse
Affiliation(s)
- Luis Antonio Uribe-Noguez
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, CDMX, México.,Departamento de Microbiología, Programa en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, CDMX, México
| | - Alicia Ocaña-Mondragón
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, CDMX, México
| | - José Antonio Mata-Marín
- Departamento de Enfermedades Infecciosas, Hospital de Infectología, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, CDMX, México
| | - María Elena Gómez-Torres
- Laboratorio de urgencias, Hospital de Infectología, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, CDMX, México
| | - Rosa María Ribas-Aparicio
- Departamento de Microbiología, Programa en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, CDMX, México
| | | |
Collapse
|
32
|
Zakalashvili M, Zarkua J, Weizenegger M, Bartel J, Raabe M, Zangurashvili L, Kankia N, Jashiashvili N, Lomidze M, Telia T, Kerashvili V, Zhamutashvili M, Abramishvili N, Hedskog C, Chodavarapu K, Brainard DM, McHutchison JG, Mo H, Svarovskaia E, Gish RG, Rtskhiladze I, Metreveli D. Identification of hepatitis C virus 2k/1b intergenotypic recombinants in Georgia. Liver Int 2018; 38:451-457. [PMID: 28782185 DOI: 10.1111/liv.13540] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS This study aimed to evaluate the prevalence of the hepatitis C virus intergenotype recombinant strain RF1_2k/1b in Georgia, confirm viral recombination by full genome sequencing, and determine a genetic relationship with previously described recombinant hepatitis C viruses. METHODS We retrospectively analysed data from 1421 Georgian patients with chronic hepatitis C. Genotyping was performed with the INNO-LiPA VERSANT HCV Genotype 2.0 Assay. RESULTS Virus isolates were assigned to nonspecific hepatitis C genotypes 2a/2c (n = 387) as performed by sequencing of core and NS5B genes. Subsequently, sequencing results classified the core region as genotype 2k and the NS5B region as genotype 1b for 72% (n = 280) of genotype 2 patients, corresponding to 19.7% of hepatitis C patients in Georgia. Eight samples were randomly selected for full genome sequencing which was successful in 7 of 8 samples. Analysis of the generated consensus sequences confirmed that all 7 viruses were 2k/1b recombinants, with the recombination breakpoint located within 73-77 amino acids before the NS2-NS3 junction, similar to the previously described RF1_2k/1b virus. Phylogenetic analysis revealed clustering of the Georgian 2k/1b viruses and RF1_2k/1b, suggesting that they are genetically related. CONCLUSIONS The 19.7% prevalence of RF1_2k/1b in Georgia patients is far higher than has generally been reported to date worldwide. Identification of recombinants in low income countries with a high prevalence of HCV infection might be reasonable for choosing the most cost-effective treatment regimens.
Collapse
Affiliation(s)
- Mamuka Zakalashvili
- Hepatology and Gastroenterology Department, Medical Center Mrcheveli, Tbilisi, Georgia
| | - Jaba Zarkua
- Hepatology and Gastroenterology Department, Medical Center Mrcheveli, Tbilisi, Georgia
| | - Michael Weizenegger
- Medizinisches Versorgungszentrum Dr. Limbach & Kollegen, Heidelberg, Germany
| | - Jan Bartel
- Medizinisches Versorgungszentrum Dr. Limbach & Kollegen, Heidelberg, Germany
| | - Monika Raabe
- Medizinisches Versorgungszentrum Dr. Limbach & Kollegen, Heidelberg, Germany
| | - Lela Zangurashvili
- Hepatology and Gastroenterology Department, Medical Center Mrcheveli, Tbilisi, Georgia
| | - Nino Kankia
- Hepatology and Gastroenterology Department, Medical Center Mrcheveli, Tbilisi, Georgia
| | - Nino Jashiashvili
- Hepatology and Gastroenterology Department, Medical Center Mrcheveli, Tbilisi, Georgia
| | - Maka Lomidze
- Hepatology and Gastroenterology Department, Medical Center Mrcheveli, Tbilisi, Georgia
| | - Tengiz Telia
- Hepatology and Gastroenterology Department, Medical Center Mrcheveli, Tbilisi, Georgia
| | - Vakhtang Kerashvili
- Hepatology and Gastroenterology Department, Medical Center Mrcheveli, Tbilisi, Georgia
| | - Maia Zhamutashvili
- Hepatology and Gastroenterology Department, Medical Center Mrcheveli, Tbilisi, Georgia
| | - Nikoloz Abramishvili
- Hepatology and Gastroenterology Department, Medical Center Mrcheveli, Tbilisi, Georgia
| | | | | | | | | | - Hongmei Mo
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | - Robert G Gish
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Irakli Rtskhiladze
- Hepatology and Gastroenterology Department, Medical Center Mrcheveli, Tbilisi, Georgia
| | - David Metreveli
- Hepatology and Gastroenterology Department, Medical Center Mrcheveli, Tbilisi, Georgia
| |
Collapse
|
33
|
Abstract
Hepaciviruses and pegiviruses constitute two closely related sister genera of the family Flaviviridae. In the past five years, the known phylogenetic diversity of the hepacivirus genera has absolutely exploded. What was once an isolated infection in humans (and possibly other primates) has now expanded to include horses, rodents, bats, colobus monkeys, cows, and, most recently, catsharks, shedding new light on the genetic diversity and host range of hepaciviruses. Interestingly, despite the identification of these many animal and primate hepaciviruses, the equine hepaciviruses remain the closest genetic relatives of the human hepaciviruses, providing an intriguing clue to the zoonotic source of hepatitis C virus. This review summarizes the significance of these studies and discusses current thinking about the origin and evolution of the animal hepaciviruses as well as their potential usage as surrogate models for the study of hepatitis C virus.
Collapse
Affiliation(s)
- Alex S Hartlage
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205;
| | - John M Cullen
- North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina 27606
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205; .,Department of Pediatrics, College of Medicine and Public Health, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
34
|
Romero-López C, Berzal-Herranz A. The 5BSL3.2 Functional RNA Domain Connects Distant Regions in the Hepatitis C Virus Genome. Front Microbiol 2017; 8:2093. [PMID: 29163393 PMCID: PMC5671509 DOI: 10.3389/fmicb.2017.02093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/12/2017] [Indexed: 02/05/2023] Open
Abstract
Viral genomes are complexly folded entities that carry all the information required for the infective cycle. The nucleotide sequence of the RNA virus genome encodes proteins and functional information contained in discrete, highly conserved structural units. These so-called functional RNA domains play essential roles in the progression of infection, which requires their preservation from one generation to the next. Numerous functional RNA domains exist in the genome of the hepatitis C virus (HCV). Among them, the 5BSL3.2 domain in the cis-acting replication element (CRE) at the 3' end of the viral open reading frame has become of particular interest given its role in HCV RNA replication and as a regulator of viral protein synthesis. These functionalities are achieved via the establishment of a complex network of long-distance RNA-RNA contacts involving (at least as known to date) the highly conserved 3'X tail, the apical loop of domain IIId in the internal ribosome entry site, and/or the so-called Alt region upstream of the CRE. Changing contacts promotes the execution of different stages of the viral cycle. The 5BSL3.2 domain thus operates at the core of a system that governs the progression of HCV infection. This review summarizes our knowledge of the long-range RNA-RNA interaction network in the HCV genome, with special attention paid to the structural and functional consequences derived from the establishment of different contacts. The potential implications of such interactions in switching between the different stages of the viral cycle are discussed.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| |
Collapse
|
35
|
Origin, prevalence and response to therapy of hepatitis C virus genotype 2k/1b chimeras. J Hepatol 2017; 67:680-686. [PMID: 28619439 DOI: 10.1016/j.jhep.2017.05.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Little is known about the epidemiology and frequency of recombinant HCV genotype 2/1 strains, which may represent a challenge for direct antiviral therapy (DAA). This study aims to identify the epidemiology and phylogeny of HCV genotype 2/1 strains and encourages genotype screening, to select the DAA-regimen that achieves the optimal sustained virologic response. METHODS Consecutive samples from HCV genotype 2 infected patients, according to commercial genotyping, from Germany, Italy and Israel were re-genotyped by Sanger-based sequencing. Virologic, epidemiological, and phylogenetic analyses including other published chimeras were performed. RESULTS Sequence analysis of 442 supposed HCV genotype 2 isolates revealed 61 (genotype 2k/1b (n=59), 2a/1b (n=1) or 2b/1a (n=1)) chimeras. No chimeras were observed in Italy, but the frequency was 14% and 25% in Germany and Israel. Treatment of viral chimera with sofosbuvir/ribavirin led to virologic relapse in 25/27 patients (93%). Nearly all patients treated with genotype 1-based DAA-regimens initially (n=8/9), or after relapse (n=13/13), achieved a sustained virologic response. Most patients with 2k/1b chimeras (88%) were originally from eight different areas of the former Soviet Union. All known 2k/1b chimeras harbour the same recombination breakpoint and build one phylogenetic cluster, while all other chimeras have different phylogenies. CONCLUSIONS The HCV genotype 2k/1b variant derives from one single recombination event most likely in the former Soviet Union, while other chimeras are unique and develop independently. A relatively high frequency has been observed along the migration flows, in Germany and Israel. In countries with little migration from the former Soviet Union the prevalence of 2k/1b chimeras is expected to be low. Treatment with sofosbuvir plus ribavirin is insufficient, but genotype 1-based regimens seem to be effective. Lay summary: The frequency of recombinant HCV is higher than expected. A novel recombinant variant (HCV genotype 2a/1b) was identified. Screening for recombinant viruses would contribute to increased response rates to direct antiviral therapy.
Collapse
|
36
|
Arenas M, Araujo NM, Branco C, Castelhano N, Castro-Nallar E, Pérez-Losada M. Mutation and recombination in pathogen evolution: Relevance, methods and controversies. INFECTION GENETICS AND EVOLUTION 2017; 63:295-306. [PMID: 28951202 DOI: 10.1016/j.meegid.2017.09.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
Mutation and recombination drive the evolution of most pathogens by generating the genetic variants upon which selection operates. Those variants can, for example, confer resistance to host immune systems and drug therapies or lead to epidemic outbreaks. Given their importance, diverse evolutionary studies have investigated the abundance and consequences of mutation and recombination in pathogen populations. However, some controversies persist regarding the contribution of each evolutionary force to the development of particular phenotypic observations (e.g., drug resistance). In this study, we revise the importance of mutation and recombination in the evolution of pathogens at both intra-host and inter-host levels. We also describe state-of-the-art analytical methodologies to detect and quantify these two evolutionary forces, including biases that are often ignored in evolutionary studies. Finally, we present some of our former studies involving pathogenic taxa where mutation and recombination played crucial roles in the recovery of pathogenic fitness, the generation of interspecific genetic diversity, or the design of centralized vaccines. This review also illustrates several common controversies and pitfalls in the analysis and in the evaluation and interpretation of mutation and recombination outcomes.
Collapse
Affiliation(s)
- Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Natalia M Araujo
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Catarina Branco
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Nadine Castelhano
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
| | - Eduardo Castro-Nallar
- Universidad Andrés Bello, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Santiago, Chile.
| | - Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Ashburn, VA 20147, Washington, DC, United States; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal.
| |
Collapse
|
37
|
Elia G, Lanave G, Lorusso E, Parisi A, Cavaliere N, Patruno G, Terregino C, Decaro N, Martella V, Buonavoglia C. Identification and genetic characterization of equine hepaciviruses in Italy. Vet Microbiol 2017; 207:239-247. [PMID: 28757030 DOI: 10.1016/j.vetmic.2017.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 01/26/2023]
Abstract
Viruses similar to human hepatitis C virus, hepaciviruses, have been identified in various animal species. Equine hepacivirus (EqHV) is the closest relative of human hepaciviruses. Although detected worldwide, information on EqHV epidemiology, genetic diversity and pathogenicity is still limited. In this study we investigated the prevalence and genetic diversity of EqHV in Italian equids. The RNA of EqHV was detected in 91/1932 sera (4.7%) whilst it was not detectable in 134 donkey sera screened by a TaqMan-based quantitative assay. Upon sequencing and phylogenetic analysis of genomic portions located in the NS5B, 5'UTR and NS3 genes, the Italian EqHV strains segregated into two distinct clades that are also co-circulating globally, without apparent geographic restrictions.
Collapse
Affiliation(s)
- Gabriella Elia
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy.
| | - Gianvito Lanave
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| | - Eleonora Lorusso
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy
| | - Nicola Cavaliere
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy
| | | | - Calogero Terregino
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
| | - Nicola Decaro
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| | - Vito Martella
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| | - Canio Buonavoglia
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| |
Collapse
|
38
|
Hundie GB, Raj VS, GebreMichael D, Pas SD, Haagmans BL. Genetic diversity of hepatitis C virus in Ethiopia. PLoS One 2017; 12:e0179064. [PMID: 28570623 PMCID: PMC5453619 DOI: 10.1371/journal.pone.0179064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) is genetically highly divergent and classified in seven major genotypes and approximately hundred subtypes. These genotypes/subtypes have different geographic distribution and response to antiviral therapy. In Ethiopia, however, little is known about their molecular epidemiology and genetic diversity. The aim of this study was to investigate the distribution and genetic diversity of HCV genotypes/subtypes in Ethiopia, using 49 HCV RNA positive samples. HCV genotypes and subtypes were determined based on the sequences of the core and the nonstructural protein 5B (NS5B) genomic regions. Phylogenetic analysis revealed that the predominant was genotype 4 (77.6%) followed by 2 (12.2%), 1 (8.2%), and 5 (2.0%). Seven subtypes were identified (1b, 1c, 2c, 4d, 4l, 4r and 4v), with 4d (34.7%), 4r (34.7%) and 2c (12.2%) as the most frequent subtypes. Consistent with the presence of these subtypes was the identification of a potential recombinant virus. One strain was typed as genotype 2c in the NS5B region sequence and genotype 4d in the core region. In conclusion, genotype 4 HCV viruses, subtypes 4d and 4r, are most prevalent in Ethiopia. This genotype is considered to be difficult to treat, thus, our finding has an important impact on the development of treatment strategies and patient management in Ethiopia.
Collapse
Affiliation(s)
| | - V. Stalin Raj
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Suzan D. Pas
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
39
|
Le Guillou-Guillemette H, Pivert A, Bouthry E, Henquell C, Petsaris O, Ducancelle A, Veillon P, Vallet S, Alain S, Thibault V, Abravanel F, Rosenberg AA, André-Garnier E, Bour JB, Baazia Y, Trimoulet P, André P, Gaudy-Graffin C, Bettinger D, Larrat S, Signori-Schmuck A, Saoudin H, Pozzetto B, Lagathu G, Minjolle-Cha S, Stoll-Keller F, Pawlotsky JM, Izopet J, Payan C, Lunel-Fabiani F, Lemaire C. Natural non-homologous recombination led to the emergence of a duplicated V3-NS5A region in HCV-1b strains associated with hepatocellular carcinoma. PLoS One 2017; 12:e0174651. [PMID: 28394908 PMCID: PMC5386276 DOI: 10.1371/journal.pone.0174651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/13/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The emergence of new strains in RNA viruses is mainly due to mutations or intra and inter-genotype homologous recombination. Non-homologous recombinations may be deleterious and are rarely detected. In previous studies, we identified HCV-1b strains bearing two tandemly repeated V3 regions in the NS5A gene without ORF disruption. This polymorphism may be associated with an unfavorable course of liver disease and possibly involved in liver carcinogenesis. Here we aimed at characterizing the origin of these mutant strains and identifying the evolutionary mechanism on which the V3 duplication relies. METHODS Direct sequencing of the entire NS5A and E1 genes was performed on 27 mutant strains. Quasispecies analyses in consecutive samples were also performed by cloning and sequencing the NS5A gene for all mutant and wild strains. We analyzed the mutant and wild-type sequence polymorphisms using Bayesian methods to infer the evolutionary history of and the molecular mechanism leading to the duplication-like event. RESULTS Quasispecies were entirely composed of exclusively mutant or wild-type strains respectively. Mutant quasispecies were found to have been present since contamination and had persisted for at least 10 years. This V3 duplication-like event appears to have resulted from non-homologous recombination between HCV-1b wild-type strains around 100 years ago. The association between increased liver disease severity and these HCV-1b mutants may explain their persistence in chronically infected patients. CONCLUSIONS These results emphasize the possible consequences of non-homologous recombination in the emergence and severity of new viral diseases.
Collapse
Affiliation(s)
- Hélène Le Guillou-Guillemette
- Laboratoire de Virologie, CHU Angers, France
- HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - Adeline Pivert
- Laboratoire de Virologie, CHU Angers, France
- HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - Elise Bouthry
- Laboratoire de Virologie, CHU Angers, France
- HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | | | - Odile Petsaris
- Département de Bactériologie-Virologie-Hygiène Hospitalière et Parasitologie-Mycologie, CHRU, LUBEM, Brest, France
| | - Alexandra Ducancelle
- Laboratoire de Virologie, CHU Angers, France
- HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - Pascal Veillon
- Laboratoire de Virologie, CHU Angers, France
- HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - Sophie Vallet
- Département de Bactériologie-Virologie-Hygiène Hospitalière et Parasitologie-Mycologie, CHRU, LUBEM, Brest, France
| | | | | | - Florence Abravanel
- Laboratoire de Virologie, CNR VHE, Inserm U1043, CHU Purpan, Toulouse, France
| | - Arielle A. Rosenberg
- AP-HP, GHU Cochin, Laboratoire de Virologie, Université Paris Descartes, Paris, France
| | | | | | - Yazid Baazia
- Laboratoire de Virologie, CHU Avicenne, Bobigny, France
| | - Pascale Trimoulet
- Laboratoire de Virologie, Hôpital Pellegrin Tripode, CHU Bordeaux, France
| | - Patrice André
- Laboratoire de Virologie, Centre de Biologie Nord, Hôpital de la Croix Rousse, Lyon, France
| | | | | | - Sylvie Larrat
- Laboratoire de Virologie, UMI 3265 UJF-EMBL-CNRS, CHU, Unit of Virus Host Cell Interactions, Grenoble, France
| | - Anne Signori-Schmuck
- Laboratoire de Virologie, UMI 3265 UJF-EMBL-CNRS, CHU, Unit of Virus Host Cell Interactions, Grenoble, France
| | - Hénia Saoudin
- Laboratoire de Bactériologie-Virologie, CHU Saint-Etienne, France
| | - Bruno Pozzetto
- Laboratoire de Bactériologie-Virologie, CHU Saint-Etienne, France
| | | | | | | | | | - Jacques Izopet
- Laboratoire de Virologie, CNR VHE, Inserm U1043, CHU Purpan, Toulouse, France
| | - Christopher Payan
- Département de Bactériologie-Virologie-Hygiène Hospitalière et Parasitologie-Mycologie, CHRU, LUBEM, Brest, France
| | - Françoise Lunel-Fabiani
- Laboratoire de Virologie, CHU Angers, France
- HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | | |
Collapse
|
40
|
Esona MD, Roy S, Rungsrisuriyachai K, Sanchez J, Vasquez L, Gomez V, Rios LA, Bowen MD, Vazquez M. Characterization of a triple-recombinant, reassortant rotavirus strain from the Dominican Republic. J Gen Virol 2017; 98:134-142. [PMID: 27983480 DOI: 10.1099/jgv.0.000688] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We report the genome of a novel human triple-recombinant G4P[6-8_R] mono-reassortant strain identified in a stool sample from the Dominican Republic during routine facility-based rotavirus strain surveillance. The strain was designated as RVA/Human-wt/DOM/2013840364/2013/G4P[6-8_R], with a genomic constellation of G4-P[6-8_R]-I1-R1-C1-M1-(A1-A8_R)-N1-(T1-T7_R)-E1-H1. Recombinant gene segments NSP1 and NSP3 were generated as a result of recombination between genogroup 1 rotavirus A1 human strain and a genotype A8 porcine strain and between genogroup 1 rotavirus T1 human strain and a genotype T7 bovine strain, respectively. Analyses of the RNA secondary structures of gene segment VP4, NSP1 and NSP3 showed that all the recombinant regions appear to start in a loop (single-stranded) region and terminate in a stem (double-stranded) structure. Also, the VP7 gene occupied lineage VII within the G4 genotypes consisting of mostly porcine or porcine-like G4 strains, suggesting the occurrence of reassortment. The remaining gene segments clustered phylogenetically with genogroup 1 strains. This exchange of whole or partial genetic materials between rotaviruses by recombination and reassortment contributes directly to their diversification, adaptation and evolution.
Collapse
Affiliation(s)
- Mathew D Esona
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sunando Roy
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Jacqueline Sanchez
- Hospital Infantil Dr Robert Reid Cabral, Santo Domingo, Dominican Republic
| | - Lina Vasquez
- Hospital Infantil Dr Robert Reid Cabral, Santo Domingo, Dominican Republic
| | - Virgen Gomez
- Hospital Infantil Dr Robert Reid Cabral, Santo Domingo, Dominican Republic
| | | | - Michael D Bowen
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
41
|
Gupta D, Saha K, Biswas A, Firdaus R, Ghosh M, Sadhukhan PC. Recombination in hepatitis C virus is not uncommon among people who inject drugs in Kolkata, India. INFECTION GENETICS AND EVOLUTION 2016; 48:156-163. [PMID: 27923769 DOI: 10.1016/j.meegid.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/23/2016] [Accepted: 12/01/2016] [Indexed: 01/17/2023]
Abstract
Recombination in RNA virus is a rare event in the survival and evolution to evade host immune system. This is increasing within high risk group population (HRG) due to super infection that occurs by continuous sharing of common drug equipment by HCV infected or HIV-HCV co-infected recurrent drug users. Recombination causes impediment to vaccine development and therapeutic intervention as standard HCV treatment is still genotype specific. Blood samples of 194 people who inject drugs (PWID) were collected from an Opioid Substitution Therapy Centre in Kolkata, India. HCV sero-reactivity was checked by ELISA. Detection of HCV RNA by nested RT-PCR and genotyping by DNA sequencing were done. Phylogenetic analysis, Simplot, Bootscan plot, Recombination Detection Program were used for recombinant strain identification. Out of 80 HCV sero-reactive samples, 77 were RNA positive (96.25%). Out of 74 HIV mono-infected individuals, 12 HCV sero-nonreactive samples were HCV RNA positive. Out of total 89 RNA positive samples, 64 paired partial core and NS5B region (71.9%) were sequenced by Sanger's method. Two major genotypes (1 and 3), four subtypes and an inter-genotype recombinant strain (3a/1a) with a novel breakpoint in the NS4B coding region were found.
Collapse
Affiliation(s)
- Debanjali Gupta
- ICMR Virus Unit, 57, Dr. Suresh Chandra Banerjee Road, Beliaghata, Kolkata 700010, West Bengal, India
| | - Kallol Saha
- ICMR Virus Unit, 57, Dr. Suresh Chandra Banerjee Road, Beliaghata, Kolkata 700010, West Bengal, India
| | - Aritra Biswas
- ICMR Virus Unit, 57, Dr. Suresh Chandra Banerjee Road, Beliaghata, Kolkata 700010, West Bengal, India
| | - Rushna Firdaus
- ICMR Virus Unit, 57, Dr. Suresh Chandra Banerjee Road, Beliaghata, Kolkata 700010, West Bengal, India
| | - Monika Ghosh
- ICMR Virus Unit, 57, Dr. Suresh Chandra Banerjee Road, Beliaghata, Kolkata 700010, West Bengal, India
| | - Provash Chandra Sadhukhan
- ICMR Virus Unit, 57, Dr. Suresh Chandra Banerjee Road, Beliaghata, Kolkata 700010, West Bengal, India.
| |
Collapse
|
42
|
Bukh J. The history of hepatitis C virus (HCV): Basic research reveals unique features in phylogeny, evolution and the viral life cycle with new perspectives for epidemic control. J Hepatol 2016; 65:S2-S21. [PMID: 27641985 DOI: 10.1016/j.jhep.2016.07.035] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 12/11/2022]
Abstract
The discovery of hepatitis C virus (HCV) in 1989 permitted basic research to unravel critical components of a complex life cycle for this important human pathogen. HCV is a highly divergent group of viruses classified in 7 major genotypes and a great number of subtypes, and circulating in infected individuals as a continuously evolving quasispecies destined to escape host immune responses and applied antivirals. Despite the inability to culture patient viruses directly in the laboratory, efforts to define the infectious genome of HCV resulted in development of experimental recombinant in vivo and in vitro systems, including replicons and infectious cultures in human hepatoma cell lines. And HCV has become a model virus defining new paradigms in virology, immunology and biology. For example, HCV research discovered that a virus could be completely dependent on microRNA for its replication since microRNA-122 is critical for the HCV life cycle. A number of other host molecules critical for HCV entry and replication have been identified. Thus, basic HCV research revealed important molecules for development of host targeting agents (HTA). The identification and characterization of HCV encoded proteins and their functional units contributed to the development of highly effective direct acting antivirals (DAA) against the NS3 protease, NS5A and the NS5B polymerase. In combination, these inhibitors have since 2014 permitted interferon-free therapy with cure rates above 90% among patients with chronic HCV infection; however, viral resistance represents a challenge. Worldwide control of HCV will most likely require the development of a prophylactic vaccine, and numerous candidates have been pursued. Research characterizing features critical for antibody-based virus neutralization and T cell based virus elimination from infected cells is essential for this effort. If the world community promotes an ambitious approach by applying current DAA broadly, continues to develop alternative viral- and host- targeted antivirals to combat resistant variants, and invests in the development of a vaccine, it would be possible to eradicate HCV. This would prevent about 500 thousand deaths annually. However, given the nature of HCV, the millions of new infections annually, a high chronicity rate, and with over 150 million individuals with chronic infection (which are frequently unidentified), this effort remains a major challenge for basic researchers, clinicians and communities.
Collapse
Affiliation(s)
- Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
43
|
Champeimont R, Laine E, Hu SW, Penin F, Carbone A. Coevolution analysis of Hepatitis C virus genome to identify the structural and functional dependency network of viral proteins. Sci Rep 2016; 6:26401. [PMID: 27198619 PMCID: PMC4873791 DOI: 10.1038/srep26401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 05/03/2016] [Indexed: 12/20/2022] Open
Abstract
A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks.
Collapse
Affiliation(s)
- Raphaël Champeimont
- Sorbonne Universités, UPMC-Univ P6, CNRS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, 15 rue de l’Ecole de Médecine, 75006 Paris, France
| | - Elodie Laine
- Sorbonne Universités, UPMC-Univ P6, CNRS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, 15 rue de l’Ecole de Médecine, 75006 Paris, France
| | - Shuang-Wei Hu
- Sorbonne Universités, UPMC-Univ P6, CNRS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, 15 rue de l’Ecole de Médecine, 75006 Paris, France
| | - Francois Penin
- CNRS, UMR5086, Bases Moléculaires et Structurales des Systèmes Infectieux, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, Cedex 07, F-69367 Lyon, France
- LABEX Ecofect, Université de Lyon, Lyon, France
| | - Alessandra Carbone
- Sorbonne Universités, UPMC-Univ P6, CNRS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, 15 rue de l’Ecole de Médecine, 75006 Paris, France
- Institut Universitaire de France, 75005, Paris, France
| |
Collapse
|
44
|
Trémeaux P, Caporossi A, Thélu MA, Blum M, Leroy V, Morand P, Larrat S. Hepatitis C virus whole genome sequencing: Current methods/issues and future challenges. Crit Rev Clin Lab Sci 2016; 53:341-51. [PMID: 27068766 DOI: 10.3109/10408363.2016.1163663] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Therapy for hepatitis C is currently undergoing a revolution. The arrival of new antiviral agents targeting viral proteins reinforces the need for a better knowledge of the viral strains infecting each patient. Hepatitis C virus (HCV) whole genome sequencing provides essential information for precise typing, study of the viral natural history or identification of resistance-associated variants. First performed with Sanger sequencing, the arrival of next-generation sequencing (NGS) has simplified the technical process and provided more detailed data on the nature and evolution of viral quasi-species. We will review the different techniques used for HCV complete genome sequencing and their applications, both before and after the apparition of NGS. The progress brought by new and future technologies will also be discussed, as well as the remaining difficulties, largely due to the genomic variability.
Collapse
Affiliation(s)
- Pauline Trémeaux
- a Laboratoire de Virologie , Institut de Biologie et Pathologie, CHU Grenoble-Alpes , Grenoble , France .,b Institut de Biologie Structurale (IBS), UMR 5075 CEA-CNRS-UGA , Grenoble , France
| | - Alban Caporossi
- c Centre d'investigation clinique, Santé publique, CHU Grenoble-Alpes , Grenoble , France .,d Laboratoire TIMC-IMAG , Université de Grenoble Alpes , Grenoble , France , and
| | - Marie-Ange Thélu
- e Clinique d'Hépato-gastroentérologie, Pôle Digidune, CHU Grenoble-Alpes , Grenoble , France
| | - Michael Blum
- d Laboratoire TIMC-IMAG , Université de Grenoble Alpes , Grenoble , France , and
| | - Vincent Leroy
- e Clinique d'Hépato-gastroentérologie, Pôle Digidune, CHU Grenoble-Alpes , Grenoble , France
| | - Patrice Morand
- a Laboratoire de Virologie , Institut de Biologie et Pathologie, CHU Grenoble-Alpes , Grenoble , France .,b Institut de Biologie Structurale (IBS), UMR 5075 CEA-CNRS-UGA , Grenoble , France
| | - Sylvie Larrat
- a Laboratoire de Virologie , Institut de Biologie et Pathologie, CHU Grenoble-Alpes , Grenoble , France .,b Institut de Biologie Structurale (IBS), UMR 5075 CEA-CNRS-UGA , Grenoble , France
| |
Collapse
|
45
|
Trémeaux P, Caporossi A, Ramière C, Santoni E, Tarbouriech N, Thélu MA, Fusillier K, Geneletti L, François O, Leroy V, Burmeister WP, André P, Morand P, Larrat S. Amplification and pyrosequencing of near-full-length hepatitis C virus for typing and monitoring antiviral resistant strains. Clin Microbiol Infect 2016; 22:460.e1-460.e10. [PMID: 26827671 DOI: 10.1016/j.cmi.2016.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/04/2016] [Accepted: 01/17/2016] [Indexed: 12/16/2022]
Abstract
Directly acting antiviral drugs have contributed considerable progress to hepatitis C virus (HCV) treatment, but they show variable activity depending on virus genotypes and subtypes. Therefore, accurate genotyping including recombinant form detection is still of major importance, as is the detection of resistance-associated mutations in case of therapeutic failure. To meet these goals, an approach to amplify the HCV near-complete genome with a single long-range PCR and sequence it with Roche GS Junior was developed. After optimization, the overall amplification success rate was 73% for usual genotypes (i.e. HCV 1a, 1b, 3a and 4a, 16/22) and 45% for recombinant forms RF_2k/1b (5/11). After pyrosequencing and subsequent de novo assembly, a near-full-length genomic consensus sequence was obtained for 19 of 21 samples. The genotype and subtype were confirmed by phylogenetic analysis for every sample, including the suspected recombinant forms. Resistance-associated mutations were detected in seven of 13 samples at baseline, in the NS3 (n = 3) or NS5A (n = 4) region. Of these samples, the treatment of one patient included daclatasvir, and that patient experienced a relapse. Virus sequences from pre- and posttreatment samples of four patients who experienced relapse after sofosbuvir-based therapy were compared: the selected variants seem too far from the NS5B catalytic site to be held responsible. Although tested on a limited set of samples and with technical improvements still necessary, this assay has proven to be successful for both genotyping and resistance-associated variant detection on several HCV types.
Collapse
Affiliation(s)
- P Trémeaux
- Laboratoire de Virologie, Institut de Biologie et Pathologie, Grenoble, France; UVHCI, Grenoble, France; Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France
| | - A Caporossi
- Laboratoire de Virologie, Institut de Biologie et Pathologie, Grenoble, France; Centre d'investigation clinique, Santé publique, UJF-CNRS, Grenoble, France; Laboratoire TIMC-IMAG, UMR 5525, Université de Grenoble Alpes, Grenoble, France
| | - C Ramière
- Laboratoire de Virologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - E Santoni
- Laboratoire de Virologie, Institut de Biologie et Pathologie, Grenoble, France
| | - N Tarbouriech
- UVHCI, Grenoble, France; Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France
| | - M-A Thélu
- Laboratoire de Virologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - K Fusillier
- Laboratoire de Virologie, Institut de Biologie et Pathologie, Grenoble, France
| | - L Geneletti
- Laboratoire de Virologie, Institut de Biologie et Pathologie, Grenoble, France
| | - O François
- Laboratoire TIMC-IMAG, UMR 5525, Université de Grenoble Alpes, Grenoble, France
| | - V Leroy
- Service d'Hépato-Gastroentérologie, CHU de Grenoble, Grenoble, France
| | - W P Burmeister
- UVHCI, Grenoble, France; Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France
| | - P André
- Laboratoire de Virologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - P Morand
- Laboratoire de Virologie, Institut de Biologie et Pathologie, Grenoble, France; UVHCI, Grenoble, France; Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France
| | - S Larrat
- Laboratoire de Virologie, Institut de Biologie et Pathologie, Grenoble, France; UVHCI, Grenoble, France; Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble, France.
| |
Collapse
|
46
|
Royston L, Tapparel C. Rhinoviruses and Respiratory Enteroviruses: Not as Simple as ABC. Viruses 2016; 8:E16. [PMID: 26761027 PMCID: PMC4728576 DOI: 10.3390/v8010016] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/09/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022] Open
Abstract
Rhinoviruses (RVs) and respiratory enteroviruses (EVs) are leading causes of upper respiratory tract infections and among the most frequent infectious agents in humans worldwide. Both are classified in the Enterovirus genus within the Picornaviridae family and they have been assigned to seven distinct species, RV-A, B, C and EV-A, B, C, D. As viral infections of public health significance, they represent an important financial burden on health systems worldwide. However, the lack of efficient antiviral treatment or vaccines against these highly prevalent pathogens prevents an effective management of RV-related diseases. Current advances in molecular diagnostic techniques have revealed the presence of RV in the lower respiratory tract and its role in lower airway diseases is increasingly reported. In addition to an established etiological role in the common cold, these viruses demonstrate an unexpected capacity to spread to other body sites under certain conditions. Some of these viruses have received particular attention recently, such as EV-D68 that caused a large outbreak of respiratory illness in 2014, respiratory EVs from species C, or viruses within the newly-discovered RV-C species. This review provides an update of the latest findings on clinical and fundamental aspects of RV and respiratory EV, including a summary of basic knowledge of their biology.
Collapse
Affiliation(s)
- Léna Royston
- University of Geneva Faculty of Medicine, 1 Rue Michel-Servet, 1205 Geneva, Switzerland.
- Laboratory of Virology, Division of Infectious Diseases, University of Geneva Hospitals, 4 Rue Gabrielle Perret-Gentil, 1211 Geneva 14, Switzerland.
| | - Caroline Tapparel
- University of Geneva Faculty of Medicine, 1 Rue Michel-Servet, 1205 Geneva, Switzerland.
- Laboratory of Virology, Division of Infectious Diseases, University of Geneva Hospitals, 4 Rue Gabrielle Perret-Gentil, 1211 Geneva 14, Switzerland.
| |
Collapse
|
47
|
Domingo E. Molecular Basis of Genetic Variation of Viruses. VIRUS AS POPULATIONS 2016. [PMCID: PMC7149591 DOI: 10.1016/b978-0-12-800837-9.00002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Genetic variation is a necessity of all biological systems. Viruses use all known mechanisms of variation: mutation, several forms of recombination, and segment reassortment in the case of viruses with a segmented genome. These processes are intimately connected with the replicative machineries of viruses, as well as with fundamental physico-chemical properties of nucleotides when acting as template or substrate residues. Recombination has been viewed as a means to rescue viable genomes from unfit parents, or to produce large modifications for the exploration of phenotypic novelty. All types of genetic variation can act conjointly as blind processes to provide the raw materials for adaptation to the changing environments in which viruses must replicate.
Collapse
|
48
|
Aikawa T, Tsuda F, Ueno C, Kikuchi Y, Ohnishi H, Nishizawa T, Okamoto H. Comparison of test results of serogrouping and core region PCR-based genotyping in patients with chronic hepatitis C virus infection: Analysis of inderminate or discrepant cases and identification of a 2b/1b recombinant HCV. ACTA ACUST UNITED AC 2016. [DOI: 10.2957/kanzo.57.447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | - Hiroshi Ohnishi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine
| | - Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine
| |
Collapse
|
49
|
Muslin C, Joffret ML, Pelletier I, Blondel B, Delpeyroux F. Evolution and Emergence of Enteroviruses through Intra- and Inter-species Recombination: Plasticity and Phenotypic Impact of Modular Genetic Exchanges in the 5' Untranslated Region. PLoS Pathog 2015; 11:e1005266. [PMID: 26562151 PMCID: PMC4643034 DOI: 10.1371/journal.ppat.1005266] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
Genetic recombination shapes the diversity of RNA viruses, including enteroviruses (EVs), which frequently have mosaic genomes. Pathogenic circulating vaccine-derived poliovirus (cVDPV) genomes consist of mutated vaccine poliovirus (PV) sequences encoding capsid proteins, and sequences encoding nonstructural proteins derived from other species’ C EVs, including certain coxsackieviruses A (CV-A) in particular. Many cVDPV genomes also have an exogenous 5’ untranslated region (5’ UTR). This region is involved in virulence and includes the cloverleaf (CL) and the internal ribosomal entry site, which play major roles in replication and the initiation of translation, respectively. We investigated the plasticity of the PV genome in terms of recombination in the 5’ UTR, by developing an experimental model involving the rescue of a bipartite PV/CV-A cVDPV genome rendered defective by mutations in the CL, following the co-transfection of cells with 5’ UTR RNAs from each of the four human EV species (EV-A to -D). The defective cVDPV was rescued by recombination with 5’ UTR sequences from the four EV species. Homologous and nonhomologous recombinants with large deletions or insertions in three hotspots were isolated, revealing a striking plasticity of the 5’ UTR. By contrast to the recombination of the cVDPV with the 5’ UTR of group II (EV-A and -B), which can decrease viral replication and virulence, recombination with the 5’ UTRs of group I (EV-C and -D) appeared to be evolutionarily neutral or associated with a gain in fitness. This study illustrates how the genomes of positive-strand RNA viruses can evolve into mosaic recombinant genomes through intra- or inter-species modular genetic exchanges, favoring the emergence of new recombinant lineages. Recombination shapes viral genomes, including those of the pathogenic circulating vaccine-derived polioviruses (cVDPVs), responsible for poliomyelitis outbreaks. The genomes of cVDPVs consist of sequences from vaccine poliovirus (PV) and other enteroviruses (EVs). We investigated the plasticity of cVDPV genomes and the effects of recombination in the 5’ untranslated region (5’ UTR), which is involved in replication, translation and virulence. We rescued a 5’ UTR-defective recombinant cVDPV genome by cotransfecting cells with 5’ UTR RNAs from human EV species EV-A to -D. Hundreds of recombinants were isolated, revealing striking plasticity in this region, with homologous and nonhomologous recombination sites mostly clustered in three hotspots. Recombination with EV-A and -B affected replication and virulence, whereas recombination with EV-C and -D was either neutral or improved viral fitness. This study illustrates how RNA viruses can acquire mosaic genomes through intra- or inter-species recombination, favoring the emergence of new recombinant strains.
Collapse
Affiliation(s)
- Claire Muslin
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Marie-Line Joffret
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Isabelle Pelletier
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Bruno Blondel
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Francis Delpeyroux
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
- * E-mail:
| |
Collapse
|
50
|
Thézé J, Lowes S, Parker J, Pybus OG. Evolutionary and Phylogenetic Analysis of the Hepaciviruses and Pegiviruses. Genome Biol Evol 2015; 7:2996-3008. [PMID: 26494702 PMCID: PMC5635594 DOI: 10.1093/gbe/evv202] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The known genetic diversity of the hepaciviruses and pegiviruses has increased greatly in recent years through the discovery of viruses related to hepatitis C virus and human pegivirus in bats, bovines, equines, primates, and rodents. Analysis of these new species is important for research into animal models of hepatitis C virus infection and into the zoonotic origins of human viruses. Here, we provide the first systematic phylogenetic and evolutionary analysis of these two genera at the whole-genome level. Phylogenies confirmed that hepatitis C virus is most closely related to viruses from horses whereas human pegiviruses clustered with viruses from African primates. Within each genus, several well-supported lineages were identified and viral diversity was structured by both host species and location of sampling. Recombination analyses provided evidence of interspecific recombination in hepaciviruses, but none in the pegiviruses. Putative mosaic genome structures were identified in NS5B gene region and were supported by multiple tests. The identification of interspecific recombination in the hepaciviruses represents an important evolutionary event that could be clarified by future sampling of novel viruses. We also identified parallel amino acid changes shared by distantly related lineages that infect similar types of host. Notable parallel changes were clustered in the NS3 and NS4B genes and provide a useful starting point for experimental studies of the evolution of Hepacivirus host-virus interactions.
Collapse
Affiliation(s)
- Julien Thézé
- Department of Zoology, University of Oxford, United Kingdom
| | - Sophia Lowes
- Department of Zoology, University of Oxford, United Kingdom
| | - Joe Parker
- Biodiversity Informatics and Spatial Analysis, The Jodrell Laboratory, Royal Botanic Gardens, Kew, United Kingdom
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, United Kingdom
| |
Collapse
|