1
|
Narciso AR, Dookie R, Nannapaneni P, Normark S, Henriques-Normark B. Streptococcus pneumoniae epidemiology, pathogenesis and control. Nat Rev Microbiol 2024:10.1038/s41579-024-01116-z. [PMID: 39506137 DOI: 10.1038/s41579-024-01116-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
Infections caused by Streptococcus pneumoniae (also known as pneumococci) pose a threat to human health. Pneumococcal infections are the most common cause of milder respiratory tract infections, such as otitis and sinusitis, and of more severe diseases, including pneumonia (with or without septicaemia) and meningitis. The introduction of pneumococcal conjugate vaccines in the childhood vaccination programme in many countries has led to a notable decrease of severe invasive pneumococcal disease in vaccinated children. However, infections caused by non-vaccine types have concurrently increased, causing invasive pneumococcal disease in unvaccinated populations (such as older adults), which has hampered the effect of these vaccines. Moreover, emerging antibiotic resistance is threatening effective therapy. Thus, new approaches are needed for the treatment and prevention of pneumococcal infections, and recent advances in the field may pave the way for new strategies. Recently, several important findings have been gained regarding pneumococcal epidemiology, genomics and the effect of the introduction of pneumococcal conjugate vaccines and of the COVID-19 pandemic. Moreover, elucidative pathogenesis studies have shown that the interactions between pneumococcal virulence factors and host receptors may be exploited for new therapies, and new vaccine candidates have been suggested. In this Review, we summarize some recent findings from clinical disease to basic pathogenesis studies that may be of importance for future control strategies.
Collapse
Affiliation(s)
- Ana Rita Narciso
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Rebecca Dookie
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Priyanka Nannapaneni
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Staffan Normark
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
2
|
Ali R, Ali K, Aurongzeb M, Al-Regaiey K, Kori JA, Irfan M, Rashid Y, Al Abduljabbar D, Kaleem I, Bashir S. Characterization of meningitis-causing bacteria, with focus on genomic and pangenomic study of multi-drug resistant Streptococcus pneumoniae from cerebrospinal fluid. Antonie Van Leeuwenhoek 2024; 118:16. [PMID: 39382798 DOI: 10.1007/s10482-024-02016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/19/2024] [Indexed: 10/10/2024]
Abstract
Streptococcus pneumoniae is a major cause of meningitis in under developed countries with low vaccination rates and high antibiotic resistance. This study aimed to analyze 83 suspected meningitis patients in Karachi for the detection of S. pneumoniae followed by its whole genome sequencing and Pan Genome analysis. Out of the 83 samples collected, 33 samples with altered physical (turbidity), cytological (white blood cell count) and biochemical (total protein and total glucose concentrations) parameters indicated potential meningitis cases, while these parameters were within normal healthy ranges in remaining 50 samples. Latex particle agglutination (LPA) was performed on the 33 samples, revealing 20 positive cases of bacterial meningitis. The PCR and culturing methods revealed 5 S. pneumoniae isolates. Antibiotic susceptibility tests showed that one S. pneumoniae strain was resistant to erythromycin, levofloxacin, and tetracycline. Whole-genome sequencing of this resistant strain was performed and S. pneumoniae was confirmed with MLST analysis, while it had > 2.3 Mb genome and a single repUS43 plasmid. In CARD analysis, the strain had tet(M), ermB, RlmA(II), patB, pmrA, and patA ARGs, which could provide resistance against tetracycline, macrolide, fluoroquinolone, and glycopeptide antibiotics. Phylogenetic analysis revealed that the isolate was closely related to strains from Hungary and the USA. Pan-genome analysis with 144 genome assemblies from NCBI database showed that 1101 non-redundant core genes were shared between all strains. This study gives valuable understanding into the prevalence and characterization of meningitis-causing bacteria in Karachi, Pakistan with prime focus on multi-drug resistant S. pneumoniae.
Collapse
Affiliation(s)
- Rehan Ali
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi, 75600, Pakistan
| | - Kashif Ali
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi, 75600, Pakistan
| | - Muhammad Aurongzeb
- Faculty of Engineering Sciences and Technology (FEST), Department of Applied Sciences, Hamdard University, Karachi, 74600, Pakistan.
| | - Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Junaid Ahmed Kori
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Irfan
- Jamil-Ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, ICCBS, University of Karachi, Karachi, 75270, Pakistan
| | - Yasmeen Rashid
- Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Danah Al Abduljabbar
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Imdad Kaleem
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan.
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
3
|
Ibrahim A, Saleem N, Naseer F, Ahmed S, Munawar N, Nawaz R. From cytokines to chemokines: Understanding inflammatory signaling in bacterial meningitis. Mol Immunol 2024; 173:117-126. [PMID: 39116800 DOI: 10.1016/j.molimm.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Bacterial meningitis is a serious central nervous system (CNS) infection, claiming millions of human lives annually around the globe. The deadly infection involves severe inflammation of the protective sheath of the brain, i.e., meninges, and sometimes also consists of the brain tissue, called meningoencephalitis. Several inflammatory pathways involved in the pathogenesis of meningitis caused by Streptococcus pneumoniae, Neisseria meningitidis, Escherichia coli, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus suis, etc. are mentioned in the scientific literature. Many in-vitro and in-vivo analyses have shown that after the disruption of the blood-brain barrier (BBB), these pathogens trigger several inflammatory pathways including Toll-Like Receptor (TLR) signaling in response to Pathogen-Associated Molecular Patterns (PAMPs), Nucleotide oligomerization domain (NOD)-like receptor-mediated signaling, pneumolysin related signaling, NF-κB signaling and many other pathways that lead to pro-inflammatory cascade and subsequent cytokine release including interleukine (IL)-1β, tumor necrosis factor(TNF)-α, IL-6, IL-8, chemokine (C-X-C motif) ligand 1 (CXCL1) along with other mediators, leading to neuroinflammation. The activation of another protein complex, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome, also takes place resulting in the maturation and release of IL-1β and IL-18, hence potentiating neuroinflammation. This review aims to outline the inflammatory signaling pathways associated with the pathogenesis of bacterial meningitis leading to extensive pathological changes in neurons, astrocytes, oligodendrocytes, and other central nervous system cells.
Collapse
Affiliation(s)
- Ahsan Ibrahim
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Nida Saleem
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Faiza Naseer
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan; Department of Biosciences, Shifa Tameer e Millat University, Islamabad, Pakistan.
| | - Sagheer Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan.
| | - Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rukhsana Nawaz
- Department of Clinical Psychology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Fernandes DC, Eto SF, Baldassi AC, Balbuena TS, Charlie-Silva I, de Andrade Belo MA, Pizauro JM. Meningitis caused by Aeromonas hydrophila in Oreochromis niloticus: Proteomics and druggability of virulence factors. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109687. [PMID: 38866348 DOI: 10.1016/j.fsi.2024.109687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Meningitis caused by Gram-negative bacteria is a serious public health problem, causing morbidity and mortality in both children and adults. Here, we propose a novel experimental model using Nile tilapia (Oreochromis niloticus) to study neuroinflammation. The fish were infected with Aeromonas hydrophila, and the course of infection was monitored in the peripheral blood. Septicemia was obvious in the blood, while in the brain tissue, infection of the meninges was present. The histopathological examination showed suppurative meningitis, and the cellular immune response in the brain tissue during infection was mediated by microglia. These cells were morphologically characterized and phenotyped by MHC class II markers and CD68. The increased production of TNF-α, IL-1β and iNOS supported the infiltration of these cells during the neuroinflammatory process. In the proteomic analysis of A. hydrophila isolated from brain tissue, we found chemotactic and transport proteins, proteolytic enzymes and enzymes associated with the dismutation of nitric oxide (NO), as well as motor proteins and those responsible for cell division. After characterizing the most abundant proteins during the course of infection, we investigated the druggability index of these proteins and identified promising peptide sequences as molecular targets that are similar among bacteria. Thus, these findings deepened the understanding of the pathophysiology of meningitis caused by A. hydrophila. Moreover, through the proteomics analysis, important mechanisms and pathways used by the pathogen to subvert the host response were revealed, providing insights for the development of novel antibiotics and vaccines.
Collapse
Affiliation(s)
- Dayanne Carla Fernandes
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara, Sao Paulo, SP, Brazil.
| | - Silas Fernandes Eto
- Laboratory Center of Excellence in New Target Discovery (CENTD) Special Laboratory, Butantan Institute, São Paulo, SP, Brazil
| | - Amanda Cristina Baldassi
- Department of Technology, School of Agrarian and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, Sao Paulo, SP, Brazil
| | - Thiago Santana Balbuena
- Department of Technology, School of Agrarian and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, Sao Paulo, SP, Brazil
| | - Ives Charlie-Silva
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara, Sao Paulo, SP, Brazil
| | | | - João Martins Pizauro
- Department of Technology, School of Agrarian and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, Sao Paulo, SP, Brazil
| |
Collapse
|
5
|
Shi J, Wang Y, Zhang L, Wang F, Miao Y, Yang J, Wang L, Shi S, Ma L, Duan J. Inorganic catalase-powered nanomotors with hyaluronic acid coating for pneumonia therapy. Int J Biol Macromol 2024; 270:132028. [PMID: 38704066 DOI: 10.1016/j.ijbiomac.2024.132028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Clinical therapy for widespread infections caused by Streptococcus pneumoniae (S. pneumoniae), such as community-acquired pneumonia, is highly challenging. As an important bacterial toxin, hydrogen peroxide (H2O2) secreted by S. pneumoniae can suppress the host's immune system and cause more severe disease. To address this problem, a hyaluronic acid (HA)-coated inorganic catalase-driven Janus nanomotor was developed, which can cleverly utilize and decompose H2O2 to reduce the burden of bacterial infection, and have excellent drug loading capacity. HA coating prevents rapid leakage of loaded antibiotics and improves the biocompatibility of the nanomaterials. The Janus nanomotor converted H2O2 into oxygen (O2), gave itself the capacity to move actively, and encouraged widespread dispersion in the lesion site. Encouragingly, animal experiments demonstrated that the capability of the nanomotors to degrade H2O2 contributes to diminishing the proliferation of S. pneumoniae and lung tissue damage. This self-propelled drug delivery platform provides a new therapeutic strategy for infections with toxin-secreting bacteria.
Collapse
Affiliation(s)
- Jingru Shi
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yu Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lingjiao Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fei Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yu Miao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jialun Yang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Liping Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuo Shi
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Lili Ma
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Jinyou Duan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
6
|
Farmen K, Tofiño-Vian M, Wellfelt K, Olson L, Iovino F. Spatio-temporal brain invasion pattern of Streptococcus pneumoniae and dynamic changes in the cellular environment in bacteremia-derived meningitis. Neurobiol Dis 2024; 195:106484. [PMID: 38583642 DOI: 10.1016/j.nbd.2024.106484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is the major cause of bacterial meningitis globally, and pneumococcal meningitis is associated with increased risk of long-term neurological sequelae. These include several sensorimotor functions that are controlled by specific brain regions which, during bacterial meningitis, are damaged by a neuroinflammatory response and the deleterious action of bacterial toxins in the brain. However, little is known about the invasion pattern of the pneumococcus into the brain. Using a bacteremia-derived meningitis mouse model, we combined 3D whole brain imaging with brain microdissection to show that all brain regions were equally affected during disease progression, with the presence of pneumococci closely associated to the microvasculature. In the hippocampus, the invasion provoked microglial activation, while the neurogenic niche showed increased proliferation and migration of neuroblasts. Our results indicate that, even before the outbreak of symptoms, the bacterial load throughout the brain is high and causes neuroinflammation and cell death, a pathological scenario which ultimately leads to a failing regeneration of new neurons.
Collapse
Affiliation(s)
- Kristine Farmen
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Katrin Wellfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Serra S, Iannotti V, Ferrante M, Tofiño-Vian M, Baxendale J, Silberberg G, Kohler TP, Hammerschmidt S, Ulijasz AT, Iovino F. The single D380 amino acid substitution increases pneumolysin cytotoxicity toward neuronal cells. iScience 2024; 27:109583. [PMID: 38632998 PMCID: PMC11022043 DOI: 10.1016/j.isci.2024.109583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Bacterial meningitis, frequently caused by Streptococcus pneumoniae (pneumococcus), represents a substantial global health threat leading to long-term neurological disorders. This study focused on the cholesterol-binding toxin pneumolysin (PLY) released by pneumococci, specifically examining clinical isolates from patients with meningitis and comparing them to the PLY-reference S. pneumoniae strain D39. Clinical isolates exhibit enhanced PLY release, likely due to a significantly higher expression of the autolysin LytA. Notably, the same single amino acid (aa) D380 substitution in the PLY D4 domain present in all clinical isolates significantly enhances cholesterol binding, pore-forming activity, and cytotoxicity toward SH-SY5Y-derived neuronal cells. Scanning electron microscopy of human neuronal cells and patch clamp electrophysiological recordings on mouse brain slices confirm the enhanced neurotoxicity of the PLY variant carrying the single aa substitution. This study highlights how a single aa modification enormously alters PLY cytotoxic potential, emphasizing the importance of PLY as a major cause of the neurological sequelae associated with pneumococcal meningitis.
Collapse
Affiliation(s)
- Simona Serra
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vittorio Iannotti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Joseph Baxendale
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas P. Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Andrew T. Ulijasz
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
de Andrade VM, de Oliveira VDM, Barcick U, Ramu VG, Heras M, Bardají ER, Castanho MARB, Zelanis A, Capella A, Junqueira JC, Conceição K. Mechanistic insights on the antibacterial action of the kyotorphin peptide derivatives revealed by in vitro studies and Galleria mellonella proteomic analysis. Microb Pathog 2024; 189:106607. [PMID: 38437995 DOI: 10.1016/j.micpath.2024.106607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
OBJECTIVES The selected kyotorphin derivatives were tested to improve their antimicrobial and antibiofilm activity. The antimicrobial screening of the KTP derivatives were ascertained in the representative strains of bacteria, including Streptococcus pneumoniae, Streptococcus pyogenes, Escherichia coli and Pseudomonas aeruginosa. METHODS Kyotorphin derivatives, KTP-NH2, KTP-NH2-DL, IbKTP, IbKTP-NH2, MetKTP-DL, MetKTP-LD, were designed and synthesized to improve lipophilicity and resistance to enzymatic degradation. Peptides were synthesized by standard solution or solid-phase peptide synthesis and purified using RP-HPLC, which resulted in >95 % purity, and were fully characterized by mass spectrometry and 1H NMR. The minimum inhibitory concentrations (MIC) determined for bacterial strains were between 20 and 419 μM. The direct effect of IbKTP-NH2 on bacterial cells was imaged using scanning electron microscopy. The absence of toxicity, high survival after infection and an increase in the hemocytes count was evaluated by injections of derivatives in Galleria mellonella larvae. Proteomics analyses of G. mellonella hemolymph were performed to investigate the underlying mechanism of antibacterial activity of IbKTP-NH2 at MIC. RESULTS IbKTP-NH2 induces morphological changes in bacterial cell, many differentially expressed proteins involved in DNA replication, synthesis of cell wall, and virulence were up-regulated after the treatment of G. mellonella with IbKTP-NH2. CONCLUSION We suggest that this derivative, in addition to its physical activity on the bacterial membranes, can elicit a cellular and humoral immune response, therefore, it could be considered for biomedical applications.
Collapse
Affiliation(s)
- Vitor M de Andrade
- Laboratório de Bioquímica de Peptídeos, Departamento de Ciência e Tecnologia - Universidade Federal de São Paulo - UNIFESP, Rua Talim, 330, São José dos Campos, SP, 12231-280, Brazil
| | - Vitor D M de Oliveira
- Laboratório de Bioquímica de Peptídeos, Departamento de Ciência e Tecnologia - Universidade Federal de São Paulo - UNIFESP, Rua Talim, 330, São José dos Campos, SP, 12231-280, Brazil
| | - Uilla Barcick
- Laboratório de Proteômica Funcional, Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo - Universidade Federal de São Paulo - UNIFESP, Rua Talim, 330, São José dos Campos, SP, 12231-280, Brazil
| | - Vasanthakumar G Ramu
- Laboratori d'Innovació en Processos i Productes de Síntesi Orgànica (LIPPSO), Departament de Química, Universitat de Girona, Campus Montilivi, 17071, Girona, Spain; Peptides and Complex Generics, #2700, Neovantage, Genome Valley, Shameerpet, Hyderabad, 500078, Telengana, India
| | - Montserrat Heras
- Laboratori d'Innovació en Processos i Productes de Síntesi Orgànica (LIPPSO), Departament de Química, Universitat de Girona, Campus Montilivi, 17071, Girona, Spain
| | - Eduard R Bardají
- Laboratori d'Innovació en Processos i Productes de Síntesi Orgànica (LIPPSO), Departament de Química, Universitat de Girona, Campus Montilivi, 17071, Girona, Spain
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - André Zelanis
- Laboratório de Proteômica Funcional, Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo - Universidade Federal de São Paulo - UNIFESP, Rua Talim, 330, São José dos Campos, SP, 12231-280, Brazil
| | - Aline Capella
- Laboratório ProLaser, Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo - UNIFESP, Rua Talim, 330, São José dos Campos, SP, 12231-280, Brazil
| | - Juliana C Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, 12245-000, SP, Brazil
| | - Katia Conceição
- Laboratório de Bioquímica de Peptídeos, Departamento de Ciência e Tecnologia - Universidade Federal de São Paulo - UNIFESP, Rua Talim, 330, São José dos Campos, SP, 12231-280, Brazil.
| |
Collapse
|
9
|
Yin X, Zhang S, Lee JH, Dong H, Mourgkos G, Terwilliger G, Kraus A, Geraldo LH, Poulet M, Fischer S, Zhou T, Mohammed FS, Zhou J, Wang Y, Malloy S, Rohner N, Sharma L, Salinas I, Eichmann A, Thomas JL, Saltzman WM, Huttner A, Zeiss C, Ring A, Iwasaki A, Song E. Compartmentalized ocular lymphatic system mediates eye-brain immunity. Nature 2024; 628:204-211. [PMID: 38418880 PMCID: PMC10990932 DOI: 10.1038/s41586-024-07130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
The eye, an anatomical extension of the central nervous system (CNS), exhibits many molecular and cellular parallels to the brain. Emerging research demonstrates that changes in the brain are often reflected in the eye, particularly in the retina1. Still, the possibility of an immunological nexus between the posterior eye and the rest of the CNS tissues remains unexplored. Here, studying immune responses to herpes simplex virus in the brain, we observed that intravitreal immunization protects mice against intracranial viral challenge. This protection extended to bacteria and even tumours, allowing therapeutic immune responses against glioblastoma through intravitreal immunization. We further show that the anterior and posterior compartments of the eye have distinct lymphatic drainage systems, with the latter draining to the deep cervical lymph nodes through lymphatic vasculature in the optic nerve sheath. This posterior lymphatic drainage, like that of meningeal lymphatics, could be modulated by the lymphatic stimulator VEGFC. Conversely, we show that inhibition of lymphatic signalling on the optic nerve could overcome a major limitation in gene therapy by diminishing the immune response to adeno-associated virus and ensuring continued efficacy after multiple doses. These results reveal a shared lymphatic circuit able to mount a unified immune response between the posterior eye and the brain, highlighting an understudied immunological feature of the eye and opening up the potential for new therapeutic strategies in ocular and CNS diseases.
Collapse
Affiliation(s)
- Xiangyun Yin
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Sophia Zhang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Ju Hyun Lee
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Huiping Dong
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - George Mourgkos
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Gordon Terwilliger
- Section of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Aurora Kraus
- Center of Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Luiz Henrique Geraldo
- Department of Internal Medicine, Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Mathilde Poulet
- Department of Internal Medicine, Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Suzanne Fischer
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Ting Zhou
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Farrah Shalima Mohammed
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jiangbing Zhou
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Seth Malloy
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Lokesh Sharma
- Section of Pulmonary and Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Irene Salinas
- Center of Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Anne Eichmann
- Department of Internal Medicine, Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
- Université de Paris, INSERM, PARCC, Paris, France
| | - Jean-Leon Thomas
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Institut du Cerveau, Pitié-Salpêtrière Hospital, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
- Department of Chemical & Environmental Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Anita Huttner
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Caroline Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Aaron Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Eric Song
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Cheng Z, Zheng Y, Yang W, Sun H, Zhou F, Huang C, Zhang S, Song Y, Liang Q, Yang N, Li M, Liu B, Feng L, Wang L. Pathogenic bacteria exploit transferrin receptor transcytosis to penetrate the blood-brain barrier. Proc Natl Acad Sci U S A 2023; 120:e2307899120. [PMID: 37733740 PMCID: PMC10523449 DOI: 10.1073/pnas.2307899120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023] Open
Abstract
The human blood-brain barrier (BBB) comprises a single layer of brain microvascular endothelial cells (HBMECs) protecting the brain from bloodborne pathogens. Meningitis is among the most serious diseases, but the mechanisms by which major meningitis-causing bacterial pathogens cross the BBB to reach the brain remain poorly understood. We found that Streptococcus pneumoniae, group B Streptococcus, and neonatal meningitis Escherichia coli commonly exploit a unique vesicle fusion mechanism to hitchhike on transferrin receptor (TfR) transcytosis to cross the BBB and illustrated the details of this process in human BBB model in vitro and mouse model. Toll-like receptor signals emanating from bacteria-containing vesicles (BCVs) trigger K33-linked polyubiquitination at Lys168 and Lys181 of the innate immune regulator TRAF3 and then activate the formation of a protein complex containing the guanine nucleotide exchange factor RCC2, the small GTPase RalA and exocyst subcomplex I (SC I) on BCVs. The distinct function of SEC6 in SC I, interacting directly with RalA on BCVs and the SNARE protein SNAP23 on TfR vesicles, tethers these two vesicles and initiates the fusion. Our results reveal that innate immunity triggers a unique modification of TRAF3 and the formation of the HBMEC-specific protein complex on BCVs to authenticate the precise recognition and selection of TfR vesicles to fuse with and facilitate bacterial penetration of the BBB.
Collapse
Affiliation(s)
- Zhihui Cheng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Yangyang Zheng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Wen Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Hongmin Sun
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Fangyu Zhou
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Chuangjie Huang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Shuwen Zhang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Yingying Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Qi’an Liang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Nan Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Meifang Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Lu Feng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| | - Lei Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin300071, China
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin300457, China
| |
Collapse
|
11
|
Miao C, Cui Y, Yan Z, Jiang Y. Pilus of Streptococcus pneumoniae: structure, function and vaccine potential. Front Cell Infect Microbiol 2023; 13:1270848. [PMID: 37799336 PMCID: PMC10548224 DOI: 10.3389/fcimb.2023.1270848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
The pilus is an extracellular structural part that can be detected in some Streptococcus pneumoniae (S. pneumoniae) isolates (type I pili are found in approximately 30% of strains, while type II pili are found in approximately 20%). It is anchored to the cell wall by LPXTG-like motifs on the peptidoglycan. Two kinds of pili have been discovered, namely, pilus-1 and pilus-2. The former is encoded by pilus islet 1 (PI-1) and is a polymer formed by the protein subunits RrgA, RrgB and RrgC. The latter is encoded by pilus islet 2 (PI-2) and is a polymer composed mainly of the structural protein PitB. Although pili are not necessary for the survival of S. pneumoniae, they serve as the structural basis and as virulence factors that mediate the adhesion of bacteria to host cells and play a direct role in promoting the adhesion, colonization and pathogenesis of S. pneumoniae. In addition, as candidate antigens for protein vaccines, pili have promising potential for use in vaccines with combined immunization strategies. Given the current understanding of the pili of S. pneumoniae regarding the genes, proteins, structure, biological function and epidemiological relationship with serotypes, combined with the immunoprotective efficacy of pilins as protein candidates for vaccines, we here systematically describe the research status and prospects of S. pneumoniae pili and provide new ideas for subsequent vaccine research and development.
Collapse
Affiliation(s)
- Chenglin Miao
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yali Cui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan, China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, Sichuan, China
| | - Ziyi Yan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Barichello T, Rocha Catalão CH, Rohlwink UK, van der Kuip M, Zaharie D, Solomons RS, van Toorn R, Tutu van Furth M, Hasbun R, Iovino F, Namale VS. Bacterial meningitis in Africa. Front Neurol 2023; 14:822575. [PMID: 36864913 PMCID: PMC9972001 DOI: 10.3389/fneur.2023.822575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
Bacterial meningitis differs globally, and the incidence and case fatality rates vary by region, country, pathogen, and age group; being a life-threatening disease with a high case fatality rate and long-term complications in low-income countries. Africa has the most significant prevalence of bacterial meningitis illness, and the outbreaks typically vary with the season and the geographic location, with a high incidence in the meningitis belt of the sub-Saharan area from Senegal to Ethiopia. Streptococcus pneumoniae (pneumococcus) and Neisseria meningitidis (meningococcus) are the main etiological agents of bacterial meningitis in adults and children above the age of one. Streptococcus agalactiae (group B Streptococcus), Escherichia coli, and Staphylococcus aureus are neonatal meningitis's most common causal agents. Despite efforts to vaccinate against the most common causes of bacterial neuro-infections, bacterial meningitis remains a significant cause of mortality and morbidity in Africa, with children below 5 years bearing the heaviest disease burden. The factors attributed to this continued high disease burden include poor infrastructure, continued war, instability, and difficulty in diagnosis of bacterial neuro-infections leading to delay in treatment and hence high morbidity. Despite having the highest disease burden, there is a paucity of African data on bacterial meningitis. In this article, we discuss the common etiologies of bacterial neuroinfectious diseases, diagnosis and the interplay between microorganisms and the immune system, and the value of neuroimmune changes in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Tatiana Barichello
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Carlos Henrique Rocha Catalão
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Neuroscience and Behavioral Science, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirao Preto, SP, Brazil
| | - Ursula K. Rohlwink
- Pediatric Neurosurgery Unit, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
- Division of Neurosurgery, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Martijn van der Kuip
- Department of Pediatric Infectious Diseases and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Dan Zaharie
- Department of Anatomical Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Services, Tygerberg Hospital, Cape Town, South Africa
| | - Regan S. Solomons
- Department of Pediatric and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ronald van Toorn
- Department of Pediatric and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marceline Tutu van Furth
- Department of Pediatric Infectious Diseases and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Rodrigo Hasbun
- Division of Infectious Diseases, Department of Internal Medicine, UT Health, McGovern Medical School, Houston, TX, United States
| | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vivian Ssonko Namale
- Columbia University Irving Medical Center and New York Presbyterian Hospital, New York, NY, United States
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
13
|
Farmen K, Tofiño-Vian M. In Vitro Approaches for the Study of Pneumococcal-Neuronal Interaction and Pathogenesis. Methods Mol Biol 2023; 2674:327-334. [PMID: 37258978 DOI: 10.1007/978-1-0716-3243-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CFU- and confocal microscopy-based in vitro methods to assess pneumococcal adhesion and invasion of relevant human cells, such as neurons, remain a powerful tool to understand the basis of host-pathogen interactions. In recent years, there has been a continuous refinement of confocal detection of human and bacterial cells through the use of specific, fluorochrome-labelled antibodies. Used in combination, these assays provide both the means for quantification and enough flexibility to accommodate specific experimental needs.
Collapse
Affiliation(s)
- Kristine Farmen
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | | |
Collapse
|
14
|
Pettersen JS, Høg FF, Nielsen FD, Møller-Jensen J, Jørgensen MG. Global transcriptional responses of pneumococcus to human blood components and cerebrospinal fluid. Front Microbiol 2022; 13:1060583. [PMID: 36620004 PMCID: PMC9812572 DOI: 10.3389/fmicb.2022.1060583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a leading cause of severe invasive infectious diseases such as sepsis and meningitis. Understanding how pneumococcus adapts and survive in the human bloodstream environment and cerebrospinal fluid (CSF) is important for development of future treatment strategies. This study investigates the global transcriptional response of pneumococcus to human blood components and CSF acquired from discarded and anonymized patient samples. Extensive transcriptional changes to human blood components were observed during early stages of interaction. Plasma-specific responses were primarily related to metabolic components and include strong downregulation of fatty acid biosynthesis genes, and upregulation of nucleotide biosynthesis genes. No transcriptional responses specific to the active plasma proteins (e.g., complement proteins) were observed during early stages of interaction as demonstrated by a differential expression analysis between plasma and heat-inactivated plasma. The red blood cell (RBC)-specific response was far more complex, and included activation of the competence system, differential expression of several two-component systems, phosphotransferase systems and transition metal transporter genes. Interestingly, most of the changes observed for CSF were also observed for plasma. One of the few CSF-specific responses, not observed for plasma, was a strong downregulation of the iron acquisition system piuBCDA. Intriguingly, this transcriptomic analysis also uncovers significant differential expression of more than 20 small non-coding RNAs, most of them in response to RBCs, including small RNAs from uncharacterized type I toxin-antitoxin systems. In summary, this transcriptomic study identifies key pneumococcal metabolic pathways and regulatory genes involved with adaptation to human blood and CSF. Future studies should uncover the potential involvement of these factors with virulence in-vivo.
Collapse
|
15
|
Srivastava P, Kim KS. Membrane Vesicles Derived from Gut Microbiota and Probiotics: Cutting-Edge Therapeutic Approaches for Multidrug-Resistant Superbugs Linked to Neurological Anomalies. Pharmaceutics 2022; 14:2370. [PMID: 36365188 PMCID: PMC9692612 DOI: 10.3390/pharmaceutics14112370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Multidrug-resistant (MDR) superbugs can breach the blood-brain barrier (BBB), leading to a continuous barrage of pro-inflammatory modulators and induction of severe infection-related pathologies, including meningitis and brain abscess. Both broad-spectrum or species-specific antibiotics (β-lactamase inhibitors, polymyxins, vancomycin, meropenem, plazomicin, and sarecycline) and biocompatible poly (lactic-co-glycolic acid) (PLGA) nanoparticles have been used to treat these infections. However, new therapeutic platforms with a broad impact that do not exert off-target deleterious effects are needed. Membrane vesicles or extracellular vesicles (EVs) are lipid bilayer-enclosed particles with therapeutic potential owing to their ability to circumvent BBB constraints. Bacteria-derived EVs (bEVs) from gut microbiota are efficient transporters that can penetrate the central nervous system. In fact, bEVs can be remodeled via surface modification and CRISPR/Cas editing and, thus, represent a novel platform for conferring protection against infections breaching the BBB. Here, we discuss the latest scientific research related to gut microbiota- and probiotic-derived bEVs, and their therapeutic modifications, in terms of regulating neurotransmitters and inhibiting quorum sensing, for the treatment of neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases. We also emphasize the benefits of probiotic-derived bEVs to human health and propose a novel direction for the development of innovative heterologous expression systems to combat BBB-crossing pathogens.
Collapse
Affiliation(s)
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
16
|
Generoso JS, Thorsdottir S, Collodel A, Dominguini D, Santo RRE, Petronilho F, Barichello T, Iovino F. Dysfunctional Glymphatic System with Disrupted Aquaporin 4 Expression Pattern on Astrocytes Causes Bacterial Product Accumulation in the CSF during Pneumococcal Meningitis. mBio 2022; 13:e0188622. [PMID: 36036510 PMCID: PMC9600563 DOI: 10.1128/mbio.01886-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 01/17/2023] Open
Abstract
Pneumococcal meningitis, inflammation of the meninges due to an infection of the Central Nervous System caused by Streptococcus pneumoniae (the pneumococcus), is the most common form of community-acquired bacterial meningitis globally. Aquaporin 4 (AQP4) water channels on astrocytic end feet regulate the solute transport of the glymphatic system, facilitating the exchange of compounds between the brain parenchyma and the cerebrospinal fluid (CSF), which is important for the clearance of waste away from the brain. Wistar rats, subjected to either pneumococcal meningitis or artificial CSF (sham control), received Evans blue-albumin (EBA) intracisternally. Overall, the meningitis group presented a significant impairment of the glymphatic system by retaining the EBA in the CSF compartments compared to the uninfected sham group. Our results clearly showed that during pneumococcal meningitis, the glymphatic system does not function because of a detachment of the astrocytic end feet from the blood-brain barrier (BBB) vascular endothelium, which leads to misplacement of AQP4 with the consequent loss of the AQP4 water channel's functionality. IMPORTANCE The lack of solute drainage due to a dysfunctional glymphatic system leads to an increase of the neurotoxic bacterial material in the CSF compartments of the brain, ultimately leading to brain-wide neuroinflammation and neuronal damage with consequent impairment of neurological functions. The loss of function of the glymphatic system can therefore be a leading cause of the neurological sequelae developing post-bacterial meningitis.
Collapse
Affiliation(s)
- Jaqueline S. Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Sigrun Thorsdottir
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Allan Collodel
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Roberta R. E. Santo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| |
Collapse
|
17
|
Membrane particles evoke a serotype-independent cross-protection against pneumococcal infection that is dependent on the conserved lipoproteins MalX and PrsA. Proc Natl Acad Sci U S A 2022; 119:e2122386119. [PMID: 35648835 PMCID: PMC9191655 DOI: 10.1073/pnas.2122386119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificancePneumococcal infections are major contributors to morbidity and mortality worldwide. Introduction of pneumococcal conjugated vaccines (PCVs) into the childhood vaccination program has led to a decrease in invasive pneumococcal disease (IPD) in vaccinated children but concurrently to an increase of nonvaccine-type IPD, also in nonvaccinated age groups such as the elderly. Thus, novel vaccine approaches are urgently needed, especially for the elderly, targeting all pneumococci causing IPD. Here, we show that pneumococcal membrane particles (MPs) evoke a serotype-independent cross-protection against IPD. This protection is dependent on the presence of the two conserved lipoproteins MalX and PrsA. We suggest that MPs can be used for pneumococcal vaccine development.
Collapse
|
18
|
Kopenhagen A, Ramming I, Camp B, Hammerschmidt S, Fulde M, Müsken M, Steinert M, Bergmann S. Streptococcus pneumoniae Affects Endothelial Cell Migration in Microfluidic Circulation. Front Microbiol 2022; 13:852036. [PMID: 35401456 PMCID: PMC8990767 DOI: 10.3389/fmicb.2022.852036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/04/2022] [Indexed: 01/12/2023] Open
Abstract
Bloodstream infections caused by Streptococcus pneumoniae induce strong inflammatory and procoagulant cellular responses and affect the endothelial barrier of the vascular system. Bacterial virulence determinants, such as the cytotoxic pore-forming pneumolysin, increase the endothelial barrier permeability by inducing cell apoptosis and cell damage. As life-threatening consequences, disseminated intravascular coagulation followed by consumption coagulopathy and low blood pressure is described. With the aim to decipher the role of pneumolysin in endothelial damage and leakage of the vascular barrier in more detail, we established a chamber-separation cell migration assay (CSMA) used to illustrate endothelial wound healing upon bacterial infections. We used chambered inlets for cell cultivation, which, after removal, provide a cell-free area of 500 μm in diameter as a defined gap in primary endothelial cell layers. During the process of wound healing, the size of the cell-free area is decreasing due to cell migration and proliferation, which we quantitatively determined by microscopic live cell monitoring. In addition, differential immunofluorescence staining combined with confocal microscopy was used to morphologically characterize the effect of bacterial attachment on cell migration and the velocity of gap closure. In all assays, the presence of wild-type pneumococci significantly inhibited endothelial gap closure. Remarkably, even in the presence of pneumolysin-deficient pneumococci, cell migration was significantly retarded. Moreover, the inhibitory effect of pneumococci on the proportion of cell proliferation versus cell migration within the process of endothelial gap closure was assessed by implementation of a fluorescence-conjugated nucleoside analogon. We further combined the endothelial CSMA with a microfluidic pump system, which for the first time enabled the microscopic visualization and monitoring of endothelial gap closure in the presence of circulating bacteria at defined vascular shear stress values for up to 48 h. In accordance with our CSMA results under static conditions, the gap remained cell free in the presence of circulating pneumococci in flow. Hence, our combined endothelial cultivation technique represents a complex in vitro system, which mimics the vascular physiology as close as possible by providing essential parameters of the blood flow to gain new insights into the effect of pneumococcal infection on endothelial barrier integrity in flow.
Collapse
Affiliation(s)
- Anna Kopenhagen
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Isabell Ramming
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Belinda Camp
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Pneumology, University Hospital Magdeburg, Magdeburg, Germany
| | - Sven Hammerschmidt
- Institute for Genetics and Functional Genomics, Department of Molecular Genetics and Infection Biology, Universität Greifswald, Greifswald, Germany
| | - Marcus Fulde
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Simone Bergmann
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
19
|
Agnew HN, Brazel EB, Tikhomirova A, van der Linden M, McLean KT, Paton JC, Trappetti C. Streptococcus pneumoniae Strains Isolated From a Single Pediatric Patient Display Distinct Phenotypes. Front Cell Infect Microbiol 2022; 12:866259. [PMID: 35433506 PMCID: PMC9008571 DOI: 10.3389/fcimb.2022.866259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is the leading cause of bacterial paediatric meningitis after the neonatal period worldwide, but the bacterial factors and pathophysiology that drive pneumococcal meningitis are not fully understood. In this work, we have identified differences in raffinose utilization by S. pneumoniae isolates of identical serotype and sequence type from the blood and cerebrospinal fluid (CSF) of a single pediatric patient with meningitis. The blood isolate displayed defective raffinose metabolism, reduced transcription of the raffinose utilization pathway genes, and an inability to grow in vitro when raffinose was the sole carbon source. The fitness of these strains was then assessed using a murine intranasal infection model. Compared with the CSF isolate, mice infected with the blood isolate displayed higher bacterial numbers in the nose, but this strain was unable to invade the ears of infected mice. A premature stop codon was identified in the aga gene in the raffinose locus, suggesting that this protein likely displays impaired alpha-galactosidase activity. These closely related strains were assessed by Illumina sequencing, which did not identify any single nucleotide polymorphisms (SNPs) between the two strains. However, these wider genomic analyses identified the presence of an alternative alpha-galactosidase gene that appeared to display altered sequence coverage between the strains, which may account for the observed differences in raffinose metabolic capacity. Together, these studies support previous findings that raffinose utilization capacity contributes to disease progression, and provide insight into a possible alternative means by which perturbation of this pathway may influence the behavior of pneumococci in the host environment, particularly in meningitis.
Collapse
Affiliation(s)
- Hannah N. Agnew
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SAAustralia
| | - Erin B. Brazel
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SAAustralia
| | - Alexandra Tikhomirova
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SAAustralia
| | - Mark van der Linden
- German National Reference Center for Streptoccocci, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Kimberley T. McLean
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SAAustralia
| | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SAAustralia
- *Correspondence: Claudia Trappetti, ; James C. Paton,
| | - Claudia Trappetti
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SAAustralia
- *Correspondence: Claudia Trappetti, ; James C. Paton,
| |
Collapse
|
20
|
Gao DQ, Hu YQ, Wang X, Zhang YZ. Hepatitis B virus in cerebrospinal fluid of a patient with purulent bacterial meningitis detected by multiplex-PCR: A case report. World J Clin Cases 2022; 10:1697-1701. [PMID: 35211611 PMCID: PMC8855277 DOI: 10.12998/wjcc.v10.i5.1697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/26/2021] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bacterial meningitis (BM) is a common central nervous system inflammatory disease. BM may cause serious complications, and early diagnosis is essential to improve the prognosis of affected patients.
CASE SUMMARY A 37-year-old man was hospitalized with purulent meningitis because of worsening headache for 12 h, accompanied by vomiting, fever, and rhinorrhea. Head computed tomography showed a lesion in the left frontal lobe. Infectious disease screening showed positivity for hepatitis B surface antigen, hepatitis B e antigen, and hepatitis B core antigen. Cerebrospinal fluid (CSF) leak was suspected based on clinical history. Streptococcus pneumoniae (S. pneumoniae) was detected in CSF by metagenomic next-generation sequencing (mNGS) technology, confirming the diagnosis of purulent BM. After treatment, multiplex PCR indicated the presence of hepatitis B virus (HBV) DNA and absence of S. pneumoniae DNA in CSF samples.
CONCLUSION We report a rare case of HBV in the CSF of a patient with purulent BM. Multiplex PCR is more sensitive than mNGS for detecting HBV DNA.
Collapse
Affiliation(s)
- Dai-Quan Gao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yong-Qiang Hu
- Department of Critical Care Medicine, Beijing Fengtai You'anmen Hospital, Beijing 100069, China
| | - Xin Wang
- Department of Intensive Medicine, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yun-Zhou Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
21
|
Barichello T, Iovino F. Editorial: Host-Pathogen Interaction in the Central Nervous System. Front Cell Infect Microbiol 2021; 11:790761. [PMID: 35004356 PMCID: PMC8740900 DOI: 10.3389/fcimb.2021.790761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Tatiana Barichello
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, TX, United States
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Ali MQ, Kohler TP, Schulig L, Burchhardt G, Hammerschmidt S. Pneumococcal Extracellular Serine Proteases: Molecular Analysis and Impact on Colonization and Disease. Front Cell Infect Microbiol 2021; 11:763152. [PMID: 34790590 PMCID: PMC8592123 DOI: 10.3389/fcimb.2021.763152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
The pathobiont Streptococcus pneumoniae causes life-threatening diseases, including pneumonia, sepsis, meningitis, or non-invasive infections such as otitis media. Serine proteases are enzymes that have been emerged during evolution as one of the most abundant and functionally diverse group of proteins in eukaryotic and prokaryotic organisms. S. pneumoniae expresses up to four extracellular serine proteases belonging to the category of trypsin-like or subtilisin-like family proteins: HtrA, SFP, PrtA, and CbpG. These serine proteases have recently received increasing attention because of their immunogenicity and pivotal role in the interaction with host proteins. This review is summarizing and focusing on the molecular and functional analysis of pneumococcal serine proteases, thereby discussing their contribution to pathogenesis.
Collapse
Affiliation(s)
- Murtadha Q Ali
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Gerhard Burchhardt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
23
|
Hirschmann S, Gómez-Mejia A, Kohler TP, Voß F, Rohde M, Brendel M, Hammerschmidt S. The Two-Component System 09 of Streptococcus pneumoniae Is Important for Metabolic Fitness and Resistance during Dissemination in the Host. Microorganisms 2021; 9:microorganisms9071365. [PMID: 34201716 PMCID: PMC8306541 DOI: 10.3390/microorganisms9071365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022] Open
Abstract
The two-component regulatory system 09 of Streptococcus pneumoniae has been shown to modulate resistance against oxidative stress as well as capsule expression. These data and the implication of TCS09 in cell wall integrity have been shown for serotype 2 strain D39. Other data have suggested strain-specific regulatory effects of TCS09. Contradictory data are known on the impact of TCS09 on virulence, but all have been explored using only the rr09-mutant. In this study, we have therefore deleted one or both components of the TCS09 (SP_0661 and SP_0662) in serotype 4 S. pneumoniae TIGR4. In vitro growth assays in chemically defined medium (CDM) using sucrose or lactose as a carbon source indicated a delayed growth of nonencapsulated tcs09-mutants, while encapsulated wild-type TIGR4 and tcs09-mutants have reduced growth in CDM with glucose. Using a set of antigen-specific antibodies, immunoblot analysis showed that only the pilus 1 backbone protein RrgB is significantly reduced in TIGR4ΔcpsΔhk09. Electron microscopy, adherence and phagocytosis assays showed no impact of TCS09 on the TIGR4 cell morphology and interaction with host cells. In contrast, in vivo infections and in particular competitive co-infection experiments demonstrated that TCS09 enhances robustness during dissemination in the host by maintaining bacterial fitness.
Collapse
Affiliation(s)
- Stephanie Hirschmann
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
| | - Alejandro Gómez-Mejia
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
| | - Thomas P. Kohler
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
| | - Franziska Voß
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Max Brendel
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
| | - Sven Hammerschmidt
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
- Correspondence:
| |
Collapse
|
24
|
Farmen K, Tofiño-Vian M, Iovino F. Neuronal Damage and Neuroinflammation, a Bridge Between Bacterial Meningitis and Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:680858. [PMID: 34149363 PMCID: PMC8209290 DOI: 10.3389/fncel.2021.680858] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial meningitis is an inflammation of the meninges which covers and protects the brain and the spinal cord. Such inflammation is mostly caused by blood-borne bacteria that cross the blood-brain barrier (BBB) and finally invade the brain parenchyma. Pathogens such as Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae are the main etiological causes of bacterial meningitis. After trafficking across the BBB, bacterial pathogens in the brain interact with neurons, the fundamental units of Central Nervous System, and other types of glial cells. Although the specific molecular mechanism behind the interaction between such pathogens with neurons is still under investigation, it is clear that bacterial interaction with neurons and neuroinflammatory responses within the brain leads to neuronal cell death. Furthermore, clinical studies have shown indications of meningitis-caused dementia; and a variety of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease are characterized by the loss of neurons, which, unlike many other eukaryotic cells, once dead or damaged, they are seldom replaced. The aim of this review article is to provide an overview of the knowledge on how bacterial pathogens in the brain damage neurons through direct and indirect interactions, and how the neuronal damage caused by bacterial pathogen can, in the long-term, influence the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet Biomedicum, Stockholm, Sweden
| |
Collapse
|
25
|
Jiménez-Munguía I, Tomečková Z, Mochnáčová E, Bhide K, Majerová P, Bhide M. Transcriptomic analysis of human brain microvascular endothelial cells exposed to laminin binding protein (adhesion lipoprotein) and Streptococcus pneumoniae. Sci Rep 2021; 11:7970. [PMID: 33846455 PMCID: PMC8041795 DOI: 10.1038/s41598-021-87021-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/23/2021] [Indexed: 01/28/2023] Open
Abstract
Streptococcus pneumoniae invades the CNS and triggers a strong cellular response. To date, signaling events that occur in the human brain microvascular endothelial cells (hBMECs), in response to pneumococci or its surface adhesins are not mapped comprehensively. We evaluated the response of hBMECs to the adhesion lipoprotein (a laminin binding protein—Lbp) or live pneumococci. Lbp is a surface adhesin recently identified as a potential ligand, which binds to the hBMECs. Transcriptomic analysis was performed by RNA-seq of three independent biological replicates and validated with qRT-PCR using 11 genes. In total 350 differentially expressed genes (DEGs) were identified after infection with S. pneumoniae, whereas 443 DEGs when challenged with Lbp. Total 231 DEGs were common in both treatments. Integrative functional analysis revealed participation of DEGs in cytokine, chemokine, TNF signaling pathways and phagosome formation. Moreover, Lbp induced cell senescence and breakdown, and remodeling of ECM. This is the first report which maps complete picture of cell signaling events in the hBMECs triggered against S. pneumoniae and Lbp. The data obtained here could contribute in a better understanding of the invasion of pneumococci across BBB and underscores role of Lbp adhesin in evoking the gene expression in neurovascular unit.
Collapse
Affiliation(s)
- Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, 04181, Slovak Republic
| | - Zuzana Tomečková
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, 04181, Slovak Republic
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, 04181, Slovak Republic
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, 04181, Slovak Republic
| | - Petra Majerová
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, 04181, Slovak Republic. .,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
26
|
Tabusi M, Thorsdottir S, Lysandrou M, Narciso AR, Minoia M, Srambickal CV, Widengren J, Henriques-Normark B, Iovino F. Neuronal death in pneumococcal meningitis is triggered by pneumolysin and RrgA interactions with β-actin. PLoS Pathog 2021; 17:e1009432. [PMID: 33760879 PMCID: PMC7990213 DOI: 10.1371/journal.ppat.1009432] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/28/2021] [Indexed: 12/14/2022] Open
Abstract
Neuronal damage is a major consequence of bacterial meningitis, but little is known about mechanisms of bacterial interaction with neurons leading to neuronal cell death. Streptococcus pneumoniae (pneumococcus) is a leading cause of bacterial meningitis and many survivors develop neurological sequelae after the acute infection has resolved, possibly due to neuronal damage. Here, we studied mechanisms for pneumococcal interactions with neurons. Using human primary neurons, pull-down experiments and mass spectrometry, we show that pneumococci interact with the cytoskeleton protein β-actin through the pilus-1 adhesin RrgA and the cytotoxin pneumolysin (Ply), thereby promoting adhesion and invasion of neurons, and neuronal death. Using our bacteremia-derived meningitis mouse model, we observe that RrgA- and Ply-expressing pneumococci co-localize with neuronal β-actin. Using purified proteins, we show that Ply, through its cholesterol-binding domain 4, interacts with the neuronal plasma membrane, thereby increasing the exposure on the outer surface of β-actin filaments, leading to more β-actin binding sites available for RrgA binding, and thus enhanced pneumococcal interactions with neurons. Pneumococcal infection promotes neuronal death possibly due to increased intracellular Ca2+ levels depending on presence of Ply, as well as on actin cytoskeleton disassembly. STED super-resolution microscopy showed disruption of β-actin filaments in neurons infected with pneumococci expressing RrgA and Ply. Finally, neuronal death caused by pneumococcal infection could be inhibited using antibodies against β-actin. The generated data potentially helps explaining mechanisms for why pneumococci frequently cause neurological sequelae.
Collapse
Affiliation(s)
- Mahebali Tabusi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, BioClinicum J7:20, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Sigrun Thorsdottir
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, BioClinicum J7:20, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Lysandrou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, BioClinicum J7:20, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ana Rita Narciso
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, BioClinicum J7:20, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Melania Minoia
- Department of Molecular Biosciences, The Wenner-Gren Institutet, Stockholm University, Stockholm, Sweden
| | | | - Jerker Widengren
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, BioClinicum J7:20, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, BioClinicum J7:20, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
27
|
Ness S, Hilleringmann M. Streptococcus pneumoniae Type 1 Pilus - A Multifunctional Tool for Optimized Host Interaction. Front Microbiol 2021; 12:615924. [PMID: 33633703 PMCID: PMC7899983 DOI: 10.3389/fmicb.2021.615924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae represents a major Gram-positive human pathogen causing bacterial pneumonia, otitis media, meningitis, and other invasive diseases. Several pneumococcal isolates show increasing resistance rates against antibacterial agents. A variety of virulence factors promote pneumococcal pathogenicity with varying importance in different stages of host infection. Virulence related hair-like structures ("pili") are complex, surface located protein arrays supporting proper host interaction. In the last two decades different types of pneumococcal pili have been identified: pilus-1 (P1) and pilus-2 (P2) are formed by the catalytic activity of sortases that covalently assemble secreted polypeptide pilin subunits in a defined order and finally anchor the resulting pilus in the peptidoglycan. Within the long pilus fiber the presence of intramolecular isopeptide bonds confer high stability to the sequentially arranged individual pilins. This mini review will focus on S. pneumoniae TIGR4 P1 molecular architecture, the subunits it builds and provides insights into P1 sortase-mediated assembly. The complex P1 architecture (anchor-/backbone-/tip-subunits) allows the specific interaction with various target structures facilitating different steps of colonization, invasion and spreading within the host. Optimized pilin subunit confirmation supports P1 function under physiological conditions. Finally, aspects of P1- host interplay are summarized, including recent insights into P1 mechanobiology, which have important implications for P1 mediated pathogenesis.
Collapse
Affiliation(s)
| | - Markus Hilleringmann
- FG Protein Biochemistry & Cellular Microbiology, Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, Munich, Germany
| |
Collapse
|
28
|
Iovino F, Nannapaneni P, Henriques-Normark B, Normark S. The impact of the ancillary pilus-1 protein RrgA of Streptococcus pneumoniae on colonization and disease. Mol Microbiol 2020; 113:650-658. [PMID: 32185835 DOI: 10.1111/mmi.14451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
The Gram-positive bacterium Streptococcus pneumoniae, the pneumococcus, is an important commensal resident of the human nasopharynx. Carriage is usually asymptomatic, however, S. pneumoniae can become invasive and spread from the upper respiratory tract to the lungs causing pneumonia, and to other organs to cause severe diseases such as bacteremia and meningitis. Several pneumococcal proteins important for its disease-causing capability have been described and many are expressed on the bacterial surface. The surface located pneumococcal type-1 pilus has been associated with virulence and the inflammatory response, and it is present in 20%-30% of clinical isolates. Its tip protein RrgA has been shown to be a major adhesin to human cells and to promote invasion through the blood-brain barrier. In this review we discuss recent findings of the impact of RrgA on bacterial colonization of the upper respiratory tract and on pneumococcal virulence, and use epidemiological data and genome-mining to suggest trade-off mechanisms potentially explaining the rather low prevalence of pilus-1 expressing pneumococci in humans.
Collapse
Affiliation(s)
- Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Priyanka Nannapaneni
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Singapore Centre on Environmental Life Sciences Engineering (SCELSE) and Lee Kong Chian School of Medicine (LKC), Nanyang Technological University (NTU), Singapore, Singapore
| | - Staffan Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Singapore Centre on Environmental Life Sciences Engineering (SCELSE) and Lee Kong Chian School of Medicine (LKC), Nanyang Technological University (NTU), Singapore, Singapore
| |
Collapse
|
29
|
Surve MV, Apte S, Bhutda S, Kamath KG, Kim KS, Banerjee A. Streptococcus pneumoniae utilizes a novel dynamin independent pathway for entry and persistence in brain endothelium. CURRENT RESEARCH IN MICROBIAL SCIENCES 2020; 1:62-68. [PMID: 34841302 PMCID: PMC8610321 DOI: 10.1016/j.crmicr.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
S. pneumoniae invades brain endothelium through a novel dynamin independent endocytosis pathway. Invasion through dynamin independent pathway is aided by SPN adhesin and host receptor interaction. Entry through dynamin independent route promotes enhanced intracellular persistence.
Adoption of an endocytosis route promoting safe intracellular trafficking is a pre-requisite for development of invasive diseases by Streptococcus pneumoniae (SPN). We aim to explore the contribution of various endocytic routes in internalization and survival of SPN in blood brain barrier (BBB), a key event in development of pneumococcal meningitis. Pneumococcal entry and survival in brain endothelial cells were evaluated following treatment with combinations of inhibitors to block multiple endocytosis pathways leaving a single entry port open. Entry of SPN into brain endothelium through a novel dynamin independent pathway dictates a separate downstream trafficking itinerary. This allows SPN to evade lysosomal degradation, potentially promoting safe transit across BBB, leading to development of meningitis.
Collapse
Affiliation(s)
- Manalee V Surve
- Bacterial Pathogenesis Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shruti Apte
- Bacterial Pathogenesis Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Smita Bhutda
- Bacterial Pathogenesis Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kshama G Kamath
- Bacterial Pathogenesis Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kwang S Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 200 North Wolfe St, Baltimore, MD, 21287, USA
| | - Anirban Banerjee
- Bacterial Pathogenesis Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
30
|
Davis KL, Gonzalez O, Kumar S, Dick EJ. Pathology Associated With Streptococcus spp. Infection in Baboons ( Papio spp.). Vet Pathol 2020; 57:714-722. [PMID: 32744146 PMCID: PMC7528403 DOI: 10.1177/0300985820941496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Streptococcus spp. are a source of morbidity and mortality in captive nonhuman primate populations. However, little is known about the lesions associated with naturally occurring streptococcal infections in baboons (Papio spp.). The pathology database of the Southwest National Primate Research Center was searched for all baboon autopsies from 1988 to 2018 in which Streptococcus spp. were cultured. Baboons on experimental protocol were excluded. The gross autopsy and histopathology reports were reviewed. Archived specimens were retrieved and reviewed as needed for confirmation or clarification. Fifty-six cultures were positive for Streptococcus spp. in 54 baboons with evidence of bacterial infection. Associated gross lesions included purulent exudate, fibrinous to fibrous adhesions, hemorrhage, mucosal thickening, organomegaly, and abscessation. Histologic lesions included suppurative inflammation, abscessation, necrosis, hemorrhage, fibrin accumulation, and thrombosis. Lungs and pleura (n = 31) were the most commonly infected organ followed by the central nervous system (n = 16), spleen (n = 15), soft tissues (n = 12), air sacs, liver, peritoneum, adrenal glands, heart, lymph nodes, uterus, kidneys, biliary system, bones, ears, umbilical structures, mammary glands, pancreas, placenta, and salivary glands. Infections by non-β-hemolytic Streptococcus spp. predominated in the lungs and air sacs; the most common isolate was Streptococcus pneumoniae. Infections by β-hemolytic Streptococcus spp. predominated in the soft tissues and reproductive tract. Naturally occurring β-hemolytic and non-β-hemolytic Streptococcus spp. infections cause morbidity and mortality in captive baboon populations. The lesions associated with streptococcal infection are similar to those reported in human infection. Thus, the baboon may represent an underutilized model for studying Streptococcus spp. as pathogens.
Collapse
Affiliation(s)
- Katelin L Davis
- 311308Purdue University, West Lafayette, IN, USA
- National Cancer Institute, Bethesda, MD, USA
| | - Olga Gonzalez
- Southwest National Primate Research Center, San Antonio, TX, USA
| | - Shyamesh Kumar
- Southwest National Primate Research Center, San Antonio, TX, USA
| | - Edward J Dick
- Southwest National Primate Research Center, San Antonio, TX, USA
| |
Collapse
|
31
|
Iovino F, Merkl P, Spyrogianni A, Henriques-Normark B, Sotiriou GA. Silica-coated phosphorescent nanoprobes for selective cell targeting and dynamic bioimaging of pathogen-host cell interactions. Chem Commun (Camb) 2020; 56:6989-6992. [PMID: 32441283 PMCID: PMC7116283 DOI: 10.1039/d0cc00329h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescence in vitro bioimaging suffers from photobleaching of organic dyes, thus, functional probes with superior photostability are urgently needed. Here, we address this challenge by developing novel silica-coated nanophosphors that may serve as superior luminescent nanoprobes compatible with conventional fluorescence microscopes. We specifically explore their suitability for dynamic in vitro bioimaging of interactions between bacterial pathogens and host cells, and further demonstrate the facile surface functionalization of the amorphous silica layer with antibodies for selective cell targeting.
Collapse
Affiliation(s)
- Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17165 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
32
|
Xiang Q, Zhu L, Zheng K, Ding Y, Chen N, Liu G, He Q. Association of toll-like receptor 10 polymorphisms with pediatric pneumococcal meningitis. APMIS 2020; 128:335-342. [PMID: 31976578 DOI: 10.1111/apm.13028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/16/2020] [Indexed: 01/26/2023]
Abstract
We aimed to investigate whether the gene polymorphisms of TLR10 were associated with risk and severity of pneumococcal meningitis (PM) and serum cytokine levels in children. Three single nucleotide polymorphisms (SNPs) of TLR10 rs4129009 (2676A > G), rs10004195 (1018T > A) and rs11466617 (40735A > G) were studied in 95 laboratory-confirmed PM pediatric patients and 330 healthy controls by PCR-based sequencing. Ten serum cytokines were determined by multiplex immunoassay. The frequency of variant haplotype GAG of TLR10 was significantly lower in patients than controls (11.3% vs 33.3%, p < 0.001), although frequencies of the genotypes and alleles of the three SNPs did not differ between patients and controls. Frequency of variant haplotype GAG was significantly lower in patients who had CSF protein >1000 mg/L than those who had CSF protein ≤1000 mg/L (3.50% vs 32.4%, p < 0.001). Moreover, higher frequency of the haplotype GAG was found in patients who had higher levels of inflammatory cytokines such as IFN-γ, TNF-α and IL-1β. Our finding suggested that the variant haplotype GAG in TLR10 is associated with decreased risk of PM in Chinese children.
Collapse
Affiliation(s)
- Qiaoyan Xiang
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Liang Zhu
- Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Kai Zheng
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Yiwei Ding
- Department of Medical Microbiology, Capital Medical University, Beijing, China.,Department of Laboratory Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ning Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Gang Liu
- Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University, Beijing, China.,Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| |
Collapse
|
33
|
Kim KS. Investigating Bacterial Penetration of the Blood-Brain Barrier for the Pathogenesis, Prevention, and Therapy of Bacterial Meningitis. ACS Infect Dis 2020; 6:34-42. [PMID: 31805229 DOI: 10.1021/acsinfecdis.9b00319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The most distressing aspect of bacterial meningitis is limited improvement in the mortality and morbidity despite attributable advances in antimicrobial chemotherapy and supportive care. A major contributing factor to such mortality and morbidity is our incomplete understanding of the pathogenesis of this disease. Microbial penetration of the blood-brain barrier, a prerequisite for the development of bacterial meningitis, exploits specific host and bacterial factors as well as host cell signaling molecules. Determination and characterization of such host and bacterial factors have been instrumental for developing our current knowledge on the pathogenesis of bacterial meningitis. In addition, counteracting such host and microbial factors has been shown to be efficacious in the prevention of bacterial meningitis. Antimicrobial therapy alone has limited efficacy in improving the outcome of bacterial meningitis. Recent studies suggest that counteracting targets contributing to bacterial penetration of the blood-brain barrier are a beneficial therapeutic adjunct to antimicrobial therapy in improving the outcome of bacterial meningitis. Taken together, these findings indicate that the elucidation of host and bacterial factors contributing to microbial penetration of the blood-brain barrier provides a novel strategy for investigating the pathogenesis, prevention, and therapy of bacterial meningitis.
Collapse
Affiliation(s)
- Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 200 North Wolfe Street, Room 3157, Baltimore, Maryland 21287, United States
| |
Collapse
|
34
|
Devraj G, Guérit S, Seele J, Spitzer D, Macas J, Khel MI, Heidemann R, Braczynski AK, Ballhorn W, Günther S, Ogunshola OO, Mittelbronn M, Ködel U, Monoranu CM, Plate KH, Hammerschmidt S, Nau R, Devraj K, Kempf VAJ. HIF-1α is involved in blood-brain barrier dysfunction and paracellular migration of bacteria in pneumococcal meningitis. Acta Neuropathol 2020; 140:183-208. [PMID: 32529267 PMCID: PMC7360668 DOI: 10.1007/s00401-020-02174-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
Bacterial meningitis is a deadly disease most commonly caused by Streptococcus pneumoniae, leading to severe neurological sequelae including cerebral edema, seizures, stroke, and mortality when untreated. Meningitis is initiated by the transfer of S. pneumoniae from blood to the brain across the blood-cerebrospinal fluid barrier or the blood-brain barrier (BBB). The underlying mechanisms are still poorly understood. Current treatment strategies include adjuvant dexamethasone for inflammation and cerebral edema, followed by antibiotics. The success of dexamethasone is however inconclusive, necessitating new therapies for controlling edema, the primary reason for neurological complications. Since we have previously shown a general activation of hypoxia inducible factor (HIF-1α) in bacterial infections, we hypothesized that HIF-1α, via induction of vascular endothelial growth factor (VEGF) is involved in transmigration of pathogens across the BBB. In human, murine meningitis brain samples, HIF-1α activation was observed by immunohistochemistry. S. pneumoniae infection in brain endothelial cells (EC) resulted in in vitro upregulation of HIF-1α/VEGF (Western blotting/qRT-PCR) associated with increased paracellular permeability (fluorometry, impedance measurements). This was supported by bacterial localization at cell-cell junctions in vitro and in vivo in brain ECs from mouse and humans (confocal, super-resolution, electron microscopy, live-cell imaging). Hematogenously infected mice showed increased permeability, S. pneumoniae deposition in the brain, along with upregulation of genes in the HIF-1α/VEGF pathway (RNA sequencing of brain microvessels). Inhibition of HIF-1α with echinomycin, siRNA in bEnd5 cells or using primary brain ECs from HIF-1α knock-out mice revealed reduced endothelial permeability and transmigration of S. pneumoniae. Therapeutic rescue using the HIF-1α inhibitor echinomycin resulted in increased survival and improvement of BBB function in S. pneumoniae-infected mice. We thus demonstrate paracellular migration of bacteria across BBB and a critical role for HIF-1α/VEGF therein and hence propose targeting this pathway to prevent BBB dysfunction and ensuing brain damage in infections.
Collapse
Affiliation(s)
- Gayatri Devraj
- Institute for Medical Microbiology and Infection Control, Goethe University, Frankfurt am Main, Germany
| | - Sylvaine Guérit
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany
| | - Jana Seele
- Institute of Neuropathology, University Medical Center, Göttingen, Germany ,Department of Geriatrics, Evangelisches Krankenhaus, Göttingen-Weende, Germany
| | - Daniel Spitzer
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany ,Department of Neurology, Goethe University, Frankfurt am Main, Germany
| | - Jadranka Macas
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany
| | - Maryam I. Khel
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany
| | - Roxana Heidemann
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Anne K. Braczynski
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany ,Department of Neurology, Technische Hochschule University Hospital, Aachen, Germany
| | - Wibke Ballhorn
- Institute for Medical Microbiology and Infection Control, Goethe University, Frankfurt am Main, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Michel Mittelbronn
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany ,Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg ,Laboratoire National de Santé (LNS), Dudelange, Luxembourg ,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg ,NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Uwe Ködel
- Department of Neurology, Ludwig-Maximilians University, Munich, Germany
| | - Camelia M. Monoranu
- Department of Neuropathology, Institute of Pathology, Julius Maximilians University, Würzburg, Germany
| | - Karl H. Plate
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany ,Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Roland Nau
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Kavi Devraj
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany. .,Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany.
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
35
|
Le Guennec L, Coureuil M, Nassif X, Bourdoulous S. Strategies used by bacterial pathogens to cross the blood-brain barrier. Cell Microbiol 2019; 22:e13132. [PMID: 31658405 DOI: 10.1111/cmi.13132] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022]
Abstract
The skull, spine, meninges, and cellular barriers at the blood-brain and the blood-cerebrospinal fluid interfaces well protect the brain and meningeal spaces against microbial invasion. However, once in the bloodstream, a range of pathogenic bacteria is able to reach the brain and cause meningitis. Despite advances in antibacterial therapy, bacterial meningitis remains one of the most important infectious diseases worldwide. The most common causative bacteria in children and adults are Streptococcus pneumoniae and Neisseria meningitidis associated with high morbidity and mortality, while among neonates, most cases of bacterial meningitis are due to group B Streptococcus and Escherichia coli. Here we summarise our current knowledge on the strategies used by these bacterial pathogens to survive in the bloodstream, to colonise the brain vasculature and to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Loic Le Guennec
- Inserm (Institut National de la Sante et de la Recherche Medicale), U1016, Institut Cochin, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mathieu Coureuil
- Inserm (Institut National de la Sante et de la Recherche Medicale), unité U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR 8253, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France
| | - Xavier Nassif
- Inserm (Institut National de la Sante et de la Recherche Medicale), unité U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR 8253, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Sandrine Bourdoulous
- Inserm (Institut National de la Sante et de la Recherche Medicale), U1016, Institut Cochin, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
36
|
Iovino F, Thorsdottir S, Henriques-Normark B. Receptor Blockade: A Novel Approach to Protect the Brain From Pneumococcal Invasion. J Infect Dis 2019; 218:476-484. [PMID: 29701809 DOI: 10.1093/infdis/jiy193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/18/2018] [Indexed: 12/28/2022] Open
Abstract
Background Pneumococci are the major cause of bacterial meningitis globally. To cause meningitis pneumococci interact with the 2 endothelial receptors, polymeric immunoglobulin receptor (pIgR) and platelet endothelial cell adhesion molecule (PECAM-1), to penetrate the blood-brain barrier (BBB) and invade the brain. Methods C57BL/6 mice were infected intravenously with bioluminescent pneumococci, and treated with ceftriaxone (1 hour postinfection) and anti-pIgR and PECAM-1 antibodies (1 or 5 hours postinfection), then monitored for 5 and 10 days. Bacterial brain invasion was analyzed using IVIS imaging and bacterial counts. Results Ceftriaxone, given early after pneumococcal challenge, cleared pneumococci from the blood but not from the brain. After combining ceftriaxone with receptor blockade, using anti-pIgR and PECAM-1 antibodies, we found 100% survival after 5 and 10 days of infection, in contrast to 60% for ceftriaxone alone. Combined antibiotic and antibody treatment resulted in no or few viable bacteria in the brain and no microglia activation. Antibodies remained bound to the receptors during the study period. Receptor blockade did not interfere with antibiotic permeability through the BBB. Conclusions We suggest that adjunct treatment with pIgR and PECAM-1 antibodies to antibiotics may prevent pneumococcal meningitis development and associated brain damages. However, further evaluations are required.
Collapse
Affiliation(s)
- Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Sigrun Thorsdottir
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Singapore Centre on Environmental Life Sciences Engineering and Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Pneumococcal meningitis is the most frequent form of bacterial meningitis in Europe and the United States. Although early antimicrobial and adjuvant therapy with dexamethasone have helped to improve disease outcome in adults, mortality and morbidity rates remain unsatisfactorily high, emphasizing the need for additional treatment options. Promising targets for adjuvant therapy have been identified recently and will be the focus of this review. RECENT FINDINGS Brain disease in pneumococcal meningitis is caused by direct bacterial toxicity and excessive meningeal inflammation. Accordingly, promising targets for adjuvant therapy comprise limiting the release of toxic bacterial products and suppressing inflammation in a way that maximally protects against tissue injury without hampering pathogen eradication by antibiotics. Among the agents tested so far in experimental models, complement inhibitors, matrix-metalloproteinase inhibitors, and nonbacteriolytic antibiotics or a combination of the above have the potential to more efficiently protect the brain either alone (e.g., in children and outside the high-income settings) or in addition to adjuvant dexamethasone. Additionally, new protein-based pneumococcal vaccines are being developed that promise to improve disease prevention, namely by addressing the increasing problem of serotype replacement seen with pneumococcal conjugate vaccines. SUMMARY Pneumococcal meningitis remains a life-threatening disease requiring early antibiotic and targeted anti-inflammatory therapy. New adjuvant therapies showed promising results in animal models but need systematic clinical testing.
Collapse
|
38
|
Subramanian K, Henriques-Normark B, Normark S. Emerging concepts in the pathogenesis of the Streptococcus pneumoniae: From nasopharyngeal colonizer to intracellular pathogen. Cell Microbiol 2019; 21:e13077. [PMID: 31251447 PMCID: PMC6899785 DOI: 10.1111/cmi.13077] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022]
Abstract
Streptococcus pneumoniae (the pneumococcus) is a human respiratory tract pathogen and a major cause of morbidity and mortality globally. Although the pneumococcus is a commensal bacterium that colonizes the nasopharynx, it also causes lethal diseases such as meningitis, sepsis, and pneumonia, especially in immunocompromised patients, in the elderly, and in young children. Due to the acquisition of antibiotic resistance and the emergence of nonvaccine serotypes, the pneumococcus has been classified as one of the priority pathogens for which new antibacterials are urgently required by the World Health Organization, 2017. Understanding molecular mechanisms behind the pathogenesis of pneumococcal infections and bacterial interactions within the host is crucial to developing novel therapeutics. Previously considered to be an extracellular pathogen, it is becoming evident that pneumococci may also occasionally establish intracellular niches within the body to escape immune surveillance and spread within the host. Intracellular survival within host cells also enables pneumococci to resist many antibiotics. Within the host cell, the bacteria exist in unique vacuoles, thereby avoiding degradation by the acidic lysosomes, and modulate the expression of its virulence genes to adapt to the intracellular environment. To invade and survive intracellularly, the pneumococcus utilizes a combination of virulence factors such as pneumolysin (PLY), pneumococcal surface protein A (PspA), pneumococcal adhesion and virulence protein B (PavB), the pilus‐1 adhesin RrgA, pyruvate oxidase (SpxB), and metalloprotease (ZmpB). In this review, we discuss recent findings showing the intracellular persistence of Streptococcus pneumoniae and its underlying mechanisms.
Collapse
Affiliation(s)
- Karthik Subramanian
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | - Staffan Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| |
Collapse
|
39
|
Surve MV, Banerjee A. Cell-to-cell phenotypic heterogeneity in pneumococcal pathogenesis. Future Microbiol 2019; 14:647-651. [PMID: 31148481 DOI: 10.2217/fmb-2019-0096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Manalee Vishnu Surve
- Bacterial Pathogenesis Lab, Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anirban Banerjee
- Bacterial Pathogenesis Lab, Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
40
|
Henning DF, Merkl P, Yun C, Iovino F, Xie L, Mouzourakis E, Moularas C, Deligiannakis Y, Henriques-Normark B, Leifer K, Sotiriou GA. Luminescent CeO 2:Eu 3+ nanocrystals for robust in situ H 2O 2 real-time detection in bacterial cell cultures. Biosens Bioelectron 2019; 132:286-293. [PMID: 30884315 PMCID: PMC6629545 DOI: 10.1016/j.bios.2019.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/29/2022]
Abstract
Hydrogen peroxide (H2O2) quantification in biomedicine is valuable as inflammation biomarker but also in assays employing enzymes that generate or consume H2O2 linked to a specific biomarker. Optical H2O2 detection is typically performed through peroxidase-coupled reactions utilizing organic dyes that suffer, however, from poor stability/reproducibility and also cannot be employed in situ in dynamic complex cell cultures to monitor H2O2 levels in real-time. Here, we utilize enzyme-mimetic CeO2 nanocrystals that are sensitive to H2O2 and study the effect of H2O2 presence on their electronic and luminescent properties. We produce and dope with Eu3+ these particles in a single-step by flame synthesis and directly deposit them on Si and glass substrates to fabricate nanoparticle layers to monitor in real-time and in situ the H2O2 concentrations generated by Streptococcus pneumoniae clinical isolates. Furthermore, the small CeO2:Eu3+ nanocrystals are combined in a single-step with larger, non-responsive Y2O3:Tb3+ nanoparticles during their double-nozzle flame synthesis to engineer hybrid luminescent nanoaggregates as ratiometric robust biosensors. We demonstrate the functionality of these biosensors by monitoring their response in the presence of a broad range of H2O2 concentrations in vitro from S. pneumoniae, highlighting their potential for facile real-time H2O2 detection in vitro in cell cultures.
Collapse
Affiliation(s)
- Dorian F Henning
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden
| | - Padryk Merkl
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden
| | - Changhun Yun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden
| | - Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Ling Xie
- Applied Materials Science, Department of Engineering Sciences, Ångström Lab, Uppsala University, SE-752 37 Uppsala, Sweden
| | - Eleftherios Mouzourakis
- Department of Physics, University of Ioannina, Panepistimioupoli, GR-451 10 Ioannina, Greece
| | - Constantinos Moularas
- Department of Physics, University of Ioannina, Panepistimioupoli, GR-451 10 Ioannina, Greece
| | - Yiannis Deligiannakis
- Department of Physics, University of Ioannina, Panepistimioupoli, GR-451 10 Ioannina, Greece
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Klaus Leifer
- Applied Materials Science, Department of Engineering Sciences, Ångström Lab, Uppsala University, SE-752 37 Uppsala, Sweden
| | - Georgios A Sotiriou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden.
| |
Collapse
|
41
|
Thorsdottir S, Henriques-Normark B, Iovino F. The Role of Microglia in Bacterial Meningitis: Inflammatory Response, Experimental Models and New Neuroprotective Therapeutic Strategies. Front Microbiol 2019; 10:576. [PMID: 30967852 PMCID: PMC6442515 DOI: 10.3389/fmicb.2019.00576] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
Microglia have a pivotal role in the pathophysiology of bacterial meningitis. The goal of this review is to provide an overview on how microglia respond to bacterial pathogens targeting the brain, how the interplay between microglia and bacteria can be studied experimentally, and possible ways to use gained knowledge to identify novel preventive and therapeutic strategies. We discuss the dual role of microglia in disease development, the beneficial functions crucial for bacterial clearing, and the destructive properties through triggering neuroinflammation, characterized by cytokine and chemokine release which leads to leukocyte trafficking through the brain vascular endothelium and breakdown of the blood-brain barrier integrity. Due to intrinsic complexity of microglia and up until recently lack of specific markers, the study of microglial response to bacterial pathogens is challenging. New experimental models and techniques open up possibilities to accelerate progress in the field. We review existing models and discuss possibilities and limitations. Finally, we summarize recent findings where bacterial virulence factors are identified to be important for the microglial response, and how manipulation of evoked responses could be used for therapeutic or preventive purposes. Among promising approaches are: modulations of microglia phenotype switching toward anti-inflammatory and phagocytic functions, the use of non-bacterolytic antimicrobials, preventing release of bacterial components into the neural milieu and consequential amplification of immune activation, and protection of the blood-brain barrier integrity.
Collapse
Affiliation(s)
- Sigrun Thorsdottir
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Singapore Centre for Environmental Life Sciences Engineering (SCELSE) and Lee Kong Chian School of Medicine (LKC), Nanyang Technological University (NTU), Singapore, Singapore
| | - Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
42
|
Iovino F, Sender V, Henriques-Normark B. In Vivo Mouse Models to Study Pneumococcal Host Interaction and Invasive Pneumococcal Disease. Methods Mol Biol 2019; 1968:173-181. [PMID: 30929214 DOI: 10.1007/978-1-4939-9199-0_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Animal models are fundamental tools to study the biology of physiological processes and disease pathogenesis. To study invasive pneumococcal disease (IPD), many models using mice in particular have been established and developed during recent years. Thanks to the advances of the research in the pneumococcal field, nowadays, there is the possibility to use defined mouse models to study each disease caused by the pneumococcus. In this chapter mouse models for pneumonia, bacteremia, and meningitis are described. Since pneumococci are commensal pathogens found to a high extent in healthy individuals. Hence, we also describe a mouse model for nasopharyngeal colonization.
Collapse
Affiliation(s)
- Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, SE-17164, Sweden.
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, SE-17176, Sweden.
| | - Vicky Sender
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, SE-17164, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, SE-17164, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, SE-17176, Sweden
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), and Lee Kong Chian School of Medicine (LCK), Nanyang Technological University (NTU), Singapore, Singapore
| |
Collapse
|
43
|
Al-Obaidi MMJ, Desa MNM. Mechanisms of Blood Brain Barrier Disruption by Different Types of Bacteria, and Bacterial-Host Interactions Facilitate the Bacterial Pathogen Invading the Brain. Cell Mol Neurobiol 2018; 38:1349-1368. [PMID: 30117097 DOI: 10.1007/s10571-018-0609-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022]
Abstract
This review aims to elucidate the different mechanisms of blood brain barrier (BBB) disruption that may occur due to invasion by different types of bacteria, as well as to show the bacteria-host interactions that assist the bacterial pathogen in invading the brain. For example, platelet-activating factor receptor (PAFR) is responsible for brain invasion during the adhesion of pneumococci to brain endothelial cells, which might lead to brain invasion. Additionally, the major adhesin of the pneumococcal pilus-1, RrgA is able to bind the BBB endothelial receptors: polymeric immunoglobulin receptor (pIgR) and platelet endothelial cell adhesion molecule (PECAM-1), thus leading to invasion of the brain. Moreover, Streptococcus pneumoniae choline binding protein A (CbpA) targets the common carboxy-terminal domain of the laminin receptor (LR) establishing initial contact with brain endothelium that might result in BBB invasion. Furthermore, BBB disruption may occur by S. pneumoniae penetration through increasing in pro-inflammatory markers and endothelial permeability. In contrast, adhesion, invasion, and translocation through or between endothelial cells can be done by S. pneumoniae without any disruption to the vascular endothelium, upon BBB penetration. Internalins (InlA and InlB) of Listeria monocytogenes interact with its cellular receptors E-cadherin and mesenchymal-epithelial transition (MET) to facilitate invading the brain. L. monocytogenes species activate NF-κB in endothelial cells, encouraging the expression of P- and E-selectin, intercellular adhesion molecule 1 (ICAM-1), and Vascular cell adhesion protein 1 (VCAM-1), as well as IL-6 and IL-8 and monocyte chemoattractant protein-1 (MCP-1), all these markers assist in BBB disruption. Bacillus anthracis species interrupt both adherens junctions (AJs) and tight junctions (TJs), leading to BBB disruption. Brain microvascular endothelial cells (BMECs) permeability and BBB disruption are induced via interendothelial junction proteins reduction as well as up-regulation of IL-1α, IL-1β, IL-6, TNF-α, MCP-1, macrophage inflammatory proteins-1 alpha (MIP1α) markers in Staphylococcus aureus species. Streptococcus agalactiae or Group B Streptococcus toxins (GBS) enhance IL-8 and ICAM-1 as well as nitric oxide (NO) production from endothelial cells via the expression of inducible nitric oxide synthase (iNOS) enhancement, resulting in BBB disruption. While Gram-negative bacteria, Haemophilus influenza OmpP2 is able to target the common carboxy-terminal domain of LR to start initial interaction with brain endothelium, then invade the brain. H. influenza type b (HiB), can induce BBB permeability through TJ disruption. LR and PAFR binding sites have been recognized as common routes of CNS entrance by Neisseria meningitidis. N. meningitidis species also initiate binding to BMECs and induces AJs deformation, as well as inducing specific cleavage of the TJ component occludin through the release of host MMP-8. Escherichia coli bind to BMECs through LR, resulting in IL-6 and IL-8 release and iNOS production, as well as resulting in disassembly of TJs between endothelial cells, facilitating BBB disruption. Therefore, obtaining knowledge of BBB disruption by different types of bacterial species will provide a picture of how the bacteria enter the central nervous system (CNS) which might support the discovery of therapeutic strategies for each bacteria to control and manage infection.
Collapse
Affiliation(s)
- Mazen M Jamil Al-Obaidi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Mohd Nasir Mohd Desa
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
44
|
The plasminogen binding protein PbsP is required for brain invasion by hypervirulent CC17 Group B streptococci. Sci Rep 2018; 8:14322. [PMID: 30254272 PMCID: PMC6156580 DOI: 10.1038/s41598-018-32774-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 08/30/2018] [Indexed: 01/09/2023] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus or GBS) is a frequent cause of serious disease in newborns and adults. Epidemiological evidence indicates a strong association between GBS strains belonging to the hypervirulent CC17 clonal complex and the occurrence of meningitis in neonates. We investigate here the role of PbsP, a cell wall plasminogen binding protein, in colonization of the central nervous system by CC17 GBS. Deletion of pbsP selectively impaired the ability of the CC17 strain BM110 to colonize the mouse brain after intravenous challenge, despite its unchanged capacity to persist at high levels in the blood and to invade the kidneys. Moreover, immunization with a recombinant form of PbsP considerably reduced brain infection and lethality. In vitro, pbsP deletion markedly decreased plasmin-dependent transmigration of BM110 through brain microvascular endothelial cells. Although PbsP was modestly expressed in bacteria grown under standard laboratory conditions, pbsP expression was markedly upregulated during in vivo infection or upon contact with cultured brain endothelial cells. Collectively, our studies indicate that PbsP is a highly conserved Plg binding adhesin, which is functionally important for invasion of the central nervous system by the hypervirulent CC17 GBS. Moreover, this antigen is a promising candidate for inclusion in a universal GBS vaccine.
Collapse
|
45
|
Santos G, Lai X, Eberhardt M, Vera J. Bacterial Adherence and Dwelling Probability: Two Drivers of Early Alveolar Infection by Streptococcus pneumoniae Identified in Multi-Level Mathematical Modeling. Front Cell Infect Microbiol 2018; 8:159. [PMID: 29868515 PMCID: PMC5962665 DOI: 10.3389/fcimb.2018.00159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 04/25/2018] [Indexed: 01/31/2023] Open
Abstract
Pneumococcal infection is the most frequent cause of pneumonia, and one of the most prevalent diseases worldwide. The population groups at high risk of death from bacterial pneumonia are infants, elderly and immunosuppressed people. These groups are more vulnerable because they have immature or impaired immune systems, the efficacy of their response to vaccines is lower, and antibiotic treatment often does not take place until the inflammatory response triggered is already overwhelming. The immune response to bacterial lung infections involves dynamic interactions between several types of cells whose activation is driven by intracellular molecular networks. A feasible approach to the integration of knowledge and data linking tissue, cellular and intracellular events and the construction of hypotheses in this area is the use of mathematical modeling. For this paper, we used a multi-level computational model to analyse the role of cellular and molecular interactions during the first 10 h after alveolar invasion of Streptococcus pneumoniae bacteria. By “multi-level” we mean that we simulated the interplay between different temporal and spatial scales in a single computational model. In this instance, we included the intracellular scale of processes driving lung epithelial cell activation together with the scale of cell-to-cell interactions at the alveolar tissue. In our analysis, we combined systematic model simulations with logistic regression analysis and decision trees to find genotypic-phenotypic signatures that explain differences in bacteria strain infectivity. According to our simulations, pneumococci benefit from a high dwelling probability and a high proliferation rate during the first stages of infection. In addition to this, the model predicts that during the very early phases of infection the bacterial capsule could be an impediment to the establishment of the alveolar infection because it impairs bacterial colonization.
Collapse
Affiliation(s)
- Guido Santos
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Xin Lai
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Eberhardt
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
46
|
Jiménez-Munguía I, Pulzova L, Kanova E, Tomeckova Z, Majerova P, Bhide K, Comor L, Sirochmanova I, Kovac A, Bhide M. Proteomic and bioinformatic pipeline to screen the ligands of S. pneumoniae interacting with human brain microvascular endothelial cells. Sci Rep 2018; 8:5231. [PMID: 29588455 PMCID: PMC5869694 DOI: 10.1038/s41598-018-23485-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/14/2018] [Indexed: 01/17/2023] Open
Abstract
The mechanisms by which Streptococcus pneumoniae penetrates the blood-brain barrier (BBB), reach the CNS and causes meningitis are not fully understood. Adhesion of bacterial cells on the brain microvascular endothelial cells (BMECs), mediated through protein-protein interactions, is one of the crucial steps in translocation of bacteria across BBB. In this work, we proposed a systematic workflow for identification of cell wall associated ligands of pneumococcus that might adhere to the human BMECs. The proteome of S. pneumoniae was biotinylated and incubated with BMECs. Interacting proteins were recovered by affinity purification and identified by data independent acquisition (DIA). A total of 44 proteins were identified from which 22 were found to be surface-exposed. Based on the subcellular location, ontology, protein interactive analysis and literature review, five ligands (adhesion lipoprotein, endo-β-N-acetylglucosaminidase, PhtA and two hypothetical proteins, Spr0777 and Spr1730) were selected to validate experimentally (ELISA and immunocytochemistry) the ligand-BMECs interaction. In this study, we proposed a high-throughput approach to generate a dataset of plausible bacterial ligands followed by systematic bioinformatics pipeline to categorize the protein candidates for experimental validation. The approach proposed here could contribute in the fast and reliable screening of ligands that interact with host cells.
Collapse
Affiliation(s)
- Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Lucia Pulzova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Evelina Kanova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Zuzana Tomeckova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Katarina Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Lubos Comor
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Ivana Sirochmanova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic.
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
47
|
Fritscher J, Amberger D, Dyckhoff S, Bewersdorf JP, Masouris I, Voelk S, Hammerschmidt S, Schmetzer HM, Klein M, Pfister HW, Koedel U. Mast Cells Are Activated by Streptococcus pneumoniae In Vitro but Dispensable for the Host Defense Against Pneumococcal Central Nervous System Infection In Vivo. Front Immunol 2018; 9:550. [PMID: 29616039 PMCID: PMC5867309 DOI: 10.3389/fimmu.2018.00550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/05/2018] [Indexed: 01/01/2023] Open
Abstract
Mast cells reside on and near the cerebral vasculature, the predominant site of pneumococcal entry into the central nervous system (CNS). Although mast cells have been reported to be crucial in protecting from systemic bacterial infections, their role in bacterial infections of the CNS remained elusive. Here, we assessed the role of mast cells in pneumococcal infection in vitro and in vivo. In introductory experiments using mouse bone marrow-derived mast cells (BMMC), we found that (i) BMMC degranulate and release selected cytokines upon exposure to Streptococcus pneumoniae, (ii) the response of BMMC varies between different pneumococcal serotypes and (iii) is dependent on pneumolysin. Intriguingly though, apart from a slight enhancement of cerebrospinal fluid (CSF) pleocytosis, neither two different mast cell-deficient Kit mutant mouse strains (WBB6F1-KitW/Wv and C57BL/6 KitW-sh/W-sh mice) nor pharmacologic mast cell stabilization with cromoglycate had any significant impact on the disease phenotype of experimental pneumococcal meningitis. The incomplete reversal of the enhanced CSF pleocytosis by local mast cell engraftment suggests that this phenomenon is caused by other c-Kit mutation-related mechanisms than mast cell deficiency. In conclusion, our study suggests that mast cells can be activated by S. pneumoniae in vitro. However, mast cells do not play a significant role as sentinels of pneumococcal CSF invasion and initiators of innate immunity in vivo.
Collapse
Affiliation(s)
- Johanna Fritscher
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Daniel Amberger
- Department of Internal Medicine III (Oncology), University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Susanne Dyckhoff
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Jan Philipp Bewersdorf
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Ilias Masouris
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Stefanie Voelk
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Helga Maria Schmetzer
- Department of Internal Medicine III (Oncology), University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Matthias Klein
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Hans-Walter Pfister
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Uwe Koedel
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
48
|
Solanki V, Tiwari M, Tiwari V. Host-bacteria interaction and adhesin study for development of therapeutics. Int J Biol Macromol 2018; 112:54-64. [PMID: 29414732 DOI: 10.1016/j.ijbiomac.2018.01.151] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 12/15/2022]
Abstract
Host-pathogen interaction is one of the most important areas of study to understand the adhesion of the pathogen to the host organisms. To adhere on the host cell surface, bacteria assemble the diverse adhesive structures on its surface, which play a foremost role in targeting to the host cell. We have highlighted different bacterial adhesins which are either protein mediated or glycan mediated. The present article listed examples of different bacterial adhesin proteins involved in the interactions with their host, types and subtypes of the fimbriae and non-fimbriae bacterial adhesins. Different bacterial surface adhesin subunits interact with host via different host surface biomolecules. We have also discussed the interactome of some of the pathogens with their host. Therefore, the present study will help researchers to have a detailed understanding of different interacting bacterial adhesins and henceforth, develop new therapies, adhesin specific antibodies and vaccines, which can effectively control pathogenicity of the pathogens.
Collapse
Affiliation(s)
- Vandana Solanki
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India.
| |
Collapse
|
49
|
Neuro-Immune Mechanisms of Anti-Cryptococcal Protection. J Fungi (Basel) 2017; 4:jof4010004. [PMID: 29371497 PMCID: PMC5872307 DOI: 10.3390/jof4010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/10/2017] [Accepted: 12/23/2017] [Indexed: 12/15/2022] Open
Abstract
Cryptococcal meningitis (CM) is a life-threatening fungal disease affecting both immunosuppressed and immunocompetent people. The main causative agent of CM is Cryptococcus neoformans, a basidiomycete fungus prevalent in the environment. Our understanding of the immune mechanisms controlling C. neoformans growth within the central nervous system (CNS) is poor. However, there have been several recent advances in the field of neuroimmunology regarding how cells resident within the CNS, such as microglia and neurons, can participate in immune surveillance and control of infection. In this mini-review, the cells of the CNS are discussed with reference to what is currently known about how they control C. neoformans infection.
Collapse
|
50
|
Zheng JJ, Perez AJ, Tsui HCT, Massidda O, Winkler ME. Absence of the KhpA and KhpB (JAG/EloR) RNA-binding proteins suppresses the requirement for PBP2b by overproduction of FtsA in Streptococcus pneumoniae D39. Mol Microbiol 2017; 106:793-814. [PMID: 28941257 DOI: 10.1111/mmi.13847] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2017] [Indexed: 12/11/2022]
Abstract
Suppressor mutations were isolated that obviate the requirement for essential PBP2b in peripheral elongation of peptidoglycan from the midcells of dividing Streptococcus pneumoniae D39 background cells. One suppressor was in a gene encoding a single KH-domain protein (KhpA). ΔkhpA suppresses deletions in most, but not all (mltG), genes involved in peripheral PG synthesis and in the gpsB regulatory gene. ΔkhpA mutations reduce growth rate, decrease cell size, minimally affect shape and induce expression of the WalRK cell-wall stress regulon. Reciprocal co-immunoprecipitations show that KhpA forms a complex in cells with another KH-domain protein (KhpB/JAG/EloR). ΔkhpA and ΔkhpB mutants phenocopy each other exactly, consistent with a direct interaction. RNA-immunoprecipitation showed that KhpA/KhpB bind an overlapping set of RNAs in cells. Phosphorylation of KhpB reported previously does not affect KhpB function in the D39 progenitor background. A chromosome duplication implicated FtsA overproduction in Δpbp2b suppression. We show that cellular FtsA concentration is negatively regulated by KhpA/B at the post-transcriptional level and that FtsA overproduction is necessary and sufficient for suppression of Δpbp2b. However, increased FtsA only partially accounts for the phenotypes of ΔkhpA mutants. Together, these results suggest that multimeric KhpA/B may function as a pleiotropic RNA chaperone controlling pneumococcal cell division.
Collapse
Affiliation(s)
- Jiaqi J Zheng
- Department of Biology, Indiana University Bloomington (IUB), Bloomington, IN 47405, USA
| | - Amilcar J Perez
- Department of Biology, Indiana University Bloomington (IUB), Bloomington, IN 47405, USA
| | - Ho-Ching Tiffany Tsui
- Department of Biology, Indiana University Bloomington (IUB), Bloomington, IN 47405, USA
| | - Orietta Massidda
- Dipartimento di Scienze Chirurgiche, Università di Cagliari, 09100 Cagliari, Italy
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington (IUB), Bloomington, IN 47405, USA
| |
Collapse
|