1
|
Singleton LG, Thompson KF, Carroll J, Kohman RA. Middle-aged females are resistant to LPS-induced learning deficits: Sex comparison. Neurosci Lett 2025; 845:138072. [PMID: 39643109 DOI: 10.1016/j.neulet.2024.138072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Preclinical data have repeatedly shown learning and memory disruption following administration of the bacterial endotoxin lipopolysaccharide (LPS). Normal aging is reported to enhance vulnerability to LPS-induced cognitive impairments. However, a limitation is the primary use of male subjects. Recent evidence indicates sex-related differences in vulnerability to LPS-induced cognitive deficits [1,2], with young females showing resilience. Whether middle-aged females are susceptible to LPS-induced cognitive impairment is unknown. The current experiment compared associative learning in young and middle-aged male and female C57BL/6J mice following a systemic LPS challenge. While LPS impaired acquisition of the two-way active avoidance conditioning task in adult and middle-aged males, females' learning was unaffected. The sex difference in LPS-induced cognitive impairments appears unrelated to responsivity to LPS, as males and females mount a comparable sickness-like response. Additionally, relative to males, females produce higher brain levels of interleukin-6 (IL-6) and comparable splenic IL-6 levels following LPS. These data demonstrate that female resilience to LPS-induced learning deficits persists into middle age, whereas males are vulnerable as both young and middle-aged adults. Our findings confirm the importance of considering sex as a biological variable and extend the existing literature by evaluating sex-related responsivity to LPS in middle-aged males and females.
Collapse
Affiliation(s)
- Lauren G Singleton
- The University of Texas at Austin, Department of Pharmacology and Toxicology, Austin, TX, USA
| | - Kelsey F Thompson
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA
| | - Jordyn Carroll
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA
| | - Rachel A Kohman
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA.
| |
Collapse
|
2
|
Becegato M, Silva RH. Female rodents in behavioral neuroscience: Narrative review on the methodological pitfalls. Physiol Behav 2024; 284:114645. [PMID: 39047942 DOI: 10.1016/j.physbeh.2024.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Since the NIH 'Sex as biological variable' policy, the percentage of studies including female subjects have increased largely. Nonetheless, many researchers fail to adequate their protocols to include females. In this narrative review, we aim to discuss the methodological pitfalls of the inclusion of female rodents in behavioral neuroscience. We address three points to consider in studies: the manipulations conducted only in female animals (such as estrous cycle monitoring, ovariectomy, and hormone replacement), the consideration of males as the standard, and biases related to interpretation and publication of the results. In addition, we suggest guidelines and perspectives for the inclusion of females in preclinical research.
Collapse
Affiliation(s)
- Marcela Becegato
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Regina H Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil; MaternaCiência, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Di Lucente J, Persico G, Zhou Z, Jin LW, Ramsey JJ, Rutkowsky JM, Montgomery CM, Tomilov A, Kim K, Giorgio M, Maezawa I, Cortopassi GA. Ketogenic diet and BHB rescue the fall of long-term potentiation in an Alzheimer's mouse model and stimulates synaptic plasticity pathway enzymes. Commun Biol 2024; 7:195. [PMID: 38366025 PMCID: PMC10873348 DOI: 10.1038/s42003-024-05860-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/26/2024] [Indexed: 02/18/2024] Open
Abstract
The Ketogenic Diet (KD) improves memory and longevity in aged C57BL/6 mice. We tested 7 months KD vs. control diet (CD) in the mouse Alzheimer's Disease (AD) model APP/PS1. KD significantly rescued Long-Term-Potentiation (LTP) to wild-type levels, not by changing Amyloid-β (Aβ) levels. KD's 'main actor' is thought to be Beta-Hydroxy-butyrate (BHB) whose levels rose significantly in KD vs. CD mice, and BHB itself significantly rescued LTP in APP/PS1 hippocampi. KD's 6 most significant pathways induced in brains by RNAseq all related to Synaptic Plasticity. KD induced significant increases in synaptic plasticity enzymes p-ERK and p-CREB in both sexes, and of brain-derived neurotrophic factor (BDNF) in APP/PS1 females. We suggest KD rescues LTP through BHB's enhancement of synaptic plasticity. LTP falls in Mild-Cognitive Impairment (MCI) of human AD. KD and BHB, because they are an approved diet and supplement respectively, may be most therapeutically and translationally relevant to the MCI phase of Alzheimer's Disease.
Collapse
Affiliation(s)
- Jacopo Di Lucente
- Department of Pathology and MIND Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA
| | - Giuseppe Persico
- Department of Experimental Oncology, European Institute of Oncology, IRCCS, 21041, Milan, Italy
| | - Zeyu Zhou
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Lee-Way Jin
- Department of Pathology and MIND Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA
- Alzheimer's Disease Research Center, University of California Davis Medical Center, Sacramento, CA, 95817, USA
| | - Jon J Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Jennifer M Rutkowsky
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Claire M Montgomery
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Alexey Tomilov
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Kyoungmi Kim
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Marco Giorgio
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Izumi Maezawa
- Department of Pathology and MIND Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA.
- Alzheimer's Disease Research Center, University of California Davis Medical Center, Sacramento, CA, 95817, USA.
| | - Gino A Cortopassi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
4
|
Zuluaga MJ, Agrati D, Athaíde V, Ferreira A, Uriarte N. Fear response of rat pups to a non-aversive social stimulus: Evidence for the involvement of memory processes. Dev Psychobiol 2023; 65:e22417. [PMID: 37860902 DOI: 10.1002/dev.22417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 10/21/2023]
Abstract
Learning processes in rats during early development are importantly mediated by the mother, which represents the primary source of environmental information. This study aimed to determine whether aversive early experiences can induce the expression of pups' fear responses toward a non-aversive stimulus as a consequence of a memory process. First, we determined pups' fear responses toward an anesthetized female after being exposed to this stimulus or an empty cage together with their mothers from Postnatal Day (PNDs) 1 to 4. Second, we evaluated if the administration of the protein synthesis inhibitor cycloheximide (CHX; 0.2 mg/kg, subcutaneously (sc).) disrupted the reconsolidation processes and abolished the fear response on PND 9. Only female pups previously exposed to the female intruder expressed fear responses toward an anesthetized female on PND 8. CHX administration to female pups immediately after exposure to an anesthetized female on PND 8 suppressed fear responses on PND 9, indicating that the fear expression was the result of a memory process, probably mediated by the mother. These findings demonstrated that early experiences can shape responses to social stimuli in a sex-dependent manner and emphasize the critical role of the mother in influencing fear learning in a social context.
Collapse
Affiliation(s)
- María José Zuluaga
- Biofisicoquímica, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte-Sede Salto, Universidad de la República, Salto, Uruguay
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Daniella Agrati
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Vanessa Athaíde
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Annabel Ferreira
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Uriarte
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
5
|
Patel RK, Pirozzi NT, Hoefler TG, Connolly MG, Singleton LG, Kohman RA. Sex-dependent deficits in associative learning across multiple LPS doses. Physiol Behav 2023; 268:114249. [PMID: 37210020 PMCID: PMC10330873 DOI: 10.1016/j.physbeh.2023.114249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Activation of the immune system by administration of the bacterial endotoxin lipopolysaccharide (LPS) impairs cognitive and neural plasticity processes. For instance, acute LPS exposure has been reported to impair memory consolidation, spatial learning and memory, and associative learning. However, the inclusion of both males and females in basic research is limited. Whether LPS-induced cognitive deficits are comparable in males and females is currently unclear. Therefore, the present study evaluated sex differences in associative learning following administration of LPS at a dose (i.e., 0.25 mg/kg) that impairs learning in males and higher LPS doses (i.e., 0.325 - 1 mg/kg) across multiple experiments. Adult male and female C57BL/6J mice were trained in a two-way active avoidance conditioning task following their respective treatments. Results showed that LPS had sex-dependent effects on associative learning. The 0.25 mg/kg LPS dose impaired learning in males, consistent with prior work. However, LPS, at any of the doses employed across three experiments, did not disrupt associative learning in females. Female mice were resistant to learning deficits despite showing heightened levels of select proinflammatory cytokines in response to LPS. Collectively, these findings demonstrate that the learning impairments resulting from acute LPS exposure are sex-dependent.
Collapse
Affiliation(s)
- Reeva K Patel
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, United States of America
| | - Nicolas T Pirozzi
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, United States of America
| | - Tiffany G Hoefler
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, United States of America
| | - Meghan G Connolly
- University of Illinois Urbana-Champaign, Neuroscience Program, Champaign, IL, United States of America
| | - Lauren G Singleton
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, United States of America
| | - Rachel A Kohman
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, United States of America.
| |
Collapse
|
6
|
Diab AM, Wigerius M, Quinn DP, Qi J, Shahin I, Paffile J, Krueger K, Karten B, Krueger SR, Fawcett JP. NCK1 Modulates Neuronal Actin Dynamics and Promotes Dendritic Spine, Synapse, and Memory Formation. J Neurosci 2023; 43:885-901. [PMID: 36535770 PMCID: PMC9908320 DOI: 10.1523/jneurosci.0495-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Memory formation and maintenance is a dynamic process involving the modulation of the actin cytoskeleton at synapses. Understanding the signaling pathways that contribute to actin modulation is important for our understanding of synapse formation and function, as well as learning and memory. Here, we focused on the importance of the actin regulator, noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1), in hippocampal dependent behaviors and development. We report that male mice lacking NCK1 have impairments in both short-term and working memory, as well as spatial learning. Additionally, we report sex differences in memory impairment showing that female mice deficient in NCK1 fail at reversal learning in a spatial learning task. We find that NCK1 is expressed in postmitotic neurons but is dispensable for neuronal proliferation and migration in the developing hippocampus. Morphologically, NCK1 is not necessary for overall neuronal dendrite development. However, neurons lacking NCK1 have lower dendritic spine and synapse densities in vitro and in vivo EM analysis reveal increased postsynaptic density (PSD) thickness in the hippocampal CA1 region of NCK1-deficient mice. Mechanistically, we find the turnover of actin-filaments in dendritic spines is accelerated in neurons that lack NCK1. Together, these findings suggest that NCK1 contributes to hippocampal-dependent memory by stabilizing actin dynamics and dendritic spine formation.SIGNIFICANCE STATEMENT Understanding the molecular signaling pathways that contribute to memory formation, maintenance, and elimination will lead to a better understanding of the genetic influences on cognition and cognitive disorders and will direct future therapeutics. Here, we report that the noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1) adaptor protein modulates actin-filament turnover in hippocampal dendritic spines. Mice lacking NCK1 show sex-dependent deficits in hippocampal memory formation tasks, have altered postsynaptic densities, and reduced synaptic density. Together, our work implicates NCK1 in the regulation of actin cytoskeleton dynamics and normal synapse development which is essential for memory formation.
Collapse
Affiliation(s)
- Antonios M Diab
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Michael Wigerius
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Dylan P Quinn
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jiansong Qi
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ibrahim Shahin
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Julia Paffile
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kavita Krueger
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Barbara Karten
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Stefan R Krueger
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - James P Fawcett
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
7
|
Adkins JM, Halcomb CJ, Rogers D, Jasnow AM. Stress and sex-dependent effects on conditioned inhibition of fear. Learn Mem 2022; 29:246-255. [PMID: 36206391 PMCID: PMC9488025 DOI: 10.1101/lm.053508.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/10/2022] [Indexed: 10/14/2022]
Abstract
Anxiety and stress-related disorders are highly prevalent and are characterized by excessive fear to threatening and nonthreatening stimuli. Moreover, there is a large sex bias in vulnerability to anxiety and stress-related disorders-women make up a disproportionately larger number of affected individuals compared with men. Growing evidence suggests that an impaired ability to suppress fear in the presence of safety signals may in part contribute to the development and maintenance of many anxiety and stress-related disorders. However, the sex-dependent impact of stress on conditioned inhibition of fear remains unclear. The present study investigated sex differences in the acquisition and recall of conditioned inhibition in male and female mice with a focus on understanding how stress impacts fear suppression. In these experiments, the training context served as the "fear" cue and an explicit tone served as the "safety" cue. Here, we found a possible sex difference in the training requirements for safety learning, although this effect was not consistent across experiments. Reductions in freezing to the safety cue in female mice were also not due to alternative fear behavior expression such as darting. Next, using footshock as a stressor, we found that males were impaired in conditioned inhibition of freezing when the stress was experienced before, but not after, conditioned inhibition training. Females were unaffected by footshock stress when it was administered at either time. Extended conditioned inhibition training in males eliminated the deficit produced by footshock stress. Finally, exposing male and female mice to swim stress impaired safety learning in male mice only. Thus, we found sex × stress interactions in the learning of conditioned inhibition and sex-dependent effects of stress modality. The present study adds to the growing literature on sex differences in safety learning, which will be critical for developing sex-specific therapies for a variety of fear-related disorders that involve excessive fear and/or impaired fear inhibition.
Collapse
Affiliation(s)
- Jordan M Adkins
- Department of Psychological Sciences, Brain Health Research Institute, Kent State University, Kent, Ohio 44242, USA
| | - Carly J Halcomb
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29209, USA
| | - Danielle Rogers
- Department of Psychological Sciences, Brain Health Research Institute, Kent State University, Kent, Ohio 44242, USA
| | - Aaron M Jasnow
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29209, USA
| |
Collapse
|
8
|
Chen KR, Wang HY, Liao YH, Sun LH, Huang YH, Yu L, Kuo PL. Effects of Septin-14 Gene Deletion on Adult Cognitive/Emotional Behavior. Front Mol Neurosci 2022; 15:880858. [PMID: 35571367 PMCID: PMC9100402 DOI: 10.3389/fnmol.2022.880858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
While various septin GTPases have been reported for their physiological functions, their roles in orchestrating complex cognitive/emotional functions in adult mammals remained scarcely explored. A comprehensive behavioral test battery was administered to two sexes of 12-week-old Septin-14 (SEPT14) knockout (KO) and wild-type (WT) mice. The sexually dimorphic effects of brain SEPT14 KO on inhibitory avoidance (IA) and hippocampal mGluR5 expression were noticed with greater IA latency and elevated mGluR5 level exclusively in male KO mice. Moreover, SEPT14 KO appeared to be associated with stress-provoked anxiety increase in a stress-related navigation task regardless of animals’ sexes. While male and female WT mice demonstrated comparable cell proliferation in the dorsal and ventral hippocampal dentate gyrus (DG), both sexes of SEPT14 KO mice had increased cell proliferation in the ventral DG. Finally, male and female SEPT14 KO mice displayed dampened observational fear conditioning magnitude and learning-provoked corticosterone secretion as compared to their same-sex WT mice. These results, taken together, prompt us to conclude that male, but not female, mice lacking the Septin-14 gene may exhibit increased aversive emotion-related learning and dorsal/ventral hippocampal mGluR5 expressions. Moreover, deletion of SEPT14 may be associated with elevated ventral hippocampal DG cell proliferation and stress-provoked anxiety-like behavior, while dampening vicarious fear conditioning magnitudes.
Collapse
Affiliation(s)
- Kuan-Ru Chen
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Han-Yu Wang
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Yi-Han Liao
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Li-Han Sun
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Yu-Han Huang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Lung Yu
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Lung Yu,
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University College of Medicine, Tainan, Taiwan
- *Correspondence: Pao-Lin Kuo,
| |
Collapse
|
9
|
DePasquale EAK, Alganem K, Bentea E, Nawreen N, McGuire JL, Tomar T, Naji F, Hilhorst R, Meller J, McCullumsmith RE. KRSA: An R package and R Shiny web application for an end-to-end upstream kinase analysis of kinome array data. PLoS One 2021; 16:e0260440. [PMID: 34919543 PMCID: PMC8682895 DOI: 10.1371/journal.pone.0260440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/09/2021] [Indexed: 12/22/2022] Open
Abstract
Phosphorylation by serine-threonine and tyrosine kinases is critical for determining protein function. Array-based platforms for measuring reporter peptide signal levels allow for differential phosphorylation analysis between conditions for distinct active kinases. Peptide array technologies like the PamStation12 from PamGene allow for generating high-throughput, multi-dimensional, and complex functional proteomics data. As the adoption rate of such technologies increases, there is an imperative need for software tools that streamline the process of analyzing such data. We present Kinome Random Sampling Analyzer (KRSA), an R package and R Shiny web-application for analyzing kinome array data to help users better understand the patterns of functional proteomics in complex biological systems. KRSA is an All-In-One tool that reads, formats, fits models, analyzes, and visualizes PamStation12 kinome data. While the underlying algorithm has been experimentally validated in previous publications, we demonstrate KRSA workflow on dorsolateral prefrontal cortex (DLPFC) in male (n = 3) and female (n = 3) subjects to identify differential phosphorylation signatures and upstream kinase activity. Kinase activity differences between males and females were compared to a previously published kinome dataset (11 female and 7 male subjects) which showed similar global phosphorylation signals patterns.
Collapse
Affiliation(s)
- Erica A. K. DePasquale
- Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Boston, Massachusetts, United States of America
| | - Khaled Alganem
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- * E-mail:
| | - Eduard Bentea
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nawshaba Nawreen
- Department of Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jennifer L. McGuire
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Tushar Tomar
- PamGene International B.V., s’-Hertogenbosch, The Netherlands
| | - Faris Naji
- Tercen Data Analytics Ltd, Co Waterford, Ireland
| | - Riet Hilhorst
- PamGene International B.V., s’-Hertogenbosch, The Netherlands
| | - Jaroslaw Meller
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Electrical Engineering and Computing Systems, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Informatics, Nicolaus Copernicus University, Torun, Poland
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- Neurosciences institute, ProMedica, Toledo, Ohio, United States of America
| |
Collapse
|
10
|
Sarver DC, Xu C, Cheng Y, Terrillion CE, Wong GW. CTRP4 ablation impairs associative learning and memory. FASEB J 2021; 35:e21910. [PMID: 34610176 DOI: 10.1096/fj.202100733rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 11/11/2022]
Abstract
C1q/TNF-related protein (CTRP) family comprises fifteen highly conserved secretory proteins with diverse central and peripheral functions. In zebrafish, mouse, and human, CTRP4 is most highly expressed in the brain. We previously showed that CTRP4 is a metabolically responsive regulator of food intake and energy balance, and mice lacking CTRP4 exhibit sexually dimorphic changes in ingestive behaviors and systemic metabolism. Recent single-cell RNA sequencing also revealed Ctrp4/C1qtnf4 expression in diverse neuronal cell types across distinct anatomical brain regions, hinting at additional roles in the central nervous system not previously characterized. To uncover additional central functions of CTRP4, we subjected Ctrp4 knockout (KO) mice to a battery of behavioral tests. Relative to wild-type (WT) littermates, loss of CTRP4 does not alter exploratory, anxiety-, or depressive-like behaviors, motor function and balance, sensorimotor gating, novel object recognition, and spatial memory. While pain-sensing mechanisms in response to thermal stress and mild shock are intact, both male and female Ctrp4 KO mice have increased sensitivity to pain induced by higher-level shock, suggesting altered nociceptive function. Importantly, CTRP4 deficiency impairs hippocampal-dependent associative learning and memory as assessed by trace fear conditioning paradigm. This deficit is sex-dependent, affects only female mice, and is associated with altered expression of learning and memory genes (Arc, c-fos, and Pde4d) in the hippocampus and cortex. Altogether, our behavioral and gene expression analyses have uncovered novel aspects of the CTRP4 function and provided a physiological context to further investigate its mechanism of action in the central and peripheral nervous system.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yi Cheng
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chantelle E Terrillion
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Carlyle BC, Kandigian SE, Kreuzer J, Das S, Trombetta BA, Kuo Y, Bennett DA, Schneider JA, Petyuk VA, Kitchen RR, Morris R, Nairn AC, Hyman BT, Haas W, Arnold SE. Synaptic proteins associated with cognitive performance and neuropathology in older humans revealed by multiplexed fractionated proteomics. Neurobiol Aging 2021; 105:99-114. [PMID: 34052751 PMCID: PMC8338777 DOI: 10.1016/j.neurobiolaging.2021.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/18/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is defined by the presence of abundant amyloid-β (Aβ) and tau neuropathology. While this neuropathology is necessary for AD diagnosis, it is not sufficient for causing cognitive impairment. Up to one third of community dwelling older adults harbor intermediate to high levels of AD neuropathology at death yet demonstrate no significant cognitive impairment. Conversely, there are individuals who exhibit dementia with no gross explanatory neuropathology. In prior studies, synapse loss correlated with cognitive impairment. To understand how synaptic composition changes in relation to neuropathology and cognition, multiplexed liquid chromatography mass-spectrometry was used to quantify enriched synaptic proteins from the parietal association cortex of 100 subjects with contrasting levels of AD pathology and cognitive performance. 123 unique proteins were significantly associated with diagnostic category. Functional analysis showed enrichment of serotonin release and oxidative phosphorylation categories in normal (cognitively unimpaired, low neuropathology) and "resilient" (unimpaired despite AD pathology) individuals. In contrast, frail individuals, (low pathology, impaired cognition) showed a metabolic shift towards glycolysis and increased presence of proteasome subunits.
Collapse
Affiliation(s)
- Becky C Carlyle
- Massachusetts General Hospital Department of Neurology, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Savannah E Kandigian
- Massachusetts General Hospital Department of Neurology, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Johannes Kreuzer
- Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - Sudeshna Das
- Massachusetts General Hospital Department of Neurology, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Bianca A Trombetta
- Massachusetts General Hospital Department of Neurology, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Yikai Kuo
- Massachusetts General Hospital Department of Neurology, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Cardiology Division, Charlestown, MA, USA
| | | | | | | | - Robert R Kitchen
- Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Cardiology Division, Charlestown, MA, USA
| | - Robert Morris
- Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | | | - Bradley T Hyman
- Massachusetts General Hospital Department of Neurology, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Wilhelm Haas
- Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - Steven E Arnold
- Massachusetts General Hospital Department of Neurology, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Sun W, Cheng H, Yang Y, Tang D, Li X, An L. Requirements of Postnatal proBDNF in the Hippocampus for Spatial Memory Consolidation and Neural Function. Front Cell Dev Biol 2021; 9:678182. [PMID: 34336832 PMCID: PMC8319730 DOI: 10.3389/fcell.2021.678182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Mature brain-derived neurotrophic factor (BDNF) and its downstream signaling pathways have been implicated in regulating postnatal development and functioning of rodent brain. However, the biological role of its precursor pro-brain-derived neurotrophic factor (proBDNF) in the postnatal brain remains unknown. The expression of hippocampal proBDNF was blocked in postnatal weeks, and multiple behavioral tests, Western blot and morphological techniques, and neural recordings were employed to investigate how proBDNF played a role in spatial cognition in adults. The peak expression and its crucial effects were found in the fourth but not in the second or eighth postnatal week. Blocking proBDNF expression disrupted spatial memory consolidation rather than learning or memory retrieval. Structurally, blocking proBDNF led to the reduction in spine density and proportion of mature spines. Although blocking proBDNF did not affect N-methyl-D-aspartate (NMDA) receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits, the learning-induced phosphorylation of the GluN2B subunit level declined significantly. Functionally, paired-pulse facilitation, post-low-frequency stimulation (LFS) transiently enhanced depression, and GluN2B-dependent short-lasting long-term depression in the Schaffer collateral-CA1 pathway were weakened. The firing rate of pyramidal neurons was significantly suppressed around the target region during the memory test. Furthermore, the activation of GluN2B-mediated signaling could effectively facilitate neural function and mitigate memory impairment. The findings were consistent with the hypothesis that postnatal proBDNF played an essential role in synaptic and cognitive functions.
Collapse
Affiliation(s)
- Wei Sun
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hong Cheng
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongxin Tang
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaolian Li
- Department of Neurology, Jinan Geriatric Hospital, Jinan, China
| | - Lei An
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Physiology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Alonso A, Genzel L, Gomez A. Sex and Menstrual Phase Influences on Sleep and Memory. CURRENT SLEEP MEDICINE REPORTS 2021. [DOI: 10.1007/s40675-020-00201-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
Purposes of Review
This review highlights the effect of sex differences in sleep mediated memory consolidation and cognitive performance. In addition, the role of menstrual cycle and the fluctuating level of sexual hormones (mainly oestrogen and progesterone) are stressed.
Recent Findings
The literature indicates that sex hormones mediate and orchestrate the differences observed in performance of females in comparison with males in a variety of tasks and can also be related to how sleep benefits cognition. Although the exact mechanism of such influence is not clear, it most likely involves differential activation of brain areas, sensitivity to neuromodulators (mainly oestrogen), circadian regulation of sleep and temperature, as well as modification of strategies to solve tasks across the menstrual cycle.
Summary
With the evidence presented here, we hope to encourage researchers to develop appropriate paradigms to study the complex relationship between menstrual cycle, sleep (its regulation, architecture and electrophysiological hallmarks) and performance in memory and other cognitive tasks.
Collapse
|
14
|
Devulapalli R, Jones N, Farrell K, Musaus M, Kugler H, McFadden T, Orsi SA, Martin K, Nelsen J, Navabpour S, O'Donnell M, McCoig E, Jarome TJ. Males and females differ in the regulation and engagement of, but not requirement for, protein degradation in the amygdala during fear memory formation. Neurobiol Learn Mem 2021; 180:107404. [PMID: 33609735 DOI: 10.1016/j.nlm.2021.107404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/28/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Over the last decade, strong evidence has emerged that protein degradation mediated by the ubiquitin-proteasome system is critical for fear memory formation in the amygdala. However, this work has been done primarily in males, leaving unanswered questions about whether females also require protein degradation during fear memory formation. Here, we found that male and female rats differed in their engagement and regulation of, but not need for, protein degradation in the amygdala during fear memory formation. Male, but not female, rats had increased protein degradation in the nuclei of amygdala cells after fear conditioning. Conversely, females had elevated baseline levels of overall ubiquitin-proteasome activity in amygdala nuclei. Gene expression and DNA methylation analyses identified that females had increased baseline expression of the ubiquitin coding gene Uba52, which had increased DNA 5-hydroxymethylation (5hmc) in its promoter region, indicating a euchromatin state necessary for increased levels of ubiquitin in females. Consistent with this, persistent CRISPR-dCas9 mediated silencing of Uba52 and proteasome subunit Psmd14 in the amygdala reduced baseline protein degradation levels and impaired fear memory in male and female rats, while enhancing baseline protein degradation in the amygdala of both sexes promoted fear memory formation. These results suggest that while both males and females require protein degradation in the amygdala for fear memory formation, they differ in their baseline regulation and engagement of this process following learning. These results have important implications for understanding the etiology of sex-related differences in fear memory formation.
Collapse
Affiliation(s)
- Rishi Devulapalli
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Natalie Jones
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Kayla Farrell
- Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Madeline Musaus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Hannah Kugler
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Taylor McFadden
- Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sabrina A Orsi
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Kiley Martin
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jacob Nelsen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Madison O'Donnell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Emmarose McCoig
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Timothy J Jarome
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA.
| |
Collapse
|
15
|
Sex differences in eyewitness memory: Females are more accurate than males for details related to people and less accurate for details surrounding them, and feel more anxious and threatened in a neutral but potentially threatening context. PERSONALITY AND INDIVIDUAL DIFFERENCES 2020. [DOI: 10.1016/j.paid.2020.110093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Premachandran H, Zhao M, Arruda-Carvalho M. Sex Differences in the Development of the Rodent Corticolimbic System. Front Neurosci 2020; 14:583477. [PMID: 33100964 PMCID: PMC7554619 DOI: 10.3389/fnins.2020.583477] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, a growing body of research has shown sex differences in the prevalence and symptomatology of psychopathologies, such as depression, anxiety, and fear-related disorders, all of which show high incidence rates in early life. This has highlighted the importance of including female subjects in animal studies, as well as delineating sex differences in neural processing across development. Of particular interest is the corticolimbic system, comprising the hippocampus, amygdala, and medial prefrontal cortex. In rodents, these corticolimbic regions undergo dynamic changes in early life, and disruption to their normative development is believed to underlie the age and sex-dependent effects of stress on affective processing. In this review, we consolidate research on sex differences in the hippocampus, amygdala, and medial prefrontal cortex across early development. First, we briefly introduce current principles on sexual differentiation of the rodent brain. We then showcase corticolimbic regional sex differences in volume, morphology, synaptic organization, cell proliferation, microglia, and GABAergic signaling, and explain how these differences are influenced by perinatal and pubertal gonadal hormones. In compiling this research, we outline evidence of what and when sex differences emerge in the developing corticolimbic system, and illustrate how temporal dynamics of its maturational trajectory may differ in male and female rodents. This will help provide insight into potential neural mechanisms underlying sex-specific critical windows for stress susceptibility and behavioral emergence.
Collapse
Affiliation(s)
| | - Mudi Zhao
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
17
|
Khaliulin I, Kartawy M, Amal H. Sex Differences in Biological Processes and Nitrergic Signaling in Mouse Brain. Biomedicines 2020; 8:biomedicines8050124. [PMID: 32429146 PMCID: PMC7277573 DOI: 10.3390/biomedicines8050124] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide (NO) represents an important signaling molecule which modulates the functions of different organs, including the brain. S-nitrosylation (SNO), a post-translational modification that involves the binding of the NO group to a cysteine residue, is a key mechanism of nitrergic signaling. Most of the experimental studies are carried out on male animals. However, significant differences exist between males and females in the signaling mechanisms. To investigate the sex differences in the SNO-based regulation of biological functions and signaling pathways in the cortices of 6–8-weeks-old mice, we used the mass spectrometry technique, to identify S-nitrosylated proteins, followed by large-scale computational biology. This work revealed significant sex differences in the NO and SNO-related biological functions in the cortices of mice for the first-time. The study showed significant SNO-induced enrichment of the synaptic processes in female mice, but enhanced SNO-related cytoskeletal processes in the male mice. Proteins, which were S-nitrosylated in the cortices of mice of both groups, were more abundant in the female brain. Finally, we investigated the shared molecular processes that were found in both sexes. This study presents a mechanistic insight into the role of S-nitrosylation in both sexes and provides strong evidence of sex difference in many biological processes and signalling pathways, which will open future research directions on sex differences in neurological disorders.
Collapse
|
18
|
Proteomic Analysis of Brain Region and Sex-Specific Synaptic Protein Expression in the Adult Mouse Brain. Cells 2020; 9:cells9020313. [PMID: 32012899 PMCID: PMC7072627 DOI: 10.3390/cells9020313] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/19/2022] Open
Abstract
Genetic disruption of synaptic proteins results in a whole variety of human neuropsychiatric disorders including intellectual disability, schizophrenia or autism spectrum disorder (ASD). In a wide range of these so-called synaptopathies a sex bias in prevalence and clinical course has been reported. Using an unbiased proteomic approach, we analyzed the proteome at the interaction site of the pre- and postsynaptic compartment, in the prefrontal cortex, hippocampus, striatum and cerebellum of male and female adult C57BL/6J mice. We were able to reveal a specific repertoire of synaptic proteins in different brain areas as it has been implied before. Additionally, we found a region-specific set of novel synaptic proteins differentially expressed between male and female individuals including the strong ASD candidates DDX3X, KMT2C, MYH10 and SET. Being the first comprehensive analysis of brain region-specific synaptic proteomes from male and female mice, our study provides crucial information on sex-specific differences in the molecular anatomy of the synapse. Our efforts should serve as a neurobiological framework to better understand the influence of sex on synapse biology in both health and disease.
Collapse
|
19
|
Barr JL, Shi X, Zaykaner M, Unterwald EM. Glycogen Synthase Kinase 3β in the Ventral Hippocampus is Important for Cocaine Reward and Object Location Memory. Neuroscience 2019; 425:101-111. [PMID: 31783102 DOI: 10.1016/j.neuroscience.2019.10.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
Abstract
The ventral hippocampus is a component of the neural circuitry involved with context-associated memory for reward and generation of appropriate behavioral responses to context. Glycogen synthase kinase 3 beta (GSK3β) has been linked to the maintenance of synaptic plasticity, contextual memory retrieval, and is involved in the reconsolidation of cocaine-associated contextual memory. In this study, the effects of targeted downregulation of GSK3β in the ventral hippocampus were examined on a series of behavioral tests for assessing drug reward-context association and non-reward related memory. The Cre/loxP site-specific recombination system was used to knockdown GSK3β through bilateral stereotaxic delivery of an adeno-associated virus expressing Cre-recombinase (AAV-Cre) into the ventral hippocampus of adult mice homozygous for a floxed GSK3β allele. GSK3β floxed mice injected with AAV-Cre had a loss of 56-75% of GSK3β in the ventral hippocampus and displayed diminished development of cocaine conditioned place preference, but not morphine place preference as compared with wild-type mice injected with AAV-Cre or GSK3β floxed mice injected with a control virus, AAV-GFP. Impaired object location memory was observed in mice with GSK3β downregulation in the ventral hippocampus, but novel object recognition remained intact. These results indicate that GSK3β signaling in the ventral hippocampus is differentially involved in the formation of place-drug reward association dependent upon drug class. Additionally, ventral hippocampal GSK3β signaling is important in detection of discrete spatial cues, but not recognition memory for objects.
Collapse
Affiliation(s)
- Jeffrey L Barr
- Department of Pharmacology and the Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| | - Xiangdang Shi
- Department of Pharmacology and the Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Michael Zaykaner
- Department of Pharmacology and the Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ellen M Unterwald
- Department of Pharmacology and the Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
20
|
Intergenerational effect of parental spatial training on offspring learning: Evidence for sex differences in memory function. Brain Res Bull 2019; 153:314-323. [DOI: 10.1016/j.brainresbull.2019.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022]
|
21
|
Sex-specific spatial memory deficits in mice with a conditional TrkB deletion on parvalbumin interneurons. Behav Brain Res 2019; 372:111984. [DOI: 10.1016/j.bbr.2019.111984] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022]
|
22
|
Keiser AA, Wood MA. Examining the contribution of histone modification to sex differences in learning and memory. Learn Mem 2019; 26:318-331. [PMID: 31416905 PMCID: PMC6699407 DOI: 10.1101/lm.048850.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/08/2019] [Indexed: 01/04/2023]
Abstract
The epigenome serves as a signal integration platform that encodes information from experience and environment that adds tremendous complexity to the regulation of transcription required for memory, beyond the directions encoded in the genome. To date, our understanding of how epigenetic mechanisms integrate information to regulate gene expression required for memory is primarily obtained from male derived data despite sex-specific life experiences and sex differences in consolidation and retrieval of memory, and in the molecular mechanisms that mediate these processes. In this review, we examine the contribution of chromatin modification to learning and memory in both sexes. We provide examples of how exposure to a number of internal and external factors influence the epigenome in sex-similar and sex-specific ways that may ultimately impact transcription required for memory processes. We also pose a number of key open questions and identify areas requiring further investigation as we seek to understand how histone modifying mechanisms shape memory in females.
Collapse
Affiliation(s)
- Ashley A Keiser
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
23
|
Velasco ER, Florido A, Milad MR, Andero R. Sex differences in fear extinction. Neurosci Biobehav Rev 2019; 103:81-108. [PMID: 31129235 PMCID: PMC6692252 DOI: 10.1016/j.neubiorev.2019.05.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/08/2019] [Accepted: 05/19/2019] [Indexed: 12/18/2022]
Abstract
Despite the exponential increase in fear research during the last years, few studies have included female subjects in their design. The need to include females arises from the knowledge gap of mechanistic processes underlying the behavioral and neural differences observed in fear extinction. Moreover, the exact contribution of sex and hormones in relation to learning and behavior is still largely unknown. Insights from this field could be beneficial as fear-related disorders are twice as prevalent in women compared to men. Here, we review an up-to-date summary of animal and human studies in adulthood that report sex differences in fear extinction from a structural and functional approach. Furthermore, we describe how these factors could contribute to the observed sex differences in fear extinction during normal and pathological conditions.
Collapse
Affiliation(s)
- E R Velasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - A Florido
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - M R Milad
- Department of Psychiatry, University of Illinois at Chicago, USA
| | - R Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Corporació Sanitaria Parc Taulí, Sabadell, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
24
|
Tchessalova D, Tronson NC. Memory deficits in males and females long after subchronic immune challenge. Neurobiol Learn Mem 2019; 158:60-72. [PMID: 30611884 PMCID: PMC6879099 DOI: 10.1016/j.nlm.2019.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/30/2018] [Accepted: 01/02/2019] [Indexed: 01/18/2023]
Abstract
Memory impairments and cognitive decline persist long after recovery from major illness or injury, and correlate with increased risk of later dementia. Here we developed a subchronic peripheral immune challenge model to examine delayed and persistent memory impairments in females and in males. We show that intermittent injections of either lipopolysaccharides or Poly I:C cause memory decline in both sexes that are evident eight weeks after the immune challenge. Importantly, we observed sex-specific patterns of deficits. Females showed impairments in object recognition one week after challenge that persisted for at least eight weeks. In contrast, males had intact memory one week after the immune challenge but exhibited broad impairments in memory tasks including object recognition, and both context and tone fear conditioning several months later. The differential patterns of memory deficits in males and in females were observed without sustained microglial activation or changes in blood-brain barrier permeability. Together, these data suggest that transient neuroimmune activity results in differential vulnerabilities of females and males to memory decline after immune challenge. This model will be an important tool for determining the mechanisms in both sexes that contribute to memory impairments that develop over the weeks and months after recovery from illness. Future studies using this model will provide new insights into the role of chronic inflammation in the pathogenesis of long-lasting memory decline and dementias.
Collapse
Affiliation(s)
- Daria Tchessalova
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, United States; Department of Psychology, University of Michigan, Ann Arbor, United States.
| | - Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, United States.
| |
Collapse
|
25
|
Nogueira VB, Imparato DO, de Souza SJ, de Sousa MBC. Sex-biased gene expression in the frontal cortex of common marmosets (Callithrix jacchus) and potential behavioral correlates. Brain Behav 2018; 8:e01148. [PMID: 30378298 PMCID: PMC6305938 DOI: 10.1002/brb3.1148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 09/27/2018] [Accepted: 09/30/2018] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The common marmoset (Callithrix jacchus), a small New World monkey, has been widely used as a biological model in neuroscience to elucidate neural circuits involved in cognition and to understand brain dysfunction in neuropsychiatric disorders. In this regard, the availability of gene expression data derived from next-generation sequencing (NGS) technologies represents an opportunity for a molecular contextualization. Sexual dimorphism account for differences in diseases prevalence and prognosis. Here, we explore sex differences on frontal cortex of gene expression in common marmoset's adults. METHODS Gene expression profiles in six different tissues (cerebellum, frontal cortex, liver, heart, and kidney) were analyzed in male and female marmosets. To emphasize the translational value of this species for behavioral studies, we focused on sex-biased gene expression from the frontal cortex of male and female in common marmosets and compared to humans (Homo sapiens). RESULTS In this study, we found that frontal cortex genes whose expression is male-biased are conserved between marmosets and humans and enriched with "house-keeping" functions. On the other hand, female-biased genes are more related to neural plasticity functions involved in remodeling of synaptic circuits, stress cascades, and visual behavior. Additionally, we developed and made available an application-the CajaDB-to provide a friendly interface for genomic, expression, and alternative splicing data of marmosets together with a series of functionalities that allow the exploration of these data. CajaDB is available at cajadb.neuro.ufrn.br. CONCLUSION The data point to differences in gene expression of male and female common marmosets in all tissues analyzed. In frontal cortex, female-biased expression in synaptic plasticity, stress, and visual processing might be linked to biological and behavioral mechanisms of this sex. Due to the limited sample size, the data here analyzed are for exploratory purposes.
Collapse
Affiliation(s)
- Viviane Brito Nogueira
- Health Sciences Graduate Program, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Danilo Oliveira Imparato
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sandro José de Souza
- Brain Institute, Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
26
|
Molina-García L, Barrios A. Sex differences in learning — shared principles across taxa. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Mhaouty-Kodja S, Belzunces LP, Canivenc MC, Schroeder H, Chevrier C, Pasquier E. Impairment of learning and memory performances induced by BPA: Evidences from the literature of a MoA mediated through an ED. Mol Cell Endocrinol 2018; 475:54-73. [PMID: 29605460 DOI: 10.1016/j.mce.2018.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 11/29/2022]
Abstract
Many rodent studies and a few non-human primate data report impairments of spatial and non-spatial memory induced by exposure to bisphenol A (BPA), which are associated with neural modifications, particularly in processes involved in synaptic plasticity. BPA-induced alterations involve disruption of the estrogenic pathway as established by reversal of BPA-induced effects with estrogenic receptor antagonist or by interference of BPA with administered estradiol in ovariectomized animals. Sex differences in hormonal impregnation during critical periods of development and their influence on maturation of learning and memory processes may explain the sexual dimorphism observed in BPA-induced effects in some studies. Altogether, these data highly support the plausibility that alteration of learning and memory and synaptic plasticity by BPA is essentially mediated by disturbance of the estrogenic pathways. As memory function in humans involves similar signaling pathways, this mode of action of BPA has the potential to alter human cognitive abilities.
Collapse
Affiliation(s)
- Sakina Mhaouty-Kodja
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, 75005 Paris, France
| | - Luc P Belzunces
- INRA, Laboratoire de Toxicologie Environnementale, UR 406 A&E, CS 40509, 84914 Avignon Cedex 9, France
| | - Marie-Chantal Canivenc
- Centre des Sciences du Goût et de l'Alimentation, INRA, CNRS, agrosup, Université de Bourgogne, Franche-Comté, Dijon, 21000, France
| | - Henri Schroeder
- Calbinotox, EA7488, Faculté des Sciences et Technologies, Université de Lorraine, 54500, Vandoeuvre les Nancy, France
| | - Cécile Chevrier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | | |
Collapse
|
28
|
Tronson NC. Focus on females: A less biased approach for studying strategies and mechanisms of memory. Curr Opin Behav Sci 2018; 23:92-97. [PMID: 30083579 PMCID: PMC6075684 DOI: 10.1016/j.cobeha.2018.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recent work on sex differences in learning and memory has demonstrated that females and males differ in cognitive and behavioral strategies, as well as neural mechanisms required to learn, retrieve and express memory. Although our understanding of the mechanisms of memory is highly sophisticated, this work is based on male animals. As such, the study of female memory is narrowed to a comparison with behavior and mechanisms defined in males, resulting in findings of male-specific mechanisms but little understanding of how females learn and store information. In this paper, we discuss a female-focused framework and experimental approaches to deepen our understanding of the strategies and neural mechanisms engaged by females (and males) in learning, consolidation, and retrieval of memory.
Collapse
|
29
|
Simone JJ, Baumbach JL, McCormick CM. Sex-specific effects of CB1 receptor antagonism and stress in adolescence on anxiety, corticosterone concentrations, and contextual fear in adulthood in rats. Int J Dev Neurosci 2018; 69:119-131. [PMID: 30063953 DOI: 10.1016/j.ijdevneu.2018.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
There is a paucity of research regarding the role of endogenous cannabinoid signalling in adolescence on brain and behaviour development. We previously demonstrated effects of repeated CB1 receptor antagonism in adolescence on socioemotional behaviours and neural protein expression 24-48 h after the last drug administration in female rats, with no effect in males. Here we investigate whether greater effects would be manifested after a lengthier delay. In Experiment 1, male and female rats were administered either 1 mg / kg of the CB1 receptor-selective antagonist AM251, vehicle (VEH), or did not receive injections (NoINJ) daily on postnatal days (PND) 30-44 either alone (no adolescent confinement stress; noACS), or in tandem with 1 h ACS. On PND 70, adolescent AM251 exposure reduced anxiety in an elevated plus maze in males, irrespective of ACS, with no effects in females. On PND 73, there were no group differences in either sex in plasma corticosterone concentrations before or after 30 min of restraint stress, although injection stress resulted in higher baseline concentrations in males. Brains were collected on PND 74, with negligible effects of either AM251 or ACS on protein markers of synaptic plasticity and of the endocannabinoid system in the hippocampus and medial prefrontal cortex. In Experiment 2, rats from both sexes were treated with vehicle or AM251 on PND 30-44 and were tested for contextual fear conditioning and extinction in adulthood. AM251 females had greater fear recall than VEH females 24 h after conditioning, with no group differences in within- or between-session fear extinction. There were no group differences in long-term extinction memory, although AM251 females froze more during a reconditioning trial compared with VEH females. There were no group differences on any of the fear conditioning measures in males. Together, these findings indicate a modest, sex-specific role of CB1 receptor signalling in adolescence on anxiety-like behaviour in males and conditioned fear behaviour in females.
Collapse
Affiliation(s)
- Jonathan J Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| | - Jennet L Baumbach
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| | - Cheryl M McCormick
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada; Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada; Center for Neuroscience, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
30
|
Wang X, Fei F, Qu J, Li C, Li Y, Zhang S. The role of septin 7 in physiology and pathological disease: A systematic review of current status. J Cell Mol Med 2018; 22:3298-3307. [PMID: 29602250 PMCID: PMC6010854 DOI: 10.1111/jcmm.13623] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
Septins are a conserved family of cytoskeletal GTPases present in different organisms, including yeast, drosophila, Caenorhabditis elegans and humans. In humans, septins are involved in various cellular processes, including exocytosis, apoptosis, leukemogenesis, carcinogenesis and neurodegeneration. Septin 7 is unique out of 13 human septins. Mammalian septin 6, septin 7, septin 2 and septin 9 coisolate together in complexes to form the core unit for the generation of the septin filaments. Physiological septin filaments are hetero‐oligomeric complexes consisting of core septin hexamers and octamers. Furthermore, septin 7 plays a crucial role in cytokinesis and mitosis. Septin 7 is localized to the filopodia and branches of developing hippocampal neurons, and is the most abundant septin in the adult rat forebrain as well as a structural component of the human and mouse sperm annuli. Septin 7 is crucial to the spine morphogenesis and dendrite growth in neurons, and is also a structural constituent of the annulus in human and mouse sperm. It can suppress growth of some tumours such as glioma and papillary thyroid carcinoma. However, the molecular mechanisms of involvement of septin 7 in human disease, especially in the development of cancer, remain unclear. This review focuses on the structure, function and mechanism of septin 7 in vivo, and summarizes the role of septin 7 in cell proliferation, cytokinesis, nervous and reproductive systems, as well as the underlying molecular events linking septin 7 to various diseases, such as Alzheimer's disease, schizophrenia, neuropsychiatric systemic lupus erythematosus, tumour and so on.
Collapse
Affiliation(s)
- Xinlu Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Fei Fei
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Jie Qu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Chunyuan Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
31
|
Grissom NM, McKee SE, Schoch H, Bowman N, Havekes R, O'Brien WT, Mahrt E, Siegel S, Commons K, Portfors C, Nickl-Jockschat T, Reyes TM, Abel T. Male-specific deficits in natural reward learning in a mouse model of neurodevelopmental disorders. Mol Psychiatry 2018; 23:544-555. [PMID: 29038598 PMCID: PMC5822461 DOI: 10.1038/mp.2017.184] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/03/2017] [Accepted: 07/13/2017] [Indexed: 02/04/2023]
Abstract
Neurodevelopmental disorders, including autism spectrum disorders, are highly male biased, but the underpinnings of this are unknown. Striatal dysfunction has been strongly implicated in the pathophysiology of neurodevelopmental disorders, raising the question of whether there are sex differences in how the striatum is impacted by genetic risk factors linked to neurodevelopmental disorders. Here we report male-specific deficits in striatal function important to reward learning in a mouse model of 16p11.2 hemideletion, a genetic mutation that is strongly associated with the risk of neurodevelopmental disorders, particularly autism and attention-deficit hyperactivity disorder. We find that male, but not female, 16p11.2 deletion animals show impairments in reward-directed learning and maintaining motivation to work for rewards. Male, but not female, deletion animals overexpress mRNA for dopamine receptor 2 and adenosine receptor 2a in the striatum, markers of medium spiny neurons signaling via the indirect pathway, associated with behavioral inhibition. Both sexes show a 50% reduction of mRNA levels of the genes located within the 16p11.2 region in the striatum, including the kinase extracellular-signal related kinase 1 (ERK1). However, hemideletion males show increased activation in the striatum for ERK1, both at baseline and in response to sucrose, a signaling change associated with decreased striatal plasticity. This increase in ERK1 phosphorylation is coupled with a decrease in the abundance of the ERK phosphatase striatum-enriched protein-tyrosine phosphatase in hemideletion males. In contrast, females do not show activation of ERK1 in response to sucrose, but notably hemideletion females show elevated protein levels for ERK1 as well as the related kinase ERK2 over what would be predicted by mRNA levels. These data indicate profound sex differences in the impact of a genetic lesion linked with neurodevelopmental disorders, including mechanisms of male-specific vulnerability and female-specific resilience impacting intracellular signaling in the brain.
Collapse
Affiliation(s)
- N M Grissom
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA,Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - S E McKee
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA,Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - H Schoch
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - N Bowman
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA,Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - R Havekes
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - W T O'Brien
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA,Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - E Mahrt
- School of Biological Sciences, Washington State University Vancouver, Vancouver, WA, USA
| | - S Siegel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - K Commons
- Department of Anesthesia, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - C Portfors
- School of Biological Sciences, Washington State University Vancouver, Vancouver, WA, USA
| | - T Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany,Jülich Aachen Research Alliance—Translational Brain Medicine, Aachen, Germany
| | - T M Reyes
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA,Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - T Abel
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA,Iowa Neuroscience Institute, University of Iowa, 2312 Pappajohn Biomedical Discovery Building, 162 Newton Road, Iowa City, IA, 52242, USA. E-mail:
| |
Collapse
|
32
|
Nagayoshi T, Isoda K, Mamiya N, Kida S. Hippocampal calpain is required for the consolidation and reconsolidation but not extinction of contextual fear memory. Mol Brain 2017; 10:61. [PMID: 29258546 PMCID: PMC5735908 DOI: 10.1186/s13041-017-0341-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/04/2017] [Indexed: 11/10/2022] Open
Abstract
Memory consolidation, reconsolidation, and extinction have been shown to share similar molecular signatures, including new gene expression. Calpain is a Ca2+-dependent protease that exerts its effects through the proteolytic cleavage of target proteins. Neuron-specific conditional deletions of calpain 1 and 2 impair long-term potentiation in the hippocampus and spatial learning. Moreover, recent studies have suggested distinct roles of calpain 1 and 2 in synaptic plasticity. However, the role of hippocampal calpain in memory processes, especially memory consolidation, reconsolidation, and extinction, is still unclear. In the current study, we demonstrated the critical roles of hippocampal calpain in the consolidation, reconsolidation, and extinction of contextual fear memory in mice. We examined the effects of pharmacological inhibition of calpain in the hippocampus on these memory processes, using the N-Acetyl-Leu-Leu-norleucinal (ALLN; calpain 1 and 2 inhibitor). Microinfusion of ALLN into the dorsal hippocampus impaired long-term memory (24 h memory) without affecting short-term memory (2 h memory). Similarly, this pharmacological blockade of calpain in the dorsal hippocampus also disrupted reactivated memory but did not affect memory extinction. Importantly, the systemic administration of ALLN inhibited the induction of c-fos in the hippocampus, which is observed when memory is consolidated. Our observations showed that hippocampal calpain is required for the consolidation and reconsolidation of contextual fear memory. Further, the results suggested that calpain contributes to the regulation of new gene expression that is necessary for these memory processes as a regulator of Ca2+-signal transduction pathway.
Collapse
Affiliation(s)
- Taikai Nagayoshi
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kiichiro Isoda
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Nori Mamiya
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoshi Kida
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
33
|
DLG2, but not TMEM229B, GPNMB, and ITGA8 polymorphism, is associated with Parkinson's disease in a Taiwanese population. Neurobiol Aging 2017; 64:158.e1-158.e6. [PMID: 29290481 DOI: 10.1016/j.neurobiolaging.2017.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/30/2017] [Accepted: 11/30/2017] [Indexed: 01/01/2023]
Abstract
Transmembrane or membrane-associated protein dysfunction is increasingly recognized as an important mechanism of pathogenesis in Parkinson's disease (PD). Previous genome-wide association studies and their meta-analysis in PD genes have identified several risk foci in transmembrane protein-encoding genes. Herein, we investigated the effect of 4 such PD-associated genetic variants reported in Caucasians, including discs-large membrane-associated guanylate kinase scaffolding protein 2 (DLG2 rs3793947), transmembrane protein 229B (TMEM229B rs1555399), glycoprotein nonmetastatic melanoma protein B (GPNMB rs199347), and integrin subunit alpha 8 (ITGA8 rs7077361). A total of 1185 Taiwanese subjects comprising 592 PD patients and 593 unrelated age-matched controls were genotyped. DLG2 rs3793947 AA genotype showed a significantly lower prevalence in female PD patients compared to the female controls (p = 0.019). The recessive model analysis also demonstrated a reduced PD risk for females in AA genotype (odds ratio = 0.573, 95% confidence interval: 0.379-0.868, p = 0.008). The frequencies of TMEM229B rs1555399 and GPNMB rs199347 genotypes and alleles were similar in PD patients and controls. ITG8 rs7077361 was not polymorphic in all subjects of this study. These data suggested that DLG2, but not TMEM229B, GPNMB, and ITGA8, influenced the risk of PD in Taiwan.
Collapse
|
34
|
Dachtler J, Fox K. Do cortical plasticity mechanisms differ between males and females? J Neurosci Res 2017; 95:518-526. [PMID: 27870449 PMCID: PMC5111614 DOI: 10.1002/jnr.23850] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/20/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022]
Abstract
The difference between male and female behavior and male and female susceptibility to a number of neuropsychiatric conditions is not controversial. From a biological perspective, one might expect to see at least some of these differences underpinned by identifiable physical differences in the brain. This Mini‐Review focuses on evidence that plasticity mechanisms differ between males and females and ask at what scale of organization the differences might exist, at the systems level, the circuits level, or the synaptic level. Emerging evidence suggests that plasticity differences may extend to the scale of synaptic mechanisms. In particular, the CaMKK, NOS1 and estrogen receptor pathways show sexual dimorphisms with implications for plasticity in the hippocampus and cerebral cortex. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James Dachtler
- Department of Psychology, Durham University, Durham, United Kingdom
| | - Kevin Fox
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
35
|
The effect of sex and menstrual phase on memory formation during a nap. Neurobiol Learn Mem 2017; 145:119-128. [DOI: 10.1016/j.nlm.2017.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 01/20/2023]
|
36
|
Simone JJ, McCormick CM. Intracellular signalling and plasma hormone profiles associated with the expression of unconditioned and conditioned fear and anxiety in female rats. Physiol Behav 2016; 169:234-244. [PMID: 27939364 DOI: 10.1016/j.physbeh.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022]
Abstract
There is considerable overlap in the neural regions and intracellular signalling pathways implicated in anxiety and fear, although less is known in females. Here, we investigated whether unconditioned and conditioned fear are associated with distinct patterns of expression of extracellular signal-regulated kinase-1 and -2 (ERK1/2), protein kinase B (Akt), and calcineurin (CaN) (proteins that are key regulators of the expression of and/or memory processes of fear and anxiety) in the dorsal and ventral hippocampus, medial prefrontal cortex, and amygdala (important regions in neural fear circuitry) of adult female rats, and used a multivariate approach to find patterns of signalling that might discriminate between the different states of fear. To isolate fear to the conditioned cue from generalized fear to the test context, rats were conditioned to an auditory tone (i.e. tone paired with footshock) and twenty-four hours later exposed to a novel context in the presence or absence of the conditioned cue. A third group that was exposed to the conditioning context without undergoing fear conditioning was included to control for unconditioned responses to the testing procedures, which are anxiogenic. A discriminate function analysis and MANOVA determined that hippocampal signalling best discriminated the three groups from each other. The addition of values for plasma concentrations of corticosterone and progesterone (as indices of activation of the hypothalamic-pituitary-adrenal stress axis) to statistical analyses increased the separation of the three groups. There was high degree of association among the three signalling molecules in the four brain regions within each group. There was an absence of the associations between the medial prefrontal cortex and the amygdala in the cued fear recall group that were strong for the non-conditioned group. These results demonstrated unique neuronal and hormonal signalling profiles associated with unconditioned, generalized, and conditioned fear expression in females and highlight the importance of including appropriate comparisons to best discriminate between these different emotional states.
Collapse
Affiliation(s)
- Jonathan J Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Cheryl M McCormick
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1; Centre for Neuroscience, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1; Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1.
| |
Collapse
|
37
|
The Cstf2t Polyadenylation Gene Plays a Sex-Specific Role in Learning Behaviors in Mice. PLoS One 2016; 11:e0165976. [PMID: 27812195 PMCID: PMC5094787 DOI: 10.1371/journal.pone.0165976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/20/2016] [Indexed: 11/19/2022] Open
Abstract
Polyadenylation is an essential mechanism for the processing of mRNA 3′ ends. CstF-64 (the 64,000 Mr subunit of the cleavage stimulation factor; gene symbol Cstf2) is an RNA-binding protein that regulates mRNA polyadenylation site usage. We discovered a paralogous form of CstF-64 called τCstF-64 (Cstf2t). The Cstf2t gene is conserved in all eutherian mammals including mice and humans, but the τCstF-64 protein is expressed only in a subset of mammalian tissues, mostly testis and brain. Male mice that lack Cstf2t (Cstf2t-/- mice) experience disruption of spermatogenesis and are infertile, although female fertility is unaffected. However, a role for τCstF-64 in the brain has not yet been determined. Given the importance of RNA polyadenylation and splicing in neuronal gene expression, we chose to test the hypothesis that τCstF-64 is important for brain function. Male and female 185-day old wild type and Cstf2t-/- mice were examined for motor function, general activity, learning, and memory using rotarod, open field activity, 8-arm radial arm maze, and Morris water maze tasks. Male wild type and Cstf2t-/- mice did not show differences in learning and memory. However, female Cstf2t-/- mice showed significantly better retention of learned maze tasks than did female wild type mice. These results suggest that τCstf-64 is important in memory function in female mice. Interestingly, male Cstf2t-/- mice displayed less thigmotactic behavior than did wild type mice, suggesting that Cstf2t may play a role in anxiety in males. Taken together, our studies highlight the importance of mRNA processing in cognition and behavior as well as their established functions in reproduction.
Collapse
|
38
|
A systematic review comparing sex differences in cognitive function in schizophrenia and in rodent models for schizophrenia, implications for improved therapeutic strategies. Neurosci Biobehav Rev 2016; 68:979-1000. [DOI: 10.1016/j.neubiorev.2016.06.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 06/11/2016] [Accepted: 06/20/2016] [Indexed: 01/07/2023]
|
39
|
Pritchett D, Taylor AM, Barkus C, Engle SJ, Brandon NJ, Sharp T, Foster RG, Harrison PJ, Peirson SN, Bannerman DM. Searching for cognitive enhancement in the Morris water maze: better and worse performance in D-amino acid oxidase knockout (Dao(-/-)) mice. Eur J Neurosci 2016; 43:979-89. [PMID: 26833794 PMCID: PMC4855640 DOI: 10.1111/ejn.13192] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/17/2022]
Abstract
A common strategy when searching for cognitive‐enhancing drugs has been to target the N‐methyl‐d‐aspartate receptor (NMDAR), given its putative role in synaptic plasticity and learning. Evidence in favour of this approach has come primarily from studies with rodents using behavioural assays like the Morris water maze. D‐amino acid oxidase (DAO) degrades neutral D‐amino acids such as D‐serine, the primary endogenous co‐agonist acting at the glycine site of the synaptic NMDAR. Inhibiting DAO could therefore provide an effective and viable means of enhancing cognition, particularly in disorders like schizophrenia, in which NMDAR hypofunction is implicated. Indirect support for this notion comes from the enhanced hippocampal long‐term potentiation and facilitated water maze acquisition of ddY/Dao− mice, which lack DAO activity due to a point mutation in the gene. Here, in Dao knockout (Dao−/−) mice, we report both better and worse water maze performance, depending on the radial distance of the hidden platform from the side wall of the pool. Dao−/− mice displayed an increased innate preference for swimming in the periphery of the maze (possibly due to heightened anxiety), which facilitated the discovery of a peripherally located platform, but delayed the discovery of a centrally located platform. By contrast, Dao−/− mice exhibited normal performance in two alternative assays of long‐term spatial memory: the appetitive and aversive Y‐maze reference memory tasks. Taken together, these results question the proposed relationship between DAO inactivation and enhanced long‐term associative spatial memory. They also have generic implications for how Morris water maze studies are performed and interpreted.
Collapse
Affiliation(s)
- David Pritchett
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Amy M Taylor
- Department of Experimental Psychology, University of Oxford, Tinbergen Building, 9 South Parks Road, Oxford, OX1 3UD, UK
| | | | | | | | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Russell G Foster
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Paul J Harrison
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Stuart N Peirson
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Tinbergen Building, 9 South Parks Road, Oxford, OX1 3UD, UK
| |
Collapse
|
40
|
Genzel L, Bäurle A, Potyka A, Wehrle R, Adamczyk M, Friess E, Steiger A, Dresler M. Diminished nap effects on memory consolidation are seen under oral contraceptive use. Neuropsychobiology 2016; 70:253-261. [PMID: 25720656 DOI: 10.1159/000369022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 10/10/2014] [Indexed: 11/19/2022]
Abstract
Many young females take exogenous hormones as oral contraceptive (OC), a condition rarely controlled for in studies on sleep and memory consolidation even though sex hormones influence consolidation. This study investigated the effects of OCs on sleep-related consolidation of a motor and declarative task, utilizing a daytime nap protocol. Fifteen healthy, young females taking OCs came to the sleep lab for three different conditions: nap with previous learning, wake with previous learning and nap without learning. They underwent each condition twice, once during the "pill-active" weeks and once during the "pill-free" week, resulting in 6 visits. In all conditions, participants showed a significant off-line consolidation effect, independent of pill week or nap/wake condition. There were no significant differences in sleep stage duration, spindle activity or spectral EEG frequency bands between naps with or without the learning condition. The present data showed a significant off-line enhancement in memory irrespective of potential beneficial effects of a nap. In comparison to previous studies, this may suggest that the use of OCs may enhance off-line memory consolidation in motor and verbal tasks per se. These results stress the importance to control for the use of OCs in studies focusing on memory performance.
Collapse
|
41
|
CaM Kinases: From Memories to Addiction. Trends Pharmacol Sci 2015; 37:153-166. [PMID: 26674562 DOI: 10.1016/j.tips.2015.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/29/2022]
Abstract
Drug addiction is a major psychiatric disorder with a neurobiological basis that is still insufficiently understood. Initially, non-addicted, controlled drug consumption and drug instrumentalization are established. They comprise highly systematic behaviours acquired by learning and the establishment of drug memories. Ca(2+)/calmodulin-dependent protein kinases (CaMKs) are important Ca(2+) sensors translating glutamatergic activation into synaptic plasticity during learning and memory formation. Here we review the role of CaMKs in the establishment of drug-related behaviours in animal models and in humans. Converging evidence now shows that CaMKs are a crucial mechanism of how addictive drugs induce synaptic plasticity and establish various types of drug memories. Thereby, CaMKs are not only molecular relays for glutamatergic activity but they also directly control dopaminergic and serotonergic activity in the mesolimbic reward system. They can now be considered as major molecular pathways translating normal memory formation into establishment of drug memories and possibly transition to drug addiction.
Collapse
|
42
|
Keeley R, Bye C, Trow J, McDonald R. Strain and sex differences in brain and behaviour of adult rats: Learning and memory, anxiety and volumetric estimates. Behav Brain Res 2015; 288:118-31. [DOI: 10.1016/j.bbr.2014.10.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022]
|
43
|
Mottron L, Duret P, Mueller S, Moore RD, Forgeot d'Arc B, Jacquemont S, Xiong L. Sex differences in brain plasticity: a new hypothesis for sex ratio bias in autism. Mol Autism 2015; 6:33. [PMID: 26052415 PMCID: PMC4456778 DOI: 10.1186/s13229-015-0024-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 04/27/2015] [Indexed: 01/13/2023] Open
Abstract
Several observations support the hypothesis that differences in synaptic and regional cerebral plasticity between the sexes account for the high ratio of males to females in autism. First, males are more susceptible than females to perturbations in genes involved in synaptic plasticity. Second, sex-related differences in non-autistic brain structure and function are observed in highly variable regions, namely, the heteromodal associative cortices, and overlap with structural particularities and enhanced activity of perceptual associative regions in autistic individuals. Finally, functional cortical reallocations following brain lesions in non-autistic adults (for example, traumatic brain injury, multiple sclerosis) are sex-dependent. Interactions between genetic sex and hormones may therefore result in higher synaptic and consecutively regional plasticity in perceptual brain areas in males than in females. The onset of autism may largely involve mutations altering synaptic plasticity that create a plastic reaction affecting the most variable and sexually dimorphic brain regions. The sex ratio bias in autism may arise because males have a lower threshold than females for the development of this plastic reaction following a genetic or environmental event.
Collapse
Affiliation(s)
- Laurent Mottron
- Centre d'excellence en Troubles envahissants du dévelopement de l'Université de Montréal (CETEDUM), Montréal, Canada.,Hôpital Rivière-des-Prairies, Département de Psychiatrie, Montréal, Canada.,Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Québec, Canada.,Department of Psychiatry, University of Montreal, Québec, Canada
| | - Pauline Duret
- Centre d'excellence en Troubles envahissants du dévelopement de l'Université de Montréal (CETEDUM), Montréal, Canada.,Hôpital Rivière-des-Prairies, Département de Psychiatrie, Montréal, Canada.,Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Québec, Canada.,Department of Psychiatry, University of Montreal, Québec, Canada.,Département de Biologie, École Normale Supérieure de Lyon, Lyon, CEDEX 07 France
| | - Sophia Mueller
- Institute of Clinical Radiology, University Hospitals, Munich, Germany.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129 USA.,Harvard University, Center for Brain Science, Cambridge, MA 02138 USA
| | - Robert D Moore
- Department of Psychiatry, University of Montreal, Québec, Canada.,Department of Health Sciences, University of Montreal, Montreal, Canada.,College of Applied Health Sciences, University of Illinois, Urbana-Champaign, USA
| | - Baudouin Forgeot d'Arc
- Centre d'excellence en Troubles envahissants du dévelopement de l'Université de Montréal (CETEDUM), Montréal, Canada.,Hôpital Rivière-des-Prairies, Département de Psychiatrie, Montréal, Canada.,Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Québec, Canada.,Department of Psychiatry, University of Montreal, Québec, Canada
| | - Sebastien Jacquemont
- Department of Psychiatry, University of Montreal, Québec, Canada.,Centre de recherche, Centre Hospitalier Universitaire Sainte Justine, Montréal, Canada.,Service of Medical Genetics, University Hospital of Lausanne, University of Lausanne, Lausanne, 1011 Switzerland
| | - Lan Xiong
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Québec, Canada.,Department of Psychiatry, University of Montreal, Québec, Canada
| |
Collapse
|
44
|
Early detection of cognitive deficits in the 3xTg-AD mouse model of Alzheimer's disease. Behav Brain Res 2015; 289:29-38. [PMID: 25896362 DOI: 10.1016/j.bbr.2015.04.012] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 12/16/2022]
Abstract
Which behavioral test is the most sensitive for detecting cognitive deficits in the 3xTg-AD at 6.5 months of age? The 3xTg-AD mouse model of Alzheimer's disease (AD) has three transgenes (APPswe, PS1M146V, and Tau P301L) which cause the development of amyloid beta plaques, neurofibrillary tangles, and cognitive deficits with age. In order to determine which task is the most sensitive in the early detection of cognitive deficits, we compared male and female 3xTg-AD and B6129SF2 wildtype mice at 6.5 months of age on a test battery including spontaneous alternation in the Y-Maze, novel object recognition, spatial memory in the Barnes maze, and cued and contextual fear conditioning. The 3xTg-AD mice had impaired learning and memory in the Barnes maze but performed better than B6129SF2 wildtype mice in the Y-Maze and in contextual fear conditioning. Neither genotype demonstrated a preference in the novel object recognition task nor was there a genotype difference in cued fear conditioning but females performed better than males. From our results we conclude that the 3xTg-AD mice have mild cognitive deficits in spatial learning and memory and that the Barnes maze was the most sensitive test for detecting these cognitive deficits in 6.5-month-old mice.
Collapse
|
45
|
Keeley RJ, Burger DK, Saucier DM, Iwaniuk AN. The size of non-hippocampal brain regions varies by season and sex in Richardson's ground squirrel. Neuroscience 2015; 289:194-206. [PMID: 25595988 DOI: 10.1016/j.neuroscience.2014.12.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/29/2014] [Accepted: 12/18/2014] [Indexed: 11/19/2022]
Abstract
Sex- and season-specific modulation of hippocampal size and function is observed across multiple species, including rodents. Other non-hippocampal-dependent behaviors exhibit season and sex differences, and whether the associated brain regions exhibit similar variation with sex and season remains to be fully characterized. As such, we examined the brains of wild-caught Richardson's ground squirrels (RGS; Urocitellus richardsonii) for seasonal (breeding, non-breeding) and sex differences in the volumes of specific brain areas, including: total brain volume, corpus callosum (CC), anterior commissure (AC), medial prefrontal cortex (mPFC), total neocortex (NC), entorhinal cortex (EC), and superior colliculus (SC). Analyses of variance and covariance revealed significant interactions between season and sex for almost all areas studied, primarily resulting from females captured during the breeding season exhibiting larger volumes than females captured during the non-breeding season. This was observed for volumes of the AC, mPFC, NC, EC, and SC. Where simple main effects of season were observed for males (the NC and the SC), the volume advantage favoured males captured during the NBr season. Only two simple main effects of sex were observed: males captured in the non-breeding season had significantly larger total brain volume than females captured in the non-breeding season, and females captured during the breeding season had larger volumes of the mPFC and EC than males captured in the breeding season. These results indicate that females have more pronounced seasonal differences in brain and brain region sizes. The extent to which seasonal differences in brain region volumes vary with behaviour is unclear, but our data do suggest that seasonal plasticity is not limited to the hippocampus and that RGS is a useful mammalian species for understanding seasonal plasticity in an ecologically relevant context.
Collapse
Affiliation(s)
- R J Keeley
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada.
| | - D K Burger
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - D M Saucier
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON L1H 7K4, Canada
| | - A N Iwaniuk
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
46
|
Bates RC, Stith BJ, Stevens KE, Adams CE. Reduced CHRNA7 expression in C3H mice is associated with increases in hippocampal parvalbumin and glutamate decarboxylase-67 (GAD67) as well as altered levels of GABA(A) receptor subunits. Neuroscience 2014; 273:52-64. [PMID: 24836856 DOI: 10.1016/j.neuroscience.2014.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/23/2014] [Accepted: 05/02/2014] [Indexed: 12/14/2022]
Abstract
Decreased expression of CHRNA7, the gene encoding the α7(∗) subtype of nicotinic receptor, may contribute to the cognitive dysfunction observed in schizophrenia by disrupting the inhibitory/excitatory balance in the hippocampus. C3H mice with reduced Chrna7 expression have significant reductions in hippocampal α7(∗) receptor density, deficits in hippocampal auditory gating, increased hippocampal activity as well as significant decreases in hippocampal glutamate decarboxylase-65 (GAD65) and γ-aminobutyric acid-A (GABAA) receptor levels. The current study investigated whether altered Chrna7 expression is associated with changes in the levels of parvalbumin, GAD67 and/or GABAA receptor subunits in the hippocampus from male and female C3H Chrna7 wildtype, C3H Chrna7 heterozygous and C3H Chrna7 knockout (KO) mice using quantitative Western immunoblotting. Reduced Chrna7 expression was associated with significant increases in hippocampal parvalbumin and GAD67 and with complex alterations in GABAA receptor subunits. A decrease in α3 subunit protein was seen in both female C3H Chrna7 Het and KO mice while a decrease in α4 subunit protein was also detected in C3H Chrna7 KO mice with no sex difference. In contrast, an increase in δ subunit protein was observed in C3H Chrna7 Het mice while a decrease in this subunit was observed in C3H Chrna7 KO mice, with δ subunit protein levels being greater in males than in females. Finally, an increase in γ2 subunit protein was found in C3H Chrna7 KO mice with the levels of this subunit again being greater in males than in females. The increases in hippocampal parvalbumin and GAD67 observed in C3H Chrna7 mice are contrary to reports of reductions in these proteins in the postmortem hippocampus from schizophrenic individuals. We hypothesize that the disparate results may occur because of the influence of factors other than CHRNA7 that have been found to be abnormal in schizophrenia.
Collapse
Affiliation(s)
- R C Bates
- Medical Research, Veterans Affairs Medical Center, Denver, CO 80220, United States; Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, United States; Department of Integrative Biology, University of Colorado Denver Downtown Denver Campus, Denver, CO 80217, United States
| | - B J Stith
- Department of Integrative Biology, University of Colorado Denver Downtown Denver Campus, Denver, CO 80217, United States
| | - K E Stevens
- Medical Research, Veterans Affairs Medical Center, Denver, CO 80220, United States; Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, United States
| | - C E Adams
- Medical Research, Veterans Affairs Medical Center, Denver, CO 80220, United States; Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, United States.
| |
Collapse
|
47
|
An Epigenetic Switch of the Brain Sex as a Basis of Gendered Behavior in Drosophila. EPIGENETIC SHAPING OF SOCIOSEXUAL INTERACTIONS - FROM PLANTS TO HUMANS 2014; 86:45-63. [DOI: 10.1016/b978-0-12-800222-3.00003-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
48
|
|
49
|
Stern SA, Alberini CM. Mechanisms of memory enhancement. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2013; 5:37-53. [PMID: 23151999 PMCID: PMC3527655 DOI: 10.1002/wsbm.1196] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ongoing quest for memory enhancement is one that grows necessary as the global population increasingly ages. The extraordinary progress that has been made in the past few decades elucidating the underlying mechanisms of how long-term memories are formed has provided insight into how memories might also be enhanced. Capitalizing on this knowledge, it has been postulated that targeting many of the same mechanisms, including CREB activation, AMPA/NMDA receptor trafficking, neuromodulation (e.g., via dopamine, adrenaline, cortisol, or acetylcholine) and metabolic processes (e.g., via glucose and insulin) may all lead to the enhancement of memory. These and other mechanisms and/or approaches have been tested via genetic or pharmacological methods in animal models, and several have been investigated in humans as well. In addition, a number of behavioral methods, including exercise and reconsolidation, may also serve to strengthen and enhance memories. By utilizing this information and continuing to investigate these promising avenues, memory enhancement may indeed be achieved in the future.
Collapse
Affiliation(s)
- Sarah A. Stern
- Friedman Brain Institute, Graduate School of Biological Sciences, Mount Sinai School of Memories
- Center for Neural Science, New York University
| | | |
Collapse
|
50
|
Nguyen AT, Nishijo M, Hori E, Nguyen NM, Pham TT, Fukunaga K, Nakagawa H, Tran AH, Nishijo H. Influence of Maternal Exposure to 2,3,7,8-Tetrachlorodibenzo-p-dioxin on Socioemotional Behaviors in Offspring Rats. ENVIRONMENTAL HEALTH INSIGHTS 2013; 7:1-14. [PMID: 23493046 PMCID: PMC3588853 DOI: 10.4137/ehi.s10346] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Effects of dioxins on cognitive functions were reported in previous studies conducted in humans and animals. In the present study, we investigated the influence of dioxin exposure during pregnancy on social interaction and on the activity of offspring, which are related to neurodevelopmental disturbances. In addition, we analyzed neurochemical alterations of the limbic system of rat brains to suggest one mechanism of dioxin effects on brain function. We believe that this manuscript is suitable for publication in "Environmental Health Insights" because it provides an interesting topic for a wide global audience. To clarify the relationships between maternal dioxin exposure and socioemotional functions of rat offspring, dams were given TCDD (1.0 μg/kg) on gestational day 15. Social interactions and forced swimming time were compared between TCDD-exposed and control offspring in each gender. Frequency and duration of locomotion were higher, and durations per one behavior of proximity and social contact were significantly lower in the exposed males, while only the duration of proximity was lower in the exposed females. Forced swimming time on the first day was significantly longer in the exposed males. In the limbic system of the rat brain, the levels and/or activity of CaMKIIα were decreased in males and were increased in females in the exposed offspring. These results suggest that prenatal TCDD exposure induces hyperactivity and socioemotional deficits, particularly in the male offspring due to alterations in CaMKIIα activity in the limbic system of the brain.
Collapse
Affiliation(s)
- Anh T.N. Nguyen
- Department of Public Health, Kanazawa Medical University, Ishikawa, Japan
| | - Muneko Nishijo
- Department of Public Health, Kanazawa Medical University, Ishikawa, Japan
- Corresponding author
| | - Etsuro Hori
- System Emotional Science, Graduate School of Medicine, University of Toyama, Toyama, Japan
| | - Nui M. Nguyen
- System Emotional Science, Graduate School of Medicine, University of Toyama, Toyama, Japan
| | - Tai T. Pham
- Department of Public Health, Kanazawa Medical University, Ishikawa, Japan
- Biomedical Pharmaceutical Research Center, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Miyagi, Japan
| | - Hideaki Nakagawa
- Department of Public Health, Kanazawa Medical University, Ishikawa, Japan
| | - Anh H. Tran
- Department of Physiology, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|