1
|
Raffaele S, Clausen BH, Mannella FC, Wirenfeldt M, Marangon D, Tidgen SB, Corradini S, Madsen K, Lecca D, Abbracchio MP, Lambertsen KL, Fumagalli M. Characterisation of GPR17-expressing oligodendrocyte precursors in human ischaemic lesions and correlation with reactive glial responses. J Pathol 2025; 265:226-243. [PMID: 39703181 PMCID: PMC11717493 DOI: 10.1002/path.6381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/14/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024]
Abstract
White matter damage and subsequent demyelination significantly contribute to long-term functional impairment after ischaemic stroke. Identifying novel pharmacological targets to restore myelin integrity by promoting the maturation of oligodendrocyte precursor cells (OPCs) into new myelinating oligodendrocytes may open new perspectives for ischaemic stroke treatment. In this respect, previous studies highlighted the role of the G protein-coupled membrane receptor 17 (GPR17) as a key regulator of OPC differentiation in experimental models of brain injury, including ischaemic stroke. To determine the translational value of GPR17 as a possible target in the context of human disease, we exploited immunohistochemistry to characterise the distribution of GPR17-expressing cells in brain tissue samples from ischaemic stroke cases and correlated it with the reactive state of neighbouring glial cells. The results showed that GPR17 specifically decorates a subpopulation of differentiation-committed OPCs, labelled by the peculiar marker breast carcinoma-amplified sequence 1 (BCAS1), that accumulates in the peri-infarct region in the later stages after the ischaemic event. Interestingly, the response of GPR17-expressing cells appears to be paralleled by the switch of reactive microglia/macrophages from a phagocytic to a dystrophic phenotype and by astrocytic scar formation. A negative correlation was found between GPR17-expressing OPCs and reactive microglia/macrophages and astrocytes surrounding chronic ischaemic lesions in female subjects, while the same relationship was less pronounced in males. These results were reinforced by bioinformatic analysis of a publicly available transcriptomic dataset, which implicated a possible role of inflammation and defective neuron-to-OPC communication in remyelination failure after ischaemic damage. Hence, these data strengthen the relevance of GPR17-based remyelinating therapies for the treatment of ischaemic stroke. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Stefano Raffaele
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’Università degli Studi di MilanoMilanItaly
| | - Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- Department of Clinical Research, Brain Research – Inter Disciplinary Guided Excellence (BRIDGE)University of Southern DenmarkOdenseDenmark
- Odense Patient data Explorative Network (OPEN), Department of Clinical Research, Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
| | - Francesca Carolina Mannella
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’Università degli Studi di MilanoMilanItaly
| | - Martin Wirenfeldt
- Department of Clinical Research, Brain Research – Inter Disciplinary Guided Excellence (BRIDGE)University of Southern DenmarkOdenseDenmark
- Odense Patient data Explorative Network (OPEN), Department of Clinical Research, Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
- Department of PathologySouth Denmark University HospitalOdenseDenmark
| | - Davide Marangon
- Department of Pharmaceutical SciencesUniversità degli Studi di MilanoMilanItaly
| | - Sarah Boe Tidgen
- Department of Neurobiology Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Silvia Corradini
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’Università degli Studi di MilanoMilanItaly
- Department of Neurobiology Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Kirsten Madsen
- Department of PathologySouth Denmark University HospitalOdenseDenmark
- Department of Cardiovascular and Renal Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Davide Lecca
- Department of Pharmaceutical SciencesUniversità degli Studi di MilanoMilanItaly
| | | | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- Department of Clinical Research, Brain Research – Inter Disciplinary Guided Excellence (BRIDGE)University of Southern DenmarkOdenseDenmark
- Odense Patient data Explorative Network (OPEN), Department of Clinical Research, Odense University HospitalUniversity of Southern DenmarkOdenseDenmark
- Department of NeurologyOdense University HospitalOdenseDenmark
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’Università degli Studi di MilanoMilanItaly
| |
Collapse
|
2
|
Tang Y, Zhang L, Huang P, She Z, Luo S, Peng H, Chen Y, Luo J, Duan W, Xiao Y, Liu L, Liu L. Understanding the intricacies of cellular mechanisms in remyelination: The role of circadian rhythm. Neurochem Int 2025; 183:105929. [PMID: 39756585 DOI: 10.1016/j.neuint.2025.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
The term "circadian rhythm" refers to the 24-h oscillations found in various physiological processes in organisms, responsible for maintaining bodily homeostasis. Many neurological diseases mainly involve the process of demyelination, and remyelination is crucial for the treatment of neurological diseases. Current research mainly focuses on the key role of circadian clocks in the pathophysiological mechanisms of multiple sclerosis. Various studies have shown that the circadian rhythm regulates various cellular molecular mechanisms and signaling pathways involved in remyelination. The process of remyelination is primarily mediated by oligodendrocyte precursor cells (OPCs), oligodendrocytes, microglia, and astrocytes. OPCs are activated, proliferate, migrate, and ultimately differentiate into oligodendrocytes after demyelination, involving many key signaling pathway and regulatory factors. Activated microglia secretes important cytokines and chemokines, promoting OPC proliferation and differentiation, and phagocytoses myelin debris that inhibits remyelination. Astrocytes play a crucial role in supporting remyelination by secreting signals that promote remyelination or facilitate the phagocytosis of myelin debris by microglia. Additionally, cell-to-cell communication via gap junctions allows for intimate contact between astrocytes and oligodendrocytes, providing metabolic support for oligodendrocytes. Therefore, gaining a deeper understanding of the mechanisms and molecular pathways of the circadian rhythm at various stages of remyelination can help elucidate the fundamental characteristics of remyelination and provide insights into treating demyelinating disorders.
Collapse
Affiliation(s)
- Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yuqiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Jinwen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Wangxin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| |
Collapse
|
3
|
Xu H, Zhang H, Pop N, Hall J, Shazlee I, Wagner-Tsukamoto M, Chen Z, Gu Y, Zhao C, Ma D. The isoflavone puerarin promotes generation of human iPSC-derived pre-oligodendrocytes and enhances endogenous remyelination in rodent models. J Neurochem 2025; 169:e16245. [PMID: 39424593 DOI: 10.1111/jnc.16245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024]
Abstract
Puerarin, a natural isoflavone, is commonly used as a Chinese herbal medicine for the treatment of various cardiovascular and neurological disorders. It has been found to be neuroprotective via TrK-PI3K/Akt pathway, which is associated with anti-inflammatory and antioxidant effects. Myelin damage in diseases such as multiple sclerosis (MS) and ischemia induces activation of endogenous oligodendrocyte progenitor cells (OPC) and subsequent remyelination by newly formed oligodendrocytes. It has been shown that human-induced pluripotent stem cells (hiPSC)-derived OPCs promote remyelination when transplanted to the brains of disease models. Here, we ask whether and how puerarin is beneficial to the generation of hiPSC-derived OPCs and oligodendrocytes, and to the endogenous remyelination in mouse demyelination model. Our results show that puerarin increases the proportion of O4+ pre-oligodendrocytes differentiated from iPSC-derived neural stem cells. In vitro, puerarin increases proliferation of rat OPCs and enhances mitochondrial activity. Treatment of puerarin at progenitor stage increases the yielding of differentiated oligodendrocytes. In rat organotypic brain slice culture, puerarin promotes both myelination and remyelination. In vivo, puerarin increases oligodendrocyte repopulation during remyelination in mouse spinal cord following lysolethicin-induced demyelination. Our findings suggest that puerarin promotes oligodendrocyte lineage progression and myelin repair, with a potential to be developed into therapeutic agent for neurological diseases associated with myelin damage.
Collapse
Affiliation(s)
- Hao Xu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Clinical Neurosciences and Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Molecular Pharmacology Laboratory, Institute of Molecular Medicine, Peking University, Beijing, China
- ALLIFE Medicine Science and Technology Co. Ltd. Building No. 13, VPark, Yizhuang Economic and Technological Development Zone, Beijing, China
| | - Huiyuan Zhang
- Department of Clinical Neurosciences and Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Molecular Pharmacology Laboratory, Institute of Molecular Medicine, Peking University, Beijing, China
- ALLIFE Medicine Science and Technology Co. Ltd. Building No. 13, VPark, Yizhuang Economic and Technological Development Zone, Beijing, China
| | - Nona Pop
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Joe Hall
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Ibrahim Shazlee
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
| | | | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Yuchun Gu
- Molecular Pharmacology Laboratory, Institute of Molecular Medicine, Peking University, Beijing, China
- ALLIFE Medicine Science and Technology Co. Ltd. Building No. 13, VPark, Yizhuang Economic and Technological Development Zone, Beijing, China
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Chao Zhao
- Department of Clinical Neurosciences and Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Dan Ma
- Department of Clinical Neurosciences and Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
| |
Collapse
|
4
|
Zhu H, Hu E, Guo X, Yuan Z, Jiang H, Zhang W, Tang T, Wang Y, Li T. Promoting remyelination in central nervous system diseases: Potentials and prospects of natural products and herbal medicine. Pharmacol Res 2024; 210:107533. [PMID: 39617281 DOI: 10.1016/j.phrs.2024.107533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Myelin damage is frequently associated with central nervous system (CNS) diseases and is a critical factor influencing neurological function and disease prognosis. Nevertheless, the majority of current treatments for the CNS concentrate on gray matter injury and repair strategies, while clinical interventions specifically targeting myelin repair remain unavailable. In recent years, natural products and herbal medicine have achieved considerable progress in the domain of myelin repair, given their remarkable curative effect and low toxic side effects, demonstrating significant therapeutic potential. In this review, we present a rather comprehensive account of the mechanisms underlying myelin formation, injury, and repair, with a particular emphasis on the interactions between oligodendrocytes and other glial cells. Furthermore, we summarize the natural products and herbal medicine currently employed in remyelination along with their mechanisms of action, highlighting the potential and challenges of certain natural compounds to enhance myelin repair. This review aims to facilitate the expedited development of innovative therapeutics derived from natural products and herbal medicine and furnish novel insights into myelin repair in the CNS.
Collapse
Affiliation(s)
- Haonan Zhu
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - En Hu
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Xin Guo
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhiqiang Yuan
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Haoying Jiang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Tao Tang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Yang Wang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Teng Li
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China.
| |
Collapse
|
5
|
Theophanous S, Sargiannidou I, Kleopa KA. Glial Cells as Key Regulators in Neuroinflammatory Mechanisms Associated with Multiple Sclerosis. Int J Mol Sci 2024; 25:9588. [PMID: 39273535 PMCID: PMC11395575 DOI: 10.3390/ijms25179588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Even though several highly effective treatments have been developed for multiple sclerosis (MS), the underlying pathological mechanisms and drivers of the disease have not been fully elucidated. In recent years, there has been a growing interest in studying neuroinflammation in the context of glial cell involvement as there is increasing evidence of their central role in disease progression. Although glial cell communication and proper function underlies brain homeostasis and maintenance, their multiple effects in an MS brain remain complex and controversial. In this review, we aim to provide an overview of the contribution of glial cells, oligodendrocytes, astrocytes, and microglia in the pathology of MS during both the activation and orchestration of inflammatory mechanisms, as well as of their synergistic effects during the repair and restoration of function. Additionally, we discuss how the understanding of glial cell involvement in MS may provide new therapeutic targets either to limit disease progression or to facilitate repair.
Collapse
Affiliation(s)
- Styliani Theophanous
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- Center for Multiple Sclerosis and Related Disorders, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| |
Collapse
|
6
|
Leenders F, Koole L, Slaets H, Tiane A, Hove DVD, Vanmierlo T. Navigating oligodendrocyte precursor cell aging in brain health. Mech Ageing Dev 2024; 220:111959. [PMID: 38950628 DOI: 10.1016/j.mad.2024.111959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Oligodendrocyte precursor cells (OPCs) comprise 5-8 % of the adult glial cell population and stand out as the most proliferative cell type in the central nervous system (CNS). OPCs are responsible for generating oligodendrocytes (OLs), the myelinating cells of the CNS. However, OPC functions decline as we age, resulting in impaired differentiation and inadequate remyelination. This review explores the cellular and molecular changes associated with OPC aging, and their impact on OPC differentiation and functionality. Furthermore, it examines the impact of OPC aging within the context of multiple sclerosis and Alzheimer's disease, both neurodegenerative conditions wherein aged OPCs exacerbate disease progression by impeding remyelination. Moreover, various pharmacological interventions targeting pathways related to senescence and differentiation are discussed as potential strategies to rejuvenate aged OPCs. Enhancing our understanding of OPC aging mechanisms holds promise for developing new therapies to improve remyelination and repair in age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Freddy Leenders
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Lisa Koole
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Helena Slaets
- University MS Centre (UMSC) Hasselt, Pelt, Belgium; Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Assia Tiane
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; University MS Centre (UMSC) Hasselt, Pelt, Belgium
| | - Daniel van den Hove
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Tim Vanmierlo
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; University MS Centre (UMSC) Hasselt, Pelt, Belgium.
| |
Collapse
|
7
|
Oh J, Giacomini PS, Yong VW, Costello F, Blanchette F, Freedman MS. From progression to progress: The future of multiple sclerosis. J Cent Nerv Syst Dis 2024; 16:11795735241249693. [PMID: 38711957 PMCID: PMC11072059 DOI: 10.1177/11795735241249693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Significant advances have been made in the diagnosis and treatment of multiple sclerosis in recent years yet challenges remain. The current classification of MS phenotypes according to disease activity and progression, for example, does not adequately reflect the underlying pathophysiological mechanisms that may be acting in an individual with MS at different time points. Thus, there is a need for clinicians to transition to a management approach based on the underlying pathophysiological mechanisms that drive disability in MS. A Canadian expert panel convened in January 2023 to discuss priorities for clinical discovery and scientific exploration that would help advance the field. Five key areas of focus included: identifying a mechanism-based disease classification system; developing biomarkers (imaging, fluid, digital) to identify pathologic processes; implementing a data-driven approach to integrate genetic/environmental risk factors, clinical findings, imaging and biomarker data, and patient-reported outcomes to better characterize the many factors associated with disability progression; utilizing precision-based treatment strategies to target different disease processes; and potentially preventing disease through Epstein-Barr virus (EBV) vaccination, counselling about environmental risk factors (e.g. obesity, exercise, vitamin D/sun exposure, smoking) and other measures. Many of the tools needed to meet these needs are currently available. Further work is required to validate emerging biomarkers and tailor treatment strategies to the needs of individual patients. The hope is that a more complete view of the individual's pathobiology will enable clinicians to usher in an era of truly personalized medicine, in which more informed treatment decisions throughout the disease course achieve better long-term outcomes.
Collapse
Affiliation(s)
- Jiwon Oh
- St. Michael’s Hospital, Toronto, ON, Canada
| | | | - V. Wee Yong
- University of Calgary and Hotchkiss Brain Institute, Calgary, Canada
| | - Fiona Costello
- University of Calgary and Hotchkiss Brain Institute, Calgary, Canada
| | | | - Mark S. Freedman
- Department of Medicine¸ University of Ottawa, Ottawa, ON, Canada
- The Ottawa Hospital Research Institute, Ottawa, QC, Canada
| |
Collapse
|
8
|
Bachmann H, Vandemoortele B, Vermeirssen V, Carrette E, Vonck K, Boon P, Raedt R, Laureys G. Vagus nerve stimulation enhances remyelination and decreases innate neuroinflammation in lysolecithin-induced demyelination. Brain Stimul 2024; 17:575-587. [PMID: 38648972 DOI: 10.1016/j.brs.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Current treatments for Multiple Sclerosis (MS) poorly address chronic innate neuroinflammation nor do they offer effective remyelination. The vagus nerve has a strong regulatory role in inflammation and Vagus Nerve Stimulation (VNS) has potential to affect both neuroinflammation and remyelination in MS. OBJECTIVE This study investigated the effects of VNS on demyelination and innate neuroinflammation in a validated MS rodent model. METHODS Lysolecithin (LPC) was injected in the corpus callosum (CC) of 46 Lewis rats, inducing a demyelinated lesion. 33/46 rats received continuously-cycled VNS (cVNS) or one-minute per day VNS (1minVNS) or sham VNS from 2 days before LPC-injection until perfusion at 3 days post-injection (dpi) (corresponding with a demyelinated lesion with peak inflammation). 13/46 rats received cVNS or sham from 2 days before LPC-injection until perfusion at 11 dpi (corresponding with a partial remyelinated lesion). Immunohistochemistry and proteomics analyses were performed to investigate the extend of demyelination and inflammation. RESULTS Immunohistochemistry showed that cVNS significantly reduced microglial and astrocytic activation in the lesion and lesion border, and significantly reduced the Olig2+ cell count at 3 dpi. Furthermore, cVNS significantly improved remyelination with 57.4 % versus sham at 11 dpi. Proteomic gene set enrichment analyses showed increased activation of (glutamatergic) synapse pathways in cVNS versus sham, most pronounced at 3 dpi. CONCLUSION cVNS improved remyelination of an LPC-induced lesion. Possible mechanisms might include modulation of microglia and astrocyte activity, increased (glutamatergic) synapses and enhanced oligodendrocyte clearance after initial injury.
Collapse
Affiliation(s)
- Helen Bachmann
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium.
| | - Boris Vandemoortele
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Vanessa Vermeirssen
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Evelien Carrette
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| | - Kristl Vonck
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| | - Paul Boon
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| | - Robrecht Raedt
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| | - Guy Laureys
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| |
Collapse
|
9
|
Agarwal G, Roy A, Singh AA, Kumar H, Mandoli A, Srivastava A. BM-MSC-Loaded Graphene-Collagen Cryogels Ameliorate Neuroinflammation in a Rat Spinal Cord Injury Model. ACS APPLIED BIO MATERIALS 2024; 7:1478-1489. [PMID: 38354406 DOI: 10.1021/acsabm.3c00876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A major obstacle to axonal regeneration following spinal cord injury (SCI) is neuroinflammation mediated by astrocytes and microglial cells. We previously demonstrated that graphene-based collagen hydrogels alone can decrease neuroinflammation in SCI. Their regenerative potential, however, is poorly understood and incomplete. Furthermore, stem cells have demonstrated both neuroprotective and regenerative properties in spinal cord regeneration, although there are constraints connected with the application of stem cell-based therapy. In this study, we have analyzed the regeneration capability of human bone marrow mesenchymal stem cell (BM-MSC)-loaded graphene-cross-linked collagen cryogels (Gr-Col) in a thoracic (T10-T11) hemisection model of SCI. Our study found that BM-MSC-loaded Gr-Col improves axonal regeneration, reduces neuroinflammation by decreasing astrocyte reactivity, and promotes M2 macrophage polarization. BM-MSC-loaded-Gr-Col demonstrated enhanced regenerative potential compared to Gr-Col and the injury group control. Next-generation sequencing (NGS) analysis revealed that BM-MSC-loaded-Gr-Col modulates the JAK2-STAT3 pathway, thus decreasing the reactive and scar-forming astrocyte phenotype. The decrease in neuroinflammation in the BM-MSC-loaded-Gr-Col group is attributed to the modulation of Notch/Rock and STAT5a/b and STAT6 signaling. Overall, Gene Set Enrichment Analysis suggests the promising role of BM-MSC-loaded-Gr-Col in promoting axonal regeneration after SCI by modulating molecular pathways such as the PI3/Akt pathway, focal adhesion kinase, and various inflammatory pathways.
Collapse
Affiliation(s)
- Gopal Agarwal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Abhishek A Singh
- Department of Molecular Biology, Radboud University, Postbus 9101, Nijmegen 6500 HB, The Netherlands
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Akshay Srivastava
- Department of Medical Device, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
10
|
de la Fuente AG, Dittmer M, Heesbeen EJ, de la Vega Gallardo N, White JA, Young A, McColgan T, Dashwood A, Mayne K, Cabeza-Fernández S, Falconer J, Rodriguez-Baena FJ, McMurran CE, Inayatullah M, Rawji KS, Franklin RJM, Dooley J, Liston A, Ingram RJ, Tiwari VK, Penalva R, Dombrowski Y, Fitzgerald DC. Ageing impairs the regenerative capacity of regulatory T cells in mouse central nervous system remyelination. Nat Commun 2024; 15:1870. [PMID: 38467607 PMCID: PMC10928230 DOI: 10.1038/s41467-024-45742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/31/2024] [Indexed: 03/13/2024] Open
Abstract
Myelin regeneration (remyelination) is essential to prevent neurodegeneration in demyelinating diseases such as Multiple Sclerosis, however, its efficiency declines with age. Regulatory T cells (Treg) recently emerged as critical players in tissue regeneration, including remyelination. However, the effect of ageing on Treg-mediated regenerative processes is poorly understood. Here, we show that expansion of aged Treg does not rescue age-associated remyelination impairment due to an intrinsically diminished capacity of aged Treg to promote oligodendrocyte differentiation and myelination in male and female mice. This decline in regenerative Treg functions can be rescued by a young environment. We identified Melanoma Cell Adhesion Molecule 1 (MCAM1) and Integrin alpha 2 (ITGA2) as candidates of Treg-mediated oligodendrocyte differentiation that decrease with age. Our findings demonstrate that ageing limits the neuroregenerative capacity of Treg, likely limiting their remyelinating therapeutic potential in aged patients, and describe two mechanisms implicated in Treg-driven remyelination that may be targetable to overcome this limitation.
Collapse
Affiliation(s)
- Alerie Guzman de la Fuente
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
- Institute for Health and Biomedical Sciences of Alicante (ISABIAL), Alicante, 03010, Spain.
- Instituto de Neurosciencias CSIC-UMH, San Juan de Alicante, Alicante, 03550, Spain.
| | - Marie Dittmer
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Elise J Heesbeen
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
- Division of Pharmacology, Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Nira de la Vega Gallardo
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Jessica A White
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Andrew Young
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Tiree McColgan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Amy Dashwood
- Department of Pathology, University of Cambridge, CB2 1QP, Cambridge, UK
- Babraham Institute, CB22 3AT, Cambridge, UK
| | - Katie Mayne
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Sonia Cabeza-Fernández
- Institute for Health and Biomedical Sciences of Alicante (ISABIAL), Alicante, 03010, Spain
- Instituto de Neurosciencias CSIC-UMH, San Juan de Alicante, Alicante, 03550, Spain
| | - John Falconer
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
- CRUK Beatson Institute, G61 1BD, Glasgow, UK
| | | | - Christopher E McMurran
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Mohammed Inayatullah
- Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), 5230, Odense, Denmark
| | - Khalil S Rawji
- Altos Labs - Cambridge Institute of Science, Granta Park, Cambridge, CB21 6GP, UK
| | - Robin J M Franklin
- Altos Labs - Cambridge Institute of Science, Granta Park, Cambridge, CB21 6GP, UK
| | - James Dooley
- Department of Pathology, University of Cambridge, CB2 1QP, Cambridge, UK
| | - Adrian Liston
- Department of Pathology, University of Cambridge, CB2 1QP, Cambridge, UK
| | - Rebecca J Ingram
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
- Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), 5230, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, 5000, Odense, Denmark
| | - Rosana Penalva
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Yvonne Dombrowski
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Denise C Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
11
|
Gingele S, Möllenkamp TM, Henkel F, Schröder L, Hümmert MW, Skripuletz T, Stangel M, Gudi V. Automated analysis of gray matter damage in aged mice reveals impaired remyelination in the cuprizone model. Brain Pathol 2024; 34:e13218. [PMID: 37927164 PMCID: PMC10901622 DOI: 10.1111/bpa.13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023] Open
Abstract
Multiple sclerosis is a chronic autoimmune disease of the central nervous system characterized by myelin loss, axonal damage, and glial scar formation. Still, the underlying processes remain unclear, as numerous pathways and factors have been found to be involved in the development and progression of the disease. Therefore, it is of great importance to find suitable animal models as well as reliable methods for their precise and reproducible analysis. Here, we describe the impact of demyelination on clinically relevant gray matter regions of the hippocampus and cerebral cortex, using the previously established cuprizone model for aged mice. We could show that bioinformatic image analysis methods are not only suitable for quantification of cell populations, but also for the assessment of de- and remyelination processes, as numerous objective parameters can be considered for reproducible measurements. After cuprizone-induced demyelination, subsequent remyelination proceeded slowly and remained incomplete in all gray matter areas studied. There were regional differences in the number of mature oligodendrocytes during remyelination suggesting region-specific differences in the factors accounting for remyelination failure, as, even in the presence of oligodendrocytes, remyelination in the cortex was found to be impaired. Upon cuprizone administration, synaptic density and dendritic volume in the gray matter of aged mice decreased. The intensity of synaptophysin staining gradually restored during the subsequent remyelination phase, however the expression of MAP2 did not fully recover. Microgliosis persisted in the gray matter of aged animals throughout the remyelination period, whereas extensive astrogliosis was of short duration as compared to white matter structures. In conclusion, we demonstrate that the application of the cuprizone model in aged mice mimics the impaired regeneration ability seen in human pathogenesis more accurately than commonly used protocols with young mice and therefore provides an urgently needed animal model for the investigation of remyelination failure and remyelination-enhancing therapies.
Collapse
Affiliation(s)
- Stefan Gingele
- Department of NeurologyHannover Medical SchoolHannoverGermany
| | | | - Florian Henkel
- Department of NeurologyHannover Medical SchoolHannoverGermany
| | | | | | | | - Martin Stangel
- Department of NeurologyHannover Medical SchoolHannoverGermany
- Department of Translational Medicine NeuroscienceNovartis Institute for BioMedical ResearchBaselSwitzerland
| | - Viktoria Gudi
- Department of NeurologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
12
|
Franklin RJM, Bodini B, Goldman SA. Remyelination in the Central Nervous System. Cold Spring Harb Perspect Biol 2024; 16:a041371. [PMID: 38316552 PMCID: PMC10910446 DOI: 10.1101/cshperspect.a041371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The inability of the mammalian central nervous system (CNS) to undergo spontaneous regeneration has long been regarded as a central tenet of neurobiology. However, while this is largely true of the neuronal elements of the adult mammalian CNS, save for discrete populations of granule neurons, the same is not true of its glial elements. In particular, the loss of oligodendrocytes, which results in demyelination, triggers a spontaneous and often highly efficient regenerative response, remyelination, in which new oligodendrocytes are generated and myelin sheaths are restored to denuded axons. Yet remyelination in humans is not without limitation, and a variety of demyelinating conditions are associated with sustained and disabling myelin loss. In this work, we will (1) review the biology of remyelination, including the cells and signals involved; (2) describe when remyelination occurs and when and why it fails, including the consequences of its failure; and (3) discuss approaches for therapeutically enhancing remyelination in demyelinating diseases of both children and adults, both by stimulating endogenous oligodendrocyte progenitor cells and by transplanting these cells into demyelinated brain.
Collapse
Affiliation(s)
- Robin J M Franklin
- Altos Labs Cambridge Institute of Science, Cambridge CB21 6GH, United Kingdom
| | - Benedetta Bodini
- Sorbonne Université, Paris Brain Institute, CNRS, INSERM, Paris 75013, France
- Saint-Antoine Hospital, APHP, Paris 75012, France
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642, USA
- University of Copenhagen Faculty of Medicine, Copenhagen 2200, Denmark
| |
Collapse
|
13
|
Asbelaoui N, Abi-Ghanem C, Schlecht-Louf G, Oukil H, Degerny C, Schumacher M, Ghoumari AM. Interplay between androgen and CXCR4 chemokine signaling in myelin repair. Acta Neuropathol Commun 2024; 12:18. [PMID: 38291527 PMCID: PMC10826258 DOI: 10.1186/s40478-024-01730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
In men, reduced levels of testosterone are associated with the prevalence and progression of multiple sclerosis (MS), a chronic and disabling demyelinating disorder. Testosterone has been shown to promote myelin repair. Here, we demonstrate that the cooperation between testosterone and CXCR4 signaling involving astrocytes is required for myelin regeneration after focal demyelination produced in the ventral mouse spinal cord by the infusion of lysolecithin. The testosterone-dependent remyelination of axons by oligodendrocytes was accompanied by an increase in astrocytes expressing CXCR4, its ligand CXCL12 and the androgen receptor (AR) within the demyelinated area. Depriving males of their testosterone or pharmacological inhibition of CXCR4, with the selective antagonist AMD3100, prevented the appearance of astrocytes expressing CXCR4, CXCL12 and AR within the demyelinated area and the concomitant recruitment of myelin forming oligodendrocytes. Conditional genetic ablation of either CXCR4 or AR in astrocytes also completely blocked the formation of new myelin by oligodendrocytes. Interestingly, the gain of function mutation in CXCR4 causing WHIM syndrome allows remyelination to take place, even in the absence of testosterone, but its potentiating effects remained observable. After testosterone deprivation or CXCR4 inhibition, the absence of astrocytes within the demyelinated area led to the incursion of Schwann cells, most likely derived from spinal nerves, and the formation of peripheral nerve type myelin. In patients with progressive MS, astrocytes expressing CXCR4 and AR surrounded myelin lesions, and their presence opposed the incursion of Schwann cells. These results highlight a mechanism of promyelinating testosterone signaling and the importance of normalizing its levels in combined myelin repair therapies.
Collapse
Affiliation(s)
- Narimène Asbelaoui
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Charly Abi-Ghanem
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Géraldine Schlecht-Louf
- INSERM UMR 996, Inserm, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | - Hania Oukil
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Cindy Degerny
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Michael Schumacher
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France.
| | - Abdel Mouman Ghoumari
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France.
| |
Collapse
|
14
|
Ma D, Zhang H, Yin L, Xu H, Wu L, Shaji R, Rezai F, Mulla A, Kaur S, Tan S, Kysela B, Wang Y, Chen Z, Zhao C, Gu Y. Human iPSC-derived endothelial cells promote CNS remyelination via BDNF and mTORC1 pathway. Glia 2024; 72:133-155. [PMID: 37675625 DOI: 10.1002/glia.24466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
Damage of myelin is a component of many diseases in the central nervous system (CNS). The activation and maturation of the quiescent oligodendrocyte progenitor cells (OPCs) are the crucial cellular processes for CNS remyelination, which is influenced by neuroinflammation in the lesion microenvironment. Endothelial cells derived from human induced pluripotent stem cells (hiPSC-ECs) have shown promise in restoring function in various preclinical animal models. Here we ask whether and whether transplantation of hiPSC-ECs could benefit remyelination in a mouse model of CNS demyelination. Our results show that in vitro, hiPSC-ECs increase OPC proliferation, migration and differentiation via secreted soluble factors including brain-derived neurotrophic factor (BDNF). hiPSC-ECs also promote the survival of oligodendrocyte lineage cells in vitro and in vivo. Transplantation of hiPSC-ECs into a toxin-induced demyelination lesion in mouse corpus callosum (CC) leads to increased density of oligodendrocyte lineage cells and level of myelin in demyelinated area, correlated with a decreased neuroinflammation and an increased proportion of pro-regenerative M2 phenotype in microglia/macrophages. The hiPSC-EC-exposed oligodendrocyte lineage cells showed significant increase in the level of phosphorylated S6 ribosomal protein (pS6) both in vitro and in vivo, indicating an involvement of mTORC1 pathway. These results suggest that hiPSC-ECs may benefit myelin protection and regeneration which providing a potential source of cell therapy for a wide range of diseases and injuries associated with myelin damage.
Collapse
Affiliation(s)
- Dan Ma
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Translational Medicine Research Group (TMRG), Aston Medical School, Aston University, Birmingham, UK
| | - Huiyuan Zhang
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Molecular Pharmacology Laboratory, Institute of Molecular Medicine, Peking University, Beijing, China
- ALLIFE Medical Science and Technology Co. Ltd, Beijing, China
| | - Le Yin
- Translational Medicine Research Group (TMRG), Aston Medical School, Aston University, Birmingham, UK
- Molecular Pharmacology Laboratory, Institute of Molecular Medicine, Peking University, Beijing, China
- ALLIFE Medical Science and Technology Co. Ltd, Beijing, China
| | - Hao Xu
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Molecular Pharmacology Laboratory, Institute of Molecular Medicine, Peking University, Beijing, China
- ALLIFE Medical Science and Technology Co. Ltd, Beijing, China
| | - Lida Wu
- Translational Medicine Research Group (TMRG), Aston Medical School, Aston University, Birmingham, UK
- Molecular Pharmacology Laboratory, Institute of Molecular Medicine, Peking University, Beijing, China
- ALLIFE Medical Science and Technology Co. Ltd, Beijing, China
| | - Rahul Shaji
- Translational Medicine Research Group (TMRG), Aston Medical School, Aston University, Birmingham, UK
| | - Fatema Rezai
- Translational Medicine Research Group (TMRG), Aston Medical School, Aston University, Birmingham, UK
| | - Ayesha Mulla
- Translational Medicine Research Group (TMRG), Aston Medical School, Aston University, Birmingham, UK
| | - Sukhteerath Kaur
- Translational Medicine Research Group (TMRG), Aston Medical School, Aston University, Birmingham, UK
| | - Shengjiang Tan
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Boris Kysela
- Translational Medicine Research Group (TMRG), Aston Medical School, Aston University, Birmingham, UK
| | - Yilong Wang
- Department of Neurology, Tiantan Hospital Capital Medical University, National Center and National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Chinese Institute for Brain Research, Beijing, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Chao Zhao
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Yuchun Gu
- Translational Medicine Research Group (TMRG), Aston Medical School, Aston University, Birmingham, UK
- Molecular Pharmacology Laboratory, Institute of Molecular Medicine, Peking University, Beijing, China
- ALLIFE Medical Science and Technology Co. Ltd, Beijing, China
| |
Collapse
|
15
|
Li M, Liu Q. Inflammatory Demyelinating Diseases of the Central Nervous System. ADVANCES IN NEUROBIOLOGY 2024; 41:171-218. [PMID: 39589715 DOI: 10.1007/978-3-031-69188-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Over the past decades, a large number of immunomodulatory or immunosuppressive treatments have been approved to treat central nervous system (CNS) demyelinating disorders such as multiple sclerosis (MS). Owing to the heterogeneity of patients with CNS demyelinating diseases, there is no clinical treatment that can adequately control all disease subtypes. Although significant progress has been made for relapsing-remitting MS, effective management of the progressive phase of MS has not yet been achieved. This is at least in part caused by our incomplete understanding of the mechanisms driving disease progression, despite our increasing knowledge regarding the underlying cellular and molecular mechanisms. Here, we summarized our current knowledge regarding the mechanisms of CNS demyelinating disorders and their animal models to identify open questions and challenges for existing concepts. We also discussed potential strategies for the future design of immune therapies to treat CNS demyelinating disorders.
Collapse
Affiliation(s)
- Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
16
|
Kråkenes T, Wergeland S, Al-Sharabi N, Mohamed-Ahmed S, Fromreide S, Costea DE, Mustafa K, Bø L, Kvistad CE. The neuroprotective potential of mesenchymal stem cells from bone marrow and human exfoliated deciduous teeth in a murine model of demyelination. PLoS One 2023; 18:e0293908. [PMID: 37943848 PMCID: PMC10635499 DOI: 10.1371/journal.pone.0293908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is characterized by chronic inflammation, demyelination, and axonal degeneration within the central nervous system (CNS), for which there is no current treatment available with the ability to promote neuroprotection or remyelination. Some aspects of the progressive form of MS are displayed in the murine cuprizone model, where demyelination is induced by the innate immune system without major involvement of the adaptive immune system. Mesenchymal stem cells (MSCs) are multipotent cells with immunomodulatory and neuroprotective potential. In this study, we aimed to assess the neuroprotective potential of MSCs from bone marrow (BM-MSCs) and stem cells from human exfoliated deciduous teeth (SHED) in the cuprizone model. METHODS Human BM-MSCs and SHED were isolated and characterized. Nine-week-old female C57BL/6 mice were randomized to receive either human BM-MSCs, human SHED or saline intraperitoneally. Treatments were administered on day -1, 14 and 21. Outcomes included levels of local demyelination and inflammation, and were assessed with immunohistochemistry and histology. RESULTS BM-MSCs were associated with increased myelin content and reduced microglial activation whereas mice treated with SHED showed reduced microglial and astroglial activation. There were no differences between treatment groups in numbers of mature oligodendrocytes or axonal injury. MSCs were identified in the demyelinated corpus callosum in 40% of the cuprizone mice in both the BM-MSC and SHED group. CONCLUSION Our results suggest a neuroprotective effect of MSCs in a toxic MS model, with demyelination mediated by the innate immune system.
Collapse
Affiliation(s)
- Torbjørn Kråkenes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Stig Wergeland
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Niyaz Al-Sharabi
- Tissue Engineering Group, Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Samih Mohamed-Ahmed
- Tissue Engineering Group, Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Siren Fromreide
- Center for Cancer Biomarkers CCBIO and Gades Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Daniela-Elana Costea
- Center for Cancer Biomarkers CCBIO and Gades Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Kamal Mustafa
- Tissue Engineering Group, Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Lars Bø
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | | |
Collapse
|
17
|
Lee HG, Lee JH, Flausino LE, Quintana FJ. Neuroinflammation: An astrocyte perspective. Sci Transl Med 2023; 15:eadi7828. [PMID: 37939162 DOI: 10.1126/scitranslmed.adi7828] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Astrocytes are abundant glial cells in the central nervous system (CNS) that play active roles in health and disease. Recent technologies have uncovered the functional heterogeneity of astrocytes and their extensive interactions with other cell types in the CNS. In this Review, we highlight the intricate interactions between astrocytes, other CNS-resident cells, and CNS-infiltrating cells as well as their potential therapeutic value in the context of inflammation and neurodegeneration.
Collapse
Affiliation(s)
- Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joon-Hyuk Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lucas E Flausino
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
18
|
Ferrari Bardile C, Radulescu CI, Pouladi MA. Oligodendrocyte pathology in Huntington's disease: from mechanisms to therapeutics. Trends Mol Med 2023; 29:802-816. [PMID: 37591764 DOI: 10.1016/j.molmed.2023.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Oligodendrocytes (OLGs), highly specialized glial cells that wrap axons with myelin sheaths, are critical for brain development and function. There is new recognition of the role of OLGs in the pathogenesis of neurodegenerative diseases (NDDs), including Huntington's disease (HD), a prototypic NDD caused by a polyglutamine tract expansion in huntingtin (HTT), which results in gain- and loss-of-function effects. Clinically, HD is characterized by a constellation of motor, cognitive, and psychiatric disturbances. White matter (WM) structures, representing myelin-rich regions of the brain, are profoundly affected in HD, and recent findings reveal oligodendroglia dysfunction as an early pathological event. Here, we focus on mechanisms that underlie oligodendroglial deficits and dysmyelination in the progression of the disease, highlighting the pathogenic contributions of mutant HTT (mHTT). We also discuss potential therapeutic implications involving these molecular pathways.
Collapse
Affiliation(s)
- Costanza Ferrari Bardile
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Carola I Radulescu
- UK Dementia Research Institute, Imperial College London, London, W12 0NN, UK
| | - Mahmoud A Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
19
|
Hou J, Zhou Y, Cai Z, Terekhova M, Swain A, Andhey PS, Guimaraes RM, Ulezko Antonova A, Qiu T, Sviben S, Strout G, Fitzpatrick JAJ, Chen Y, Gilfillan S, Kim DH, Van Dyken SJ, Artyomov MN, Colonna M. Transcriptomic atlas and interaction networks of brain cells in mouse CNS demyelination and remyelination. Cell Rep 2023; 42:112293. [PMID: 36952346 PMCID: PMC10511667 DOI: 10.1016/j.celrep.2023.112293] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/04/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Demyelination is a hallmark of multiple sclerosis, leukoencephalopathies, cerebral vasculopathies, and several neurodegenerative diseases. The cuprizone mouse model is widely used to simulate demyelination and remyelination occurring in these diseases. Here, we present a high-resolution single-nucleus RNA sequencing (snRNA-seq) analysis of gene expression changes across all brain cells in this model. We define demyelination-associated oligodendrocytes (DOLs) and remyelination-associated MAFBhi microglia, as well as astrocytes and vascular cells with signatures of altered metabolism, oxidative stress, and interferon response. Furthermore, snRNA-seq provides insights into how brain cell types connect and interact, defining complex circuitries that impact demyelination and remyelination. As an explicative example, perturbation of microglia caused by TREM2 deficiency indirectly impairs the induction of DOLs. Altogether, this study provides a rich resource for future studies investigating mechanisms underlying demyelinating diseases.
Collapse
Affiliation(s)
- Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yingyue Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhangying Cai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina Terekhova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amanda Swain
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Prabhakar S Andhey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rafaela M Guimaraes
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Ribeirão Preto Medical School, University of São Paulo - Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Alina Ulezko Antonova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tian Qiu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sanja Sviben
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gregory Strout
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA; Departments of Cell Biology and Physiology and Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Do-Hyun Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven J Van Dyken
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Kim HJ, Lee EJ, Kim SY, Kim H, Kim KW, Kim S, Kim H, Seo D, Lee BJ, Lim HT, Kim KK, Lim YM. Serum proteins for monitoring and predicting visual function in patients with recent optic neuritis. Sci Rep 2023; 13:5609. [PMID: 37019946 PMCID: PMC10076295 DOI: 10.1038/s41598-023-32748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
It is unclear whether serum proteins can serve as biomarkers to reflect pathological changes and predict recovery in inflammation of optic nerve. We evaluated whether serum proteins could monitor and prognosticate optic neuritis (ON). We prospectively recruited consecutive patients with recent ON, classified as ON with anti-aquaporin-4 antibody (AQP4-ON), ON with anti-myelin oligodendrocyte glycoprotein antibody (MOG-ON), and double-seronegative ON (DSN-ON). Using ultrasensitive single-molecule array assays, we measured serum neurofilament light chain and glial fibrillary acidic protein (GFAP), and brain-derived neurotrophic factor (BDNF). We analyzed the markers according to disease group, state, severity, and prognosis. We enrolled 60 patients with recent ON (15 AQP4-ON; 14 MOG-ON; 31 DSN-ON). At baseline, AQP4-ON group had significantly higher serum GFAP levels than did other groups. In AQP4-ON group, serum GFAP levels were significantly higher in the attack state than in the remission state and correlated with poor visual acuity. As a prognostic indicator, serum BDNF levels were positively correlated with follow-up visual function in the AQP4-ON group (r = 0.726, p = 0.027). Serum GFAP reflected disease status and severity, while serum BDNF was identified as a prognostic biomarker in AQP4-ON. Serum biomarkers are potentially helpful for patients with ON, particularly those with AQP4-ON.
Collapse
Affiliation(s)
- Hyo Jae Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea.
- Translational Biomedical Research Group, Asan Institute for Life Science, Asan Meidcal Center, Seoul, South Korea.
| | - Sang-Yeob Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyunjin Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Keon-Woo Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seungmi Kim
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyunji Kim
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dayoung Seo
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Byung Joo Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyun Taek Lim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kwang-Kuk Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young-Min Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
21
|
Hu Y, Zhang M, Liu B, Tang Y, Wang Z, Wang T, Zheng J, Zhang J. Honokiol prevents chronic cerebral hypoperfusion induced astrocyte A1 polarization to alleviate neurotoxicity by targeting SIRT3-STAT3 axis. Free Radic Biol Med 2023; 202:62-75. [PMID: 36997099 DOI: 10.1016/j.freeradbiomed.2023.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 04/01/2023]
Abstract
Alzheimer's Dementia (AD) and Vascular Dementia (VaD) are two main types of dementias for which no specific treatment is available. Chronic Cerebral Hypoperfusion (CCH) is a pathogenesis underlying AD and VaD that promotes neuroinflammatory responses and oxidative stress. Honokiol (HNK) is a natural compound isolated from magnolia leaves that can easily cross blood brain barrier and has anti-inflammatory and antioxidant effects. In the present study, the effects of HNK on astrocyte polarization and neurological damage in in vivo and in vitro models of chronic cerebral hypoperfusion were explored. We found that HNK was able to inhibit the phosphorylation and nuclear translocation of STAT3, A1 polarization, and reduce conditioned medium's neuronal toxicity of astrocyte under chronic hypoxia induced by cobalt chloride; STAT3 phosphorylation inhibitor C188-9 was able to mimic the above effects of HNK, suggesting that HNK may inhibit chronic hypoxia-induced A1 polarization in astrocytes via STAT3. SIRT3 inhibitor 3-TYP reversed, while Sirt3 overexpression mimicked the inhibitory effects of HNK on oxidative stress, STAT3 phosphorylation and nuclear translocation, A1 polarization and neuronal toxicity of astrocyte under chronic hypoxic conditions. For in vivo research, continuous intraperitoneal injection of HNK (1mg/kg) for 21 days ameliorated the decrease in SIRT3 activity and oxidative stress, inhibited astrocytic STAT3 nuclear translocation and A1 polarization, and prevented neuron and synaptic loss in the hippocampal of CCH rats. Besides, HNK application improved the spatial memory impairment of CCH rats, as assessed with Morris Water Maze. In conclusion, these results suggest that the phytochemical HNK can inhibit astrocyte A1 polarization via regulating SIRT3-STAT3 axis, thus improving CCH-induced neurological damage. These results highlight HNK as novel treatment for dementia with underlying vascular mechanisms.
Collapse
Affiliation(s)
- Yuan Hu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Donghu Road No. 169, Wuhan, 430071, China.
| | - Miao Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Donghu Road No. 169, Wuhan, 430071, China
| | - Bihan Liu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Donghu Road No. 169, Wuhan, 430071, China
| | - Yingying Tang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Donghu Road No. 169, Wuhan, 430071, China
| | - Zhuo Wang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Donghu Road No. 169, Wuhan, 430071, China
| | - Tao Wang
- Department of Neurology, First Clinical Medical College of China Three Gorges University, Yichang, Hubei, 443003, China
| | - Jiaxin Zheng
- Department of Neurology, Zhongnan Hospital of Wuhan University, Donghu Road No. 169, Wuhan, 430071, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Donghu Road No. 169, Wuhan, 430071, China.
| |
Collapse
|
22
|
Xiao Y, Guan T, Yang X, Xu J, Zhang J, Qi Q, Teng Z, Dong Y, Gao Y, Li M, Meng N, Lv P. Baicalin facilitates remyelination and suppresses neuroinflammation in rats with chronic cerebral hypoperfusion by activating Wnt/β-catenin and inhibiting NF-κB signaling. Behav Brain Res 2023; 442:114301. [PMID: 36707260 DOI: 10.1016/j.bbr.2023.114301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/27/2023]
Abstract
One main factor contributing to the cognitive loss in vascular dementia (VD) is white matter lesions (WMLs) carried on by chronic cerebral hypoperfusion (CCH). A secondary neuroinflammatory response to CCH accelerates the loss and limits the regeneration of oligodendrocytes, leading to progressive demyelination and insufficient remyelination in the white matter. Thus, promoting remyelination and inhibiting neuroinflammation may be an ideal therapeutic strategy. Baicalin (BAI) is known to exhibit protective effects against various inflammatory and demyelinating diseases. However, whether BAI has neuroprotective effects against CCH has not been investigated. To determine whether BAI inhibits CCH-induced demyelination and neuroinflammation, we established a model of CCH in rats by occluding the two common carotid arteries bilaterally. Our results revealed that BAI could remarkably ameliorate cognitive impairment and mitigate CA1 pyramidal neuron damage and myelin loss. BAI exhibited enhancement of remyelination by increasing the expression of myelin basic protein (MBP) and oligodendrocyte transcription factor 2 (Olig2), inhibiting the loss of oligodendrocytes and promoting oligodendrocyte regeneration in the corpus callosum of CCH rats. Furthermore, BAI modified microglia polarization to the anti-inflammatory phenotype and inhibited the release of pro-inflammatory cytokines. Mechanistically, BAI treatment significantly induced phosphorylation of glycogen synthase kinase 3β (GSK3β), enhanced the expression of β-catenin and its nuclear translocation. Simultaneously, BAI reduced the expression of nuclear NF-κB. Collectively, our results suggest that BAI ameliorates cognitive impairment in CCH-induced VD rats through its pro-remyelination and anti-inflammatory capacities, possibly by activating the Wnt/β-catenin and suppressing the NF-κB signaling.
Collapse
Affiliation(s)
- Yining Xiao
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Tianyuan Guan
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Xiaofeng Yang
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jing Xu
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Jiawei Zhang
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China
| | - Qianqian Qi
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Zhenjie Teng
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Yanhong Dong
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Yaran Gao
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Meixi Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Nan Meng
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China.
| |
Collapse
|
23
|
Sun Y, Yu H, Guan Y. Glia Connect Inflammation and Neurodegeneration in Multiple Sclerosis. Neurosci Bull 2023; 39:466-478. [PMID: 36853544 PMCID: PMC10043151 DOI: 10.1007/s12264-023-01034-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023] Open
Abstract
Multiple sclerosis (MS) is regarded as a chronic inflammatory disease that leads to demyelination and eventually to neurodegeneration. Activation of innate immune cells and other inflammatory cells in the brain and spinal cord of people with MS has been well described. However, with the innovation of technology in glial cell research, we have a deep understanding of the mechanisms of glial cells connecting inflammation and neurodegeneration in MS. In this review, we focus on the role of glial cells, including microglia, astrocytes, and oligodendrocytes, in the pathogenesis of MS. We mainly focus on the connection between glial cells and immune cells in the process of axonal damage and demyelinating neuron loss.
Collapse
Affiliation(s)
- Ye Sun
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Haojun Yu
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yangtai Guan
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
24
|
Xu T, Liu C, Deng S, Gan L, Zhang Z, Yang GY, Tian H, Tang Y. The roles of microglia and astrocytes in myelin phagocytosis in the central nervous system. J Cereb Blood Flow Metab 2023; 43:325-340. [PMID: 36324281 PMCID: PMC9941857 DOI: 10.1177/0271678x221137762] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Myelination is an important process in the central nervous system (CNS). Oligodendrocytes (OLs) extend multiple layers to densely sheath on axons, composing the myelin to achieve efficient electrical signal conduction. The myelination during developmental stage maintains a balanced state. However, numerous CNS diseases including neurodegenerative and cerebrovascular diseases cause demyelination and disrupt the homeostasis, resulting in inflammation and white matter deficits. Effective clearance of myelin debris is needed in the region of demyelination, which is a key step for remyelination and tissue regeneration. Microglia and astrocytes are the major resident phagocytic cells in the brain, which may play different or collaborative roles in myelination. Microglia and astrocytes participate in developmental myelination through engulfing excessive unneeded myelin. They are also involved in the clearance of degenerated myelin debris for accelerating remyelination, or engulfing healthy myelin sheath for inhibiting remyelination. This review focuses on the roles of microglia and astrocytes in phagocytosing myelin in the developmental brain and diseased brain. In addition, the interaction between microglia and astrocytes to mediate myelin engulfment is also summarized.
Collapse
Affiliation(s)
- Tongtong Xu
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| | - Chang Liu
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| | - Shiyu Deng
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| | - Lin Gan
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| | - Zhijun Zhang
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| | - Hengli Tian
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| | - Yaohui Tang
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| |
Collapse
|
25
|
Gao YH, Li X. Cholesterol metabolism: Towards a therapeutic approach for multiple sclerosis. Neurochem Int 2023; 164:105501. [PMID: 36803679 DOI: 10.1016/j.neuint.2023.105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Growing evidence points to the importance of cholesterol in preserving brain homeostasis. Cholesterol makes up the main component of myelin in the brain, and myelin integrity is vital in demyelinating diseases such as multiple sclerosis. Because of the connection between myelin and cholesterol, the interest in cholesterol in the central nervous system increased during the last decade. In this review, we provide a detailed overview on brain cholesterol metabolism in multiple sclerosis and its role in promoting oligodendrocyte precursor cell differentiation and remyelination.
Collapse
Affiliation(s)
- Yu-Han Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| |
Collapse
|
26
|
Abstract
Multiple sclerosis (MS) is regarded as a chronic inflammatory disease that leads to demyelination and eventually to neurodegeneration. Activation of innate immune cells and other inflammatory cells in the brain and spinal cord of people with MS has been well described. However, with the innovation of technology in glial cell research, we have a deep understanding of the mechanisms of glial cells connecting inflammation and neurodegeneration in MS. In this review, we focus on the role of glial cells, including microglia, astrocytes, and oligodendrocytes, in the pathogenesis of MS. We mainly focus on the connection between glial cells and immune cells in the process of axonal damage and demyelinating neuron loss.
Collapse
|
27
|
Pathak D, Sriram K. Molecular Mechanisms Underlying Neuroinflammation Elicited by Occupational Injuries and Toxicants. Int J Mol Sci 2023; 24:2272. [PMID: 36768596 PMCID: PMC9917383 DOI: 10.3390/ijms24032272] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Occupational injuries and toxicant exposures lead to the development of neuroinflammation by activating distinct mechanistic signaling cascades that ultimately culminate in the disruption of neuronal function leading to neurological and neurodegenerative disorders. The entry of toxicants into the brain causes the subsequent activation of glial cells, a response known as 'reactive gliosis'. Reactive glial cells secrete a wide variety of signaling molecules in response to neuronal perturbations and thus play a crucial role in the progression and regulation of central nervous system (CNS) injury. In parallel, the roles of protein phosphorylation and cell signaling in eliciting neuroinflammation are evolving. However, there is limited understanding of the molecular underpinnings associated with toxicant- or occupational injury-mediated neuroinflammation, gliosis, and neurological outcomes. The activation of signaling molecules has biological significance, including the promotion or inhibition of disease mechanisms. Nevertheless, the regulatory mechanisms of synergism or antagonism among intracellular signaling pathways remain elusive. This review highlights the research focusing on the direct interaction between the immune system and the toxicant- or occupational injury-induced gliosis. Specifically, the role of occupational injuries, e.g., trips, slips, and falls resulting in traumatic brain injury, and occupational toxicants, e.g., volatile organic compounds, metals, and nanoparticles/nanomaterials in the development of neuroinflammation and neurological or neurodegenerative diseases are highlighted. Further, this review recapitulates the recent advancement related to the characterization of the molecular mechanisms comprising protein phosphorylation and cell signaling, culminating in neuroinflammation.
Collapse
Affiliation(s)
| | - Krishnan Sriram
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
28
|
Rawji KS, Neumann B, Franklin RJM. Glial aging and its impact on central nervous system myelin regeneration. Ann N Y Acad Sci 2023; 1519:34-45. [PMID: 36398864 DOI: 10.1111/nyas.14933] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aging is a major risk factor for several neurodegenerative diseases and is associated with cognitive decline. In addition to affecting neuronal function, the aging process significantly affects the functional phenotype of the glial cell compartment, comprising oligodendrocyte lineage cells, astrocytes, and microglia. These changes result in a more inflammatory microenvironment, resulting in a condition that is favorable for neuron and synapse loss. In addition to facilitating neurodegeneration, the aging glial cell population has negative implications for central nervous system remyelination, a regenerative process that is of particular importance to the chronic demyelinating disease multiple sclerosis. This review will discuss the changes that occur with aging in the three main glial populations and provide an overview of the studies documenting the impact these changes have on remyelination.
Collapse
Affiliation(s)
- Khalil S Rawji
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Björn Neumann
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | | |
Collapse
|
29
|
Gudkov SV, Burmistrov DE, Kondakova EV, Sarimov RM, Yarkov RS, Franceschi C, Vedunova MV. An emerging role of astrocytes in aging/neuroinflammation and gut-brain axis with consequences on sleep and sleep disorders. Ageing Res Rev 2023; 83:101775. [PMID: 36334910 DOI: 10.1016/j.arr.2022.101775] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 11/18/2022]
Abstract
Understanding the role of astrocytes in the central nervous system has changed dramatically over the last decade. The accumulating findings indicate that glial cells are involved not only in the maintenance of metabolic and ionic homeostasis and in the implementation of trophic functions but also in cognitive functions and information processing in the brain. Currently, there are some controversies regarding the role of astrocytes in complex processes such as aging of the nervous system and the pathogenesis of age-related neurodegenerative diseases. Many findings confirm the important functional role of astrocytes in age-related brain changes, including sleep disturbance and the development of neurodegenerative diseases and particularly Alzheimer's disease. Until recent years, neurobiological research has focused mainly on neuron-glial interactions, in which individual astrocytes locally modulate neuronal activity and communication between neurons. The review considers the role of astrocytes in the physiology of sleep and as an important "player" in the development of neurodegenerative diseases. In addition, the features of the astrocytic network reorganization during aging are discussed.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia; Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Dmitriy E Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia.
| | - Elena V Kondakova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Ruslan M Sarimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia.
| | - Roman S Yarkov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Claudio Franceschi
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Maria V Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| |
Collapse
|
30
|
Delfino G, Bénardais K, Graff J, Samama B, Antal MC, Ghandour MS, Boehm N. Oligodendroglial primary cilium heterogeneity during development and demyelination/remyelination. Front Cell Neurosci 2022; 16:1049468. [PMID: 36505511 PMCID: PMC9729284 DOI: 10.3389/fncel.2022.1049468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
The primary cilium (PC) has emerged as an indispensable cellular antenna essential for signal transduction of important cell signaling pathways. The rapid acquisition of knowledge about PC biology has raised attention to PC as a therapeutic target in some neurological and psychiatric diseases. However, the role of PC in oligodendrocytes and its participation in myelination/remyelination remain poorly understood. Oligodendrocyte precursor cells (OPCs) give rise to oligodendrocytes during central nervous system (CNS) development. In adult, a small percentage of OPCs remains as undifferentiated cells located sparsely in the different regions of the CNS. These cells can regenerate oligodendrocytes and participate to certain extent in remyelination. This study aims characterize PC in oligodendrocyte lineage cells during post-natal development and in a mouse model of demyelination/remyelination. We show heterogeneity in the frequency of cilium presence on OPCs, depending on culture conditions in vitro and cerebral regions in vivo during development and demyelination/remyelination. In vitro, Lithium chloride (LiCl), Forskolin and Chloral Hydrate differentially affect cilium, depending on culture environment and PC length correlates with the cell differentiation state. Beside the role of PC as a keeper of cell proliferation, our results suggest its involvement in myelination/remyelination.
Collapse
Affiliation(s)
- Giada Delfino
- ICube Laboratory UMR 7357, Team IMIS, Strasbourg, France,Institut d’Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France,*Correspondence: Giada Delfino,
| | - Karelle Bénardais
- ICube Laboratory UMR 7357, Team IMIS, Strasbourg, France,Institut d’Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France,Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Julien Graff
- Institut d’Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Brigitte Samama
- ICube Laboratory UMR 7357, Team IMIS, Strasbourg, France,Institut d’Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France,Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Maria Cristina Antal
- ICube Laboratory UMR 7357, Team IMIS, Strasbourg, France,Institut d’Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France,Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - M. Said Ghandour
- ICube Laboratory UMR 7357, Team IMIS, Strasbourg, France,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nelly Boehm
- ICube Laboratory UMR 7357, Team IMIS, Strasbourg, France,Institut d’Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France,Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
31
|
Brown JWL, Prados F, Altmann DR, Kanber B, Stutters J, Cunniffe NG, Jones JL, Georgieva ZG, Needham EJ, Daruwalla C, Wheeler‐Kingshott CG, Connick P, Chandran S, Franklin R, MacManus D, Samson R, Coles A, Chard D. Remyelination varies between and within lesions in multiple sclerosis following bexarotene. Ann Clin Transl Neurol 2022; 9:1626-1642. [PMID: 36116011 PMCID: PMC9539389 DOI: 10.1002/acn3.51662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE In multiple sclerosis chronic demyelination is associated with axonal loss, and ultimately contributes to irreversible progressive disability. Enhancing remyelination may slow, or even reverse, disability. We recently trialled bexarotene versus placebo in 49 people with multiple sclerosis. While the primary MRI outcome was negative, there was converging neurophysiological and MRI evidence of efficacy. Multiple factors influence lesion remyelination. In this study we undertook a systematic exploratory analysis to determine whether treatment response - measured by change in magnetisation transfer ratio - is influenced by location (tissue type and proximity to CSF) or the degree of abnormality (using baseline magnetisation transfer ratio and T1 values). METHODS We examined treatment effects at the whole lesion level, the lesion component level (core, rim and perilesional tissues) and at the individual lesion voxel level. RESULTS At the whole lesion level, significant treatment effects were seen in GM but not WM lesions. Voxel-level analyses detected significant treatment effects in WM lesion voxels with the lowest baseline MTR, and uncovered gradients of treatment effect in both WM and CGM lesional voxels, suggesting that treatment effects were lower near CSF spaces. Finally, larger treatment effects were seen in the outer and surrounding components of GM lesions compared to inner cores. INTERPRETATION Remyelination varies markedly within and between lesions. The greater remyelinating effect in GM lesions is congruent with neuropathological observations. For future remyelination trials, whole GM lesion measures require less complex post-processing compared to WM lesions (which require voxel level analyses) and markedly reduce sample sizes.
Collapse
Affiliation(s)
- J. William L. Brown
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- NMR Research UnitQueen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of NeurologyLondonUK
- Clinical Outcomes Research Unit (CORe)University of MelbourneMelbourneAustralia
| | - Ferran Prados
- NMR Research UnitQueen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of NeurologyLondonUK
- e‐Health Center, Universitat Oberta de CatalunyaBarcelonaSpain
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Daniel R. Altmann
- Medical Statistics DepartmentLondon School of Hygiene & Tropical MedicineLondonUK
| | - Baris Kanber
- NMR Research UnitQueen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of NeurologyLondonUK
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image ComputingUniversity College LondonLondonUK
- National Institute for Health Research Biomedical Research Centre, University College London Hospitals NHS Foundation Trust and University College LondonLondonUK
| | - Jonathan Stutters
- NMR Research UnitQueen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of NeurologyLondonUK
| | - Nick G. Cunniffe
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Joanne L. Jones
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Zoya G. Georgieva
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Edward J. Needham
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Cyrus Daruwalla
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Claudia Gandini Wheeler‐Kingshott
- NMR Research UnitQueen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of NeurologyLondonUK
- Brain Connectivity Centre, IRCCS Mondino FoundationPaviaItaly
- Department of Brain and Behavioural SciencesUniversity of PaviaPaviaItaly
| | - Peter Connick
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Siddharthan Chandran
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research Institute, University of EdinburghEdinburghUK
| | - Robin Franklin
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - David MacManus
- NMR Research UnitQueen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of NeurologyLondonUK
| | - Rebecca Samson
- NMR Research UnitQueen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of NeurologyLondonUK
| | - Alasdair Coles
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Declan Chard
- NMR Research UnitQueen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of NeurologyLondonUK
- National Institute for Health Research Biomedical Research Centre, University College London Hospitals NHS Foundation Trust and University College LondonLondonUK
| |
Collapse
|
32
|
Immunopathogenesis, Diagnosis, and Treatment of Multiple Sclerosis. Neurol Clin 2022; 41:87-106. [DOI: 10.1016/j.ncl.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Kunkl M, Amormino C, Tedeschi V, Fiorillo MT, Tuosto L. Astrocytes and Inflammatory T Helper Cells: A Dangerous Liaison in Multiple Sclerosis. Front Immunol 2022; 13:824411. [PMID: 35211120 PMCID: PMC8860818 DOI: 10.3389/fimmu.2022.824411] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022] Open
Abstract
Multiple Sclerosis (MS) is a neurodegenerative autoimmune disorder of the central nervous system (CNS) characterized by the recruitment of self-reactive T lymphocytes, mainly inflammatory T helper (Th) cell subsets. Once recruited within the CNS, inflammatory Th cells produce several inflammatory cytokines and chemokines that activate resident glial cells, thus contributing to the breakdown of blood-brain barrier (BBB), demyelination and axonal loss. Astrocytes are recognized as key players of MS immunopathology, which respond to Th cell-defining cytokines by acquiring a reactive phenotype that amplify neuroinflammation into the CNS and contribute to MS progression. In this review, we summarize current knowledge of the astrocytic changes and behaviour in both MS and experimental autoimmune encephalomyelitis (EAE), and the contribution of pathogenic Th1, Th17 and Th1-like Th17 cell subsets, and CD8+ T cells to the morphological and functional modifications occurring in astrocytes and their pathological outcomes.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
34
|
The Integration of Cell Therapy and Biomaterials as Treatment Strategies for Remyelination. Life (Basel) 2022; 12:life12040474. [PMID: 35454965 PMCID: PMC9027199 DOI: 10.3390/life12040474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic degenerative autoimmune disease of the central nervous system that causes inflammation, demyelinating lesions, and axonal damage and is associated with a high rate of early-onset disability. Disease-modifying therapies are used to mitigate the inflammatory process in MS but do not promote regeneration or remyelination; cell therapy may play an important role in these processes, modulating inflammation and promoting the repopulation of oligodendrocytes, which are responsible for myelin repair. The development of genetic engineering has led to the emergence of stable, biocompatible biomaterials that may promote a favorable environment for exogenous cells. This review summarizes the available evidence about the effects of transplantation of different types of stem cells reported in studies with several animal models of MS and clinical trials in human patients. We also address the advantages of combining cell therapy with biomaterials.
Collapse
|
35
|
Quan L, Uyeda A, Muramatsu R. Central nervous system regeneration: the roles of glial cells in the potential molecular mechanism underlying remyelination. Inflamm Regen 2022; 42:7. [PMID: 35232486 PMCID: PMC8888026 DOI: 10.1186/s41232-022-00193-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/07/2022] [Indexed: 11/10/2022] Open
Abstract
Glial cells play crucial roles in brain homeostasis and pathogenesis of central nervous system (CNS) injuries and diseases. However, the roles of these cells and the molecular mechanisms toward regeneration in the CNS have not been fully understood, especially the capacity of them toward demyelinating diseases. Therefore, there are still very limited therapeutic strategies to restore the function of adult CNS in diseases such as multiple sclerosis (MS). Remyelination, a spontaneous regeneration process in the CNS, requires the involvement of multiple cellular and extracellular components. Promoting remyelination by therapeutic interventions is a promising novel approach to restore the CNS function. Herein, we review the role of glial cells in CNS diseases and injuries. Particularly, we discuss the roles of glia and their functional interactions and regulatory mechanisms in remyelination, as well as the current therapeutic strategies for MS.
Collapse
Affiliation(s)
- Lili Quan
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Akiko Uyeda
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Rieko Muramatsu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
36
|
The role of glial cells in multiple sclerosis disease progression. Nat Rev Neurol 2022; 18:237-248. [PMID: 35190704 DOI: 10.1038/s41582-022-00624-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 12/13/2022]
Abstract
Despite the development of highly effective treatments for relapsing-remitting multiple sclerosis (MS), limited progress has been made in addressing primary progressive or secondary progressive MS, both of which lead to loss of oligodendrocytes and neurons and axons, and to irreversible accumulation of disability. Neuroinflammation is central to all forms of MS. The current effective therapies for relapsing-remitting MS target the peripheral immune system; these treatments, however, have repeatedly failed in progressive MS. Greater understanding of inflammation driven by CNS-resident cells - including astrocytes and microglia - is, therefore, required to identify novel potential therapeutic opportunities. Advances in imaging, biomarker analysis and genomics suggest that microglia and astrocytes have central roles in the progressive disease process. In this Review, we provide an overview of the involvement of astrocytes and microglia at major sites of pathology in progressive MS. We discuss current and future therapeutic approaches to directly target glial cells, either to inhibit pathogenic functions or to restore homeostatic functions lost during the course of the disease. We also discuss how bidirectional communication between astrocytes and microglia needs to be considered, as therapeutic targeting of one is likely to alter the functions of the other.
Collapse
|
37
|
Sen MK, Mahns DA, Coorssen JR, Shortland PJ. The roles of microglia and astrocytes in phagocytosis and myelination: Insights from the cuprizone model of multiple sclerosis. Glia 2022; 70:1215-1250. [PMID: 35107839 PMCID: PMC9302634 DOI: 10.1002/glia.24148] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
In human demyelinating diseases such as multiple sclerosis (MS), an imbalance between demyelination and remyelination can trigger progressive degenerative processes. The clearance of myelin debris (phagocytosis) from the site of demyelination by microglia is critically important to achieve adequate remyelination and to slow the progression of the disease. However, how microglia phagocytose the myelin debris, and why clearance is impaired in MS, is not fully known; likewise, the role of the microglia in remyelination remains unclear. Recent studies using cuprizone (CPZ) as an animal model of central nervous system demyelination revealed that the up‐regulation of signaling proteins in microglia facilitates effective phagocytosis of myelin debris. Moreover, during demyelination, protective mediators are released from activated microglia, resulting in the acceleration of remyelination in the CPZ model. In contrast, inadequate microglial activation or recruitment to the site of demyelination, and the production of toxic mediators, impairs remyelination resulting in progressive demyelination. In addition to the microglia‐mediated phagocytosis, astrocytes play an important role in the phagocytic process by recruiting microglia to the site of demyelination and producing regenerative mediators. The current review is an update of these emerging findings from the CPZ animal model, discussing the roles of microglia and astrocytes in phagocytosis and myelination.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, Australia
| | - Jens R Coorssen
- Faculty of Applied Health Sciences and Faculty of Mathematics & Science, Brock University, St. Cathari, Canada
| | | |
Collapse
|
38
|
Berghoff SA, Spieth L, Saher G. Local cholesterol metabolism orchestrates remyelination. Trends Neurosci 2022; 45:272-283. [DOI: 10.1016/j.tins.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
|
39
|
Zhang X, Huang N, Xiao L, Wang F, Li T. Replenishing the Aged Brains: Targeting Oligodendrocytes and Myelination? Front Aging Neurosci 2021; 13:760200. [PMID: 34899272 PMCID: PMC8656359 DOI: 10.3389/fnagi.2021.760200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Aging affects almost all the aspects of brain functions, but the mechanisms remain largely undefined. Increasing number of literatures have manifested the important role of glial cells in regulating the aging process. Oligodendroglial lineage cell is a major type of glia in central nervous system (CNS), composed of mature oligodendrocytes (OLs), and oligodendroglia precursor cells (OPCs). OLs produce myelin sheaths that insulate axons and provide metabolic support to meet the energy demand. OPCs maintain the population throughout lifetime with the abilities to proliferate and differentiate into OLs. Increasing evidence has shown that oligodendroglial cells display active dynamics in adult and aging CNS, which is extensively involved in age-related brain function decline in the elderly. In this review, we summarized present knowledge about dynamic changes of oligodendroglial lineage cells during normal aging and discussed their potential roles in age-related functional decline. Especially, focused on declined myelinogenesis during aging and underlying mechanisms. Clarifying those oligodendroglial changes and their effects on neurofunctional decline may provide new insights in understanding aging associated brain function declines.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, China
| | - Nanxin Huang
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Xiao
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fei Wang
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tao Li
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
40
|
Proteomic and lipidomic profiling of demyelinating lesions identifies fatty acids as modulators in lesion recovery. Cell Rep 2021; 37:109898. [PMID: 34706241 PMCID: PMC8567315 DOI: 10.1016/j.celrep.2021.109898] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/24/2021] [Accepted: 10/06/2021] [Indexed: 12/25/2022] Open
Abstract
After demyelinating injury of the central nervous system, resolution of the mounting acute inflammation is crucial for the initiation of a regenerative response. Here, we aim to identify fatty acids and lipid mediators that govern the balance of inflammatory reactions within demyelinating lesions. Using lipidomics, we identify bioactive lipids in the resolution phase of inflammation with markedly elevated levels of n-3 polyunsaturated fatty acids. Using fat-1 transgenic mice, which convert n-6 fatty acids to n-3 fatty acids, we find that reduction of the n-6/n-3 ratio decreases the phagocytic infiltrate. In addition, we observe accelerated decline of microglia/macrophages and enhanced generation of oligodendrocytes in aged mice when n-3 fatty acids are shuttled to the brain. Thus, n-3 fatty acids enhance lesion recovery and may, therefore, provide the basis for pro-regenerative medicines of demyelinating diseases in the central nervous system.
Collapse
|
41
|
Rayatpour A, Farhangi S, Verdaguer E, Olloquequi J, Ureña J, Auladell C, Javan M. The Cross Talk between Underlying Mechanisms of Multiple Sclerosis and Epilepsy May Provide New Insights for More Efficient Therapies. Pharmaceuticals (Basel) 2021; 14:ph14101031. [PMID: 34681255 PMCID: PMC8541630 DOI: 10.3390/ph14101031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/17/2022] Open
Abstract
Despite the significant differences in pathological background of neurodegenerative diseases, epileptic seizures are a comorbidity in many disorders such as Huntington disease (HD), Alzheimer's disease (AD), and multiple sclerosis (MS). Regarding the last one, specifically, it has been shown that the risk of developing epilepsy is three to six times higher in patients with MS compared to the general population. In this context, understanding the pathological processes underlying this connection will allow for the targeting of the common and shared pathological pathways involved in both conditions, which may provide a new avenue in the management of neurological disorders. This review provides an outlook of what is known so far about the bidirectional association between epilepsy and MS.
Collapse
Affiliation(s)
- Atefeh Rayatpour
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Sahar Farhangi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Ester Verdaguer
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Biomedical Sciences Institute, Health Sciences Faculty, Universidad Autónoma de Chile, Talca 3460000, Chile;
| | - Jesus Ureña
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Carme Auladell
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
- Correspondence: (C.A.); (M.J.)
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
- Cell Science Research Center, Department of Brain and Cognitive Sciences, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 14117-13116, Iran
- Correspondence: (C.A.); (M.J.)
| |
Collapse
|
42
|
Meng-Ru Z, Ruo-Xuan S, Ming-Yang Y, Tong T, Lei Z, Ying-Bo Y, Bao-Guo X. Antagonizing astrocytic platelet activating factor receptor-neuroinflammation for total flavone of epimedium in response to cuprizone demyelination. Int Immunopharmacol 2021; 101:108181. [PMID: 34607229 DOI: 10.1016/j.intimp.2021.108181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/07/2021] [Accepted: 09/18/2021] [Indexed: 01/01/2023]
Abstract
Demyelinating diseases of the central nervous system are characterized by recurrent demyelination and progressive neurodegeneration, but there are no clinical drugs targeting myelin regeneration or improving functional disability in the treatment of multiple sclerosis. Total flavone of Epimedium (TFE) is the main active components of Epimedium, which exhibits the beneficial biological activities in the treatment of diseases, but there is no report in the treatment of demyelinating disorder. The purpose of this study was to explore the therapeutic potential and possible mechanism of TFE in the treatment of demyelination. The results showed that TFE efficiently improved the behavioural performance and histological demyelination in cuprizone (CPZ)-induced demyelinating model. In terms of action, TFE increased astrocytes enrichment in corpus callosum, striatum and cortex, and promoted astrocytes to express neurotrophic factors. Furthermore, the expression of platelet-activating factor receptor (PAFR) in astrocytes was induced by CPZ feeding and LPS stimulation, accompanied by the increase of inflammatory cytokines TNF-α,IL-6 and IL-1β. TFE declined the expression of PAFR, and inhibited inflammatory response. At the same time, TFE also antagonized PAFR activation and inflammatory response triggered by PAF, which further confirmed that TFE, as a new PAFR antagonist, inhibited the astrocyte-derived inflammatory response by antagonizing PAFR-neuroinflammation axis, thus contributing to myelin protection and regeneration.
Collapse
Affiliation(s)
- Zhao Meng-Ru
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sui Ruo-Xuan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Ming-Yang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian Tong
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhang Lei
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yang Ying-Bo
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao Bao-Guo
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China.
| |
Collapse
|
43
|
Moulson AJ, Squair JW, Franklin RJM, Tetzlaff W, Assinck P. Diversity of Reactive Astrogliosis in CNS Pathology: Heterogeneity or Plasticity? Front Cell Neurosci 2021; 15:703810. [PMID: 34381334 PMCID: PMC8349991 DOI: 10.3389/fncel.2021.703810] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/02/2021] [Indexed: 01/02/2023] Open
Abstract
Astrocytes are essential for the development and homeostatic maintenance of the central nervous system (CNS). They are also critical players in the CNS injury response during which they undergo a process referred to as "reactive astrogliosis." Diversity in astrocyte morphology and gene expression, as revealed by transcriptional analysis, is well-recognized and has been reported in several CNS pathologies, including ischemic stroke, CNS demyelination, and traumatic injury. This diversity appears unique to the specific pathology, with significant variance across temporal, topographical, age, and sex-specific variables. Despite this, there is limited functional data corroborating this diversity. Furthermore, as reactive astrocytes display significant environmental-dependent plasticity and fate-mapping data on astrocyte subsets in the adult CNS is limited, it remains unclear whether this diversity represents heterogeneity or plasticity. As astrocytes are important for neuronal survival and CNS function post-injury, establishing to what extent this diversity reflects distinct established heterogeneous astrocyte subpopulations vs. environmentally dependent plasticity within established astrocyte subsets will be critical for guiding therapeutic development. To that end, we review the current state of knowledge on astrocyte diversity in the context of three representative CNS pathologies: ischemic stroke, demyelination, and traumatic injury, with the goal of identifying key limitations in our current knowledge and suggesting future areas of research needed to address them. We suggest that the majority of identified astrocyte diversity in CNS pathologies to date represents plasticity in response to dynamically changing post-injury environments as opposed to heterogeneity, an important consideration for the understanding of disease pathogenesis and the development of therapeutic interventions.
Collapse
Affiliation(s)
- Aaron J. Moulson
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - Jordan W. Squair
- Department of Clinical Neuroscience, Faculty of Life Sciences, Center for Neuroprosthetics and Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), NeuroRestore, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Robin J. M. Franklin
- Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Peggy Assinck
- Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
44
|
Sutiwisesak R, Burns TC, Rodriguez M, Warrington AE. Remyelination therapies for multiple sclerosis: optimizing translation from animal models into clinical trials. Expert Opin Investig Drugs 2021; 30:857-876. [PMID: 34126015 DOI: 10.1080/13543784.2021.1942840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Multiple sclerosis (MS) is the most common inflammatory disease of the central nervous system (CNS). Demyelination, the main pathology in MS, contributes to clinical symptoms and long-term neurological deficits if left untreated. Remyelination, the natural repair of damaged myelin by cells of the oligodendrocyte lineage, occurs in MS, but eventually fails in most patients as they age. Encouraging timely remyelination can restore axon conduction and minimize deficits.Areas covered: We discuss and correlate human MS pathology with animal models, propose methods to deplete resident oligodendrocyte progenitor cells (OPCs) to determine whether mature oligodendrocytes support remyelination, and review remyelinating agents, mechanisms of action, and available clinical trial data.Expert opinion: The heterogeneity of human MS may limit successful translation of many candidate remyelinating agents; some patients lack the biological targets necessary to leverage current approaches. Development of therapeutics for remyelination has concentrated almost exclusively on mobilization of innate OPCs. However, mature oligodendrocytes appear an important contributor to remyelination in humans. Limiting the contribution of OPC mediated repair in models of MS would allow the evaluation of remyelination-promoting agents on mature oligodendrocytes. Among remyelinating reagents reviewed, only rHIgM22 targets both OPCs and mature oligodendrocytes.
Collapse
Affiliation(s)
- Rujapope Sutiwisesak
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Terry C Burns
- Departments of Neurology and Neurologic Surgery Mayo Clinic, Rochester, Minnesota, USA
| | - Moses Rodriguez
- Departments of Neurology and Neurologic Surgery Mayo Clinic, Rochester, Minnesota, USA
| | - Arthur E Warrington
- Departments of Neurology and Neurologic Surgery Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
45
|
Raffaele S, Boccazzi M, Fumagalli M. Oligodendrocyte Dysfunction in Amyotrophic Lateral Sclerosis: Mechanisms and Therapeutic Perspectives. Cells 2021; 10:cells10030565. [PMID: 33807572 PMCID: PMC8000560 DOI: 10.3390/cells10030565] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Myelin is the lipid-rich structure formed by oligodendrocytes (OLs) that wraps the axons in multilayered sheaths, assuring protection, efficient saltatory signal conduction and metabolic support to neurons. In the last few years, the impact of OL dysfunction and myelin damage has progressively received more attention and is now considered to be a major contributing factor to neurodegeneration in several neurological diseases, including amyotrophic lateral sclerosis (ALS). Upon OL injury, oligodendrocyte precursor cells (OPCs) of adult nervous tissue sustain the generation of new OLs for myelin reconstitution, but this spontaneous regeneration process fails to successfully counteract myelin damage. Of note, the functions of OPCs exceed the formation and repair of myelin, and also involve the trophic support to axons and the capability to exert an immunomodulatory role, which are particularly relevant in the context of neurodegeneration. In this review, we deeply analyze the impact of dysfunctional OLs in ALS pathogenesis. The possible mechanisms underlying OL degeneration, defective OPC maturation, and impairment in energy supply to motor neurons (MNs) have also been examined to provide insights on future therapeutic interventions. On this basis, we discuss the potential therapeutic utility in ALS of several molecules, based on their remyelinating potential or capability to enhance energy metabolism.
Collapse
|
46
|
Verkhratsky A, Augusto-Oliveira M, Pivoriūnas A, Popov A, Brazhe A, Semyanov A. Astroglial asthenia and loss of function, rather than reactivity, contribute to the ageing of the brain. Pflugers Arch 2020; 473:753-774. [PMID: 32979108 DOI: 10.1007/s00424-020-02465-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
Astroglia represent a class of heterogeneous, in form and function, cells known as astrocytes, which provide for homoeostasis and defence of the central nervous system (CNS). Ageing is associated with morphological and functional remodelling of astrocytes with a prevalence of morphological atrophy and loss of function. In particular, ageing is associated with (i) decrease in astroglial synaptic coverage, (ii) deficits in glutamate and potassium clearance, (iii) reduced astroglial synthesis of synaptogenic factors such as cholesterol, (iv) decrease in aquaporin 4 channels in astroglial endfeet with subsequent decline in the glymphatic clearance, (v) decrease in astroglial metabolic support through the lactate shuttle, (vi) dwindling adult neurogenesis resulting from diminished proliferative capacity of radial stem astrocytes, (vii) decline in the astroglial-vascular coupling and deficient blood-brain barrier and (viii) decrease in astroglial ability to mount reactive astrogliosis. Decrease in reactive capabilities of astroglia are associated with rise of age-dependent neurodegenerative diseases. Astroglial morphology and function can be influenced and improved by lifestyle interventions such as intellectual engagement, social interactions, physical exercise, caloric restriction and healthy diet. These modifications of lifestyle are paramount for cognitive longevity.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain. .,Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| | - Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, 66075-110, Brazil
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| | - Alexander Popov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, Russia, 117997
| | - Alexey Brazhe
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, Russia, 117997.,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, Russia, 117997. .,Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|