1
|
Papadopoulou P, Polissidis A, Kythreoti G, Sagnou M, Stefanatou A, Theoharides TC. Anti-Inflammatory and Neuroprotective Polyphenols Derived from the European Olive Tree, Olea europaea L., in Long COVID and Other Conditions Involving Cognitive Impairment. Int J Mol Sci 2024; 25:11040. [PMID: 39456822 PMCID: PMC11507169 DOI: 10.3390/ijms252011040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The European olive tree, Olea europaea L., and its polyphenols hold great therapeutic potential to treat neuroinflammation and cognitive impairment. This review examines the evidence for the anti-inflammatory and neuroprotective actions of olive polyphenols and their potential in the treatment of long COVID and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Key findings suggest that olive polyphenols exhibit antioxidant, anti-inflammatory, neuroprotective, and antiviral properties, making them promising candidates for therapeutic intervention, especially when formulated in unique combinations. Recommendations for future research directions include elucidating molecular pathways through mechanistic studies, exploring the therapeutic implications of olive polyphenol supplementation, and conducting clinical trials to assess efficacy and safety. Investigating potential synergistic effects with other agents addressing different targets is suggested for further exploration. The evidence reviewed strengthens the translational value of olive polyphenols in conditions involving cognitive dysfunction and emphasizes the novelty of new formulations.
Collapse
Affiliation(s)
- Paraskevi Papadopoulou
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Alexia Polissidis
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Georgia Kythreoti
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Marina Sagnou
- Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, 15310 Athens, Greece;
| | - Athena Stefanatou
- School of Graduate & Professional Education, Deree–The American College of Greece, 15342 Athens, Greece
| | - Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine-Clearwater, Clearwater, FL 33759, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
2
|
Hu HS, Sun BQ. Understanding the etiology of mental health problems in post-rehabilitation COVID-19 patients: Insights and strategies for effective intervention. World J Clin Cases 2024; 12:5308-5312. [PMID: 39156095 PMCID: PMC11238687 DOI: 10.12998/wjcc.v12.i23.5308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
In this editorial, we comment on an article by Alhammad et al that was published in a recent issue of the World Journal of Clinical Cases (Manuscript No.: 91134). We specifically focus on the mental health problems caused by coronavirus disease 2019 (COVID-19), their mechanisms, and targeted rehabilitation strategies. Severe acute respiratory syndrome coronavirus 2, via its spike protein, binds to angiotensin-converting enzyme 2 and other receptors prior to infiltrating diverse cells within the central nervous system, including endothelial cells, neurons, astrocytes, and oligodendrocytes, thereby contributing to the development of mental illnesses. Epidemiological data from 2020 underscored the global upsurge in major depressive and anxiety disorders by 27.6% and 25.6%, respectively, during the pandemic. The commented research show that 30% of post-intensive care unit discharge patients with COVID-19 in the Arabic region exhibited Hospital Anxiety and Depression Scale scores that were indicative of anxiety and depression. While acknowledging psychosocial factors, such as grief and loss, it is crucial to recognize the potential neurological impact of the virus through various mechanisms. Accordingly, interventions that encompass dietary measures, health supplements, and traditional Chinese medicine with neuroprotective properties are necessary. This editorial underscores the urgency to implement comprehensive rehabilitation approaches to address the intricate interplay between COVID-19 and mental well-being.
Collapse
Affiliation(s)
- Hai-Sheng Hu
- Guangzhou Respiratory Health Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong Province, China
| | - Bao-Qing Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong Province, China
| |
Collapse
|
3
|
Li H, Qian J, Wang Y, Wang J, Mi X, Qu L, Song N, Xie J. Potential convergence of olfactory dysfunction in Parkinson's disease and COVID-19: The role of neuroinflammation. Ageing Res Rev 2024; 97:102288. [PMID: 38580172 DOI: 10.1016/j.arr.2024.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that affects 7-10 million individuals worldwide. A common early symptom of PD is olfactory dysfunction (OD), and more than 90% of PD patients suffer from OD. Recent studies have highlighted a high incidence of OD in patients with SARS-CoV-2 infection. This review investigates the potential convergence of OD in PD and COVID-19, particularly focusing on the mechanisms by which neuroinflammation contributes to OD and neurological events. Starting from our fundamental understanding of the olfactory bulb, we summarize the clinical features of OD and pathological features of the olfactory bulb from clinical cases and autopsy reports in PD patients. We then examine SARS-CoV-2-induced olfactory bulb neuropathology and OD and emphasize the SARS-CoV-2-induced neuroinflammatory cascades potentially leading to PD manifestations. By activating microglia and astrocytes, as well as facilitating the aggregation of α-synuclein, SARS-CoV-2 could contribute to the onset or exacerbation of PD. We also discuss the possible contributions of NF-κB, the NLRP3 inflammasome, and the JAK/STAT, p38 MAPK, TLR4, IL-6/JAK2/STAT3 and cGAS-STING signaling pathways. Although olfactory dysfunction in patients with COVID-19 may be reversible, it is challenging to restore OD in patients with PD. With the emergence of new SARS-CoV-2 variants and the recurrence of infections, we call for continued attention to the intersection between PD and SARS-CoV-2 infection, especially from the perspective of OD.
Collapse
Affiliation(s)
- Hui Li
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Junliang Qian
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Youcui Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Juan Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Xiaoqing Mi
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Le Qu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Ning Song
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Liu T, Wu H, Sun L, Wei J. Role of Inflammation in the Development of COVID-19 to Parkinson's Disease. J Inflamm Res 2024; 17:3259-3282. [PMID: 38800597 PMCID: PMC11127656 DOI: 10.2147/jir.s460161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) can lead to neurological symptoms such as headaches, confusion, seizures, hearing loss, and loss of smell. The link between COVID-19 and Parkinson's disease (PD) is being investigated, but more research is needed for a definitive connection. Methods Datasets GSE22491 and GSE164805 were selected to screen differentially expressed gene (DEG), and immune infiltration and gene set enrichment analysis (GSEA) of the DEG were performed. WGCNA analyzed the DEG and selected the intersection genes. Potential biological functions and signaling pathways were determined, and diagnostic genes were further screened using gene expression and receiver operating characteristic (ROC) curves. Screening and molecular docking of ibuprofen as a therapeutic target. The effectiveness of ibuprofen was verified by constructing a PD model in vitro, and constructing "COVID19-PD" signaling pathway, and exploring the role of angiotensin-converting enzyme 2 (ACE2) in PD. Results A total of 13 DEG were screened from the GSE36980 and GSE5281 datasets. Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that the DEG were mainly associated with the hypoxia-inducible factor (HIF-1), epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor resistance, etc. After analysis, it is found that ibuprofen alleviates PD symptoms by inhibiting the expression of nuclear factor kappa-B (NF-κB), interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α). Based on signal pathway construction, the importance of ACE2 in COVID-19-induced PD has been identified. ACE2 is found to have widespread distribution in the brain. In the 1-methyl-4-phenyl-1,2,3,6-te-trahydropyridine (MPTP)-induced ACE2-null PD mice model, more severe motor and non-motor symptoms, increased NF-κB p65 and α-synuclein (α-syn) expression with significant aggregation, decreased tyrosine hydroxylase (TH), severe neuronal loss, and neurodegenerative disorders. Conclusion Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection increases the risk of PD through an inflammatory environment and downregulation of ACE2, providing evidence for the molecular mechanism and targeted therapy associated with COVID-19 and PD.
Collapse
Affiliation(s)
- Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Institute of Neurourology and Urodynamics, Huaihe Hospital of Henan University, Kaifeng, 475004, People’s Republic of China
| | - Haojie Wu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Institute of Neurourology and Urodynamics, Huaihe Hospital of Henan University, Kaifeng, 475004, People’s Republic of China
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Institute of Neurourology and Urodynamics, Huaihe Hospital of Henan University, Kaifeng, 475004, People’s Republic of China
| |
Collapse
|
5
|
Lengacher NA, Tomlinson JJ, Jochum AK, Franz J, Hasan Ali O, Flatz L, Jochum W, Penninger J, Stadelmann C, Woulfe JM, Schlossmacher MG. Neuropathological assessment of the olfactory bulb and tract in individuals with COVID-19. Acta Neuropathol Commun 2024; 12:70. [PMID: 38698465 PMCID: PMC11067107 DOI: 10.1186/s40478-024-01761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/17/2024] [Indexed: 05/05/2024] Open
Abstract
The majority of patients with Parkinson disease (PD) experience a loss in their sense of smell and accumulate insoluble α-synuclein aggregates in their olfactory bulbs (OB). Subjects affected by a SARS-CoV-2-linked illness (COVID-19) also frequently experience hyposmia. We previously postulated that microglial activation as well as α-synuclein and tau misprocessing can occur during host responses following microbial encounters. Using semiquantitative measurements of immunohistochemical signals, we examined OB and olfactory tract specimens collected serially at autopsies between 2020 and 2023. Deceased subjects comprised 50 adults, which included COVID19 + patients (n = 22), individuals with Lewy body disease (e.g., PD; dementia with Lewy bodies (n = 6)), Alzheimer disease (AD; n = 3), and other neurodegenerative disorders (e.g., progressive supranuclear palsy (n = 2); multisystem atrophy (n = 1)). Further, we included neurologically healthy controls (n = 9), and added subjects with an inflammation-rich brain disorder as neurological controls (NCO; n = 7). When probing for microglial and histiocytic reactivity in the anterior olfactory nuclei (AON) by anti-CD68 immunostaining, scores were consistently elevated in NCO and AD cases. In contrast, microglial signals on average were not significantly altered in COVID19 + patients relative to healthy controls, although anti-CD68 reactivity in their OB and tracts declined with progression in age. Mild-to-moderate increases in phospho-α-synuclein and phospho-tau signals were detected in the AON of tauopathy- and synucleinopathy-afflicted brains, respectively, consistent with mixed pathology, as described by others. Lastly, when both sides were available for comparison in our case series, we saw no asymmetry in the degree of pathology of the left versus right OB and tracts. We concluded from our autopsy series that after a fatal course of COVID-19, microscopic changes in the rostral, intracranial portion of the olfactory circuitry -when present- reflected neurodegenerative processes seen elsewhere in the brain. In general, microglial reactivity correlated best with the degree of Alzheimer's-linked tauopathy and declined with progression of age in COVID19 + patients.
Collapse
Affiliation(s)
- Nathalie A Lengacher
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Julianna J Tomlinson
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Ann-Kristin Jochum
- Institute of Pathology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Jonas Franz
- Neuropathology Institute, University of Goettingen Medical Centre, Goettingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Omar Hasan Ali
- Department of Life Sciences, University of British Columbia, Vancouver, BC, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Wolfram Jochum
- Institute of Pathology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Josef Penninger
- Department of Life Sciences, University of British Columbia, Vancouver, BC, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Christine Stadelmann
- Neuropathology Institute, University of Goettingen Medical Centre, Goettingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - John M Woulfe
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| | - Michael G Schlossmacher
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
6
|
Xu Q, Jiang S, Kang R, Wang Y, Zhang B, Tian J. Deciphering the molecular pathways underlying dopaminergic neuronal damage in Parkinson's disease associated with SARS-CoV-2 infection. Comput Biol Med 2024; 171:108200. [PMID: 38428099 DOI: 10.1016/j.compbiomed.2024.108200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND The COVID-19 pandemic caused by SARS-CoV-2 has led to significant global morbidity and mortality, with potential neurological consequences, such as Parkinson's disease (PD). However, the underlying mechanisms remain elusive. METHODS To address this critical question, we conducted an in-depth transcriptome analysis of dopaminergic (DA) neurons in both COVID-19 and PD patients. We identified common pathways and differentially expressed genes (DEGs), performed enrichment analysis, constructed protein‒protein interaction networks and gene regulatory networks, and employed machine learning methods to develop disease diagnosis and progression prediction models. To further substantiate our findings, we performed validation of hub genes using a single-cell sequencing dataset encompassing DA neurons from PD patients, as well as transcriptome sequencing of DA neurons from a mouse model of MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD. Furthermore, a drug-protein interaction network was also created. RESULTS We gained detailed insights into biological functions and signaling pathways, including ion transport and synaptic signaling pathways. CD38 was identified as a potential key biomarker. Disease diagnosis and progression prediction models were specifically tailored for PD. Molecular docking simulations and molecular dynamics simulations were employed to predict potential therapeutic drugs, revealing that genistein holds significant promise for exerting dual therapeutic effects on both PD and COVID-19. CONCLUSIONS Our study provides innovative strategies for advancing PD-related research and treatment in the context of the ongoing COVID-19 pandemic by elucidating the common pathogenesis between COVID-19 and PD in DA neurons.
Collapse
Affiliation(s)
- Qiuhan Xu
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Sisi Jiang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Ruiqing Kang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Yiling Wang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Jun Tian
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
7
|
Huang P, Tan YY, Chen B, Shang HF, Wang LJ, Liu CF, Chen L, Chang Y, Wang H, Wang XL, Lei XG, Yao LF, Yu Y, Ye Z, Chen HB, Chen SD. Life and disease status of patients with Parkinson's disease during and after zero-COVID in China: an online survey. Transl Neurodegener 2024; 13:8. [PMID: 38317265 PMCID: PMC10845503 DOI: 10.1186/s40035-024-00399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/14/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Little is known about the impact of the COVID-19 pandemic on patients with Parkinson's disease (PD) at different stages of the pandemic. This study aims to assess the lives and disease status of PD patients during the zero-COVID policy period and after ending the zero-COVID policy. METHODS This multicenter cross-sectional study included two online surveys among PD patients in China, from May 30 to June 30 in 2022 and from January 1 to February 28 in 2023, respectively. The survey questionnaires contained four sections: (1) status of COVID-19 infection; (2) impact on motor and non-motor symptoms; (3) impact on daily and social lives; and (4) impact on PD disease management. RESULTS A total of 1764 PD patients participated in the first online survey, with 200 patients having lockdown experience and 3 being COVID-19-positive (0.17%). In addition, 537 patients participated in the second online survey, with 467 patients having COVID-19 infection (86.96%). (1) During zero-COVID, all of the COVID-19-positive patients had mild symptoms of COVID-19 and no death was reported. After zero-COVID, 83.51% of the COVID-19-positive patients had mild symptoms. The overall death rate and inpatient mortality rate of COVID-19-positive PD patients were 3.21% and 30.00%, respectively. (2) During zero-COVID, 49.43% of PD patients reported worsening of PD-related symptoms (lockdown vs. unlockdown, 60.50% vs. 48.02%, P = 0.0009). After zero-COVID, 54.93% of PD patients reported worsening of PD-related symptoms (COVID-19 positive vs. COVID-19 negative, 59.31% vs. 25.71%, P < 0.0001). (3) During zero-COVID, 62.36% of patients felt worried, and 'limited outdoor activities' (55.39%) was the top reason for mental health problems. After zero-COVID, 59.03% of patients felt worried, with 'poor health' (58.10%) being the top reason. The PD patients tended to change their daily activities from offline to online, and their economic and caregiver burdens increased both during and after zero-COVID. (4) Most PD patients would like to choose online rehabilitation during (69.56%) and after zero-COVID (69.27%). The demand for online medication purchasing also increased during (47.00%) and after zero-COVID (26.63%). CONCLUSIONS The COVID-19 pandemic aggravated the motor and non-motor symptoms of PD patients either during or after the zero-COVID policy period. The PD patients also experienced prominent mental health problems, changes in daily activities, and increases in economic and caregiver burdens. The COVID-19 pandemic has changed ways of PD management with increasing demands for online medication purchasing and rehabilitation.
Collapse
Affiliation(s)
- Pei Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu-Yan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Biao Chen
- Department of Neurology, Xuan Wu Hospital Affiliated to Capital Medical University, Beijing, 100053, China
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li-Juan Wang
- Department of Neurology, Guangdong General Hospital, Guangzhou, 510080, China
| | - Chun-Feng Liu
- Department of Neurology, Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ying Chang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, 130031, China
| | - Han Wang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xue-Lian Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao-Guang Lei
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Li-Fen Yao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yang Yu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Zheng Ye
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hai-Bo Chen
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China.
| | - Sheng-Di Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, 201210, China.
| |
Collapse
|
8
|
Iravanpour F, Farrokhi MR, Jafarinia M, Oliaee RT. The effect of SARS-CoV-2 on the development of Parkinson's disease: the role of α-synuclein. Hum Cell 2024; 37:1-8. [PMID: 37735344 DOI: 10.1007/s13577-023-00988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
The current coronavirus disease 2019 (COVID-19) can lead to various neurological complications in infected people. These neurological effects include problems in both central nervous system (CNS) and peripheral nervous system (PNS). Hyposmia, a PNS symptom of COVID-19, frequently manifests in the early stages of Parkinson's disease (PD) and serves as an early warning sign of the condition. In addition, the olfactory system is recognized as an early site for the onset of α-synuclein pathology, the pathological hallmark of PD. PD is characterized by accumulation and aggregation of misfolded α-synuclein (α-Syn) into Lewy bodies and Lewy neurites, resulting in the degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Previous research has also shown the involvement of α-Syn in the innate immune response following viral infections. Consequently, the potential link between viral infections and development of PD has gained attention in recent years. However, it's still too early to definitively conclude whether COVID-19 can cause Parkinsonism. Nevertheless, we can explore the likelihood of this connection by examining past studies and possible mechanisms to better understand how COVID-19 might potentially lead to PD following the infection. Based on the various pieces of evidence discussed in this review, we can infer that SARS-CoV-2 promotes the aggregation of α-Syn and, ultimately, leads to PD through at least two mechanisms: the stable binding of the S1 protein to proteins prone to aggregation like α-Syn, and the upregulation of α-Syn as part of the immune response to the infection.
Collapse
Affiliation(s)
- Farideh Iravanpour
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Reza Farrokhi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Razieh Tavakoli Oliaee
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Weissert R. Nervous system-related tropism of SARS-CoV-2 and autoimmunity in COVID-19 infection. Eur J Immunol 2024; 54:e2250230. [PMID: 37733584 DOI: 10.1002/eji.202250230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 08/05/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023]
Abstract
The effects of SARS-CoV-2 in COVID-19 on the nervous system are incompletely understood. SARS-CoV-2 can infect endothelial cells, neurons, astrocytes, and oligodendrocytes with consequences for the host. There are indications that infection of these CNS-resident cells may result in long-term effects, including emergence of neurodegenerative diseases. Indirect effects of infection with SARS-CoV-2 relate to the induction of autoimmune disease involving molecular mimicry or/and bystander activation of T- and B cells and emergence of autoantibodies against various self-antigens. Data obtained in preclinical models of coronavirus-induced disease gives important clues for the understanding of nervous system-related assault of SARS-CoV-2. The pathophysiology of long-COVID syndrome and post-COVID syndrome in which autoimmunity and immune dysregulation might be the driving forces are still incompletely understood. A better understanding of nervous-system-related immunity in COVID-19 might support the development of therapeutic approaches. In this review, the current understanding of SARS-CoV-2 tropism for the nervous system, the associated immune responses, and diseases are summarized. The data indicates that there is viral tropism of SARS-CoV-2 in the nervous system resulting in various disease conditions. Prevention of SARS-CoV-2 infection by means of vaccination is currently the best strategy for the prevention of subsequent tissue damage involving the nervous system.
Collapse
Affiliation(s)
- Robert Weissert
- Department of Neurology, University of Regensburg Hospital, Regensburg, Germany
| |
Collapse
|
10
|
Cappelletti G, Carsana EV, Lunghi G, Breviario S, Vanetti C, Di Fonzo AB, Frattini E, Magni M, Zecchini S, Clerici M, Aureli M, Fenizia C. SARS-CoV-2 hampers dopamine production in iPSC-derived dopaminergic neurons. Exp Mol Pathol 2023; 134:104874. [PMID: 37775022 DOI: 10.1016/j.yexmp.2023.104874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
An increasing number of patients experiences prolonged symptoms, whose profile and timeline remain uncertain, a condition that has been defined as post COVID. The majority of recovered hospitalized patients manifests at least one persistent symptom even sixty days after the first clinical manifestation's onset. Particularly, in light of the COVID-19-related symptomatology, it has been hypothesized that SARS-CoV-2 might affect the dopamine pathway. However, no scientific evidence has been produced so far. To this end, human iPSC-derived dopaminergic neurons were infected with EU, Delta and Omicron SARS-CoV-2 variants. The infection with EU and Delta variants, but not with Omicron, results in a reduced intracellular content and extracellular release of dopamine. Indeed, the tyrosine hydroxylase was found to be significantly upregulated at the mRNA level, while being greatly reduced at the protein level. The major downstream synthetic enzyme DOPA-decarboxylase and the dopamine transporter were significantly downregulated both at the mRNA and protein level. Notably, in vitro SARS-CoV-2 infection was also associated with an altered MAP2 and TAU expression and with an increased presence of neuronal stress markers. These preliminary observations suggest that the dopamine metabolism and production are affected by SARS-CoV-2, partially explaining some of the neurological symptoms manifested.
Collapse
Affiliation(s)
- G Cappelletti
- Department of Biomedical and Clinical Sciences, University of Milan, via G.B. Grassi 74, 20157 Milan, Italy
| | - E V Carsana
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via F.lli Cervi 93, 20054 Segrate, Italy
| | - G Lunghi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via F.lli Cervi 93, 20054 Segrate, Italy
| | - S Breviario
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via F.lli Cervi 93, 20054 Segrate, Italy
| | - C Vanetti
- Department of Biomedical and Clinical Sciences, University of Milan, via G.B. Grassi 74, 20157 Milan, Italy
| | - A B Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, via F. Sforza 35, 20122 Milan, Italy
| | - E Frattini
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, via F. Sforza 35, 20122 Milan, Italy
| | - M Magni
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, via F. Sforza 35, 20122 Milan, Italy
| | - S Zecchini
- Department of Biomedical and Clinical Sciences, University of Milan, via G.B. Grassi 74, 20157 Milan, Italy
| | - M Clerici
- Department of Pathophysiology and Transplantation, University of Milan, via F. Sforza 35, 20122 Milan, Italy; IRCCS Fondazione Don Gnocchi, via Capecelatro 66, 20148 Milan, Italy
| | - M Aureli
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via F.lli Cervi 93, 20054 Segrate, Italy
| | - C Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, via F. Sforza 35, 20122 Milan, Italy.
| |
Collapse
|
11
|
Boura I, Qamar MA, Daddoveri F, Leta V, Poplawska-Domaszewicz K, Falup-Pecurariu C, Ray Chaudhuri K. SARS-CoV-2 and Parkinson's Disease: A Review of Where We Are Now. Biomedicines 2023; 11:2524. [PMID: 37760965 PMCID: PMC10526287 DOI: 10.3390/biomedicines11092524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has been discussed in the context of Parkinson's disease (PD) over the last three years. Now that we are entering the long-term phase of this pandemic, we are intrigued to look back and see how and why the community of patients with PD was impacted and what knowledge we have collected so far. The relationship between COVID-19 and PD is likely multifactorial in nature. Similar to other systemic infections, a probable worsening of PD symptoms secondary to COVID-19, either transient or persistent (long COVID), has been demonstrated, while the COVID-19-related mortality of PD patients may be increased compared to the general population. These observations could be attributed to direct or indirect damage from SARS-CoV-2 in the central nervous system (CNS) or could result from general infection-related parameters (e.g., hospitalization or drugs) and the sequelae of the COVID-19 pandemic (e.g., quarantine). A growing number of cases of new-onset parkinsonism or PD following SARS-CoV-2 infection have been reported, either closely (post-infectious) or remotely (para-infectious) after a COVID-19 diagnosis, although such a link remains hypothetical. The pathophysiological substrate of these phenomena remains elusive; however, research studies, particularly pathology studies, have suggested various COVID-19-induced degenerative changes with potential associations with PD/parkinsonism. We review the literature to date for answers considering the relationship between SARS-CoV-2 infection and PD/parkinsonism, examining pathophysiology, clinical manifestations, vaccination, and future directions.
Collapse
Affiliation(s)
- Iro Boura
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London SE5 9RS, UK; (I.B.)
- Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 5 Cutcombe Road, London SE5 9RX, UK
- Medical School, University of Crete, Heraklion, 71003 Iraklion, Greece
| | - Mubasher A. Qamar
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London SE5 9RS, UK; (I.B.)
- Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Francesco Daddoveri
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| | - Valentina Leta
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London SE5 9RS, UK; (I.B.)
- Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 5 Cutcombe Road, London SE5 9RX, UK
- Parkinson and Movement Disorders Unit, Department of Clinical Neuroscience, Fondazione, IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | | | - Cristian Falup-Pecurariu
- Department of Neurology, County Clinic Hospital, Faculty of Medicine, Transilvania University Brasov, 500019 Brasov, Romania
| | - K. Ray Chaudhuri
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London SE5 9RS, UK; (I.B.)
- Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 5 Cutcombe Road, London SE5 9RX, UK
| |
Collapse
|
12
|
Ng CYJ, Bun HH, Zhao Y, Zhong LLD. TCM "medicine and food homology" in the management of post-COVID disorders. Front Immunol 2023; 14:1234307. [PMID: 37720220 PMCID: PMC10500073 DOI: 10.3389/fimmu.2023.1234307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Background The World Health Organization declared that COVID-19 is no longer a public health emergency of global concern on May 5, 2023. Post-COVID disorders are, however, becoming more common. Hence, there lies a growing need to develop safe and effective treatment measures to manage post-COVID disorders. Investigating the use of TCM medicinal foods in the long-term therapy of post-COVID illnesses may be beneficial given contemporary research's emphasis on the development of medicinal foods. Scope and approach The use of medicinal foods for the long-term treatment of post-COVID disorders is highlighted in this review. Following a discussion of the history of the TCM "Medicine and Food Homology" theory, the pathophysiological effects of post-COVID disorders will be briefly reviewed. An analysis of TCM medicinal foods and their functions in treating post-COVID disorders will then be provided before offering some insight into potential directions for future research and application. Key findings and discussion TCM medicinal foods can manage different aspects of post-COVID disorders. The use of medicinal foods in the long-term management of post-COVID illnesses may be a safe and efficient therapy choice because they are typically milder in nature than chronic drug use. These findings may also be applied in the long-term post-disease treatment of similar respiratory disorders.
Collapse
Affiliation(s)
- Chester Yan Jie Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hung Hung Bun
- The University of Hong Kong (HKU) School of Professional and Continuing Education, Hong Kong, Hong Kong SAR, China
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Linda L. D. Zhong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
13
|
Wang Q, Peng W, Yang Y, Wu Y, Han R, Ding T, Zhang X, Liu J, Liu J, Yang J. Global analysis of lysine acetylation in the brain cortex of K18-hACE2 mice infected with SARS-CoV-2. Proteomics 2023; 23:e2300096. [PMID: 37309728 DOI: 10.1002/pmic.202300096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected hundreds of millions of people all over the world and thus threatens human life. Clinical evidence shows that SARS-CoV-2 infection can cause several neurological consequences, but the existing antiviral drugs and vaccines have failed to stop its spread. Therefore, an understanding of the response to SARS-CoV-2 infection of hosts is vital to find a resultful therapy. Here, we employed a K18-hACE2 mouse infection model and LC-MS/MS to systematically evaluate the acetylomes of brain cortexes in the presence and absence of SARS-CoV-2 infection. Using a label-free strategy, 3829 lysine acetylation (Kac) sites in 1735 histone and nonhistone proteins were identified. Bioinformatics analyses indicated that SARS-CoV-2 infection might lead to neurological consequences via acetylation or deacetylation of important proteins. According to a previous study, we found 26 SARS-CoV-2 proteins interacted with 61 differentially expressed acetylated proteins with high confidence and identified one acetylated SARS-CoV-2 protein nucleocapsid phosphoprotein. We greatly expanded the known set of acetylated proteins and provide the first report of the brain cortex acetylome in this model and thus a theoretical basis for future research on the pathological mechanisms and therapies of neurological consequences after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Qiaochu Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wanjun Peng
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yehong Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Wu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rong Han
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tao Ding
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xutong Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jiangfeng Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Juntao Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 2023; 8:267. [PMID: 37433768 PMCID: PMC10336149 DOI: 10.1038/s41392-023-01486-5] [Citation(s) in RCA: 162] [Impact Index Per Article: 162.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 07/13/2023] Open
Abstract
Studies in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Amyotrophic lateral sclerosis, Huntington's disease, and so on, have suggested that inflammation is not only a result of neurodegeneration but also a crucial player in this process. Protein aggregates which are very common pathological phenomenon in neurodegeneration can induce neuroinflammation which further aggravates protein aggregation and neurodegeneration. Actually, inflammation even happens earlier than protein aggregation. Neuroinflammation induced by genetic variations in CNS cells or by peripheral immune cells may induce protein deposition in some susceptible population. Numerous signaling pathways and a range of CNS cells have been suggested to be involved in the pathogenesis of neurodegeneration, although they are still far from being completely understood. Due to the limited success of traditional treatment methods, blocking or enhancing inflammatory signaling pathways involved in neurodegeneration are considered to be promising strategies for the therapy of neurodegenerative diseases, and many of them have got exciting results in animal models or clinical trials. Some of them, although very few, have been approved by FDA for clinical usage. Here we comprehensively review the factors affecting neuroinflammation and the major inflammatory signaling pathways involved in the pathogenicity of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. We also summarize the current strategies, both in animal models and in the clinic, for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Weifeng Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China
| | - Dan Xiao
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, P.R. China
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China.
| |
Collapse
|
15
|
Albornoz EA, Amarilla AA, Modhiran N, Parker S, Li XX, Wijesundara DK, Aguado J, Zamora AP, McMillan CLD, Liang B, Peng NYG, Sng JDJ, Saima FT, Fung JN, Lee JD, Paramitha D, Parry R, Avumegah MS, Isaacs A, Lo MW, Miranda-Chacon Z, Bradshaw D, Salinas-Rebolledo C, Rajapakse NW, Wolvetang EJ, Munro TP, Rojas-Fernandez A, Young PR, Stacey KJ, Khromykh AA, Chappell KJ, Watterson D, Woodruff TM. SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through spike protein. Mol Psychiatry 2023; 28:2878-2893. [PMID: 36316366 PMCID: PMC10615762 DOI: 10.1038/s41380-022-01831-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 01/21/2023]
Abstract
Coronavirus disease-2019 (COVID-19) is primarily a respiratory disease, however, an increasing number of reports indicate that SARS-CoV-2 infection can also cause severe neurological manifestations, including precipitating cases of probable Parkinson's disease. As microglial NLRP3 inflammasome activation is a major driver of neurodegeneration, here we interrogated whether SARS-CoV-2 can promote microglial NLRP3 inflammasome activation. Using SARS-CoV-2 infection of transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) as a COVID-19 pre-clinical model, we established the presence of virus in the brain together with microglial activation and NLRP3 inflammasome upregulation in comparison to uninfected mice. Next, utilising a model of human monocyte-derived microglia, we identified that SARS-CoV-2 isolates can bind and enter human microglia in the absence of viral replication. This interaction of virus and microglia directly induced robust inflammasome activation, even in the absence of another priming signal. Mechanistically, we demonstrated that purified SARS-CoV-2 spike glycoprotein activated the NLRP3 inflammasome in LPS-primed microglia, in a ACE2-dependent manner. Spike protein also could prime the inflammasome in microglia through NF-κB signalling, allowing for activation through either ATP, nigericin or α-synuclein. Notably, SARS-CoV-2 and spike protein-mediated microglial inflammasome activation was significantly enhanced in the presence of α-synuclein fibrils and was entirely ablated by NLRP3-inhibition. Finally, we demonstrate SARS-CoV-2 infected hACE2 mice treated orally post-infection with the NLRP3 inhibitory drug MCC950, have significantly reduced microglial inflammasome activation, and increased survival in comparison with untreated SARS-CoV-2 infected mice. These results support a possible mechanism of microglial innate immune activation by SARS-CoV-2, which could explain the increased vulnerability to developing neurological symptoms akin to Parkinson's disease in COVID-19 infected individuals, and a potential therapeutic avenue for intervention.
Collapse
Affiliation(s)
- Eduardo A Albornoz
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Sandra Parker
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xaria X Li
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Danushka K Wijesundara
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
- Vaxxas Pty. Ltd., Woolloongabba, QLD, 4102, Australia
| | - Julio Aguado
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Adriana Pliego Zamora
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nias Y G Peng
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Julian D J Sng
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Fatema Tuj Saima
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jenny N Fung
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia
| | - John D Lee
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Devina Paramitha
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Michael S Avumegah
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ariel Isaacs
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Martin W Lo
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Zaray Miranda-Chacon
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Molecular Medicine Laboratory, Medical School, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Daniella Bradshaw
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Niwanthi W Rajapakse
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Trent P Munro
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Paul R Young
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence Brisbane, Brisbane, QLD, 4072 and 4029, Australia
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence Brisbane, Brisbane, QLD, 4072 and 4029, Australia
| | - Keith J Chappell
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence Brisbane, Brisbane, QLD, 4072 and 4029, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia.
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
16
|
Iacono S, Schirò G, Davì C, Mastrilli S, Abbott M, Guajana F, Arnao V, Aridon P, Ragonese P, Gagliardo C, Colomba C, Scichilone N, D’Amelio M. COVID-19 and neurological disorders: what might connect Parkinson's disease to SARS-CoV-2 infection. Front Neurol 2023; 14:1172416. [PMID: 37273689 PMCID: PMC10232873 DOI: 10.3389/fneur.2023.1172416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/28/2023] [Indexed: 06/06/2023] Open
Abstract
SARS-CoV-2 infection leading to Coronavirus disease 19 (COVID-19) rapidly became a worldwide health emergency due to its elevated infecting capacity, morbidity, and mortality. Parkinson’s disease (PD) is the second most common neurodegenerative disorder and, nowadays the relationship between SARS-CoV-2 outbreak and PD reached a great interest. Apparently independent one from the other, both diseases share some pathogenetic and clinical features. The relationship between SARS-CoV-2 infection and PD is complex and it depends on the direction of the association that is which of the two diseases comes first. Some evidence suggests that SARS-CoV-2 infection might be a possible risk factor for PD wherein the exposure to SARS-CoV-2 increase the risk for PD. This perspective comes out from the increasing cases of parkinsonism following COVID-19 and also from the anatomical structures affected in both COVID-19 and early PD such as olfactory bulb and gastrointestinal tract resulting in the same symptoms such as hyposmia and constipation. Furthermore, there are many reported cases of patients who developed hypokinetic extrapyramidal syndrome following SARS-CoV-2 infection although these would resemble a post-encephalitic conditions and there are to date relevant data to support the hypothesis that SARS-CoV-2 infection is a risk factor for the development of PD. Future large, longitudinal and population-based studies are needed to better assess whether the risk of developing PD after COVID-19 exists given the short time span from the starting of pandemic. Indeed, this brief time-window does not allow the precise estimation of the incidence and prevalence of PD after pandemic when compared with pre-pandemic era. If the association between SARS-CoV-2 infection and PD pathogenesis is actually putative, on the other hand, vulnerable PD patients may have a greater risk to develop COVID-19 being also more prone to develop a more aggressive disease course. Furthermore, PD patients with PD showed a worsening of motor and non-motor symptoms during COVID-19 outbreak due to both infection and social restriction. As well, the worries related to the risk of being infected should not be neglected. Here we summarize the current knowledge emerging about the epidemiological, pathogenetic and clinical relationship between SARS-CoV-2 infection and PD.
Collapse
Affiliation(s)
- Salvatore Iacono
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Chiara Davì
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Sergio Mastrilli
- Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone di Palermo, Palermo, Italy
| | - Michelle Abbott
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Fabrizio Guajana
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Valentina Arnao
- UO Neurologia e Stroke Unit, Azienda di Rilievo Nazionale ad Alta Specializzazione, Ospedali Civico Di Cristina Benfratelli, Palermo, Italy
| | - Paolo Aridon
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Paolo Ragonese
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Cesare Gagliardo
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Claudia Colomba
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Nicola Scichilone
- Division of Respiratory Diseases, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Marco D’Amelio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
17
|
Holroyd KB, Berkowitz AL. Historical Perspectives on the Neurologic Manifestations of Viral Pandemics. Semin Neurol 2023. [PMID: 37037211 DOI: 10.1055/s-0043-1767714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Neurologic symptoms have been reported in over 30% of hospitalized patients with coronavirus disease 2019 (COVID-19), but the pathogenesis of these symptoms remains under investigation. Here, we place the neurologic complications of COVID-19 within the context of three historical viral pandemics that have been associated with neurologic diseases: (1) the 1918 influenza pandemic, subsequent spread of encephalitis lethargica, and lessons for the study of COVID-19-related neuroinflammation; (2) the controversial link between the 1976 influenza vaccination campaign and Guillain-Barré Syndrome and its implications for the post- and parainfectious complications of COVID-19 and COVID-19 vaccination; and (3) potential applications of scientific techniques developed in the wake of the human immunodeficiency virus pandemic to the study of postacute sequelae of COVID-19.
Collapse
Affiliation(s)
- Kathryn B Holroyd
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Aaron L Berkowitz
- Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California
| |
Collapse
|
18
|
Datta AK, Mukherjee A, Biswas A. Gastrointestinal, Respiratory, and Olfactory Neurotropism of Sars-Cov2 as a Possible Trigger of Parkinson's Disease: Is a Multi-Hit Multi-Step Process on the Cards. Ann Indian Acad Neurol 2023; 26:127-136. [PMID: 37179662 PMCID: PMC10171009 DOI: 10.4103/aian.aian_767_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/20/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Since the first emergence of COVID-19 on the global stage, there has been a wealth of evidence to suggest that SARS-Cov2 is not merely a pulmonary pathogen. This virus is unique in its ability to disrupt cellular pathways related to protein homeostasis, mitochondrial function, stress response, and aging. Such effects raise concerns about the long-term fate of survivors of COVID-19 infection, particularly regarding neurodegenerative diseases. The concept of interaction between environmental factors and alpha-synuclein formation in the olfactory bulb and vagal autonomic terminals with subsequent caudo-cranial migration has received much attention in the context of PD pathogenesis. Anosmia and gastrointestinal symptoms are two well-known symptoms of COVID-19, with evidence of an olfactory bulb and vagal infiltration by SARS-CoV2. This raises the possibility of the spread of the viral particles to the brain along multiple cranial nerve routes. Neurotropism, coupled with the ability of the SARS-Cov2 virion to induce abnormal protein folding and stress responses in the central nervous system, in presence of an inflammatory milieu, reinforced by hypoxia, coagulopathy, and endothelial dysfunction, reverberates the intriguing possibility of activation of a neurodegenerative cascade leading to the development of pathological alpha-synuclein aggregates and thus, triggering the development of PD in survivors of COVID19. This review attempts to summarize and critically appraise existing evidence from basic science research and clinical reports of links between COVID-19 and PD and explores the prospect of a multi-hit pathophysiological process, induced by SARS-Cov2 infection, ultimately converging on perturbed cellular protein homeostasis, which although is intriguing, presently lacks robust evidence for confirmation.
Collapse
Affiliation(s)
- Amlan K. Datta
- Department of Neurology, Institute of Post Graduate of Medical Education and Research (IPGME&R) and Bangur Institute of Neurosciences (BIN), Kolkata, West Bengal, India
| | - Adreesh Mukherjee
- Department of Neurology, Institute of Post Graduate of Medical Education and Research (IPGME&R) and Bangur Institute of Neurosciences (BIN), Kolkata, West Bengal, India
| | - Atanu Biswas
- Department of Neurology, Institute of Post Graduate of Medical Education and Research (IPGME&R) and Bangur Institute of Neurosciences (BIN), Kolkata, West Bengal, India
| |
Collapse
|
19
|
Emmi A, Rizzo S, Barzon L, Sandre M, Carturan E, Sinigaglia A, Riccetti S, Della Barbera M, Boscolo-Berto R, Cocco P, Macchi V, Antonini A, De Gaspari M, Basso C, De Caro R, Porzionato A. Detection of SARS-CoV-2 viral proteins and genomic sequences in human brainstem nuclei. NPJ Parkinsons Dis 2023; 9:25. [PMID: 36781876 PMCID: PMC9924897 DOI: 10.1038/s41531-023-00467-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Neurological manifestations are common in COVID-19, the disease caused by SARS-CoV-2. Despite reports of SARS-CoV-2 detection in the brain and cerebrospinal fluid of COVID-19 patients, it is still unclear whether the virus can infect the central nervous system, and which neuropathological alterations can be ascribed to viral tropism, rather than immune-mediated mechanisms. Here, we assess neuropathological alterations in 24 COVID-19 patients and 18 matched controls who died due to pneumonia/respiratory failure. Aside from a wide spectrum of neuropathological alterations, SARS-CoV-2-immunoreactive neurons were detected in the dorsal medulla and in the substantia nigra of five COVID-19 subjects. Viral RNA was also detected by real-time RT-PCR. Quantification of reactive microglia revealed an anatomically segregated pattern of inflammation within affected brainstem regions, and was higher when compared to controls. While the results of this study support the neuroinvasive potential of SARS-CoV-2 and characterize the role of brainstem inflammation in COVID-19, its potential implications for neurodegeneration, especially in Parkinson's disease, require further investigations.
Collapse
Affiliation(s)
- Aron Emmi
- grid.5608.b0000 0004 1757 3470Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy ,grid.5608.b0000 0004 1757 3470Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy
| | - Stefania Rizzo
- grid.5608.b0000 0004 1757 3470Department of Cardio-Thoracic-Vascular Sciences & Public Health, University of Padova, Padova, Italy
| | - Luisa Barzon
- grid.5608.b0000 0004 1757 3470Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Michele Sandre
- grid.5608.b0000 0004 1757 3470Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy ,grid.5608.b0000 0004 1757 3470Department of Neuroscience, University of Padova, Padova, Italy
| | - Elisa Carturan
- grid.5608.b0000 0004 1757 3470Department of Cardio-Thoracic-Vascular Sciences & Public Health, University of Padova, Padova, Italy
| | - Alessandro Sinigaglia
- grid.5608.b0000 0004 1757 3470Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Silvia Riccetti
- grid.5608.b0000 0004 1757 3470Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Mila Della Barbera
- grid.5608.b0000 0004 1757 3470Department of Cardio-Thoracic-Vascular Sciences & Public Health, University of Padova, Padova, Italy
| | - Rafael Boscolo-Berto
- grid.5608.b0000 0004 1757 3470Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Patrizia Cocco
- Pathology and Histopathology Unit, Ospedali Riuniti Padova Sud, Padova, Italy
| | - Veronica Macchi
- grid.5608.b0000 0004 1757 3470Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy ,grid.5608.b0000 0004 1757 3470Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy
| | - Angelo Antonini
- grid.5608.b0000 0004 1757 3470Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy ,grid.5608.b0000 0004 1757 3470Movement Disorders Unit, Department of Neuroscience, University of Padova, Padova, Italy
| | - Monica De Gaspari
- grid.5608.b0000 0004 1757 3470Department of Cardio-Thoracic-Vascular Sciences & Public Health, University of Padova, Padova, Italy
| | - Cristina Basso
- grid.5608.b0000 0004 1757 3470Department of Cardio-Thoracic-Vascular Sciences & Public Health, University of Padova, Padova, Italy
| | - Raffaele De Caro
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy. .,Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy.
| | - Andrea Porzionato
- grid.5608.b0000 0004 1757 3470Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy ,grid.5608.b0000 0004 1757 3470Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy
| |
Collapse
|
20
|
Huang P, Zhang LY, Tan YY, Chen SD. Links between COVID-19 and Parkinson's disease/Alzheimer's disease: reciprocal impacts, medical care strategies and underlying mechanisms. Transl Neurodegener 2023; 12:5. [PMID: 36717892 PMCID: PMC9885419 DOI: 10.1186/s40035-023-00337-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
The impact of coronavirus disease 2019 (COVID-19) pandemic on patients with neurodegenerative diseases and the specific neurological manifestations of COVID-19 have aroused great interest. However, there are still many issues of concern to be clarified. Therefore, we review the current literature on the complex relationship between COVID-19 and neurodegenerative diseases with an emphasis on Parkinson's disease (PD) and Alzheimer's disease (AD). We summarize the impact of COVID-19 infection on symptom severity, disease progression, and mortality rate of PD and AD, and discuss whether COVID-19 infection could trigger PD and AD. In addition, the susceptibility to and the prognosis of COVID-19 in PD patients and AD patients are also included. In order to achieve better management of PD and AD patients, modifications of care strategies, specific drug therapies, and vaccines during the pandemic are also listed. At last, mechanisms underlying the link of COVID-19 with PD and AD are reviewed.
Collapse
Affiliation(s)
- Pei Huang
- grid.16821.3c0000 0004 0368 8293Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Lin-Yuan Zhang
- grid.412478.c0000 0004 1760 4628Department of Neurology, Shanghai General Hospital, Shanghai, 200080 China
| | - Yu-Yan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Sheng-Di Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, 201210, China.
| |
Collapse
|
21
|
Rudnicka-Drożak E, Drożak P, Mizerski G, Zaborowski T, Ślusarska B, Nowicki G, Drożak M. Links between COVID-19 and Alzheimer's Disease-What Do We Already Know? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2146. [PMID: 36767513 PMCID: PMC9915236 DOI: 10.3390/ijerph20032146] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Alzheimer's disease (AD) is a life-changing condition whose etiology is explained by several hypotheses. Recently, a new virus contributed to the evidence of viral involvement in AD: the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the COVID-19 coronavirus disease. AD was found to be one of the most common COVID-19 comorbidities, and it was found to increase mortality from this disease as well. Moreover, AD patients were observed to present with the distinct clinical features of COVID-19, with delirium being prevalent in this group. The SARS-CoV-2 virus enters host cells through the angiotensin-converting enzyme 2 (ACE2) receptor. ACE2 is overexpressed in brains with AD, which thus increases the viral invasion. Furthermore, the inhibition of the ACE2 receptor by the SARS-CoV-2 virus may also decrease the brain-derived neurotrophic factor (BDNF), contributing to neurodegeneration. The ApoE ε4 allele, which increases the risk of AD, was found to facilitate the SARS-CoV-2 entry into cells. Furthermore, the neuroinflammation and oxidative stress existing in AD patients enhance the inflammatory response associated with COVID-19. Moreover, pandemic and associated social distancing measures negatively affected the mental health, cognitive function, and neuro-psychiatric symptoms of AD patients. This review comprehensively covers the links between COVID-19 and Alzheimer's disease, including clinical presentation, molecular mechanisms, and the effects of social distancing.
Collapse
Affiliation(s)
- Ewa Rudnicka-Drożak
- Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Paulina Drożak
- Student Scientific Society, Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Grzegorz Mizerski
- Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Tomasz Zaborowski
- Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| | - Barbara Ślusarska
- Department of Family and Geriatric Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-081 Lublin, Poland
| | - Grzegorz Nowicki
- Department of Family and Geriatric Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-081 Lublin, Poland
| | - Martyna Drożak
- Student Scientific Society, Chair and Department of Family Medicine, Medical University of Lublin, Langiewicza 6a, 20-035 Lublin, Poland
| |
Collapse
|
22
|
Zhang Z, Liu Z, Lv A, Fan C. How Toll-like receptors influence Parkinson's disease in the microbiome-gut-brain axis. Front Immunol 2023; 14:1154626. [PMID: 37207228 PMCID: PMC10189046 DOI: 10.3389/fimmu.2023.1154626] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Recently, a large number of experimenters have found that the pathogenesis of Parkinson's disease may be related to the gut microbiome and proposed the microbiome-gut-brain axis. Studies have shown that Toll-like receptors, especially Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4), are key mediators of gut homeostasis. In addition to their established role in innate immunity throughout the body, research is increasingly showing that the Toll-like receptor 2 and Toll-like receptor 4 signaling pathways shape the development and function of the gut and enteric nervous system. Notably, Toll-like receptor 2 and Toll-like receptor 4 are dysregulated in Parkinson's disease patients and may therefore be identified as the core of early gut dysfunction in Parkinson's disease. To better understand the contribution of Toll-like receptor 2 and Toll-like receptor 4 dysfunction in the gut to early α-synuclein aggregation, we discussed the structural function of Toll-like receptor 2 and Toll-like receptor 4 and signal transduction of Toll-like receptor 2 and Toll-like receptor 4 in Parkinson's disease by reviewing clinical, animal models, and in vitro studies. We also present a conceptual model of the pathogenesis of Parkinson's disease, in which microbial dysbiosis alters the gut barrier as well as the Toll-like receptor 2 and Toll-like receptor 4 signaling pathways, ultimately leading to a positive feedback loop for chronic gut dysfunction, promoting α-synuclein aggregation in the gut and vagus nerve.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Anesthesiology, Baotou Central Hospital, Baotou, China
- Baotou Clinical Medical College, Inner Mongolia Medical University, Baotou, China
| | - Zhihui Liu
- Department of Anesthesiology, Baotou Central Hospital, Baotou, China
- *Correspondence: Zhihui Liu,
| | - Ao Lv
- The First Clinical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chenhui Fan
- Safety Engineering, People’s Public Security University of China, Beijing, China
| |
Collapse
|
23
|
Beckers M, Bloem BR, Helmich RC. Mask on, Mask off: Subclinical Parkinson's Disease Unveiled by COVID-19. J Mov Disord 2023; 16:55-58. [PMID: 36353805 PMCID: PMC9978266 DOI: 10.14802/jmd.22067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/24/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Milan Beckers
- Center of Expertise for Parkinson & Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,Corresponding author: Milan Beckers, MD, MSc Center of Expertise for Parkinson & Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands / Tel: +31-24-3613392 / Fax: +31-24-3618837 / E-mail:
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson & Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Rick C Helmich
- Center of Expertise for Parkinson & Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Russo MJ, MacLeod K, Lamoureux J, Lebovitz R, Pleshkevich M, Steriade C, Wisniewski T, Frontera JA, Kang UJ. Aggregation-Seeding Forms of α-Synuclein Are Not Detected in Acute Coronavirus Disease 2019 Cerebrospinal Fluid. Mov Disord 2022; 37:2462-2463. [PMID: 36208476 PMCID: PMC9874726 DOI: 10.1002/mds.29240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 01/28/2023] Open
Affiliation(s)
- Marco J. Russo
- The Marlene and Paolo Fresco Institute for Parkinson's & Movement Disorders, Departments of Neurology and Neuroscience and Physiology, Neuroscience Institute, The Parekh Center for Interdisciplinary NeurologyNYU Grossman School of MedicineNew YorkNew YorkUSA
- Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | | | | | | | - Maria Pleshkevich
- Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
- NYU Comprehensive Epilepsy CenterNew York UniversityNew YorkNew YorkUSA
| | - Claude Steriade
- Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
- NYU Comprehensive Epilepsy CenterNew York UniversityNew YorkNew YorkUSA
| | - Thomas Wisniewski
- Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
- Departments of Neurology, Pathology, and Psychiatry, Center for Cognitive NeurologyNYU Langone Medical CenterNew YorkNew YorkUSA
| | - Jennifer A. Frontera
- Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Un Jung Kang
- The Marlene and Paolo Fresco Institute for Parkinson's & Movement Disorders, Departments of Neurology and Neuroscience and Physiology, Neuroscience Institute, The Parekh Center for Interdisciplinary NeurologyNYU Grossman School of MedicineNew YorkNew YorkUSA
- Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| |
Collapse
|
25
|
Saikarthik J, Saraswathi I, Alarifi A, Al-Atram AA, Mickeymaray S, Paramasivam A, Shaikh S, Jeraud M, Alothaim AS. Role of neuroinflammation mediated potential alterations in adult neurogenesis as a factor for neuropsychiatric symptoms in Post-Acute COVID-19 syndrome-A narrative review. PeerJ 2022; 10:e14227. [PMID: 36353605 PMCID: PMC9639419 DOI: 10.7717/peerj.14227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
Persistence of symptoms beyond the initial 3 to 4 weeks after infection is defined as post-acute COVID-19 syndrome (PACS). A wide range of neuropsychiatric symptoms like anxiety, depression, post-traumatic stress disorder, sleep disorders and cognitive disturbances have been observed in PACS. The review was conducted based on PRISMA-S guidelines for literature search strategy for systematic reviews. A cytokine storm in COVID-19 may cause a breach in the blood brain barrier leading to cytokine and SARS-CoV-2 entry into the brain. This triggers an immune response in the brain by activating microglia, astrocytes, and other immune cells leading to neuroinflammation. Various inflammatory biomarkers like inflammatory cytokines, chemokines, acute phase proteins and adhesion molecules have been implicated in psychiatric disorders and play a major role in the precipitation of neuropsychiatric symptoms. Impaired adult neurogenesis has been linked with a variety of disorders like depression, anxiety, cognitive decline, and dementia. Persistence of neuroinflammation was observed in COVID-19 survivors 3 months after recovery. Chronic neuroinflammation alters adult neurogenesis with pro-inflammatory cytokines supressing anti-inflammatory cytokines and chemokines favouring adult neurogenesis. Based on the prevalence of neuropsychiatric symptoms/disorders in PACS, there is more possibility for a potential impairment in adult neurogenesis in COVID-19 survivors. This narrative review aims to discuss the various neuroinflammatory processes during PACS and its effect on adult neurogenesis.
Collapse
Affiliation(s)
- Jayakumar Saikarthik
- Department of Basic Medical Sciences, College of Dentistry, Al Zulfi, Majmaah University, Al-Majmaah, Riyadh, Kingdom of Saudi Arabia,Department of Medical Education, College of Dentistry, Al Zulfi, Majmaah University, Al Majmaah, Riyadh, Kingdom of Saudi Arabia
| | - Ilango Saraswathi
- Department of Physiology, Madha Medical College and Research Institute, Chennai, Tamil Nadu, India
| | - Abdulaziz Alarifi
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,King Abdullah International Medical Research Centre, Riyadh, Saudi Arabia
| | - Abdulrahman A. Al-Atram
- Department of Psychiatry, College of Medicine, Majmaah University, Al Majmaah, Riyadh, Kingdom of Saudi Arabia
| | - Suresh Mickeymaray
- Department of Biology, College of Science, Al Zulfi, Majmaah University, Al Majmaah, Riyadh, Kingdom of Saudi Arabia
| | - Anand Paramasivam
- Department of Physiology, RVS Dental College and Hospital, Kumaran Kottam Campus, Kannampalayan, Coimbatore, Tamilnadu, India
| | - Saleem Shaikh
- Department of Medical Education, College of Dentistry, Al Zulfi, Majmaah University, Al Majmaah, Riyadh, Kingdom of Saudi Arabia,Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Al Zulfi, Majmaah University, Al Majmaah, Riyadh, Kingdom of Saudi Arabia
| | - Mathew Jeraud
- Department of Physiology, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Abdulaziz S. Alothaim
- Department of Biology, College of Science, Al Zulfi, Majmaah University, Al Majmaah, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
26
|
Zhou Y, Lin Z, Wan X, Liu J, Ding J, Zhang C, Ren K, Li D, Wu Y. COVID-19 vaccine acceptance and hesitancy in patients with Parkinson's disease. Front Public Health 2022; 10:977940. [PMID: 36304248 PMCID: PMC9595444 DOI: 10.3389/fpubh.2022.977940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/20/2022] [Indexed: 01/25/2023] Open
Abstract
Background As coronavirus disease 2019 (COVID-19) vaccination campaign underway, little is known about the vaccination coverage and the underlying barriers of the vaccination campaign in patients with Parkinson's disease (PD). Objective To investigate the vaccination status and reasons for COVID-19 vaccine acceptance and hesitancy among PD patients. Methods In concordance with the CHERRIES guideline, a web-based, single-center survey was promoted to patients with PD via an online platform from April 2022 and May 2022. Logistic regression models were used to identify factors related to COVID-19 vaccine hesitancy. Results A total of 187 PD cases participated in this online survey (response rate of 23%). COVID-19 vaccination rate was 54.0%. Most participants had a fear of COVID-19 (77.5%) and trusted the efficacy (82.9%) and safety (66.8%) of COVID-19 vaccine. Trust in government (70.3%) and concerns about the impact of vaccine on their disease (67.4%) were the most common reasons for COVID-19 vaccine acceptance and hesitancy, respectively. COVID-19 vaccine hesitancy was independently associated with the history of flu vaccination (OR: 0.09, p < 0.05), trust in vaccine efficacy (OR: 0.15, p < 0.01), male gender (OR: 0.47, p < 0.05), disease duration of PD (OR: 1.08, p < 0.05), and geographic factor (living in Shanghai or not) (OR: 2.87, p < 0.01). Conclusions The COVID-19 vaccination rate remained low in PD patients, however, most individuals understood benefits of vaccination. COVID-19 vaccine hesitancy was affected by multiple factors such as geographic factor, history of flu vaccination, disease duration and trust in efficacy of vaccine. These findings could help government and public health authorities to overcome the barrier to COVID-19 vaccination and improve vaccine roll-out in PD patients.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhengyu Lin
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaonan Wan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianqing Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - ChenCheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kang Ren
- Gyenno Science Co., Ltd., Shenzhen, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Yiwen Wu
| | - Yiwen Wu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China,Dianyou Li
| |
Collapse
|
27
|
Tsagkaris C, Bilal M, Aktar I, Aboufandi Y, Tas A, Aborode AT, Suvvari TK, Ahmad S, Shkodina A, Phadke R, Emhamed MS, Baig AA, Alexiou A, Ashraf GM, Kamal MA. Cytokine storm and neuropathological alterations in patients with neurological manifestations of COVID-19. Curr Alzheimer Res 2022; 19:CAR-EPUB-126211. [PMID: 36089786 DOI: 10.2174/1567205019666220908084559] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/05/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022]
Abstract
The COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2), a respiratory pathogen with neuroinvasive potential. Neurological COVID-19 manifestations include loss of smell and taste, headache, dizziness, stroke, and potentially fatal encephalitis. Several studies found elevated proinflammatory cytokines such as TNF-α, IFN-γ, IL-6 IL-8, IL-10 IL-16, IL-17A, and IL-18 in severely and critically ill COVID-19 patients, which may persist even after apparent recovery from infection. Biomarker studies on CSF and plasma and serum from COVID-19 patients have also shown a high level of IL-6, intrathecal IgG, neurofilament light chain (NFL), glial fibrillary acidic protein (GFAP), and tau protein. Emerging evidence on the matter has established the concept of COVID-19 associated neuroinflammation, in the context of COVID-19 associated cytokine storm. While the short-term implications of this condition are extensively documented, its long-term implications are yet to be understood. The association of the aforementioned cytokines with the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, and amyotrophic lateral sclerosis, may increase COVID-19 patients' risk to develop neurodegenerative diseases. Analysis of proinflammatory cytokines and CSF biomarkers in patients with COVID-19 can contribute to the early detection of the disease's exacerbation, monitoring the neurological implications of the disease and devising risk scales, and identifying treatment targets.
Collapse
Affiliation(s)
| | - Muhammad Bilal
- College of Pharmacy, Liaquat University of Medical and health Sciences, Jamshoro, Pakistan
| | - Irem Aktar
- Istanbul University, Istanbul Faculty of Medicine, Istanbul,Turkey
| | | | - Ahmet Tas
- Istanbul University, Istanbul Faculty of Medicine, Istanbul,Turkey
| | | | | | - Shoaib Ahmad
- Punjab Medical College, Faisalabad, Pakistan
- Faisalabad Medical University, Faisalabad, Pakistan
| | | | | | | | - Atif Amin Baig
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Hebersham, 2770 NSW, Australia
- AFNP Med Austria, 1010 Wien, Austria
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 22254 Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
28
|
Leta V, Urso D, Batzu L, Lau YH, Mathew D, Boura I, Raeder V, Falup-Pecurariu C, van Wamelen D, Ray Chaudhuri K. Viruses, parkinsonism and Parkinson's disease: the past, present and future. J Neural Transm (Vienna) 2022; 129:1119-1132. [PMID: 36036863 PMCID: PMC9422946 DOI: 10.1007/s00702-022-02536-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/01/2022] [Indexed: 01/01/2023]
Abstract
Parkinsonism secondary to viral infections is not an uncommon occurrence and has been brought under the spotlight with the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. A variety of viruses have been described with a potential of inducing or contributing to the occurrence of parkinsonism and Parkinson's disease (PD), although the relationship between the two remains a matter of debate originating with the description of encephalitis lethargica in the aftermath of the Spanish flu in 1918. While some viral infections have been linked to an increased risk for the development of PD, others seem to have a causal link with the occurrence of parkinsonism. Here, we review the currently available evidence on viral-induced parkinsonism with a focus on potential pathophysiological mechanisms and clinical features. We also review the evidence on viral infections as a risk factor for developing PD and the link between SARS-CoV-2 and parkinsonism, which might have important implications for future research and treatments.
Collapse
Affiliation(s)
- Valentina Leta
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, SE5 9RS, UK
| | - Daniele Urso
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy
| | - Lucia Batzu
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, SE5 9RS, UK
| | - Yue Hui Lau
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, SE5 9RS, UK
| | - Donna Mathew
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, SE5 9RS, UK
| | - Iro Boura
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Department of Neurology, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Vanessa Raeder
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, SE5 9RS, UK
- Department of Neurology, Technical University Dresden, Dresden, Germany
| | | | - Daniel van Wamelen
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, SE5 9RS, UK
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK.
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, SE5 9RS, UK.
| |
Collapse
|
29
|
Mysiris DS, Vavougios GD, Karamichali E, Papoutsopoulou S, Stavrou VT, Papayianni E, Boutlas S, Mavridis T, Foka P, Zarogiannis SG, Gourgoulianis K, Xiromerisiou G. Post-COVID-19 Parkinsonism and Parkinson's Disease Pathogenesis: The Exosomal Cargo Hypothesis. Int J Mol Sci 2022; 23:9739. [PMID: 36077138 PMCID: PMC9456372 DOI: 10.3390/ijms23179739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease after Alzheimer's disease, globally. Dopaminergic neuron degeneration in substantia nigra pars compacta and aggregation of misfolded alpha-synuclein are the PD hallmarks, accompanied by motor and non-motor symptoms. Several viruses have been linked to the appearance of a post-infection parkinsonian phenotype. Coronavirus disease 2019 (COVID-19), caused by emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, has evolved from a novel pneumonia to a multifaceted syndrome with multiple clinical manifestations, among which neurological sequalae appear insidious and potentially long-lasting. Exosomes are extracellular nanovesicles bearing a complex cargo of active biomolecules and playing crucial roles in intercellular communication under pathophysiological conditions. Exosomes constitute a reliable route for misfolded protein transmission, contributing to PD pathogenesis and diagnosis. Herein, we summarize recent evidence suggesting that SARS-CoV-2 infection shares numerous clinical manifestations and inflammatory and molecular pathways with PD. We carry on hypothesizing that these similarities may be reflected in exosomal cargo modulated by the virus in correlation with disease severity. Travelling from the periphery to the brain, SARS-CoV-2-related exosomal cargo contains SARS-CoV-2 RNA, viral proteins, inflammatory mediators, and modified host proteins that could operate as promoters of neurodegenerative and neuroinflammatory cascades, potentially leading to a future parkinsonism and PD development.
Collapse
Affiliation(s)
| | - George D. Vavougios
- Department of Neurology, Faculty of Medicine, University of Cyprus, Lefkosia 1678, Cyprus
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Eirini Karamichali
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Stamatia Papoutsopoulou
- Department of Biochemistry and Biotechnology, Faculty of Life Sciences, University of Thessaly, Mezourlo, 41500 Larissa, Greece
| | - Vasileios T. Stavrou
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Eirini Papayianni
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Stylianos Boutlas
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Theodoros Mavridis
- 1st Neurology Department, Eginition Hospital, Medical School, National & Kapodistrian University of Athens, 11528 Athens, Greece
| | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Sotirios G. Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Konstantinos Gourgoulianis
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
30
|
Leta V, Boura I, van Wamelen DJ, Rodriguez-Violante M, Antonini A, Chaudhuri KR. Covid-19 and Parkinson's disease: Acute clinical implications, long-COVID and post-COVID-19 parkinsonism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 165:63-89. [PMID: 36208907 PMCID: PMC9357514 DOI: 10.1016/bs.irn.2022.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Coronavirus Disease 2019 (Covid-19), caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has led to unprecedented challenges for the delivery of healthcare and has had a clear impact on people with chronic neurological conditions such as Parkinson's disease (PD). Acute worsening of motor and non-motor symptoms and long-term sequalae have been described during and after SARS-CoV-2 infections in people with Parkinson's (PwP), which are likely to be multifactorial in their origin. On the one hand, it is likely that worsening of symptoms has been related to the viral infection itself, whereas social restrictions imposed over the course of the Covid-19 pandemic might also have had such an effect. Twenty cases of post-Covid-19 para-infectious or post-infectious parkinsonism have been described so far where a variety of pathophysiological mechanisms seem to be involved; however, a Covid-19-induced wave of post-viral parkinsonism seems rather unlikely at the moment. Here, we describe the interaction between SARS-CoV-2 and PD in the short- and long-term and summarize the clinical features of post-Covid-19 cases of parkinsonism observed so far.
Collapse
Affiliation(s)
- Valentina Leta
- Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Iro Boura
- Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, United Kingdom; Medical School, University of Crete, Heraklion, Crete, Greece
| | - Daniel J van Wamelen
- Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, United Kingdom; Department of Neurology, Centre of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Department of Neuroscience, Centre for Rare Neurological Diseases (ERN-RND), University of Padova, Padova, Italy
| | - Kallol Ray Chaudhuri
- Department of Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
31
|
Klæstrup IH, Just MK, Holm KL, Alstrup AKO, Romero-Ramos M, Borghammer P, Van Den Berge N. Impact of aging on animal models of Parkinson's disease. Front Aging Neurosci 2022; 14:909273. [PMID: 35966779 PMCID: PMC9366194 DOI: 10.3389/fnagi.2022.909273] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Aging is the biggest risk factor for developing Parkinson's disease (PD), the second most common neurodegenerative disorder. Several animal models have been developed to explore the pathophysiology underlying neurodegeneration and the initiation and spread of alpha-synuclein-related PD pathology, and to investigate biomarkers and therapeutic strategies. However, bench-to-bedside translation of preclinical findings remains suboptimal and successful disease-modifying treatments remain to be discovered. Despite aging being the main risk factor for developing idiopathic PD, most studies employ young animals in their experimental set-up, hereby ignoring age-related cellular and molecular mechanisms at play. Consequently, studies in young animals may not be an accurate reflection of human PD, limiting translational outcomes. Recently, it has been shown that aged animals in PD research demonstrate a higher susceptibility to developing pathology and neurodegeneration, and present with a more disseminated and accelerated disease course, compared to young animals. Here we review recent advances in the investigation of the role of aging in preclinical PD research, including challenges related to aged animal models that are limiting widespread use. Overall, current findings indicate that the use of aged animals may be required to account for age-related interactions in PD pathophysiology. Thus, although the use of older animals has disadvantages, a model that better represents clinical disease within the elderly would be more beneficial in the long run, as it will increase translational value and minimize the risk of therapies failing during clinical studies. Furthermore, we provide recommendations to manage the challenges related to aged animal models.
Collapse
Affiliation(s)
- Ida Hyllen Klæstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- DANDRITE-Danish Research Institute of Translational Neuroscience, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Mie Kristine Just
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | | | - Aage Kristian Olsen Alstrup
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Marina Romero-Ramos
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- DANDRITE-Danish Research Institute of Translational Neuroscience, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Per Borghammer
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Nathalie Van Den Berge
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
32
|
Li C, Liu J, Lin J, Shang H. COVID-19 and risk of neurodegenerative disorders: A Mendelian randomization study. Transl Psychiatry 2022; 12:283. [PMID: 35835752 PMCID: PMC9281279 DOI: 10.1038/s41398-022-02052-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence has suggested a close correlation between COVID-19 and neurodegenerative disorders. However, whether there exists a causal association and the effect direction remains unknown. To examine the causative role of COVID-19 in the risk of neurodegenerative disorders, we estimated their genetic correlation, and then conducted a two-sample Mendelian randomization analysis using summary statistics from genome-wide association studies of susceptibility, hospitalization, and severity of COVID-19, as well as six major neurodegenerative disorders including Alzheimer's disease (AD), amyotrophic lateral sclerosis, frontotemporal dementia, Lewy body dementia, multiple sclerosis, and Parkinson's disease. We identified a significant and positive genetic correlation between hospitalization of COVID-19 and AD (genetic correlation: 0.23, P = 8.36E-07). Meanwhile, hospitalization of COVID-19 was significantly associated with a higher risk of AD (OR: 1.02, 95% CI: 1.01-1.03, P: 1.19E-03). Consistently, susceptibility (OR: 1.05, 95% CI: 1.01-1.09, P: 9.30E-03) and severity (OR: 1.01, 95% CI: 1.00-1.02, P: 0.012) of COVID-19 were nominally associated with higher risk of AD. The results were robust under all sensitivity analyses. These results demonstrated that COVID-19 could increase the risk of AD. Future development of preventive or therapeutic interventions could attach importance to this to alleviate the complications of COVID-19.
Collapse
Affiliation(s)
- Chunyu Li
- grid.412901.f0000 0004 1770 1022Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Jiayan Liu
- grid.412901.f0000 0004 1770 1022Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Junyu Lin
- grid.412901.f0000 0004 1770 1022Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
33
|
Rota S, Boura I, Wan YM, Lazcano-Ocampo C, Rodriguez-Violante M, Antonini A, Chaudhuri KR. Spotlight on non-motor symptoms and Covid-19. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 165:103-133. [PMID: 36208897 PMCID: PMC9270874 DOI: 10.1016/bs.irn.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The Coronavirus Disease 2019 (Covid-19) pandemic has profoundly affected the quality of life (QoL) and health of the general population globally over the past 2 years, with a clear impact on people with Parkinson's Disease (PwP, PD). Non-motor symptoms have been widely acknowledged to hold a vital part in the clinical spectrum of PD, and, although often underrecognized, they significantly contribute to patients' and their caregivers' QoL. Up to now, there have been numerous reports of newly emerging or acutely deteriorating non-motor symptoms in PwP who had been infected by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), while some of these symptoms, like fatigue, pain, depression, anxiety and cognitive impairment, have also been identified as part of the long-COVID syndrome due to their persistent nature. The subjacent mechanisms, mediating the appearance or progression of non-motor symptoms in the context of Covid-19, although probably multifactorial in origin, remain largely unknown. Such mechanisms might be, at least partly, related solely to the viral infection per se or the lifestyle changes imposed during the pandemic, as many of the non-motor symptoms seem to be prevalent even among Covid-19 patients without PD. Here, we summarize the available evidence and implications of Covid-19 in non-motor PD symptoms in the acute and chronic, if applicable, phase of the infection, with a special reference on studies of PwP.
Collapse
Affiliation(s)
- Silvia Rota
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Iro Boura
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, United Kingdom; Medical School, University of Crete, Heraklion, Crete, Greece
| | - Yi-Min Wan
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, United Kingdom; Department of Psychiatry, Ng Teng Fong General Hospital, Singapore, Singapore
| | - Claudia Lazcano-Ocampo
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, United Kingdom; Department of Neurology, Movement Disorders Unit, Hospital Sotero del Rio, Santiago, Chile; Department of Neurology, Clínica INDISA, Santiago, Chile
| | | | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Department of Neuroscience, Centre for Rare Neurological Diseases (ERN-RND), University of Padova, Padova, Italy
| | - Kallol Ray Chaudhuri
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
34
|
Grotemeyer A, McFleder RL, Wu J, Wischhusen J, Ip CW. Neuroinflammation in Parkinson's Disease - Putative Pathomechanisms and Targets for Disease-Modification. Front Immunol 2022; 13:878771. [PMID: 35663989 PMCID: PMC9158130 DOI: 10.3389/fimmu.2022.878771] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive and debilitating chronic disease that affects more than six million people worldwide, with rising prevalence. The hallmarks of PD are motor deficits, the spreading of pathological α-synuclein clusters in the central nervous system, and neuroinflammatory processes. PD is treated symptomatically, as no causally-acting drug or procedure has been successfully established for clinical use. Various pathways contributing to dopaminergic neuron loss in PD have been investigated and described to interact with the innate and adaptive immune system. We discuss the possible contribution of interconnected pathways related to the immune response, focusing on the pathophysiology and neurodegeneration of PD. In addition, we provide an overview of clinical trials targeting neuroinflammation in PD.
Collapse
Affiliation(s)
| | | | - Jingjing Wu
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Jörg Wischhusen
- Section for Experimental Tumor Immunology, Department of Obstetrics and Gynecology, University Hospital of Würzburg, Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
35
|
Rahmani B, Ghashghayi E, Zendehdel M, Baghbanzadeh A, Khodadadi M. Molecular mechanisms highlighting the potential role of COVID-19 in the development of neurodegenerative diseases. Physiol Int 2022; 109:135-162. [DOI: 10.1556/2060.2022.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 01/08/2023]
Abstract
Abstract
Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to the pulmonary manifestations, COVID-19 patients may present a wide range of neurological disorders as extrapulmonary presentations. In this view, several studies have recently documented the worsening of neurological symptoms within COVID-19 morbidity in patients previously diagnosed with neurodegenerative diseases (NDs). Moreover, several cases have also been reported in which the patients presented parkinsonian features after initial COVID-19 symptoms. These data raise a major concern about the possibility of communication between SARS-CoV-2 infection and the initiation and/or worsening of NDs. In this review, we have collected compelling evidence suggesting SARS-CoV-2, as an environmental factor, may be capable of developing NDs. In this respect, the possible links between SARS-CoV-2 infection and molecular pathways related to most NDs and the pathophysiological mechanisms of the NDs such as Alzheimer's disease, vascular dementia, frontotemporal dementia, Parkinson's disease, and amyotrophic lateral sclerosis will be explained.
Collapse
Affiliation(s)
- Behrouz Rahmani
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Elham Ghashghayi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Ali Baghbanzadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Mina Khodadadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| |
Collapse
|
36
|
Nervous system manifestations related to COVID-19 and their possible mechanisms. Brain Res Bull 2022; 187:63-74. [PMID: 35772604 PMCID: PMC9236920 DOI: 10.1016/j.brainresbull.2022.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 05/23/2022] [Accepted: 06/26/2022] [Indexed: 12/15/2022]
Abstract
In December 2019, the novel coronavirus disease (COVID-19) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection broke. With the gradual deepening understanding of SARS-CoV-2 and COVID-19, researchers and clinicians noticed that this disease is closely related to the nervous system and has complex effects on the central nervous system (CNS) and peripheral nervous system (PNS). In this review, we summarize the effects and mechanisms of SARS-CoV-2 on the nervous system, including the pathways of invasion, direct and indirect effects, and associated neuropsychiatric diseases, to deepen our knowledge and understanding of the relationship between COVID-19 and the nervous system.
Collapse
|
37
|
Haidar MA, Shakkour Z, Reslan MA, Al-Haj N, Chamoun P, Habashy K, Kaafarani H, Shahjouei S, Farran SH, Shaito A, Saba ES, Badran B, Sabra M, Kobeissy F, Bizri M. SARS-CoV-2 involvement in central nervous system tissue damage. Neural Regen Res 2022; 17:1228-1239. [PMID: 34782556 PMCID: PMC8643043 DOI: 10.4103/1673-5374.327323] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread globally, it became evident that the SARS-CoV-2 virus infects multiple organs including the brain. Several clinical studies revealed that patients with COVID-19 infection experience an array of neurological signs ranging in severity from headaches to life-threatening strokes. Although the exact mechanism by which the SARS-CoV-2 virus directly impacts the brain is not fully understood, several theories have been suggested including direct and indirect pathways induced by the virus. One possible theory is the invasion of SARS-CoV-2 to the brain occurs either through the bloodstream or via the nerve endings which is considered to be the direct route. Such findings are based on studies reporting the presence of viral material in the cerebrospinal fluid and brain cells. Nevertheless, the indirect mechanisms, including blood-clotting abnormalities and prolonged activation of the immune system, can result in further tissue and organ damages seen during the course of the disease. This overview attempts to give a thorough insight into SARS-CoV-2 coronavirus neurological infection and highlights the possible mechanisms leading to the neurological manifestations observed in infected patients.
Collapse
Affiliation(s)
- Muhammad Ali Haidar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mohammad Amine Reslan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nadine Al-Haj
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Perla Chamoun
- Faculty of Medicine, University of Balamand, Koura, Lebanon
| | - Karl Habashy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Shima Shahjouei
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, FL, USA
| | - Sarah H. Farran
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Esber S. Saba
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Beirut, Lebanon
| | - Mirna Sabra
- Faculty of Medicine, Lebanese University, Neuroscience Research Center (NRC), Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Institute, Neurology Department, Geisinger Health System, PA, USA
| | - Maya Bizri
- Department of Psychiatry, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
38
|
Jana AK, Lander CW, Chesney AD, Hansmann UHE. Effect of an Amyloidogenic SARS-COV-2 Protein Fragment on α-Synuclein Monomers and Fibrils. J Phys Chem B 2022; 126:3648-3658. [PMID: 35580331 PMCID: PMC9186263 DOI: 10.1021/acs.jpcb.2c01254] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aggregates of α-synuclein are thought to be the disease-causing agent in Parkinson's disease. Various case studies have hinted at a correlation between COVID-19 and the onset of Parkinson's disease. For this reason, we use molecular dynamics simulations to study whether amyloidogenic regions in SARS-COV-2 proteins can initiate and modulate aggregation of α-synuclein. As an example, we choose the nine-residue fragment SFYVYSRVK (SK9), located on the C-terminal of the envelope protein of SARS-COV-2. We probe how the presence of SK9 affects the conformational ensemble of α-synuclein monomers and the stability of two resolved fibril polymorphs. We find that the viral protein fragment SK9 may alter α-synuclein amyloid formation by shifting the ensemble toward aggregation-prone and preferentially rod-like fibril seeding conformations. However, SK9 has only a small effect on the stability of pre-existing or newly formed fibrils. A potential mechanism and key residues for potential virus-induced amyloid formation are described.
Collapse
Affiliation(s)
- Asis K Jana
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Chance W Lander
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Andrew D Chesney
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ulrich H E Hansmann
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
39
|
Dopamine Reduces SARS-CoV-2 Replication In Vitro through Downregulation of D2 Receptors and Upregulation of Type-I Interferons. Cells 2022; 11:cells11101691. [PMID: 35626728 PMCID: PMC9139638 DOI: 10.3390/cells11101691] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Recent evidence suggests that SARS-CoV-2 hinders immune responses via dopamine (DA)-related mechanisms. Nonetheless, studies addressing the specific role of DA in the frame of SARS-CoV-2 infection are still missing. In the present study, we investigate the role of DA in SARS-CoV-2 replication along with potential links with innate immune pathways in CaLu-3 human epithelial lung cells. We document here for the first time that, besides DA synthetic pathways, SARS-CoV-2 alters the expression of D1 and D2 DA receptors (D1DR, D2DR), while DA administration reduces viral replication. Such an effect occurs at non-toxic, micromolar-range DA doses, which are known to induce receptor desensitization and downregulation. Indeed, the antiviral effects of DA were associated with a robust downregulation of D2DRs both at mRNA and protein levels, while the amount of D1DRs was not significantly affected. While halting SARS-CoV-2 replication, DA, similar to the D2DR agonist quinpirole, upregulates the expression of ISGs and Type-I IFNs, which goes along with the downregulation of various pro-inflammatory mediators. In turn, administration of Type-I IFNs, while dramatically reducing SARS-CoV-2 replication, converges in downregulating D2DRs expression. Besides configuring the CaLu-3 cell line as a suitable model to study SARS-CoV-2-induced alterations at the level of the DA system in the periphery, our findings disclose a previously unappreciated correlation between DA pathways and Type-I IFN response, which may be disrupted by SARS-CoV-2 for host cell invasion and replication.
Collapse
|
40
|
Liu Y, Partinen E, Chan NY, Dauvilliers Y, Inoue Y, De Gennaro L, Plazzi G, Bolstad CJ, Nadorff MR, Merikanto I, Bjorvatn B, Han F, Zhang B, Cunha AS, Mota‐Rolim S, Léger D, Matsui K, Espie CA, Chung F, Morin CM, Sieminski M, Thomas P, Holzinger B, Partinen M, Wing YK. Dream-enactment behaviours during the COVID-19 pandemic: an international COVID-19 sleep study. J Sleep Res 2022; 32:e13613. [PMID: 35474255 PMCID: PMC9115143 DOI: 10.1111/jsr.13613] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 02/05/2023]
Abstract
There has been increasing concern about the long-term impact of coronavirus disease 2019 (COVID-19) as evidenced by anecdotal case reports of acute-onset parkinsonism and the polysomnographic feature of increased rapid eye movement sleep electromyographic activity. This study aimed to determine the prevalence and correlates of dream-enactment behaviours, a hallmark of rapid eye movement sleep behaviour disorder, which is a prodrome of α-synucleinopathy. This online survey was conducted between May and August 2020 in 15 countries/regions targeting adult participants (aged ≥18 years) from the general population with a harmonised structured questionnaire on sleep patterns and disorders, COVID-19 diagnosis and symptoms. We assessed dream-enactment behaviours using the Rapid Eye Movement Sleep Behaviour Disorder Single-Question Screen with an additional question on their frequency. Among 26,539 respondents, 21,870 (82.2%) answered all items that were analysed in this study (mean [SD] age 41.6 [15.8] years; female sex 65.5%). The weighted prevalence of lifetime and weekly dream-enactment behaviours was 19.4% and 3.1% and were found to be 1.8- and 2.9-times higher in COVID-19-positive cases, respectively. Both lifetime and weekly dream-enactment behaviours were associated with young age, male sex, smoking, alcohol consumption, higher physical activity level, nightmares, COVID-19 diagnosis, olfactory impairment, obstructive sleep apnea symptoms, mood, and post-traumatic stress disorder features. Among COVID-19-positive cases, weekly dream-enactment behaviours were positively associated with the severity of COVID-19. Dream-enactment behaviours are common among the general population during the COVID-19 pandemic and further increase among patients with COVID-19. Further studies are needed to investigate the potential neurodegenerative effect of COVID-19.
Collapse
Affiliation(s)
- Yaping Liu
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of MedicineThe Chinese University of Hong KongHong KongSpecial Administrative Region (SAR)China
| | - Eemil Partinen
- Helsinki Sleep Clinic, Terveystalo Healthcare and Department of Clinical Neurosciences, ClinicumUniversity of HelsinkiHelsinkiFinland
| | - Ngan Yin Chan
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of MedicineThe Chinese University of Hong KongHong KongSpecial Administrative Region (SAR)China
| | - Yves Dauvilliers
- Sleep‐Wake Disorders Unit, Department of Neurology, Gui‐de‐Chauliac Hospital, CHU Montpellier, INM, INSERMUniversity of MontpellierMontpellierFrance
| | | | - Luigi De Gennaro
- Department of Psychology, SapienzaUniversity of RomeRomeItaly,IRCCS Fondazione Santa LuciaRomeItaly
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly,Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio‐EmiliaModenaItaly
| | - Courtney J. Bolstad
- Department of PsychologyMississippi State UniversityMississippi StateMississippiUSA
| | - Michael R. Nadorff
- Department of PsychologyMississippi State UniversityMississippi StateMississippiUSA,Department of Psychiatry and Behavioral SciencesBaylor College of MedicineHoustonTexasUSA
| | - Ilona Merikanto
- SleepWell Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland,Department of Public Health SolutionsFinnish Institute for Health and WelfareHelsinkiFinland
| | - Bjørn Bjorvatn
- Department of Global Public Health and Primary Care, Norway and Norwegian Competence Center for Sleep DisordersHaukeland University Hospital, University of BergenBergenNorway
| | - Fang Han
- The Sleep CenterPeking University People's HospitalBeijingChina
| | - Bin Zhang
- Department of Psychiatry, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ana Suely Cunha
- Department of Production EngineeringFederal University of Rio Grande do NorteNatalBrazil
| | - Sérgio Mota‐Rolim
- Brain Institute, Physiology and Behavior Department, and Onofre Lopes University HospitalFederal University of Rio Grande do NorteNatalBrazil
| | - Damien Léger
- APHP, VIFASOM, Hôtel Dieu, Centre du Sommeil et de la VigilanceUniversité de ParisParisFrance
| | - Kentaro Matsui
- Department of Laboratory Medicine, National Center HospitalNational Center of Neurology and PsychiatryKodairaJapan
| | - Colin A. Espie
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Frances Chung
- Department of Anesthesia and Pain Medicine, University Health NetworkUniversity of TorontoTorontoOntarioCanada
| | - Charles M. Morin
- Centre de recherche CERVO/Brain Research Center, École de psychologieUniversité LavalQuebec CityQuebecCanada
| | - Mariusz Sieminski
- Department of Emergency MedicineMedical University of GdanskGdanskPoland
| | - Penzel Thomas
- Sleep Medicine CenterCharite Universitätsmedizin BerlinBerlinGermany
| | - Brigitte Holzinger
- Institute for Dream and Consciousness ResearchMedical University of ViennaViennaAustria
| | - Markku Partinen
- Helsinki Sleep Clinic, Terveystalo Healthcare and Department of Clinical Neurosciences, ClinicumUniversity of HelsinkiHelsinkiFinland
| | - Yun Kwok Wing
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of MedicineThe Chinese University of Hong KongHong KongSpecial Administrative Region (SAR)China
| |
Collapse
|
41
|
Morowitz JM, Pogson KB, Roque DA, Church FC. Role of SARS-CoV-2 in Modifying Neurodegenerative Processes in Parkinson's Disease: A Narrative Review. Brain Sci 2022; 12:536. [PMID: 35624923 PMCID: PMC9139310 DOI: 10.3390/brainsci12050536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, continues to impact global health regarding both morbidity and mortality. Although SARS-CoV-2 primarily causes acute respiratory distress syndrome (ARDS), the virus interacts with and influences other organs and tissues, including blood vessel endothelium, heart, gastrointestinal tract, and brain. We are learning much about the pathophysiology of SARS-CoV-2 infection; however, we are just beginning to study and understand the long-term and chronic health consequences. Since the pandemic's beginning in late 2019, older adults, those with pre-existing illnesses, or both, have an increased risk of contracting COVID-19 and developing severe COVID-19. Furthermore, older adults are also more likely to develop the neurodegenerative disorder Parkinson's disease (PD), with advanced age as the most significant risk factor. Thus, does SARS-CoV-2 potentially influence, promote, or accelerate the development of PD in older adults? Our initial focus was aimed at understanding SARS-CoV-2 pathophysiology and the connection to neurodegenerative disorders. We then completed a literature review to assess the relationship between PD and COVID-19. We described potential molecular and cellular pathways that indicate dopaminergic neurons are susceptible, both directly and indirectly, to SARS-CoV-2 infection. We concluded that under certain pathological circumstances, in vulnerable persons-with-Parkinson's disease (PwP), SARS-CoV-2 acts as a neurodegenerative enhancer to potentially support the development or progression of PD and its related motor and non-motor symptoms.
Collapse
Affiliation(s)
- Jeremy M. Morowitz
- Developmental and Stem Cell Biology Program, Duke University, Durham, NC 27708, USA;
| | - Kaylyn B. Pogson
- School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Daniel A. Roque
- Department of Neurology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
| | - Frank C. Church
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
42
|
Boura I, Ray Chaudhuri K. Coronavirus Disease 2019 and related Parkinsonism: the clinical evidence thus far. Mov Disord Clin Pract 2022; 9:584-593. [PMID: 35601258 PMCID: PMC9111006 DOI: 10.1002/mdc3.13461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/11/2022] [Accepted: 04/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background The Coronavirus disease 2019 (Covid‐19) pandemic has fueled both research and speculation, as to whether it could be a “perfect storm” for a post‐Covid emergence of parkinsonism in some susceptible individuals, analogous to the post‐encephalitic parkinsonism reported after the 1918 influenza epidemic. This theory is further augmented by reports of a pathogenic effect of the Severe Acute Respiratory Syndrome Coronavirus‐2 (SARS‐CoV‐2) on the central nervous system with specific impact on the dopaminergic pathway, as well as the possibility of the virus to selectively bind to Angiotensin‐Converting Enzyme‐2 (ACE‐2); these molecules are expressed abundantly in the midbrain dopamine neurons and, are likely involved in several cellular mechanisms cited in Parkinson's Disease (PD) pathophysiology. Objectives—Methods Therefore, we performed a review of the literature up to February 2022 to explore the current landscape considering published cases of new‐onset parkinsonism after a SARS‐CoV‐2 infection in otherwise healthy individuals. We summarized their clinical features, diagnostic and treatment approaches, discussing potential underlying mechanisms in light of PD pathogenesis theories. Results Twenty cases that developed parkinsonian features simultaneously or shortly after a reported SARS‐CoV‐2 infection were reviewed. In 11 of them, parkinsonism appeared in the context of encephalopathy, while four patients developed post‐infectious parkinsonism without encephalopathy, and four bore similarities to idiopathic PD. Nine patients exhibited a good response to dopaminergic therapy, while four responded to immunomodulatory treatment. Conclusions Available data does not yet justify a clear association between the Covid‐19 pandemic and a parkinsonism wave. However, vigilance is necessary, as long‐term effects might have not been revealed.
Collapse
Affiliation(s)
- Iro Boura
- University of Crete, Medical School Heraklion Greece
- King's College London, Department of Neurosciences Institute of Psychiatry, Psychology & Neuroscience, Denmark Hill London United Kingdom
- Parkinson's Foundation Centre of Excellence, King's College Hospital, Denmark Hill London United Kingdom
| | - K. Ray Chaudhuri
- King's College London, Department of Neurosciences Institute of Psychiatry, Psychology & Neuroscience, Denmark Hill London United Kingdom
- Parkinson's Foundation Centre of Excellence, King's College Hospital, Denmark Hill London United Kingdom
| |
Collapse
|
43
|
Abstract
The worldwide pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected an estimated 200 million people with over 4 million deaths. Although COVID-19, the disease caused by the SARS-CoV-2 virus, is primarily a respiratory disease, an increasing number of neurologic symptoms have been reported. Some of these symptoms, such as loss of smell or taste, are mild and non-life threatening, while others, such as stroke or seizure, are more critical. Many of these symptoms remain long after the acute illness has passed, a phenomenon known as "long COVID" or postacute sequelae of SARS-CoV-2 infection (PASC). Neurological symptoms can be difficult to study due to the complexity of the central and peripheral nervous system. These neurologic symptoms can be difficult to identify and quantitate. This narrative review will describe approaches for assessing neurologic manifestations of COVID-19, with examples of the data they provide, as well as some directions for future research to aid in understanding the pathophysiology of COVID-19-related neurological implications.
Collapse
Key Words
- ace2, angiotensin converting enzyme 2
- ards, acute respiratory distress syndrome
- cfs, cerebral spinal fluid
- cns, central nervous system
- gbs, guillain-barre syndrome
- gfap, glial fibrillary acidic protein
- nfl, neurofilament light chain
- me/cfs, myalgic encephalomyelitis/chronic fatigue syndrome
- pasc, postacute sequelae of covid-19
- pcr, polymerase chain reaction
- pns, peripheral nervous system
- sars-cov-2, severe acute respiratory syndrome coronavirus 2
- uch-l1, ubiquitin carboxyl-terminal esterase l1
- ykl-40, chitinase 3-like 1.
Collapse
|
44
|
Jana AK, Lander CW, Chesney AD, Hansmann UHE. Effect of an amyloidogenic SARS-COV-2 protein fragment on α-synuclein monomers and fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.21.481360. [PMID: 35233574 PMCID: PMC8887075 DOI: 10.1101/2022.02.21.481360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Using molecular dynamic simulations we study whether amyloidogenic regions in viral proteins can initiate and modulate formation of α-synuclein aggregates, thought to be the disease-causing agent in Parkinson's Disease. As an example we choose the nine-residue fragment SFYVYSRVK (SK9), located on the C-terminal of the Envelope protein of SARS-COV-2. We probe how the presence of SK9 affects the conformational ensemble of α-synuclein monomers and the stability of two resolved fibril polymorphs. We find that the viral protein fragment SK9 may alter α-synuclein amyloid formation by shifting the ensemble toward aggregation-prone and preferentially rod-like fibril seeding conformations. However, SK9 has only little effect of the stability of pre-existing or newly-formed fibrils.
Collapse
|
45
|
Dey S, Bose A, Saha S, Chakraborty P, Ghalwash M, Guzm X E N-Sáenz A, Utro F, Ng K, Hu J, Parida L, Sow D. Impact of Clinical and Genomic Factors on COVID-19 Disease Severity. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2022; 2021:378-387. [PMID: 35308982 PMCID: PMC8861728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To date, there have been 180 million confirmed cases of COVID-19, with more than 3.8 million deaths, reported to WHO worldwide. In this paper we address the problem of understanding the host genome's influence, in concert with clinical variables, on the severity of COVID-19 manifestation in the patient. Leveraging positive-unlabeled machine learning algorithms coupled with RubricOE, a state-of-the-art genomic analysis framework, on UK BioBank data we extract novel insights on the complex interplay. The algorithm is also sensitive enough to detect the changing influence of the emergent B.1.1.7 SARS-CoV-2 (alpha) variant on disease severity, and, changing treatment protocols. The genomic component also implicates biological pathways that can help in understanding the disease etiology. Our work demonstrates that it is possible to build a robust and sensitive model despite significant bias, noise and incompleteness in both clinical and genomic data by a careful interleaving of clinical and genomic methodologies.
Collapse
Affiliation(s)
- Sanjoy Dey
- Center for Computational Health, IBM Research, Yorktown Heights, NY, USA
| | - Aritra Bose
- Computational Genomics, IBM Research, Yorktown Heights, NY, USA
| | - Subrata Saha
- Columbia University Irving Medical Center, Columbia University, NY, USA
| | | | - Mohamed Ghalwash
- Center for Computational Health, IBM Research, Yorktown Heights, NY, USA
| | | | - Filippo Utro
- Computational Genomics, IBM Research, Yorktown Heights, NY, USA
| | - Kenney Ng
- Center for Computational Health, IBM Research, Yorktown Heights, NY, USA
| | - Jianying Hu
- Center for Computational Health, IBM Research, Yorktown Heights, NY, USA
| | - Laxmi Parida
- Computational Genomics, IBM Research, Yorktown Heights, NY, USA
| | - Daby Sow
- Center for Computational Health, IBM Research, Yorktown Heights, NY, USA
| |
Collapse
|
46
|
Microbes and Parkinson’s disease: from associations to mechanisms. Trends Microbiol 2022; 30:749-760. [DOI: 10.1016/j.tim.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022]
|
47
|
Drelich-Zbroja A, Cheda M, Kuczyńska M, Dąbrowska I, Kopyto E, Halczuk I. Parkinson's Disease in Light of the COVID-19 Pandemic. Brain Sci 2022; 12:143. [PMID: 35203906 PMCID: PMC8869942 DOI: 10.3390/brainsci12020143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
In this review we attempt to collate the existing scientific evidence regarding the possible role of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the pathophysiology of Parkinson's disease (PD), as well as to investigate the impact of PD/parkinsonism on the clinical course of the viral infection itself. Since etiology of PD is not completely understood, various studies suggest different potential links between coronavirus disease 2019 (COVID-19) and PD. Suggested connections include, among others, similar prodromal symptoms, renin-angiotensin-aldosterone system involvement, or gut microbiome dysbiosis participation. Despite the initial assumptions that, as a mainly elderly population suffering from rigidity of respiratory muscles, impairment of cough reflex, and dyspnea, PD patients would be more susceptible to viral infection, and would experience a more aggressive course of COVID-19, the published scientific reports contain mutually exclusive data that require further investigation and meta-analysis.
Collapse
Affiliation(s)
- Anna Drelich-Zbroja
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-059 Lublin, Poland; (M.C.); (M.K.); (I.D.)
| | - Mateusz Cheda
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-059 Lublin, Poland; (M.C.); (M.K.); (I.D.)
| | - Maryla Kuczyńska
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-059 Lublin, Poland; (M.C.); (M.K.); (I.D.)
| | - Izabela Dąbrowska
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-059 Lublin, Poland; (M.C.); (M.K.); (I.D.)
| | - Ewa Kopyto
- Students’ Scientific Society at the Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-059 Lublin, Poland; (E.K.); (I.H.)
| | - Izabela Halczuk
- Students’ Scientific Society at the Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-059 Lublin, Poland; (E.K.); (I.H.)
| |
Collapse
|
48
|
Emmi A, Boura I, Raeder V, Mathew D, Sulzer D, Goldman JE, Leta V. Covid-19, nervous system pathology, and Parkinson's disease: Bench to bedside. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 165:17-34. [PMID: 36208899 PMCID: PMC9361071 DOI: 10.1016/bs.irn.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (Covid-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is primarily regarded as a respiratory disease; however, multisystemic involvement accompanied by a variety of clinical manifestations, including neurological symptoms, are commonly observed. There is, however, little evidence supporting SARS-CoV-2 infection of central nervous system cells, and neurological symptoms for the most part appear to be due to damage mediated by hypoxic/ischemic and/or inflammatory insults. In this chapter, we report evidence on candidate neuropathological mechanisms underlying neurological manifestations in Covid-19, suggesting that while there is mostly evidence against SARS-CoV-2 entry into brain parenchymal cells as a mechanism that may trigger Parkinson's disease and parkinsonism, that there are multiple means by which the virus may cause neurological symptoms.
Collapse
Affiliation(s)
- Aron Emmi
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Iro Boura
- Department of Neurology, University Hospital of Heraklion, Crete, Greece
| | - Vanessa Raeder
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, United Kingdom; Department of Neurology, Technical University Dresden, Dresden, Germany; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Donna Mathew
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - David Sulzer
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Medical Center, New York State Psychiatric Institute, New York, United States
| | - James E Goldman
- Department of Pathology and Cell Biology, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY, United States
| | - Valentina Leta
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, United Kingdom; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
49
|
Voruz P, Cionca A, Jacot de Alcântara I, Nuber-Champier A, Allali G, Benzakour L, Thomasson M, Lalive PH, Lövblad KO, Braillard O, Nehme M, Coen M, Serratrice J, Pugin J, Guessous I, Landis BN, Adler D, Griffa A, Van De Ville D, Assal F, Péron JA. OUP accepted manuscript. Brain Commun 2022; 4:fcac057. [PMID: 35350554 PMCID: PMC8956133 DOI: 10.1093/braincomms/fcac057] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/17/2022] [Accepted: 03/06/2022] [Indexed: 11/13/2022] Open
Abstract
Lack of awareness of cognitive impairment (i.e. anosognosia) could be a key
factor for distinguishing between neuropsychological post-COVID-19 condition
phenotypes. In this context, the 2-fold aim of the present study was to (i)
establish the prevalence of anosognosia for memory impairment, according to the
severity of the infection in the acute phase and (ii) determine whether
anosognosic patients with post-COVID syndrome have a different cognitive and
psychiatric profile from nosognosic patients, with associated differences in
brain functional connectivity. A battery of neuropsychological, psychiatric,
olfactory, dyspnoea, fatigue and quality-of-life tests was administered
227.07 ± 42.69 days post-SARS-CoV-2 infection to 102
patients (mean age: 56.35 years, 65 men, no history of neurological,
psychiatric, neuro-oncological or neurodevelopmental disorder prior to
infection) who had experienced either a mild (not hospitalized;
n = 45), moderate (conventional
hospitalization; n = 34) or severe
(hospitalization with intensive care unit stay and mechanical ventilation;
n = 23) presentation in the acute
phase. Patients were first divided into two groups according to the presence or
absence of anosognosia for memory deficits (26 anosognosic patients and 76
nosognosic patients). Of these, 49 patients underwent an MRI. Structural images
were visually analysed, and statistical intergroup analyses were then performed
on behavioural and functional connectivity measures. Only 15.6% of
patients who presented mild disease displayed anosognosia for memory
dysfunction, compared with 32.4% of patients with moderate presentation
and 34.8% of patients with severe disease. Compared with nosognosic
patients, those with anosognosia for memory dysfunction performed significantly
more poorly on objective cognitive and olfactory measures. By contrast, they
gave significantly more positive subjective assessments of their quality of
life, psychiatric status and fatigue. Interestingly, the proportion of patients
exhibiting a lack of consciousness of olfactory deficits was significantly
higher in the anosognosic group. Functional connectivity analyses revealed a
significant decrease in connectivity, in the anosognosic group as compared with
the nosognosic group, within and between the following networks: the left
default mode, the bilateral somatosensory motor, the right executive control,
the right salient ventral attention and the bilateral dorsal attention networks,
as well as the right Lobules IV and V of the cerebellum. Lack of awareness of
cognitive disorders and, to a broader extent, impairment of the self-monitoring
brain system, may be a key factor for distinguishing between the clinical
phenotypes of post-COVID syndrome with neuropsychological deficits.
Collapse
Affiliation(s)
- Philippe Voruz
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, University of Geneva, Geneva, Switzerland
- Neurology Department, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandre Cionca
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, University of Geneva, Geneva, Switzerland
| | - Isabele Jacot de Alcântara
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, University of Geneva, Geneva, Switzerland
- Neurology Department, Geneva University Hospitals, Geneva, Switzerland
| | - Anthony Nuber-Champier
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, University of Geneva, Geneva, Switzerland
| | - Gilles Allali
- Neurology Department, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lamyae Benzakour
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Psychiatry Department, Geneva University Hospitals, Geneva, Switzerland
| | - Marine Thomasson
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, University of Geneva, Geneva, Switzerland
- Neurology Department, Geneva University Hospitals, Geneva, Switzerland
| | - Patrice H Lalive
- Neurology Department, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl-Olof Lövblad
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diagnostic and Interventional Neuroradiology Department, Geneva University Hospitals, Geneva, Switzerland
| | - Olivia Braillard
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Mayssam Nehme
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Matteo Coen
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Internal Medicine Department, Geneva University Hospitals, Geneva, Switzerland
| | - Jacques Serratrice
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Internal Medicine Department, Geneva University Hospitals, Geneva, Switzerland
| | - Jérôme Pugin
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Intensive Care Department, Geneva University Hospitals, Geneva, Switzerland
| | - Idris Guessous
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Basile N Landis
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Rhinology-Olfactology Unit, Otorhinolaryngology Department, Geneva University Hospitals, Geneva, Switzerland
| | - Dan Adler
- Division of Pulmonary Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Alessandra Griffa
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Dimitri Van De Ville
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Frédéric Assal
- Neurology Department, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julie A Péron
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, University of Geneva, Geneva, Switzerland
- Neurology Department, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
50
|
Emmi A, Sandre M, Porzionato A, Antonini A. Smell deficits in COVID-19 and possible links with Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 165:91-102. [PMID: 36208908 PMCID: PMC9444897 DOI: 10.1016/bs.irn.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Olfactory impairment is a common symptom in Coronavirus Disease 2019 (COVID-19), the disease caused by Severe Acute Respiratory Syndrome—Coronavirus 2 (SARS-CoV-2) infection. While other viruses, such as influenza viruses, may affect the ability to smell, loss of olfactory function is often smoother and associated to various degrees of nasal symptoms. In COVID-19, smell loss may appear also in absence of other symptoms, frequently with a sudden onset. However, despite great clinical interest in COVID-19 olfactory alterations, very little is known concerning the mechanisms underlying these phenomena. Moreover, olfactory dysfunction is observed in neurological conditions like Parkinson's disease (PD) and can precede motor onset by many years, suggesting that viral infections, like COVID-19, and regional inflammatory responses may trigger defective protein aggregation and subsequent neurodegeneration, potentially linking COVID-19 olfactory impairment to neurodegeneration. In the following chapter, we report the neurobiological and neuropathological underpinnings of olfactory impairments encountered in COVID-19 and discuss the implications of these findings in the context of neurodegenerative disorders, with particular regard to PD and alpha-synuclein pathology.
Collapse
|