1
|
Kaya B, Boerner KE, Lord RC, Potter E, Dale C, Moayedi M. Body image, sex, gender, and pain: towards an improved understanding of pain mechanisms. Pain 2024; 165:2673-2678. [PMID: 38968443 DOI: 10.1097/j.pain.0000000000003309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/15/2024] [Indexed: 07/07/2024]
Affiliation(s)
- Batu Kaya
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Katelynn E Boerner
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - R Cassandra Lord
- Department of Historical Studies, Women, Gender and Sexuality Studies Program, University of Toronto Mississauga, Mississauga, ON, Canada
- Women and Gender Studies Institute, University of Toronto, Toronto, ON, Canada
| | - Emery Potter
- Women's College Hospital, Department of Surgery, Toronto, ON, Canada
- University of Toronto, Lawrence S. Bloomberg Faculty of Nursing, Toronto, ON, Canada
| | - Craig Dale
- University of Toronto, Lawrence S. Bloomberg Faculty of Nursing, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
- Tory Trauma Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Massieh Moayedi
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
2
|
Saelzler UG, Sundermann EE, Foret JT, Gatz M, Karlsson IK, Panizzon MS. Age of menopause and dementia risk in 10,832 women from the Swedish Twin Registry. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.13.24317223. [PMID: 39606338 PMCID: PMC11601765 DOI: 10.1101/2024.11.13.24317223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
INTRODUCTION An earlier age of menopause (AOM) is hypothesized to increase vulnerability to the neuropathological processes of dementia which begin in midlife. METHODS We tested this hypothesis in a sample of 10,832 women from the Swedish Twin Registry, stratified by menopause etiology. Survival models showed that a U-shaped association was present for women whose menopause occurred spontaneously. Sensitivity analyses conducted in hormone naïve, APOE ε4+ and AOM restricted subsamples showed largely analogous patterns of results. DISCUSSION Supporting conclusions from basic research, our results suggest that estrogens (proxied here by AOM) interact with several biological pathways mediating dementia disease processes. In line with trends in hormone research across the past century, our findings challenge the oversimplified 'more-is-better' perspective on hormone exposure. Specifically, the non-linear association we observed between AOM and dementia risk points to the involvement of distinct and interacting biological mechanisms beyond just estrogen levels.
Collapse
Affiliation(s)
- Ursula G Saelzler
- Department of Psychiatry, University of California San Diego 3120 Biomedical Sciences Wy, La Jolla, CA92093
| | - Erin E Sundermann
- Department of Psychiatry, University of California San Diego 3120 Biomedical Sciences Wy, La Jolla, CA92093
| | - Janelle T Foret
- Department of Psychiatry, University of California San Diego 3120 Biomedical Sciences Wy, La Jolla, CA92093
- Center for Economic and Social Research, University of Southern California 635 Downey Way, Los Angeles, CA 90089
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Solna, Sweden
- Center for Behavior Genetics of Aging, University of California San Diego 9500 Gilman Dr. La Jolla CA 92093 La Jolla, CA92093
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California 635 Downey Way, Los Angeles, CA 90089
| | - Ida K Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Solna, Sweden
| | - Matthew S Panizzon
- Department of Psychiatry, University of California San Diego 3120 Biomedical Sciences Wy, La Jolla, CA92093
- Center for Behavior Genetics of Aging, University of California San Diego 9500 Gilman Dr. La Jolla CA 92093 La Jolla, CA92093
| |
Collapse
|
3
|
Savoca PW, Glynn LM, Fox MM, Richards MC, Callaghan BL. Interoception in pregnancy: Implications for peripartum depression. Neurosci Biobehav Rev 2024; 166:105874. [PMID: 39243875 DOI: 10.1016/j.neubiorev.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Affiliation(s)
- Paul W Savoca
- Department of Psychology, University of California, Los Angeles, USA.
| | | | - Molly M Fox
- Department of Anthropology, University of California, Los Angeles, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA
| | - Misty C Richards
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA; David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
4
|
Pritschet L, Taylor CM, Cossio D, Faskowitz J, Santander T, Handwerker DA, Grotzinger H, Layher E, Chrastil ER, Jacobs EG. Neuroanatomical changes observed over the course of a human pregnancy. Nat Neurosci 2024; 27:2253-2260. [PMID: 39284962 PMCID: PMC11537970 DOI: 10.1038/s41593-024-01741-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/29/2024] [Indexed: 09/25/2024]
Abstract
Pregnancy is a period of profound hormonal and physiological changes experienced by millions of women annually, yet the neural changes unfolding in the maternal brain throughout gestation are not well studied in humans. Leveraging precision imaging, we mapped neuroanatomical changes in an individual from preconception through 2 years postpartum. Pronounced decreases in gray matter volume and cortical thickness were evident across the brain, standing in contrast to increases in white matter microstructural integrity, ventricle volume and cerebrospinal fluid, with few regions untouched by the transition to motherhood. This dataset serves as a comprehensive map of the human brain across gestation, providing an open-access resource for the brain imaging community to further explore and understand the maternal brain.
Collapse
Affiliation(s)
- Laura Pritschet
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA.
| | - Caitlin M Taylor
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Daniela Cossio
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Joshua Faskowitz
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Tyler Santander
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Daniel A Handwerker
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Hannah Grotzinger
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Evan Layher
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Elizabeth R Chrastil
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
| | - Emily G Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA.
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
5
|
Ugrumov MV. Hypothalamic neurons fully or partially expressing the dopaminergic phenotype: development, distribution, functioning and functional significance. A review. Front Neuroendocrinol 2024; 75:101153. [PMID: 39128801 DOI: 10.1016/j.yfrne.2024.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
The hypothalamus is a key link in neuroendocrine regulations, which are provided by neuropeptides and dopamine. Until the late 1980 s, it was believed that, along with peptidergic neurons, hypothalamus contained dopaminergic neurons. Over time, it has been shown that besides dopaminergic neurons expressing the dopamine transporter and dopamine-synthesizing enzymes - tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) - the hypothalamus contains neurons expressing only TH, only AADC, both enzymes or only dopamine transporter. The end secretory product of TH neurons is L-3,4-dihydroxyphenylalanine, while that of AADC neurons and bienzymatic neurons lacking the dopamine transporter is dopamine. During ontogenesis, especially in the perinatal period, monoenzymatic neurons predominate in the hypothalamic neuroendocrine centers. It is assumed that L-3,4-dihydroxyphenylalanine and dopamine are released into the neuropil, cerebral ventricles, and blood vessels, participating in the regulation of target cell differentiation in the perinatal period and the functioning of target cells in adulthood.
Collapse
Affiliation(s)
- Michael V Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
6
|
Puri TA, Lieblich SE, Ibrahim M, Galea LAM. Pregnancy history and estradiol influence spatial memory, hippocampal plasticity, and inflammation in middle-aged rats. Horm Behav 2024; 165:105616. [PMID: 39168073 DOI: 10.1016/j.yhbeh.2024.105616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Pregnancy and motherhood can have long-term effects on cognition and brain aging in both humans and rodents. Estrogens are related to cognitive function and neuroplasticity. Estrogens can improve cognition in postmenopausal women, but the evidence is mixed, partly due to differences in age of initiation, type of menopause, dose, formulation and route of administration. Additionally, past pregnancy influences brain aging and cognition as a younger age of first pregnancy in humans is associated with poorer aging outcomes. However, few animal studies have examined specific features of pregnancy history or the possible mechanisms underlying these changes. We examined whether maternal age at first pregnancy and estradiol differentially affected hippocampal neuroplasticity, inflammation, spatial reference cognition, and immediate early gene activation in response to spatial memory retrieval in middle-age. Thirteen-month-old rats (who were nulliparous (never mothered) or previously primiparous (had a litter) at three or seven months) received daily injections of estradiol (or vehicle) for sixteen days and were tested on the Morris Water Maze. An older age of first pregnancy was associated with impaired spatial memory but improved performance on reversal training, and increased number of new neurons in the ventral hippocampus. Estradiol decreased activation of new neurons in the dorsal hippocampus, regardless of parity history. Estradiol also decreased the production of anti-inflammatory cytokines based on age of first pregnancy. This work suggests that estradiol affects neuroplasticity and neuroinflammation in middle age, and that age of first pregnancy can have long lasting effects on hippocampus structure and function.
Collapse
Affiliation(s)
- Tanvi A Puri
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie E Lieblich
- Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Muna Ibrahim
- Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada; Center for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Lee BH, Cevizci M, Lieblich SE, Ibrahim M, Wen Y, Eid RS, Lamers Y, Duarte-Guterman P, Galea LAM. Exploring the parity paradox: Differential effects on neuroplasticity and inflammation by APOEe4 genotype at middle age. Brain Behav Immun 2024; 120:54-70. [PMID: 38772427 DOI: 10.1016/j.bbi.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/20/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024] Open
Abstract
Female sex and Apolipoprotein E (APOE) ε4 genotype are top non-modifiable risk factors for Alzheimer's disease (AD). Although female-unique experiences like parity (pregnancy and motherhood) have positive effects on neuroplasticity at middle age, previous pregnancy may also contribute to AD risk. To explore these seemingly paradoxical long-term effects of parity, we investigated the impact of parity with APOEε4 genotype by examining behavioural and neural biomarkers of brain health in middle-aged female rats. Our findings show that primiparous (parous one time) hAPOEε4 rats display increased use of a non-spatial cognitive strategy and exhibit decreased number and recruitment of new-born neurons in the ventral dentate gyrus of the hippocampus in response to spatial working memory retrieval. Furthermore, primiparity and hAPOEε4 genotype synergistically modulate inflammatory markers in the ventral hippocampus. Collectively, these findings demonstrate that previous parity in hAPOEε4 rats confers an added risk to present with reduced activity and engagement of the hippocampus as well as elevated pro-inflammatory signaling, and underscore the importance of considering female-specific factors and genotype in health research.
Collapse
Affiliation(s)
- Bonnie H Lee
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Melike Cevizci
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie E Lieblich
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Muna Ibrahim
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Yanhua Wen
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Rand S Eid
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Yvonne Lamers
- Food Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Paula Duarte-Guterman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, ON, Canada.
| |
Collapse
|
8
|
Beltz AM. Hormonal contraceptives and behavior: Updating the potent state of the nascent science. Horm Behav 2024; 164:105574. [PMID: 38972245 DOI: 10.1016/j.yhbeh.2024.105574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024]
Abstract
Hundreds of millions of people worldwide use hormonal contraceptives (HCs), which have been an essential part of women's reproductive health care for decades. Throughout that time, however, research on the neural and behavioral consequences of HCs was minimal and plagued by poor methodology. HC effects - and users - were assumed to be homogenous. Fortunately, there has been a recent upswell in the number and quality of investigations, affording tentative conclusions about the roles of HCs in spatial cognition and mental health, particularly depression. Thus, this paper leverages findings from the past few years to highlight the heterogeneous aspects of use that seem to matter for behavior - ranging from variation in hormonal contraceptive formulations and routes of administration to individual differences among users linked to age and reproductive health history. This paper closes with five tips for future research that will help capture and clarify heterogeneity in potential relations between HCs and behavior, namely data collection, regional access, lifespan factors, gender, and collaboration. HCs are sociopolitically provocative and research on their potential behavioral neuroendocrine impacts is becoming increasingly popular. It is, therefore, imperative for scientists to conduct replicable and robust empirical investigations, and to communicate findings with the nuance that the heterogeneity among users and effects requires.
Collapse
Affiliation(s)
- Adriene M Beltz
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Harville EW. Reproductive History and Lifetime Brain Health: The Rise of Cognitive-Neuro-Obstetrics. Neurology 2024; 103:e209611. [PMID: 38865674 DOI: 10.1212/wnl.0000000000209611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Affiliation(s)
- Emily W Harville
- From the Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA
| |
Collapse
|
10
|
Bradshaw JL, Wilson EN, Gardner JJ, Mabry S, Tucker SM, Rybalchenko N, Vera E, Goulopoulou S, Cunningham RL. Pregnancy-induced oxidative stress and inflammation are not associated with impaired maternal neuronal activity or memory function. Am J Physiol Regul Integr Comp Physiol 2024; 327:R35-R45. [PMID: 38708544 PMCID: PMC11381002 DOI: 10.1152/ajpregu.00026.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Pregnancy is associated with neural and behavioral plasticity, systemic inflammation, and oxidative stress, yet the impact of inflammation and oxidative stress on maternal neural and behavioral plasticity during pregnancy is unclear. We hypothesized that healthy pregnancy transiently reduces learning and memory and these deficits are associated with pregnancy-induced elevations in inflammation and oxidative stress. Cognitive performance was tested with novel object recognition (recollective memory), Morris water maze (spatial memory), and open field (anxiety-like) behavior tasks in female Sprague-Dawley rats of varying reproductive states [nonpregnant (nulliparous), pregnant (near term), and 1-2 mo after pregnancy (primiparous); n = 7 or 8/group]. Plasma and CA1 proinflammatory cytokines were measured with a MILLIPLEX magnetic bead assay. Plasma oxidative stress was measured via advanced oxidation protein products (AOPP) assay. CA1 markers of oxidative stress, neuronal activity, and apoptosis were quantified via Western blot analysis. Our results demonstrate that CA1 oxidative stress-associated markers were elevated in pregnant compared with nulliparous rats (P ≤ 0.017) but there were equivalent levels in pregnant and primiparous rats. In contrast, reproductive state did not impact CA1 inflammatory cytokines, neuronal activity, or apoptosis. Likewise, there was no effect of reproductive state on recollective or spatial memory. Even so, spatial learning was impaired (P ≤ 0.007) whereas anxiety-like behavior (P ≤ 0.034) was reduced in primiparous rats. Overall, our data suggest that maternal hippocampal CA1 is protected from systemic inflammation but vulnerable to peripartum oxidative stress. Peripartum oxidative stress elevations, such as in pregnancy complications, may contribute to peripartum neural and behavioral plasticity.NEW & NOTEWORTHY Healthy pregnancy is associated with elevated maternal systemic and brain oxidative stress. During postpregnancy, brain oxidative stress remains elevated whereas systemic oxidative stress is resolved. This sustained maternal brain oxidative stress is associated with learning impairments and decreased anxiety-like behavior during the postpregnancy period.
Collapse
Affiliation(s)
- Jessica L Bradshaw
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - E Nicole Wilson
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Jennifer J Gardner
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Steve Mabry
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Selina M Tucker
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Nataliya Rybalchenko
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Edward Vera
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Styliani Goulopoulou
- Lawrence D. Longo Center for Perinatal Biology, Departments of Basic Sciences, Gynecology and Obstetrics, Loma Linda University, Loma Linda, California, United States
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
11
|
de Lange AMG, Leonardsen EH, Barth C, Schindler LS, Crestol A, Holm MC, Subramaniapillai S, Hill D, Alnæs D, Westlye LT. Parental status and markers of brain and cellular age: A 3D convolutional network and classification study. Psychoneuroendocrinology 2024; 165:107040. [PMID: 38636355 DOI: 10.1016/j.psyneuen.2024.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/20/2024]
Abstract
Recent research shows prominent effects of pregnancy and the parenthood transition on structural brain characteristics in humans. Here, we present a comprehensive study of how parental status and number of children born/fathered links to markers of brain and cellular ageing in 36,323 UK Biobank participants (age range 44.57-82.06 years; 52% female). To assess global effects of parenting on the brain, we trained a 3D convolutional neural network on T1-weighted magnetic resonance images, and estimated brain age in a held-out test set. To investigate regional specificity, we extracted cortical and subcortical volumes using FreeSurfer, and ran hierarchical clustering to group regional volumes based on covariance. Leukocyte telomere length (LTL) derived from DNA was used as a marker of cellular ageing. We employed linear regression models to assess relationships between number of children, brain age, regional brain volumes, and LTL, and included interaction terms to probe sex differences in associations. Lastly, we used the brain measures and LTL as features in binary classification models, to determine if markers of brain and cellular ageing could predict parental status. The results showed associations between a greater number of children born/fathered and younger brain age in both females and males, with stronger effects observed in females. Volume-based analyses showed maternal effects in striatal and limbic regions, which were not evident in fathers. We found no evidence for associations between number of children and LTL. Classification of parental status showed an Area under the ROC Curve (AUC) of 0.57 for the brain age model, while the models using regional brain volumes and LTL as predictors showed AUCs of 0.52. Our findings align with previous population-based studies of middle- and older-aged parents, revealing subtle but significant associations between parental experience and neuroimaging-based surrogate markers of brain health. The findings further corroborate results from longitudinal cohort studies following parents across pregnancy and postpartum, potentially indicating that the parenthood transition is associated with long-term influences on brain health.
Collapse
Affiliation(s)
- Ann-Marie G de Lange
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatry, University of Oxford, Oxford, UK.
| | | | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Louise S Schindler
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Arielle Crestol
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | | | - Sivaniya Subramaniapillai
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychology, University of Oslo, Oslo, Norway
| | - Dónal Hill
- Swiss Data Science Center (SDSC), EPFL-ETHZ, Switzerland
| | - Dag Alnæs
- Department of Psychology, University of Oslo, Oslo, Norway; Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway; Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Li M. Roadmap for maternal behavior research in domestic dogs: lessons from decades of laboratory rodent work. Front Vet Sci 2024; 11:1394201. [PMID: 38993275 PMCID: PMC11236756 DOI: 10.3389/fvets.2024.1394201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Maternal behavior research in laboratory rats has revealed important behavioral and neurobiological mechanisms governing the onset, maintenance and decline of maternal behavior. However, the extent to which these mechanisms are evolutionarily conserved across species is less clear. This manuscript proposes that examining these mechanisms in dogs may be a viable approach to test their generality and help bridge the gap between rodent and human research, as domestic dogs show greater individual differences and exhibit more human-like maternal characteristics than rodents. These aspects represent advantages over rodent models, which in turn allow systems biological approaches not available in rodents. Additionally, domestic dogs share similar social environments with humans, suffer from the same mental disorders as humans, and can be treated with the same medications. This paper begins with a summary of key findings and theoretical developments from decades of rat maternal behavior research, followed by a literature review of the extant maternal behavior research on dogs and related methodology, highlighting the unique behavioral characteristics of dog maternal behavior and similarities and differences from rat maternal behavior. Finally, several knowledge gaps in dog maternal behavior research, as well as the future research in this area is discussed. It concludes that research on dog maternal behavior will not only advance our understanding of the universality of the neurobiological and behavioral mechanisms in maternal behavior, but also improve our understanding of risk factors associated with postpartum mental disorders.
Collapse
Affiliation(s)
- Ming Li
- Department of Psychology, Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Pritschet L, Taylor CM, Cossio D, Santander T, Grotzinger H, Faskowitz J, Handwerker DA, Layher E, Chrastil ER, Jacobs EG. Neuroanatomical changes observed over the course of a human pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.14.571688. [PMID: 38168195 PMCID: PMC10760186 DOI: 10.1101/2023.12.14.571688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Pregnancy is a period of profound hormonal and physiological change experienced by millions of women annually, yet the neural changes unfolding in the maternal brain throughout gestation have not been studied in humans. Leveraging precision imaging, we mapped neuroanatomical changes in an individual from preconception through two years postpartum. Pronounced decreases in gray matter volume and cortical thickness were evident across the brain, which stand in contrast to increases in white matter microstructural integrity, ventricle volume, and cerebrospinal fluid, with few regions untouched by the transition to motherhood. This dataset serves as the first comprehensive map of the human brain across gestation, providing an open-access resource for the brain imaging community to stimulate further exploration and discovery.
Collapse
|
14
|
Piasecki J, Škarabot J, Spillane P, Piasecki M, Ansdell P. Sex Differences in Neuromuscular Aging: The Role of Sex Hormones. Exerc Sport Sci Rev 2024; 52:54-62. [PMID: 38329342 DOI: 10.1249/jes.0000000000000335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Males and females experience different trajectories of neuromuscular function across the lifespan, with females demonstrating accelerated deconditioning in later life. We hypothesize that the menopause is a critical period in the female lifespan, during which the dramatic reduction in sex hormone concentrations negatively impacts synaptic input to the motoneuron pool, as well as motor unit discharge properties.
Collapse
Affiliation(s)
- Jessica Piasecki
- Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, UK
| | - Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Padraig Spillane
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing and Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Paul Ansdell
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
Chou S, Wu R, Li M. Long-term impacts of prenatal maternal immune activation and postnatal maternal separation on maternal behavior in adult female rats: Relevance to postpartum mental disorders. Behav Brain Res 2024; 461:114831. [PMID: 38142861 PMCID: PMC10872411 DOI: 10.1016/j.bbr.2023.114831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Early life adversities are known to exert long-term negative impacts on psychological and brain functions in adulthood. The present work examined how a prenatal brain insult and a postnatal stressor independently or interactively influence the quality of maternal care of postpartum female rats and their cognitive and emotional functions, as a way to identify the behavioral dysfunctions underlying childhood trauma-induced postpartum mental disorders (as indexed by impaired maternal care). Sprague-Dawley female offspring born from mother rats exposed to polyinosinic:polycytidylic acid (PolyI:C, 4.0-6.0 mg/kg) intended to cause gestational maternal immune activation (MIA) or saline were subjected to a repeated maternal separation stress (RMS, 3 h/day) or no separation for 9 days in the first two weeks of life (a 2 × 2 design). When these offspring became mothers, their attentional filtering ability (as measured in the prepulse inhibition of acoustic startle reflex test), positive hedonic response (as measured in the sucrose preference test), and negative emotional response (as measured in the startle reflex and fear-potentiated startle test) were examined, along with their home-cage maternal behavior. Virgin littermates served as controls in all the behavioral tests except in maternal behavior. Results showed that mother rats who experienced RMS displayed impaired nest building and crouching/nursing activities. RMS also interacted with MIA to alter pup retrieval latency and startle reactivity, such that MIA-RMS dams demonstrated significantly slower pup retrieval latency and higher startle magnitude compared to either RMS-only and MIA-only mothers. MIA also disrupted attentional filtering ability, with significantly lower prepulse inhibition. However, neither prenatal MIA nor postnatal RMS impaired sucrose preference or the acquisition of fear-potentiated startle. These results indicate that prenatal stress and postnatal adversity could impair maternal behavior individually, and interact with each other, causing impairments in attention, emotion and maternal motivation.
Collapse
Affiliation(s)
- Shinnyi Chou
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ruiyong Wu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Ming Li
- Department of Psychology, Nanjing University, Nanjing, China.
| |
Collapse
|
16
|
Bradshaw JL, Wilson EN, Gardner JJ, Mabry S, Tucker SM, Rybalchenko N, Vera E, Goulopoulou S, Cunningham RL. Pregnancy-associated oxidative stress and inflammation are not associated with impaired maternal neuronal activity or memory function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577461. [PMID: 38328246 PMCID: PMC10849653 DOI: 10.1101/2024.01.26.577461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pregnancy is associated with neural and behavioral plasticity, systemic inflammation, and oxidative stress. Yet, the impact of systemic inflammation and oxidative stress on maternal neural and behavioral plasticity during pregnancy are unclear. We hypothesized that the maternal hippocampal CA1, a brain region associated with cognition, would be protected from pregnancy-associated systemic elevations in inflammation and oxidative stress, mediating stable peripartum cognitive performance. Cognitive performance was tested using novel object recognition (recollective memory), Morris water maze (spatial memory), and open field (anxiety-like) behavior tasks in female Sprague-Dawley rats of varying reproductive states [non-pregnant (nulliparous), pregnant (near term), and two months post-pregnancy (primiparous); n = 7-8/group]. Plasma and CA1 proinflammatory cytokines were measured using a MILLIPLEX® magnetic bead assay. Plasma oxidative stress was measured via advanced oxidation protein products (AOPP) assay. CA1 markers of oxidative stress, neuronal activity, and apoptosis were quantified via western blotting. Our results demonstrate CA1 oxidative stress-associated markers were elevated in pregnant compared to nulliparous rats ( p ≤ 0.017) but were equivalent levels in pregnant and primiparous rats. In contrast, reproductive state did not impact CA1 inflammatory cytokines, neuronal activity, or apoptosis. Likewise, there was no effect of reproductive state on recollective or spatial memory. Even so, spatial learning was impaired ( p ≤ 0.007) while anxiety-like behavior ( p ≤ 0.034) was reduced in primiparous rats. Overall, our data suggest maternal hippocampal CA1 is protected from systemic inflammation but vulnerable to peripartum oxidative stress. Thus, peripartum oxidative stress elevations, such as in pregnancy complications, may contribute to peripartum neural and behavioral plasticity.
Collapse
|
17
|
Fernández‐Pena A, Navas‐Sánchez FJ, de Blas DM, Marcos‐Vidal L, Desco M, Carmona S. Previous pregnancies might mitigate cortical brain differences associated with surgical menopause. Hum Brain Mapp 2024; 45:e26538. [PMID: 38063284 PMCID: PMC10789212 DOI: 10.1002/hbm.26538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 01/16/2024] Open
Abstract
Surgical menopause causes a sharp drop in estrogen levels in middle-aged women, thus preventing the gradual physiological adaptation that is characteristic of the perimenopause. Previous studies suggest that surgical menopause might increase the risk of dementia later in life. In addition, the transition to motherhood entails long-lasting endocrine and neuronal adaptations. We compared differences in whole-brain cortical volume between women who reached menopause by surgery and a group of women who reached spontaneous non-surgical menopause and determined whether these cortical differences were influenced by previous childbearing. Using surface-based neuroimaging techniques, we investigated cortical volume differences in 201 middle-aged women (134 women who experienced non-surgical menopause, 78 of whom were parous women; and 67 women who experienced surgical menopause, 39 of whom were parous women). We found significant atrophy in the frontal and temporal regions in women who experienced surgical menopause. Nulliparous women with surgical menopause showed significant lower cortical volume in the left temporal gyrus extending to the medial temporal lobe cortex, as well as in the precuneus bilaterally compared to parous women with surgical menopause; whereas our results revealed no significant differences between parous women with surgical menopause and both parous and nulliparous women who reached a non-surgical menopause. Furthermore, in the surgical menopause group, we found a negative correlation between cortical volume and age at first pregnancy in the temporal lobe. Our study suggests that the long-term brain remodeling of parity may mitigate the neural impact of the sudden drop in estrogen levels that characterizes surgical menopause.
Collapse
Affiliation(s)
- Alberto Fernández‐Pena
- Departamento de BioingenieríaUniversidad Carlos III de MadridMadridSpain
- Instituto de Investigación Sanitaria Gregorio MarañónMadridSpain
- CIBER de Salud MentalInstituto de Salud Carlos IIIMadridSpain
| | | | - Daniel Martín de Blas
- Departamento de BioingenieríaUniversidad Carlos III de MadridMadridSpain
- Instituto de Investigación Sanitaria Gregorio MarañónMadridSpain
- CIBER de Salud MentalInstituto de Salud Carlos IIIMadridSpain
| | - Luis Marcos‐Vidal
- Departamento de BioingenieríaUniversidad Carlos III de MadridMadridSpain
- Instituto de Investigación Sanitaria Gregorio MarañónMadridSpain
- CIBER de Salud MentalInstituto de Salud Carlos IIIMadridSpain
| | - Manuel Desco
- Departamento de BioingenieríaUniversidad Carlos III de MadridMadridSpain
- Instituto de Investigación Sanitaria Gregorio MarañónMadridSpain
- CIBER de Salud MentalInstituto de Salud Carlos IIIMadridSpain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Susanna Carmona
- Instituto de Investigación Sanitaria Gregorio MarañónMadridSpain
- CIBER de Salud MentalInstituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
18
|
Gorman-Sandler E, Wood G, Cloude N, Frambes N, Brennen H, Robertson B, Hollis F. Mitochondrial might: powering the peripartum for risk and resilience. Front Behav Neurosci 2023; 17:1286811. [PMID: 38187925 PMCID: PMC10767224 DOI: 10.3389/fnbeh.2023.1286811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/01/2023] [Indexed: 01/09/2024] Open
Abstract
The peripartum period, characterized by dynamic hormonal shifts and physiological adaptations, has been recognized as a potentially vulnerable period for the development of mood disorders such as postpartum depression (PPD). Stress is a well-established risk factor for developing PPD and is known to modulate mitochondrial function. While primarily known for their role in energy production, mitochondria also influence processes such as stress regulation, steroid hormone synthesis, glucocorticoid response, GABA metabolism, and immune modulation - all of which are crucial for healthy pregnancy and relevant to PPD pathology. While mitochondrial function has been implicated in other psychiatric illnesses, its role in peripartum stress and mental health remains largely unexplored, especially in relation to the brain. In this review, we first provide an overview of mitochondrial involvement in processes implicated in peripartum mood disorders, underscoring their potential role in mediating pathology. We then discuss clinical and preclinical studies of mitochondria in the context of peripartum stress and mental health, emphasizing the need for better understanding of this relationship. Finally, we propose mitochondria as biological mediators of resilience to peripartum mood disorders.
Collapse
Affiliation(s)
- Erin Gorman-Sandler
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Healthcare System, Columbia, SC, United States
| | - Gabrielle Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Nazharee Cloude
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Noelle Frambes
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Hannah Brennen
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Breanna Robertson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Fiona Hollis
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Healthcare System, Columbia, SC, United States
- USC Institute for Cardiovascular Disease Research, Columbia, SC, United States
| |
Collapse
|
19
|
Barth C, Crestol A, de Lange AMG, Galea LAM. Sex steroids and the female brain across the lifespan: insights into risk of depression and Alzheimer's disease. Lancet Diabetes Endocrinol 2023; 11:926-941. [PMID: 37865102 DOI: 10.1016/s2213-8587(23)00224-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 10/23/2023]
Abstract
Despite widespread sex differences in prevalence and presentation of numerous illnesses affecting the human brain, there has been little focus on the effect of endocrine ageing. Most preclinical studies have focused on males only, and clinical studies often analyse data by covarying for sex, ignoring relevant differences between the sexes. This sex- (and gender)-neutral approach is biased and contributes to the absence of targeted treatments and services for all sexes (and genders). Female health has been historically understudied, with grave consequences for their wellbeing and health equity. In this Review, we spotlight female brain health across the lifespan by informing on the role of sex steroids, particularly oestradiol, on the female brain and on risk for diseases more prevalent in females, such as depression and Alzheimer's disease.
Collapse
Affiliation(s)
- Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Arielle Crestol
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ann-Marie G de Lange
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychology, University of Oslo, Oslo, Norway
| | - Liisa A M Galea
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
20
|
Howland MA. Recalibration of the stress response system over adult development: Is there a perinatal recalibration period? Dev Psychopathol 2023; 35:2315-2337. [PMID: 37641984 PMCID: PMC10901284 DOI: 10.1017/s0954579423000998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
During early life-sensitive periods (i.e., fetal, infancy), the developing stress response system adaptively calibrates to match environmental conditions, whether harsh or supportive. Recent evidence suggests that puberty is another window when the stress system is open to recalibration if environmental conditions have shifted significantly. Whether additional periods of recalibration exist in adulthood remains to be established. The present paper draws parallels between childhood (re)calibration periods and the perinatal period to hypothesize that this phase may be an additional window of stress recalibration in adult life. Specifically, the perinatal period (defined here to include pregnancy, lactation, and early parenthood) is also a developmental switch point characterized by heightened neural plasticity and marked changes in stress system function. After discussing these similarities, lines of empirical evidence needed to substantiate the perinatal stress recalibration hypothesis are proposed, and existing research support is reviewed. Complexities and challenges related to delineating the boundaries of perinatal stress recalibration and empirically testing this hypothesis are discussed, as well as possibilities for future multidisciplinary research. In the theme of this special issue, perinatal stress recalibration may be a mechanism of multilevel, multisystem risk, and resilience, both intra-individually and intergenerationally, with implications for optimizing interventions.
Collapse
Affiliation(s)
- Mariann A Howland
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
21
|
Duarte-Guterman P, Richard JE, Lieblich SE, Eid RS, Lamers Y, Galea LAM. Cellular and molecular signatures of motherhood in the adult and ageing rat brain. Open Biol 2023; 13:230217. [PMID: 37989220 PMCID: PMC10681025 DOI: 10.1098/rsob.230217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
Pregnancy is marked by robust changes, including brain changes to volume, structure, connectivity and neuroplasticity. Although some brain changes are restricted to pregnancy and the postpartum, others are long-lasting. Few studies have examined possible mechanisms of these changes or the effects of multiple pregnancies. We characterized various cellular and molecular signatures of parity (nulliparous, primiparous, biparous) in the rat hippocampus. We investigated density of neural stems cells (Sox2), microglia (Iba-1) and levels of a synaptic protein (PSD-95), cell signalling pathways, neuroinflammation, and the tryptophan-kynurenine (TRP-KYN) pathway, one week after weaning their pups from the last pregnancy (age of dam: seven months) and in middle-age (age of dam: 13 months). Parity increased PSD-95 levels in both age groups and prevented the age-related decrease in neural stem cell density observed in nulliparous rats. Biparity increased cell signalling phosphoproteins (pp70S6K, S6RP) and number of microglia in the dentate gyrus, regardless of age. Parity resulted in transient changes to the TRP-KYN system. Thus, previous parity has lasting effects on synaptic plasticity with fewer lasting effects on inflammation and cell signalling phosphoproteins in the whole hippocampus.
Collapse
Affiliation(s)
- P. Duarte-Guterman
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
| | - J. E. Richard
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - S. E. Lieblich
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
| | - R. S. Eid
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Y. Lamers
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - L. A. M. Galea
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|