1
|
Ling T, Yin A, Cao Y, Li J, Li H, Zhou Y, Guo X, Li J, Zhang R, Wu H, Li P. Purinergic Astrocyte Signaling Driven by TNF-α After Cannabidiol Administration Restores Normal Synaptic Remodeling Following Traumatic Brain Injury. Neuroscience 2024; 545:31-46. [PMID: 38460903 DOI: 10.1016/j.neuroscience.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Traumatic brain injury (TBI) is a prevalent form of cranial trauma that results in neural conduction disruptions and damage to synaptic structures and functions. Cannabidiol (CBD), a primary derivative from plant-based cannabinoids, exhibits a range of beneficial effects, including analgesic, sedative, anti-inflammatory, anticonvulsant, anti-anxiety, anti-apoptotic, and neuroprotective properties. Nevertheless, the effects of synaptic reconstruction and the mechanisms underlying these effects remain poorly understood. TBI is characterized by increased levels of tumor necrosis factor-alpha (TNF-α), a cytokine integral for the modulation of glutamate release by astrocytes. In the present study, the potential of CBD in regulating aberrant glutamate signal transmission in astrocytes following brain injury, as well as the underlying mechanisms involved, were investigated using immunofluorescence double staining, enzyme-linked immunosorbent assay (ELISA), western blot analysis, hematoxylin and eosin (H&E) staining, Nissl staining, transmission electron microscopy, and RT-qPCR. In this study, we examined the impact of CBD on neuronal synapses, focusing on the TNF-α-driven purinergic signaling pathway. Specifically, our research revealed that CBD pretreatment effectively reduced the secretion of TNF-α induced by astrocyte activation following TBI. This reduction inhibited the interaction between TNF-α and P2Y1 receptors, leading to a decrease in the release of neurotransmitters, including Ca2+ and glutamate, thereby initiating synaptic remodeling. Our study showed that CBD exhibits significant therapeutic potential for TBI-related synaptic dysfunction, offering valuable insights for future research and more effective TBI treatments. Further exploration of the potential applications of CBD in neuroprotection is required to develop innovative clinical strategies.
Collapse
Affiliation(s)
- Tenghan Ling
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China.
| | - Aiping Yin
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China.
| | - Yan Cao
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China.
| | - Jiali Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China.
| | - Hengxi Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China.
| | - Ying Zhou
- Department of Kunming Medical University Electron Microscope Laboratory, Kunming Medical University, Kunming 650500, China.
| | - Xiaobing Guo
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China.
| | - Jinghui Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| | - Ruilin Zhang
- Department of Forensic Medicine of Kunming Medical University, Kunming 650500, China.
| | - Haiying Wu
- Department of Emergency and Intensive Care Unit, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, China.
| | - Ping Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
2
|
Zhao J, Luo J, Deng C, Fan Y, Liu N, Cao J, Chen D, Diao Y. Volatile oil of Angelica sinensis Radix improves cognitive function by inhibiting miR-301a-3p targeting Ppp2ca in cerebral ischemia mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117621. [PMID: 38154524 DOI: 10.1016/j.jep.2023.117621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica Sinensis Radix (ASR) is a commonly used Chinese medicine known for its effects on tonifying blood, promoting blood circulation, and alleviating pain associated with menstrual regulation. Additionally, it has been used in the treatment of vascular cognitive impairment (VCI). The primary pharmacodynamic agent within ASR is volatile oil of Angelica Sinensis Radix (VOASR), which has demonstrated efficacy in combating cognitive impairment, although its mechanism remains unclear. OBJECTIVE This study aimed to elucidate the potential molecular mechanisms underlying VOASR's improvement of cognitive function in cerebral ischemic mice. METHODS A model of cerebral ischemic mice was established through unilateral common carotid artery occlusion (UCCAO) surgery, followed by intervention with VOASR. Cognitive function was assessed using the Morris water maze (MWM) test, while RT-qPCR was utilized to measure the differential expression of miR-301a-3p in the hippocampus. To evaluate cognitive function and hippocampal protein differences, wild-type mice and miR-301a-3p knockout mice were subjected to the MWM test and iTRAQ protein profiling. The relationship between miR-301a-3p and potential target genes was validated through a Dual-Luciferase Reporter experiment. RT-qPCR and Western blot were employed to determine the differential expression of Ppp2ca and synaptic plasticity-related proteins in the mouse hippocampus. RESULTS Intervention with VOASR significantly improved cognitive impairment in cerebral ischemic mice and reduced the expression of miR-301a-3p in the hippocampus. Our findings suggest that miR-301a-3p may regulate cognitive function by targeting Ppp2ca. Furthermore, VOASR intervention led to an increase in the expression of Ppp2ca and synaptic plasticity-related proteins. CONCLUSION Our study indicates that VOASR may be involved in regulating cognitive function by inhibiting miR-301a-3p, consequently increasing the expression of Ppp2ca and synaptic plasticity proteins. These results provide a new target and direction for the treatment of cognitive dysfunction.
Collapse
Affiliation(s)
- Jie Zhao
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jing Luo
- Shenzhen Hospital of Integrated Traditional and Western Medicine, ShenZhen, 518000, China.
| | - Cuili Deng
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yueying Fan
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Na Liu
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jiahui Cao
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Dongfeng Chen
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuanming Diao
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Liu MH, Tang Y, Qu LQ, Song LL, Lo HH, Zhang RL, Yun XY, Wang HM, Chan JTW, Wu JH, Wang CR, Wong VKW, Wu AG, Law BYK. Raddeanin A isolated from Anemone raddeana Regel improves pathological and cognitive deficits of the mice model of Alzheimer's disease by targeting β-amyloidosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155121. [PMID: 37856988 DOI: 10.1016/j.phymed.2023.155121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/30/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Raddeanin A is a triterpenoid isolated from Anemone raddeana Regel. It exhibits a broad spectrum of biological activities such as anti-tumor and anti-inflammatory, however, its neuroprotective effect in targeting Alzheimer's disease (AD) remains uninvestigated. PURPOSE To provide scientific base for the development of novel AD drug by clarifying the neuroprotective effect and molecular mechanisms of raddeanin A in both in vitro and in vivo AD model. STUDY DESIGN To confirm the neuroprotective role of raddeanin A in the treatment of AD, its mechanisms and effects on β-amyloidosis and Aβ fibrillation was studied in U87 cells. Besides, the improvement on cognitive deficit, pathological defects, reactive astrocyte clusters, inhibition on neuronal inflammation and apoptosis were further studied in 3 x Tg-AD mice model of AD. METHODS Real-time PCR, western blot, dot blot, biolayer interferometry and bioinformatics analysis were used to confirm the in vitro effect and targets of raddeanin A on β-amyloidosis and its associated protein network. A series of experiments including Morris water maze, H&E staining, nissl staining and immunofluorescence analysis were conducted to confirm the protective behavioral effect of raddeanin A in the in vivo AD mice model. RESULTS Raddeanin A was identified to reduce β-amyloidosis in U87 cells and 3 x Tg-AD mice model of AD by decreasing level of BACE1, APP, APP-β and Aβ. Raddeanin A improved behavioral, spatial memory and learning ability in the AD mice. In the cortex and hippocampus, raddeanin A improved the morphology and arrangement of neurons, lower the level of reactive astrocyte marker GFAP and apoptotic marker proteins Bax/Bcl2 ratio. Moreover, raddeanin A upregulated the mRNA and protein level of Prkcα in the hippocampus of AD mice whose neuroprotective effect was exerted possibly via the activation of protein kinase C. CONCLUSION As a novel natural agent targeting β-amyloidosis, our results provide the first evidence of the multiple in vitro and in vivo neuroprotective effect of raddeanin A, suggesting its potential therapeutic application in preventing or alleviating the symptoms of AD.
Collapse
Affiliation(s)
- Meng Han Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yong Tang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Li Qun Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lin Lin Song
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hang Hong Lo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Rui Long Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiao Yun Yun
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hui Miao Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Joyce Tsz Wai Chan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jian Hui Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Cai Ren Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - An Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
4
|
Cummings JL, Osse AML, Kinney JW. Alzheimer's Disease: Novel Targets and Investigational Drugs for Disease Modification. Drugs 2023; 83:1387-1408. [PMID: 37728864 PMCID: PMC10582128 DOI: 10.1007/s40265-023-01938-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Novel agents addressing non-amyloid, non-tau targets in Alzheimer's Disease (AD) comprise 70% of the AD drug development pipeline of agents currently in clinical trials. Most of the target processes identified in the Common Alzheimer's Disease Research Ontology (CADRO) are represented by novel agents in trials. Inflammation and synaptic plasticity/neuroprotection are the CADRO categories with the largest number of novel candidate therapies. Within these categories, there are few overlapping targets among the test agents. Additional categories being evaluated include apolipoprotein E [Formula: see text] 4 (APOE4) effects, lipids and lipoprotein receptors, neurogenesis, oxidative stress, bioenergetics and metabolism, vascular factors, cell death, growth factors and hormones, circadian rhythm, and epigenetic regulators. We highlight current drugs being tested within these categories and their mechanisms. Trials will be informative regarding which targets can be modulated to produce a slowing of clinical decline. Possible therapeutic combinations of agents may be suggested by trial outcomes. Biomarkers are evolving in concert with new targets and novel agents, and biomarker outcomes offer a means of supporting disease modification by the putative treatment. Identification of novel targets and development of corresponding therapeutics offer an important means of advancing new treatments for AD.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Department of Brain Health, Chambers-Grundy Center for Transformative Neuroscience, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA.
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA.
- , 1380 Opal Valley Street, Henderson, Nevada, 89052, USA.
| | - Amanda M Leisgang Osse
- Department of Brain Health, Chambers-Grundy Center for Transformative Neuroscience, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
| | - Jefferson W Kinney
- Department of Brain Health, Chambers-Grundy Center for Transformative Neuroscience, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
| |
Collapse
|
5
|
Hu D, Jin Y, Hou X, Zhu Y, Chen D, Tai J, Chen Q, Shi C, Ye J, Wu M, Zhang H, Lu Y. Application of Marine Natural Products against Alzheimer's Disease: Past, Present and Future. Mar Drugs 2023; 21:md21010043. [PMID: 36662216 PMCID: PMC9867307 DOI: 10.3390/md21010043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disease, is one of the most intractable illnesses which affects the elderly. Clinically manifested as various impairments in memory, language, cognition, visuospatial skills, executive function, etc., the symptoms gradually aggravated over time. The drugs currently used clinically can slow down the deterioration of AD and relieve symptoms but cannot completely cure them. The drugs are mainly acetylcholinesterase inhibitors (AChEI) and non-competitive N-methyl-D-aspartate receptor (NDMAR) antagonists. The pathogenesis of AD is inconclusive, but it is often associated with the expression of beta-amyloid. Abnormal deposition of amyloid and hyperphosphorylation of tau protein in the brain have been key targets for past, current, and future drug development for the disease. At present, researchers are paying more and more attention to excavate natural compounds which can be effective against Alzheimer's disease and other neurodegenerative pathologies. Marine natural products have been demonstrated to be the most prospective candidates of these compounds, and some have presented significant neuroprotection functions. Consequently, we intend to describe the potential effect of bioactive compounds derived from marine organisms, including polysaccharides, carotenoids, polyphenols, sterols and alkaloids as drug candidates, to further discover novel and efficacious drug compounds which are effective against AD.
Collapse
Affiliation(s)
- Di Hu
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yating Jin
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xiangqi Hou
- Hangzhou WeChampion Biotech. Inc., Hangzhou 310030, China
| | - Yinlong Zhu
- Zhejiang Chiral Medicine Chemicals Co., Ltd., Hangzhou 311227, China
| | - Danting Chen
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jingjing Tai
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Qianqian Chen
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Cui Shi
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Ye
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Mengxu Wu
- Hangzhou WeChampion Biotech. Inc., Hangzhou 310030, China
| | - Hong Zhang
- Hangzhou WeChampion Biotech. Inc., Hangzhou 310030, China
| | - Yanbin Lu
- Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
- Correspondence: ; Tel.: +86-571-87103135
| |
Collapse
|
6
|
Wang P, Mao S, Yi T, Wang L. LncRNA MALAT1 Targets miR-9-3p to Upregulate SAP97 in the Hippocampus of Mice with Vascular Dementia. Biochem Genet 2022; 61:916-930. [PMID: 36227424 DOI: 10.1007/s10528-022-10289-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/02/2022] [Indexed: 11/29/2022]
Abstract
Vascular dementia (VaD) is the second most common subtype of dementia, but the precise mechanism underlying VaD is not fully understood. Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) can act as a key regulator in physiological and pathological processes, including neurological disorders, but whether it is correlated with VaD has not been elucidated. In this study, we established a mouse model of VaD by the transient bilateral common carotid artery occlusion surgery. As expected, the Morris water maze showed that VaD mice had significant deficits in spatial learning and memory. MALAT1 was elevated in the hippocampus of VaD mice. Additionally, we found that microRNA (miR)-9-3p was downregulated in the VaD hippocampus. By performing a dual-luciferase report assay, we verified the binding relationship between MALAT1 and miR-9-3p. Interestingly, synapse-associated protein-97 (SAP97), a well-known gene related to synaptic functions, was found upregulated in the hippocampus of VaD mice. In vitro experiments performed on hippocampal neurons demonstrated that miR-9-3p negatively regulated SAP97 expression. The downregulation of MALAT1 in hippocampal neurons increased miR-9-3p and reduced SAP97, whereas miR-9-3p inhibition rescued the MALAT1 downregulation-mediated SAP97 reduction. In conclusion, the present study reported the alterations in the expression levels of MALAT1, miR-9-3p, and SAP97 in the hippocampus of VaD mice, suggesting that MALAT1 targets miR-9-3p to upregulate SAP97 in the hippocampus of mice with VaD. This work will be helpful for understanding the molecular mechanisms of VaD.
Collapse
Affiliation(s)
- Pengwei Wang
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150001, Heilongjiang, China
| | - Senlin Mao
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150001, Heilongjiang, China
| | - Tingting Yi
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150001, Heilongjiang, China
| | - Lihua Wang
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
7
|
Thompson RE, Tuchman AJ, Alkon DL. Bryostatin Placebo-Controlled Trials Indicate Cognitive Restoration Above Baseline for Advanced Alzheimer’s Disease in the Absence of Memantine1. J Alzheimers Dis 2022; 86:1221-1229. [PMID: 35124654 PMCID: PMC9108553 DOI: 10.3233/jad-215545] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background: In pre-clinical studies of Alzheimer’s disease (AD) transgenic mice, bryostatin restored synaptic connections, prevented neuronal death, reduced amyloid plaques, and reduced neurofibrillary tangles. Objective: Within pre-specified cohorts of advanced AD patients in two double-blind placebo-controlled bryostatin Phase II trials, to conduct exploratory statistical analyses of patients with identical conditions of enrollment and treatment. Methods: Severe Impairment Battery (SIB) scores above baseline at 5, 9, and 13 weeks were analyzed initially in the complete cases, with multiple imputation methods based on an iterative Markov chain Monte Carlo algorithm used for missing SIB scores. To mitigate confounding by a chance imbalance of 4.9 SIB baseline scores (Study #203), each patient was used as their own control with differences in 13-week SIB from baseline in single trial and pooled analyses to measure benefit at 13 weeks using general estimating equations (GEE) modeling. Results: Patients treated with bryostatin pre-specified at Mini-Mental State Examination scores 10–14, without memantine, showed baseline balance, complete safety, and SIB improvements at 13 weeks with multiple imputation analysis: Study #203 = 4.1 SIB points above baseline (p = 0.005), and Study #202 = 4.2 SIB points above baseline (p = 0.016). An increased power (N = 95) “pooled analysis” showed an increased SIB over time and a higher mean SIB at 13 weeks in the bryostatin treatment group (p < 0.001) but not significant (NS) for the placebo patients. Conclusion: Pre-specified exploratory analyses for the individual trials and the pooled trials confirmed significant bryostatin-induced improvement over baseline (treatment p < 0.001, placebo NS).
Collapse
Affiliation(s)
| | - Alan J. Tuchman
- New York Medical College, Valhalla, NY, USA
- Synaptogenix, Inc., New York, NY, USA
| | | |
Collapse
|
8
|
Wu XY, Liao BY, Xiao D, Wu WC, Xiao Y, Alexander T, Song SJ, Zhao ZH, Zhang Y, Wang ZH, Wang LB, Li X. Encapsulation of bryostatin-1 by targeted exosomes enhances remyelination and neuroprotection effects in the cuprizone-induced demyelinating animal model of multiple sclerosis. Biomater Sci 2021; 10:714-727. [PMID: 34928285 DOI: 10.1039/d1bm01142a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Demyelination is a critical neurological disease, and there is still a lack of effective treatment methods. In the past two decades, stem cells have emerged as a novel therapeutic effector for neural regeneration. However, owing to the existence of the blood-brain barrier (BBB) and the complex microenvironment, targeted therapy still faces multiple challenges. Targeted exosome carriers for drug delivery may be considered a promising therapeutic method. Exosomes were isolated from mice neural stem cells. To develop targeting exosomes, we generated a lentivirus armed PDGFRα ligand that could anchor the membrane. Exosome targeting tests were carried out in vitro and in vivo. The modified exosomes showed an apparent ability to target OPCs in the lesion area. Next, the exosomes were loaded with Bryostatin-1 (Bryo), and the cuprizone-fed mice were administered with the targeting exosomes. The data show that Bryo exhibits a powerful therapeutic effect compared with Bryo alone after exosome encapsulation. Specifically, this novel exosome-based targeting delivery of Bryo significantly improves the protection ability of the myelin sheath and promotes remyelination. Moreover, it blocks astrogliosis and axon damage, and also has an inhibitory effect on pro-inflammatory microglia. The results of this investigation provide a straightforward strategy to produce targeting exosomes and indicate a potential therapeutic approach for demyelinating disease.
Collapse
Affiliation(s)
- Xiao-Yu Wu
- The General Hospital of Ningxia Medical University, Yinchuan, 750001, China.
| | - Bao-Ying Liao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Dan Xiao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wen-Cheng Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Yun Xiao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Tyler Alexander
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Sheng-Jiao Song
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Zhuo-Hua Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Zhen-Hai Wang
- The General Hospital of Ningxia Medical University, Yinchuan, 750001, China.
| | - Li-Bin Wang
- The General Hospital of Ningxia Medical University, Yinchuan, 750001, China.
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| |
Collapse
|
9
|
Anti-Alzheimer's Molecules Derived from Marine Life: Understanding Molecular Mechanisms and Therapeutic Potential. Mar Drugs 2021; 19:md19050251. [PMID: 33925063 PMCID: PMC8146595 DOI: 10.3390/md19050251] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disease and the most common cause of dementia. It has been confirmed that the pathological processes that intervene in AD development are linked with oxidative damage to neurons, neuroinflammation, tau phosphorylation, amyloid beta (Aβ) aggregation, glutamate excitotoxicity, and cholinergic deficit. Still, there is no available therapy that can cure AD. Available therapies only manage some of the AD symptoms at the early stages of AD. Various studies have revealed that bioactive compounds derived from marine organisms and plants can exert neuroprotective activities with fewer adverse events, as compared with synthetic drugs. Furthermore, marine organisms have been identified as a source of novel compounds with therapeutic potential. Thus, there is a growing interest regarding bioactive compounds derived from marine sources that have anti-AD potentials. Various marine drugs including bryostatin-1, homotaurine, anabaseine and its derivative, rifampicins, anhydroexfoliamycin, undecylprodigioisin, gracilins, 13-desmethyl spirolide-C, and dictyostatin displayed excellent bioavailability and efficacy against AD. Most of these marine drugs were found to be well-tolerated in AD patients, along with no significant drug-associated adverse events. In this review, we focus on the drugs derived from marine life that can be useful in AD treatment and also summarize the therapeutic agents that are currently used to treat AD.
Collapse
|
10
|
Sun L, Bai D, Lin M, Eerdenidalai, Zhang L, Wang F, Jin S. miR-96 Inhibits SV2C to Promote Depression-Like Behavior and Memory Disorders in Mice. Front Behav Neurosci 2021; 14:575345. [PMID: 33815074 PMCID: PMC8017146 DOI: 10.3389/fnbeh.2020.575345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/29/2020] [Indexed: 11/17/2022] Open
Abstract
Accumulating evidence continues to emphasize the role of microRNAs as significant contributors to depression-like behavior and memory disorders. The current study aimed to investigate the mechanism by which miR-96 influences depression-like behavior and memory deficit in mice. A depression-like behavior and memory disorder mouse model was initially established by means of intraperitoneal injection with lipopolysaccharide. Memory deficits in the mice were evaluated using the Novel Object Recognition Test and Morris water maze experiments, whereas the Sucrose Preference Experiment and forced swimming experiments were performed to identify depression-like behavior in mice. The levels of tumor necrosis factor-α, malondialdehyde, superoxide dismutase, glutathione, and the monoamine transmitters 5-hydroxytryptamine and dopamine were subsequently detected in the serum. Reverse transcription-quantitative polymerase chain reaction and Western blot analysis evaluated the expression of miR-96 and SV2C expression in the CA1 hippocampal region of the mice. Finally, the relationship of miR-96 and SV2C was verified by dual-luciferase reporter gene assay. Our data indicated that the expression of miR-96 was increased, whereas that of SV2C was decreased in the CA1 region of mice exhibiting depression-like behavior and memory impairment. When miR-96 was downregulated or SV2C was overexpressed via intra-cerebroventricular injection with a miR-96 antagonist (miR-96 antagomir) or overexpression of SV2C vector, the Novel Object Recognition Test and sucrose preference index were increased, whereas the escape latency, the number of water maze platform crossings, and the immobility time of the mice were decreased. The serum levels of tumor necrosis factor-α, interleukin-1β, and malondialdehyde in the mouse CA1 region of mice were reduced, whereas the levels of superoxide dismutase and glutathione were elevated after the downregulation of miR-96 or overexpression of SV2C. Collectively, our study demonstrates that miR-96 negatively regulates the expression of SV2C, which consequently leads to depression-like behavior and memory impairment in mice. Our findings highlight the potential of miR-96-targeted therapeutics.
Collapse
Affiliation(s)
- Lidong Sun
- Outpatient Department, Ordos Fourth People's Hospital, Ordos, China
| | - Donghao Bai
- Outpatient Department, Ordos Fourth People's Hospital, Ordos, China
| | - Maoguang Lin
- Outpatient Department, Ordos Fourth People's Hospital, Ordos, China
| | - Eerdenidalai
- Outpatient Department, Ordos Fourth People's Hospital, Ordos, China
| | - Li Zhang
- Outpatient Department, Ordos Fourth People's Hospital, Ordos, China
| | - Fengzhen Wang
- Outpatient Department, Ordos Fourth People's Hospital, Ordos, China
| | - Shangwu Jin
- Clinical Laboratory, Ordos Fourth People's Hospital, Ordos, China
| |
Collapse
|
11
|
Ettcheto M, Busquets O, Cano A, Sánchez-Lopez E, Manzine PR, Espinosa-Jimenez T, Verdaguer E, Sureda FX, Olloquequi J, Castro-Torres RD, Auladell C, Folch J, Casadesús G, Camins A. Pharmacological Strategies to Improve Dendritic Spines in Alzheimer's Disease. J Alzheimers Dis 2021; 82:S91-S107. [PMID: 33325386 PMCID: PMC9853464 DOI: 10.3233/jad-201106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To deeply understand late onset Alzheimer's disease (LOAD), it may be necessary to change the concept that it is a disease exclusively driven by aging processes. The onset of LOAD could be associated with a previous peripheral stress at the level of the gut (changes in the gut microbiota), obesity (metabolic stress), and infections, among other systemic/environmental stressors. The onset of LOAD, then, may result from the generation of mild peripheral inflammatory processes involving cytokine production associated with peripheral stressors that in a second step enter the brain and spread out the process causing a neuroinflammatory brain disease. This hypothesis could explain the potential efficacy of Sodium Oligomannate (GV-971), a mixture of acidic linear oligosaccharides that have shown to remodel gut microbiota and slowdown LOAD. However, regardless of the origin of the disease, the end goal of LOAD-related preventative or disease modifying therapies is to preserve dendritic spines and synaptic plasticity that underlay and support healthy cognition. Here we discuss how systemic/environmental stressors impact pathways associated with the regulation of spine morphogenesis and synaptic maintenance, including insulin receptor and the brain derived neurotrophic factor signaling. Spine structure remodeling is a plausible mechanism to maintain synapses and provide cognitive resilience in LOAD patients. Importantly, we also propose a combination of drugs targeting such stressors that may be able to modify the course of LOAD by acting on preventing dendritic spines and synapsis loss.
Collapse
Affiliation(s)
- Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili, Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Oriol Busquets
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili, Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Amanda Cano
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Elena Sánchez-Lopez
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Patricia R. Manzine
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Triana Espinosa-Jimenez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Ester Verdaguer
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Departamento de Biología Celular y Molecular, Laboratorio de Neurobiología de laneurotransmisión, C.U.C.B.A, Universidad de Guadalajara, Jalisco, México
| | - Francesc X. Sureda
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili, Reus, Spain
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Ruben D. Castro-Torres
- Departamento de Biología Celular y Molecular, Laboratorio de Neurobiología de laneurotransmisión, C.U.C.B.A, Universidad de Guadalajara, Jalisco, México
| | - Carme Auladell
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jaume Folch
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili, Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Gemma Casadesús
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
12
|
Sharma A, Wakode S, Fayaz F, Khasimbi S, Pottoo FH, Kaur A. An Overview of Piperazine Scaffold as Promising Nucleus for Different Therapeutic Targets. Curr Pharm Des 2020; 26:4373-4385. [DOI: 10.2174/1381612826666200417154810] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
Piperazine scaffolds are a group of heterocyclic atoms having pharmacological values and showing
significant results in pharmaceutical chemistry. Piperazine has a flexible core structure for the design and synthesis
of new bioactive compounds. These flexible heterogenous compounds exhibit various biological roles, primarily
anticancer, antioxidant, cognition enhancers, antimicrobial, antibacterial, antiviral, antifungal, antiinflammatory,
anti-HIV-1 inhibitors, antidiabetic, antimalarial, antidepressant, antianxiety and anticonvulsant
activities, etc. In the past few years, researchers focused on the therapeutic profile of piperazine synthons for
different biological targets. The present review highlights the development in designing pharmacological activities
of nitrogen-containing piperazine moiety as a therapeutic agent. The extensive popularity of piperazine as a
drug of abuse and their vast heterogeneity research efforts over the last years motivated the new investigators to
further explore this area.
Collapse
Affiliation(s)
- Anjali Sharma
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi-110017, India
| | - Sharad Wakode
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi-110017, India
| | - Faizana Fayaz
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi-110017, India
| | - Shaik Khasimbi
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi-110017, India
| | - Faheem H. Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. BOX 1982, Dammam 31441, Saudi Arabia
| | - Avneet Kaur
- SGT college of Pharmacy, SGT University, Gurugram, Haryana- 122001, India
| |
Collapse
|
13
|
Biological evidence of gintonin efficacy in memory disorders. Pharmacol Res 2020; 163:105221. [PMID: 33007419 DOI: 10.1016/j.phrs.2020.105221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/27/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
Gintonin is a novel glycolipoprotein, which has been abundantly found in the root of Korean ginseng. It holds lysophosphatidic acids (LPAs), primarily identified LPA C18:2, and is an exogenous agonist of LPA receptors (LPARs). Gintonin maintains blood-brain barrier integrity, and it has recently been studied in several models of neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. Gintonin demonstrated neuroprotective activity by providing action against neuroinflammation-, apoptosis- and oxidative stress-mediated neurodegeneration. Gintonin showed an emerging role as a modulator of synaptic transmission and neurogenesis and also potentially regulated autophagy in primary cortical astrocytes. It also ameliorated the toxic agent-induced and genetic models of cognitive deficits in experimental NDDs. As a novel agonist of LPARs, gintonin regulated several G protein-coupled receptors (GPCRs) including GPR40 and GPR55. However, further study needs to be investigated to understand the underlying mechanism of action of gintonin in memory disorders.
Collapse
|
14
|
Farr SA, Roesler E, Niehoff ML, Roby DA, McKee A, Morley JE. Metformin Improves Learning and Memory in the SAMP8 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2020; 68:1699-1710. [PMID: 30958364 DOI: 10.3233/jad-181240] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metformin is used for the treatment of insulin resistant diabetes. Diabetics are at an increased risk of developing dementia. Recent epidemiological studies suggest that metformin treatment prevents cognitive decline in diabetics. A pilot clinical study found cognitive improvement with metformin in patients with mild cognitive impairment (MCI). Preclinical studies suggest metformin reduces Alzheimer-like pathology in mouse models of Alzheimer's disease (AD). In the current study, we used 11-month-old SAMP8 mice. Mice were given daily injections of metformin at 20 mg/kg/sc or 200 mg/kg/sc for eight weeks. After four weeks, mice were tested in T-maze footshock avoidance, object recognition, and Barnes maze. At the end of the study, brain tissue was collected for analysis of PKC (PKCζ, PKCι, PKCα, PKCγ, PKCɛ), GSK-3β, pGSK-3βser9, pGSK-3βtyr216, pTau404, and APP. Metformin improved both acquisition and retention in SAMP8 mice in T-maze footshock avoidance, retention in novel object recognition, and acquisition in the Barnes maze. Biochemical analysis indicated that metformin increased both atypical and conventional forms of PKC; PKCζ, and PKCα at 20 mg/kg. Metformin significantly increased pGSK-3βser9 at 200 mg/kg, and decreased Aβ at 20 mg/kg and pTau404 and APPc99 at both 20 mg/kg and 200 mg/kg. There were no differences in blood glucose levels between the aged vehicle and metformin treated mice. Metformin improved learning and memory in the SAMP8 mouse model of spontaneous onset AD. Biochemical analysis indicates that metformin improved memory by decreasing APPc99 and pTau. The current study lends support to the therapeutic potential of metformin for AD.
Collapse
Affiliation(s)
- Susan A Farr
- Research and Development Service, VA Medical Center, MO, USA.,Division of Geriatric Medicine, Saint Louis University School of Medicine, MO, USA
| | - Elizabeth Roesler
- Division of Geriatric Medicine, Saint Louis University School of Medicine, MO, USA
| | - Michael L Niehoff
- Division of Geriatric Medicine, Saint Louis University School of Medicine, MO, USA
| | - Deborah A Roby
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, MO, USA
| | - Alexis McKee
- Division of Endocrinology, Diabetes, and Metabolism, Saint Louis University, MO, USA
| | - John E Morley
- Division of Geriatric Medicine, Saint Louis University School of Medicine, MO, USA
| |
Collapse
|
15
|
Neuro-regeneration Therapeutic for Alzheimer's Dementia: Perspectives on Neurotrophic Activity. Trends Pharmacol Sci 2019; 40:655-668. [PMID: 31402121 DOI: 10.1016/j.tips.2019.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/17/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD), the leading disorder of memory impairment in our aging population, is increasing at an alarming rate. AD is currently identified by three 'gold standard criteria': (i) dementia in life, (ii) amyloid plaques at autopsy, and (iii) neurofibrillary tangles at autopsy. Several autopsy studies have indicated that dementia in life is a consequence of lost synaptic networks in the brain, while many clinical trials targeting neurotoxic amyloid beta (Aβ) have consistently failed to produce therapeutic effects on memory function in AD patients. Restoring cognitive function(s) by activating endogenous repairing/regenerating mechanisms that are synaptogenic and antiapoptotic (preventing neuronal death), however, is emerging as a necessary disease-modifying therapeutic strategy against AD and possibly for other degenerative dementias, such as Parkinson's disease and multi-infarct dementia.
Collapse
|
16
|
He X, Yang S, Zhang R, Hou L, Xu J, Hu Y, Xu R, Wang H, Zhang Y. Smilagenin Protects Dopaminergic Neurons in Chronic MPTP/Probenecid-Lesioned Parkinson's Disease Models. Front Cell Neurosci 2019; 13:18. [PMID: 30804756 PMCID: PMC6371654 DOI: 10.3389/fncel.2019.00018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/16/2019] [Indexed: 01/22/2023] Open
Abstract
Current therapies for Parkinson’s disease (PD) only offer limited symptomatic alleviation but fail to hamper the progress of the disease. Thus, it is imperative to establish new approaches aiming at protecting or reversing neurodegeneration in PD. Recent work elucidates whether smilagenin (abbreviated SMI), a steroidal sapogenin from traditional Chinese medicinal herbs, can take neuroprotective effect on dopaminergic neurons in a chronic model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) conjuncted with probenecid mice. We reported for the first time that SMI significantly improved the locomotor ability of chronic MPTP/probenecid–lesioned mice. SMI increased the tyrosine hydroxylase (TH) positive and Nissl positive neuron number in the substantia nigra pars compacta (SNpc), augmented striatal DA and its metabolites concentration and elevated striatal dopamine transporter density (DAT). In addition, dopamine receptor D2R not D1R was down-regulated by MPTP/probenecid and slightly raised by SMI prevention. What’s more, we discovered that SMI markedly elevated striatal glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) protein levels in SMI prevented mice. And we found that SMI increased GDNF and BDNF mRNA level by promoting CREB phosphorylation in 1-methyl-4-phenylpyridimium (MPP+) treated SH-SY5Y cells. The results illustrated that SMI could prevent the impairment of dopaminergic neurons in chronic MPTP/probenecid-induced mouse model.
Collapse
Affiliation(s)
- Xuan He
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Shuangshuang Yang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Rui Zhang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Lina Hou
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Jianrong Xu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Yaer Hu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Rang Xu
- Scientific Research Center, Xinhua Hospital, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Hao Wang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Yongfang Zhang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| |
Collapse
|
17
|
Farlow MR, Thompson RE, Wei LJ, Tuchman AJ, Grenier E, Crockford D, Wilke S, Benison J, Alkon DL. A Randomized, Double-Blind, Placebo-Controlled, Phase II Study Assessing Safety, Tolerability, and Efficacy of Bryostatin in the Treatment of Moderately Severe to Severe Alzheimer's Disease. J Alzheimers Dis 2019; 67:555-570. [PMID: 30530975 PMCID: PMC6398557 DOI: 10.3233/jad-180759] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Bryostatin-activated PKC epsilon pre-clinically induces synaptogenesis, anti-apoptosis, anti-amyloid-β oligomers, and anti-hyperphosphorylated tau. OBJECTIVES To investigate bryostatin safety, tolerability, and efficacy to improve cognition in advanced Alzheimer's disease (AD) patients. METHODS A double-blind, randomized, placebo-controlled Phase II, 12-week trial of i.v. bryostatin for 150 advanced AD patients (55-85) with MMSE-2 of 4-15, randomized 1:1:1 into 20 μg and 40 μg bryostatin, and placebo arms. The Full Analysis Set (FAS) and the Completer Analysis Set (CAS) were pre-specified alternative assessments (1-sided, p < 0.1 for primary efficacy, and 2-sided, p < 0.05 for pre-specified and post hoc exploratory analyses). RESULTS The safety profile was similar for 20 μg treatment and placebo patients. The 40 μg patients showed safety and drop-out issues, but no efficacy. Primary improvement of Severe Impairment Battery (SIB) scores at 13 weeks was not significant (p = 0.134) in the FAS, although in the CAS, the SIB comparison favored 20 μg bryostatin compared to placebo patients (p < 0.07). Secondary analyses at weeks 5 and 15 (i.e., 30 days post-final dosing) also favored 20 μg bryostatin compared to placebo patients. A pre-specified ANCOVA for baseline memantine blocking bryostatin and positive post-hoc trend analyses were statistically significant (2-sided, p < 0.05). CONCLUSION Although the primary endpoint was not significant in the FAS, primary and secondary analyses in the CAS, and pre-specified and post-hoc exploratory analyses did favor bryostatin 20 μg compared to the placebo cohort. These promising Phase II results support further trials of 20 μg bryostatin- without memantine- to treat AD.
Collapse
|
18
|
Lazzaretti C, Kincheski GC, Pandolfo P, Krolow R, Toniazzo AP, Arcego DM, de Sá Couto-Pereira N, Zeidán-Chuliá F, de Oliveira BHN, Bertolini D, Breunig RL, Ferreira AK, Kolling J, Siebert C, Wyse AT, Souza TME, Dalmaz C. Neonatal handling impairs intradimensional shift and alters plasticity markers in the medial prefrontal cortex of adult rats. Physiol Behav 2018; 197:29-36. [PMID: 30266584 DOI: 10.1016/j.physbeh.2018.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
Stress response can be modulated by neonatal/childhood events. Neonatal handling (NH) is an animal model in which the animals are subjected to brief separations from the dam during the first days of life, and it leads to lower emotionality and behavioral changes in adulthood. The aim of this study was to observe if early events, such as (NH), may program associative learning and behavioral flexibility in adult male rats and if these changes could be related to altered neurochemistry in the medial prefrontal cortex (mPFC). We evaluated proteins related to synaptic plasticity (brain-derived neurotrophic factor [BDNF] and synaptophysin [SYP]) as well as Na+/K+-ATPase activity. Additionally, we evaluated proteins related to the dopaminergic system (tyrosine hydroxylase [TH] and phosphorylated TH [pTH]), since this system appears to be affected in some neonatal interventions. Neonatally handled animals exhibited impairment in simple discrimination and intradimensional shift but not in reversal or compound discrimination; in addition, no alteration in switching from an egocentric spatial to a cued strategy was observed. These effects were accompanied by a decrease in SYP levels and Na+/K+-ATPase activity, suggesting reduced synaptic function. These results indicate that NH increases attention to irrelevant stimuli and/or impairs associative learning, and this is accompanied by neurochemical alterations in the (mPFC).
Collapse
Affiliation(s)
- Camilla Lazzaretti
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Centro Universitário Cenecista de Osório (UNICNEC), Osório, RS, Brazil.
| | | | - Pablo Pandolfo
- Universidade Federal Fluminense (UFF), Rio de Janeiro, RJ, Brazil
| | - Rachel Krolow
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana Paula Toniazzo
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Natividade de Sá Couto-Pereira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fares Zeidán-Chuliá
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ben-Hur Neves de Oliveira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Diego Bertolini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Raquel Luísa Breunig
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Andréa Kurek Ferreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Janaína Kolling
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cassiana Siebert
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Angela Teresinha Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Tadeu Mello E Souza
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carla Dalmaz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Burk JA, Blumenthal SA, Maness EB. Neuropharmacology of attention. Eur J Pharmacol 2018; 835:162-168. [PMID: 30092180 PMCID: PMC6140347 DOI: 10.1016/j.ejphar.2018.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/19/2018] [Accepted: 08/03/2018] [Indexed: 11/21/2022]
Abstract
Early philosophers and psychologists defined and began to describe attention. Beginning in the 1950's, numerous models of attention were developed. This corresponded with an increased understanding of pharmacological approaches to manipulate neurotransmitter systems. The present review focuses on the knowledge that has been gained about these neurotransmitter systems with respect to attentional processing, with emphasis on the functions mediated within the medial prefrontal cortex. Additionally, the use of pharmacotherapies to treat psychiatric conditions characterized by attentional dysfunction are discussed. Future directions include developing a more comprehensive understanding of the neural mechanisms underlying attentional processing and novel pharmacotherapeutic targets for conditions characterized by aberrant attentional processing.
Collapse
Affiliation(s)
- Joshua A Burk
- Department of Psychological Sciences, College of William and Mary, Williamsburg, VA 23187, USA.
| | - Sarah A Blumenthal
- Department of Psychological Sciences, College of William and Mary, Williamsburg, VA 23187, USA
| | - Eden B Maness
- Department of Psychological Sciences, College of William and Mary, Williamsburg, VA 23187, USA
| |
Collapse
|
20
|
Sun MK. Executive functioning: perspectives on neurotrophic activity and pharmacology. Behav Pharmacol 2018; 29:592-604. [PMID: 30179884 DOI: 10.1097/fbp.0000000000000427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Executive functioning is a high-level cognitive ability, regulating other abilities and behaviors to achieve desired goals. A typical executive task can be defined as the capacity to maintain one's attention on the current task, that is, responding only to the correct but not to distractive stimuli. Impairments of executive functions, or executive dysfunctions, have a growing impact on everyday life and academic achievement and are usually an early feature, and one of the core features, in brain injury and memory and behavioral disorders. Furthermore, emerging evidence indicates that memory therapeutics cannot achieve their clinical benefits in cognition if executive dysfunction is not effectively and simultaneously treated. Improvement of executive functions might be achieved through targeting some signaling pathways in the brain, including the brain-derived neurotrophic factor signaling pathways. These agents may be useful either as stand-alone interventions for patients with executive dysfunction and/or psychiatric and memory disorders or as essential adjuncts to drugs that target the underlying pathology in various brain injury and memory and behavioral disorders.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia, USA
| |
Collapse
|
21
|
Wechsler LR, Bates D, Stroemer P, Andrews-Zwilling YS, Aizman I. Cell Therapy for Chronic Stroke. Stroke 2018; 49:1066-1074. [DOI: 10.1161/strokeaha.117.018290] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Lawrence R. Wechsler
- From the Department of Neurology, University of Pittsburgh School of Medicine and UPMC, PA (L.R.W.)
| | - Damien Bates
- SanBio, Inc, Mountain View, CA (D.B., Y.S.A.-Z., I.A.)
| | - Paul Stroemer
- Advanced Therapies Consultancy, Cardiff, Wales, UK (P.S.)
| | | | - Irina Aizman
- SanBio, Inc, Mountain View, CA (D.B., Y.S.A.-Z., I.A.)
| |
Collapse
|
22
|
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA
| |
Collapse
|
23
|
Nelson TJ, Sun MK, Lim C, Sen A, Khan T, Chirila FV, Alkon DL. Bryostatin Effects on Cognitive Function and PKCɛ in Alzheimer's Disease Phase IIa and Expanded Access Trials. J Alzheimers Dis 2018; 58:521-535. [PMID: 28482641 PMCID: PMC5438479 DOI: 10.3233/jad-170161] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bryostatin 1, a potent activator of protein kinase C epsilon (PKCɛ), has been shown to reverse synaptic loss and facilitate synaptic maturation in animal models of Alzheimer’s disease (AD), Fragile X, stroke, and other neurological disorders. In a single-dose (25 μg/m2) randomized double-blind Phase IIa clinical trial, bryostatin levels reached a maximum at 1-2 h after the start of infusion. In close parallel with peak blood levels of bryostatin, an increase of PBMC PKCɛ was measured (p = 0.0185) within 1 h from the onset of infusion. Of 9 patients with a clinical diagnosis of AD, of which 6 received drug and 3 received vehicle within a double-blind protocol, bryostatin increased the Mini-Mental State Examination (MMSE) score by +1.83±0.70 unit at 3 h versus –1.00±1.53 unit for placebo. Bryostatin was well tolerated in these AD patients and no drug-related adverse events were reported. The 25 μg/m2 administered dose was based on prior clinical experience with three Expanded Access advanced AD patients treated with bryostatin, in which return of major functions such as swallowing, vocalization, and word recognition were noted. In one Expanded Access patient trial, elevated PKCɛ levels closely tracked cognitive benefits in the first 24 weeks as measured by MMSE and ADCS-ADL psychometrics. Pre-clinical mouse studies showed effective activation of PKCɛ and increased levels of BDNF and PSD-95. Together, these Phase IIa, Expanded Access, and pre-clinical results provide initial encouragement for bryostatin 1 as a potential treatment for AD.
Collapse
Affiliation(s)
- Thomas J Nelson
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA
| | - Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA
| | - Chol Lim
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA
| | - Abhik Sen
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA
| | - Tapan Khan
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA
| | - Florin V Chirila
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA.,Neurodiagnostics, LLC, Rockville, MD, USA
| | - Daniel L Alkon
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA.,Neurotrope Biosciences, LLC, New York, NY, USA
| |
Collapse
|
24
|
Yeh TT, Chang KC, Wu CY, Lee YY, Chen PY, Hung JW. Effects and mechanism of the HECT study (hybrid exercise-cognitive trainings) in mild ischemic stroke with cognitive decline: fMRI for brain plasticity, biomarker and behavioral analysis. Contemp Clin Trials Commun 2018; 9:164-171. [PMID: 29696239 PMCID: PMC5898488 DOI: 10.1016/j.conctc.2018.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 12/11/2022] Open
Abstract
Purpose Cognitive decline after stroke is highly associated with functional disability. Empirical evidence shows that exercise combined cognitive training may induce neuroplastic changes that modulate cognitive function. However, it is unclear whether hybridized exercise-cognitive training can facilitate cortical activity and physiological outcome measures and further influence on the cognitive function after stroke. This study will investigate the effects of two hybridized exercise-cognitive trainings on brain plasticity, physiological biomarkers and behavioral outcomes in stroke survivors with cognitive decline. Methods and significance This study is a single-blind randomized controlled trial. A target sample size of 75 participants is needed to obtain a statistical power of 95% with a significance level of 5%. Stroke survivors with mild cognitive decline will be stratified by Mini-Mental State Examination scores and then randomized 1:1:1 to sequential exercise-cognitive training, dual-task exercise-cognitive training or control groups. All groups will undergo training 60 min/day, 3 days/week, for a total of 12 weeks. The primary outcome is the resting-state functional connectivity and neural activation in the frontal, parietal and occipital lobes in functional magnetic resonance imaging. Secondary outcomes include physiological biomarkers, cognitive functions, physical function, daily functions and quality of life. This study may differentiate the effects of two hybridized trainings on cognitive function and health-related conditions and detect appropriate neurological and physiological indices to predict training effects. This study capitalizes on the groundwork for a non-pharmacological intervention of cognitive decline after stroke.
Collapse
Affiliation(s)
- Ting-Ting Yeh
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ku-Chou Chang
- Division of Cerebrovascular Diseases, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Discharge Planning Service Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Senior Citizen Service Management, Yuh-Ing Junior College, Kaohsiung, Taiwan
| | - Ching-Yi Wu
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ya-Yun Lee
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Yu Chen
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jen-Wen Hung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Rehabilitation, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
25
|
Sun MK. Potential Therapeutics for Vascular Cognitive Impairment and Dementia. Curr Neuropharmacol 2018; 16:1036-1044. [PMID: 29046153 PMCID: PMC6120112 DOI: 10.2174/1570159x15666171016164734] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND As the human lifespan increases, the number of people affected by agerelated dementia is growing at an epidemic pace. Vascular pathology dramatically affects cognitive profiles, resulting in dementia and cognitive impairment. While vascular dementia itself constitutes a medical challenge, hypo-perfusion/vascular risk factors enhance amyloid toxicity and other memory- damaging factors and hasten Alzheimer's disease (AD) and other memory disorders' progression, as well as negatively affect treatment outcome. METHODS Research and online content related to vascular cognitive impairment and dementia is reviewed, specifically focusing on the potential treatment of the disorder. RESULTS Few therapeutic options are currently available to improve the prognosis of patients with vascular dementia and cognitive impairment, mixed AD dementia with vascular pathology, or other memory disorders. Emerging evidence, however, indicates that, like AD and other memory disorders, synaptic impairment underlies much of the memory impairment in the cognitive decline of vascular cognitive impairment and vascular dementia. CONCLUSION Effective rescues of the memory functions might be achieved through synaptic and memory therapeutics, targeting distinct molecular signaling pathways that support the formation of new synapses and maintaining their connections. Potential therapeutic agents include: 1) memory therapeutic agents that rescue synaptic and memory functions after the brain insults; 2) antipathologic therapeutics and an effective management of vascular risk factors; and 3) preventative therapeutic agents that achieve memory therapy through functional enhancement. These therapeutic agents are also likely to benefit patients with AD and/or other types of memory disorders.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, 8 Medical Center Drive, Morgantown, West Virginia26505, USA
| |
Collapse
|
26
|
Yeh TT, Wu CY, Hsieh YW, Chang KC, Lee LC, Hung JW, Lin KC, Teng CH, Liao YH. Synergistic effects of aerobic exercise and cognitive training on cognition, physiological markers, daily function, and quality of life in stroke survivors with cognitive decline: study protocol for a randomized controlled trial. Trials 2017; 18:405. [PMID: 28859664 PMCID: PMC5579904 DOI: 10.1186/s13063-017-2153-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/16/2017] [Indexed: 12/16/2022] Open
Abstract
Background Aerobic exercise and cognitive training have been effective in improving cognitive functions; however, whether the combination of these two can further enhance cognition and clinical outcomes in stroke survivors with cognitive decline remains unknown. This study aimed to determine the treatment effects of a sequential combination of aerobic exercise and cognitive training on cognitive function and clinical outcomes. Methods/design Stroke survivors (n = 75) with cognitive decline will be recruited and randomly assigned to cognitive training, aerobic exercise, and sequential combination of aerobic exercise and cognitive training groups. All participants will receive training for 60 minutes per day, 3 days per week for 12 weeks. The aerobic exercise group will receive stationary bicycle training, the cognitive training group will receive cognitive-based training, and the sequential group will first receive 30 minutes of aerobic exercise, followed by 30 minutes of cognitive training. The outcome measures involve cognitive functions, physiological biomarkers, daily function and quality of life, physical functions, and social participation. Participants will be assessed before and immediately after the interventions, and 6 months after the interventions. Repeated measures of analysis of variance will be used to evaluate the changes in outcome measures at the three assessments. Discussion This trial aims to explore the benefits of innovative intervention approaches to improve the cognitive function, physiological markers, daily function, and quality of life in stroke survivors with cognitive decline. The findings will provide evidence to advance post-stroke cognitive rehabilitation. Trial registration ClinicalTrials.gov, NCT02550990. Registered on 6 September 2015. Electronic supplementary material The online version of this article (doi:10.1186/s13063-017-2153-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ting-Ting Yeh
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Yi Wu
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan. .,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Yu-Wei Hsieh
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ku-Chou Chang
- Department of Neurology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Lin-Chien Lee
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Jen-Wen Hung
- Department of Rehabilitation, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Keh-Chung Lin
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Occupational Therapy, Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Hung Teng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Han Liao
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
27
|
Frameworking memory and serotonergic markers. Rev Neurosci 2017; 28:455-497. [DOI: 10.1515/revneuro-2016-0079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/16/2017] [Indexed: 12/29/2022]
Abstract
Abstract:The evidence for neural markers and memory is continuously being revised, and as evidence continues to accumulate, herein, we frame earlier and new evidence. Hence, in this work, the aim is to provide an appropriate conceptual framework of serotonergic markers associated with neural activity and memory. Serotonin (5-hydroxytryptamine [5-HT]) has multiple pharmacological tools, well-characterized downstream signaling in mammals’ species, and established 5-HT neural markers showing new insights about memory functions and dysfunctions, including receptors (5-HT1A/1B/1D, 5-HT2A/2B/2C, and 5-HT3-7), transporter (serotonin transporter [SERT]) and volume transmission present in brain areas involved in memory. Bidirectional influence occurs between 5-HT markers and memory/amnesia. A growing number of researchers report that memory, amnesia, or forgetting modifies neural markers. Diverse approaches support the translatability of using neural markers and cerebral functions/dysfunctions, including memory formation and amnesia. At least, 5-HT1A, 5-HT4, 5-HT6, and 5-HT7receptors and SERT seem to be useful neural markers and therapeutic targets. Hence, several mechanisms cooperate to achieve synaptic plasticity or memory, including changes in the expression of neurotransmitter receptors and transporters.
Collapse
|
28
|
Sun T, Chen S, Huang H, Li T, Yang W, Liu L. Metabolic profile study of 7, 8-dihydroxyflavone in monkey plasma using high performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:97-102. [PMID: 28715685 DOI: 10.1016/j.jchromb.2017.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/22/2017] [Accepted: 07/02/2017] [Indexed: 01/17/2023]
Abstract
7, 8-Dihydroxyflavone, as a high-affinity tropomyosin-receptor-kinase B agonist, can mimic the physiological actions of brain-derived neurotrophic factor and exert a variety of neurological actions in numerous models including Parkinsońs disease, depression, learning and memory. Nonetheless, a limited number of studies have been focused on its metabolism in mammal and no methodology has been reported for the determination of 7, 8-DHF and its metabolites. Herein, we developed a rapid, sensitive and accurate method using high performance liquid chromatography-tandem mass spectroscopy for the determination of 7, 8-DHF and its metabolites in monkey plasma. The lower limits of quantification for analytes were 0.4-2.0ngmL-1. The intra-day and inter-day precisions (relative standard deviation, %) of analytes were within 11.83%, and the accuracy (relative error, %) ranged from -6.86 to 14.00%. The mean extraction recoveries for analytes were more than 89.14%. This validated method was successfully applied to the metabolic profile study of 7, 8-DHF in monkey plasma. The results indicated that 7, 8-DHF undergoes methylation, glucuronidation and/or sulfation, and the conjugated forms are the main metabolites in monkey plasma. We further demonstrated that methylated 7, 8-DHF can be also conjugated with glucuronidation/sulfation, and the methylation occurs mainly in the 8 position.
Collapse
Affiliation(s)
- Taoping Sun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijing Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianqing Li
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
29
|
Alkon DL, Hongpaisan J, Sun MK. Effects of chronic bryostatin-1 on treatment-resistant depression in rats. Eur J Pharmacol 2017; 807:71-74. [DOI: 10.1016/j.ejphar.2017.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/11/2017] [Accepted: 05/01/2017] [Indexed: 01/05/2023]
|
30
|
|
31
|
Martino MV, Guandalini L, Di Cesare Mannelli L, Menicatti M, Bartolucci G, Dei S, Manetti D, Teodori E, Ghelardini C, Romanelli MN. Piperazines as nootropic agents: New derivatives of the potent cognition-enhancer DM235 carrying hydrophilic substituents. Bioorg Med Chem 2017; 25:1795-1803. [PMID: 28238510 DOI: 10.1016/j.bmc.2017.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/17/2022]
Abstract
The piperazine ring of the potent nootropic drug DM235 has been decorated with H-bond donor and acceptor groups (CH2OH, CH2OMe, CH2OCOMe, COOEt); the aim was to insert new functional groups, suitable for further chemical manipulation. The influence of these modifications on nootropic activity was assessed by means of the mouse passive avoidance test; some of the newly synthesized molecules (alcohol 7b, acetate 8b and ester 10d) showed interesting in vivo potency. This makes it possible to use these functional groups for adding other residues, in order to increase molecular diversity, or for anchoring a biotin group, to obtain compounds useful to capture the biological target. Moreover, the new compounds will improve our knowledge of structure activity relationships of this family of drugs.
Collapse
Affiliation(s)
- Maria Vittoria Martino
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Luca Guandalini
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Di Cesare Mannelli
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmacology and Toxicology, Viale Gaetano Pieraccini 6, 50100 Florence, Italy
| | - Marta Menicatti
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Gianluca Bartolucci
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Silvia Dei
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Dina Manetti
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Elisabetta Teodori
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Carla Ghelardini
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmacology and Toxicology, Viale Gaetano Pieraccini 6, 50100 Florence, Italy
| | - Maria Novella Romanelli
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
32
|
Visavadiya NP, Keasey MP, Razskazovskiy V, Banerjee K, Jia C, Lovins C, Wright GL, Hagg T. Integrin-FAK signaling rapidly and potently promotes mitochondrial function through STAT3. Cell Commun Signal 2016; 14:32. [PMID: 27978828 PMCID: PMC5159999 DOI: 10.1186/s12964-016-0157-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/06/2016] [Indexed: 01/02/2023] Open
Abstract
Background STAT3 is increasingly becoming known for its non-transcriptional regulation of mitochondrial bioenergetic function upon activation of its S727 residue (S727-STAT3). Lengthy mitochondrial dysfunction can lead to cell death. We tested whether an integrin-FAK-STAT3 signaling pathway we recently discovered regulates mitochondrial function and cell survival, and treatments thereof. Methods Cultured mouse brain bEnd5 endothelial cells were treated with integrin, FAK or STAT3 inhibitors, FAK siRNA, as well as integrin and STAT3 activators. STAT3 null cells were transfected with mutant STAT3 plasmids. Outcome measures included oxygen consumption rate for mitochondrial bioenergetics, Western blotting for protein phosphorylation, mitochondrial membrane potential for mitochondrial integrity, ROS production, and cell counts. Results Vitronectin-dependent mitochondrial basal respiration, ATP production, and maximum reserve and respiratory capacities were suppressed within 4 h by RGD and αvβ3 integrin antagonist peptides. Conversely, integrin ligands vitronectin, laminin and fibronectin stimulated mitochondrial function. Pharmacological inhibition of FAK completely abolished mitochondrial function within 4 h while FAK siRNA treatments confirmed the specificity of FAK signaling. WT, but not S727A functionally dead mutant STAT3, rescued bioenergetics in cells made null for STAT3 using CRISPR-Cas9. STAT3 inhibition with stattic in whole cells rapidly reduced mitochondrial function and mitochondrial pS727-STAT3. Stattic treatment of isolated mitochondria did not reduce pS727 whereas more was detected upon phosphatase inhibition. This suggests that S727-STAT3 is activated in the cytoplasm and is short-lived upon translocation to the mitochondria. FAK inhibition reduced pS727-STAT3 within mitochondria and reduced mitochondrial function in a non-transcriptional manner, as shown by co-treatment with actinomycin. Treatment with the small molecule bryostatin-1 or hepatocyte growth factor (HGF), which indirectly activate S727-STAT3, preserved mitochondrial function during FAK inhibition, but failed in the presence of the STAT3 inhibitor. FAK inhibition induced loss of mitochondrial membrane potential, which was counteracted by bryostatin, and increased superoxide and hydrogen peroxide production. Bryostatin and HGF reduced the substantial cell death caused by FAK inhibition over a 24 h period. Conclusion These data suggest that extracellular matrix molecules promote STAT3-dependent mitochondrial function and cell survival through integrin-FAK signaling. We furthermore show a new treatment strategy for cell survival using S727-STAT3 activators.
Collapse
Affiliation(s)
- Nishant P Visavadiya
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Matthew P Keasey
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Vladislav Razskazovskiy
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Kalpita Banerjee
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Chiharu Lovins
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Gary L Wright
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Theo Hagg
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA.
| |
Collapse
|
33
|
Wang CF, Zhao CC, Jiang G, Gu X, Feng JF, Jiang JY. The Role of Posttraumatic Hypothermia in Preventing Dendrite Degeneration and Spine Loss after Severe Traumatic Brain Injury. Sci Rep 2016; 6:37063. [PMID: 27833158 PMCID: PMC5105136 DOI: 10.1038/srep37063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/24/2016] [Indexed: 11/12/2022] Open
Abstract
Posttraumatic hypothermia prevents cell death and promotes functional outcomes after traumatic brain injury (TBI). However, little is known regarding the effect of hypothermia on dendrite degeneration and spine loss after severe TBI. In the present study, we used thy1-GFP transgenic mice to investigate the effect of hypothermia on the dendrites and spines in layer V/VI of the ipsilateral cortex after severe TBI. We found that hypothermia (33 °C) dramatically prevented dendrite degeneration and spine loss 1 and 7 days after CCI. The Morris water maze test revealed that hypothermia preserved the learning and memory functions of mice after CCI. Hypothermia significantly increased the expression of the synaptic proteins GluR1 and PSD-95 at 1 and 7 days after CCI in the ipsilateral cortex and hippocampus compared with that of the normothermia TBI group. Hypothermia also increased cortical and hippocampal BDNF levels. These results suggest that posttraumatic hypothermia is an effective method to prevent dendrite degeneration and spine loss and preserve learning and memory function after severe TBI. Increasing cortical and hippocampal BDNF levels might be the mechanism through which hypothermia prevents dendrite degeneration and spine loss and preserves learning and memory function.
Collapse
Affiliation(s)
- Chuan-Fang Wang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.,Shanghai Institute of Head Trauma, Shanghai 200127, People's Republic of China
| | - Cheng-Cheng Zhao
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.,Shanghai Institute of Head Trauma, Shanghai 200127, People's Republic of China
| | - Gan Jiang
- Department of Pharmacology, Institute of Medical Science, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China
| | - Xiao Gu
- Department of Pharmacology, Institute of Medical Science, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China
| | - Jun-Feng Feng
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.,Shanghai Institute of Head Trauma, Shanghai 200127, People's Republic of China
| | - Ji-Yao Jiang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.,Shanghai Institute of Head Trauma, Shanghai 200127, People's Republic of China
| |
Collapse
|
34
|
Chen X, Li Y, Chen W, Nong Z, Huang J, Chen C. Protective Effect of Hyperbaric Oxygen on Cognitive Impairment Induced by D-Galactose in Mice. Neurochem Res 2016; 41:3032-3041. [PMID: 27485714 DOI: 10.1007/s11064-016-2022-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 12/30/2022]
Abstract
Memory decline is characteristic of aging and age-related neurodegenerative disorders. This study was designed to investigate the protective effect of hyperbaric oxygen (HBO) against cognitive impairment induced by D-galactose (D-gal) in mice. D-gal was intraperitoneally injected into mice daily for 8 weeks to establish the aging model. HBO was simultaneously administered once daily. The results indicate that HBO significantly reversed D-gal-induced learning and memory impairments. Studies on the potential mechanisms of this action showed that HBO significantly reduced oxidative stress by increasing superoxide dismutase, glutathione peroxidase, and catalase levels, as well as the total anti-oxidation capability, while decreasing the content of malondialdehyde, nitric oxide, and nitric oxide synthase in the hippocampal CA1 region. HBO also inhibited advanced glycation end-product formation and decreased levels of tumor necrosis factor-α and interleukin-6. Moreover, HBO significantly attenuated D-gal-induced pathological injury in the hippocampus, as well as β-amyloid protein1-42 expression and retained BDNF expression. Furthermore, HBO decreased p16, p21 and p53 gene and protein expression in the hippocampus of D-gal-treated mice. In conclusion, the protective effect of HBO against D-gal-induced cognitive impairment was mainly due to its ability to reduce oxidative damage, suppress inflammatory responses, and regulate aging-related gene expression.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Pharmacology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Yaoxuan Li
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Wan Chen
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Zhihuan Nong
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China
| | - Jianping Huang
- Department of Hyperbaric oxygen, The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning, Guangxi, 530021, China
| | - Chunxia Chen
- Department of Hyperbaric oxygen, The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning, Guangxi, 530021, China.
| |
Collapse
|
35
|
Sen A, Hongpaisan J, Wang D, Nelson TJ, Alkon DL. Protein Kinase Cϵ (PKCϵ) Promotes Synaptogenesis through Membrane Accumulation of the Postsynaptic Density Protein PSD-95. J Biol Chem 2016; 291:16462-76. [PMID: 27330081 DOI: 10.1074/jbc.m116.730440] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 11/06/2022] Open
Abstract
Protein kinase Cϵ (PKCϵ) promotes synaptic maturation and synaptogenesis via activation of synaptic growth factors such as BDNF, NGF, and IGF. However, many of the detailed mechanisms by which PKCϵ induces synaptogenesis are not fully understood. Accumulation of PSD-95 to the postsynaptic density (PSD) is known to lead to synaptic maturation and strengthening of excitatory synapses. Here we investigated the relationship between PKCϵ and PSD-95. We show that the PKCϵ activators dicyclopropanated linoleic acid methyl ester and bryostatin 1 induce phosphorylation of PSD-95 at the serine 295 residue, increase the levels of PSD-95, and enhance its membrane localization. Elimination of the serine 295 residue in PSD-95 abolished PKCϵ-induced membrane accumulation. Knockdown of either PKCϵ or JNK1 prevented PKCϵ activator-mediated membrane accumulation of PSD-95. PKCϵ directly phosphorylated PSD-95 and JNK1 in vitro Inhibiting PKCϵ, JNK, or calcium/calmodulin-dependent kinase II activity prevented the effects of PKCϵ activators on PSD-95 phosphorylation. Increase in membrane accumulation of PKCϵ and phosphorylated PSD-95 (p-PSD-95(S295)) coincided with an increased number of synapses and increased amplitudes of excitatory post-synaptic potentials (EPSPs) in adult rat hippocampal slices. Knockdown of PKCϵ also reduced the synthesis of PSD-95 and the presynaptic protein synaptophysin by 30 and 44%, respectively. Prolonged activation of PKCϵ increased synapse number by 2-fold, increased presynaptic vesicle density, and greatly increased PSD-95 clustering. These results indicate that PKCϵ promotes synaptogenesis by activating PSD-95 phosphorylation directly through JNK1 and calcium/calmodulin-dependent kinase II and also by inducing expression of PSD-95 and synaptophysin.
Collapse
Affiliation(s)
- Abhik Sen
- From the Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia 26505
| | - Jarin Hongpaisan
- From the Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia 26505
| | - Desheng Wang
- From the Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia 26505
| | - Thomas J Nelson
- From the Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia 26505
| | - Daniel L Alkon
- From the Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia 26505
| |
Collapse
|
36
|
Talman V, Pascale A, Jäntti M, Amadio M, Tuominen RK. Protein Kinase C Activation as a Potential Therapeutic Strategy in Alzheimer's Disease: Is there a Role for Embryonic Lethal Abnormal Vision-like Proteins? Basic Clin Pharmacol Toxicol 2016; 119:149-60. [PMID: 27001133 DOI: 10.1111/bcpt.12581] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/04/2016] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is an irreversible and progressive neurodegenerative disorder. It affects predominantly brain areas that are critical for memory and learning and is characterized by two main pathological hallmarks: extracellular amyloid plaques and intracellular neurofibrillary tangles. Protein kinase C (PKC) has been classified as one of the cognitive kinases controlling memory and learning. By regulating several signalling pathways involved in amyloid and tau pathologies, it also plays an inhibitory role in AD pathophysiology. Among downstream targets of PKC are the embryonic lethal abnormal vision (ELAV)-like RNA-binding proteins that modulate the stability and the translation of specific target mRNAs involved in synaptic remodelling linked to cognitive processes. This MiniReview summarizes the current evidence on the role of PKC and ELAV-like proteins in learning and memory, highlighting how their derangement can contribute to AD pathophysiology. This last aspect emphasizes the potential of pharmacological activation of PKC as a promising therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Virpi Talman
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alessia Pascale
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maria Jäntti
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Marialaura Amadio
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Raimo K Tuominen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Sun MK, Hongpaisan J, Alkon DL. Rescue of Synaptic Phenotypes and Spatial Memory in Young Fragile X Mice. ACTA ACUST UNITED AC 2016; 357:300-10. [PMID: 26941170 DOI: 10.1124/jpet.115.231100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/02/2016] [Indexed: 01/01/2023]
Abstract
Fragile X syndrome (FXS) is characterized by synaptic immaturity, cognitive impairment, and behavioral changes. The disorder is caused by transcriptional shutdown in neurons of thefragile X mental retardation 1gene product, fragile X mental retardation protein. Fragile X mental retardation protein is a repressor of dendritic mRNA translation and its silencing leads to dysregulation of synaptically driven protein synthesis and impairments of intellect, cognition, and behavior, and FXS is a disorder that currently has no effective therapeutics. Here, young fragile X mice were treated with chronic bryostatin-1, a relatively selective protein kinase Cεactivator, which induces synaptogenesis and synaptic maturation/repair. Chronic treatment with bryostatin-1 rescues young fragile X mice from the disorder phenotypes, including normalization of most FXS abnormalities in 1) hippocampal brain-derived neurotrophic factor expression, 2) postsynaptic density-95 levels, 3) transformation of immature dendritic spines to mature synapses, 4) densities of the presynaptic and postsynaptic membranes, and 5) spatial learning and memory. The therapeutic effects were achieved without downregulation of metabotropic glutamate receptor (mGluR) 5 in the hippocampus and are more dramatic than those of a late-onset treatment in adult fragile X mice. mGluR5 expression was in fact lower in fragile X mice and its expression was restored with the bryostatin-1 treatment. Our results show that synaptic and cognitive function of young FXS mice can be normalized through pharmacological treatment without downregulation of mGluR5 and that bryostatin-1-like agents may represent a novel class of drugs to treat fragile X mental retardation at a young age and in adults.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia
| | - Jarin Hongpaisan
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia
| | - Daniel L Alkon
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia
| |
Collapse
|
38
|
Gasbarri A, Bert B, Meneses A. Editorial: 5-HT2A/2B/2C Receptors, Memory, and Neuropsychiatric Disorders. Front Pharmacol 2016; 7:9. [PMID: 26869926 PMCID: PMC4734106 DOI: 10.3389/fphar.2016.00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/12/2016] [Indexed: 12/11/2022] Open
Affiliation(s)
- Antonella Gasbarri
- Department of Applied Clinical and Biotechnologic Sciences, University of L'Aquila L'Aquila, Italy
| | - Bettina Bert
- Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin Berlin, Germany
| | - Alfredo Meneses
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Mexico City, Mexico
| |
Collapse
|
39
|
Affiliation(s)
- Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Bethesda, Maryland, USA, and
| | - Alon Chen
- Ruhman Family Laboratory for Research on the Neurobiology of Stress, Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel, and the Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
40
|
Abstract
Diverse neuropsychiatric disorders present dysfunctional memory and no effective treatment exits for them; likely as result of the absence of neural markers associated to memory. Neurotransmitter systems and signaling pathways have been implicated in memory and dysfunctional memory; however, their role is poorly understood. Hence, neural markers and cerebral functions and dysfunctions are revised. To our knowledge no previous systematic works have been published addressing these issues. The interactions among behavioral tasks, control groups and molecular changes and/or pharmacological effects are mentioned. Neurotransmitter receptors and signaling pathways, during normal and abnormally functioning memory with an emphasis on the behavioral aspects of memory are revised. With focus on serotonin, since as it is a well characterized neurotransmitter, with multiple pharmacological tools, and well characterized downstream signaling in mammals' species. 5-HT1A, 5-HT4, 5-HT5, 5-HT6, and 5-HT7 receptors as well as SERT (serotonin transporter) seem to be useful neural markers and/or therapeutic targets. Certainly, if the mentioned evidence is replicated, then the translatability from preclinical and clinical studies to neural changes might be confirmed. Hypothesis and theories might provide appropriate limits and perspectives of evidence.
Collapse
Affiliation(s)
- Alfredo Meneses
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Mexico City, Mexico
| |
Collapse
|