1
|
Pirovano V, Brini P, Brambilla E, Gelmi ML, Romanelli A. Au(I) complexes installed on a self-assembled peptide efficiently catalyze intramolecular cyclization reactions. J Pept Sci 2024; 30:e3630. [PMID: 38943521 DOI: 10.1002/psc.3630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024]
Abstract
Self-assembled peptides are used for diverse applications in the biomedical and technological fields. The morphology and function of the assembled systems are dictated by the peptide sequence and length. In this work, a supramolecular catalyst was obtained upon self-assembly of the diphenylalanine peptide conjugated to a triphenylphosphine Au(I) complex in acetonitrile. The assembled molecules were characterized by spectroscopic techniques and by scanning electron microscopy. The activity of the catalyst was tested on two substrates in cyclization reactions. The morphology and the dimensions of the assembled systems vary depending on the presence of a carboxyl versus an amide C-terminal end. The catalyst efficiently promotes intramolecular cyclization reactions. Results obtained encourage the use of self-assembled peptides for the obtainment of new and efficient catalysts.
Collapse
Affiliation(s)
- Valentina Pirovano
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Brini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Elisa Brambilla
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Maria Luisa Gelmi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Romanelli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
2
|
Yu S, Webber MJ. Engineering disease analyte response in peptide self-assembly. J Mater Chem B 2024; 12:10757-10769. [PMID: 39382032 DOI: 10.1039/d4tb01860e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
A need to enhance the precision and specificity of therapeutic nanocarriers inspires the development of advanced nanomaterials capable of sensing and responding to disease-related cues. Self-assembled peptides offer a promising nanocarrier platform with versatile use to create precisely defined nanoscale materials. Disease-relevant cues can range from large biomolecules, such as enzymes, to ubiquitous small molecules with varying concentrations in healthy versus diseased states. Notably, pH changes (i.e., H+ concentration), redox species (e.g., H2O2), and glucose levels are significant spatial and/or temporal indicators of therapeutic need. Self-assembled peptides respond to these cues by altering their solubility, modulating electrostatic interactions, or facilitating chemical transformations through dynamic or labile bonds. This review explores the design and construction of therapeutic nanocarriers using self-assembled peptides, focusing on how peptide sequence engineering along with the inclusion of non-peptidic components can link the assembly state of these nanocarriers to the presence of disease-relevant small molecules.
Collapse
Affiliation(s)
- Sihan Yu
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
3
|
Zeng Z, Yang Z, Li C, Liu S, Wei W, Zhou Y, Wang S, Sui M, Li M, Lin S, Cheng Y, Hou P. Advancing Cancer Immunotherapy through Engineering New PD-L1 Degraders: A Comprehensive Study from Small Molecules to PD-L1-Specific Peptide-Drug Conjugates. J Med Chem 2024. [PMID: 39420825 DOI: 10.1021/acs.jmedchem.4c01652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Despite the considerable achievements of antibodies targeting PD-1/PD-L1 in cancer immunotherapy, limitations in antitumor immune response and pharmacokinetics hinder their clinical adoption. Small molecules toward PD-L1 degradation signifies an innovative avenue to modulate PD-1/PD-L1 axis. Herein, we unveil a comprehensive engineering involving the development of new PD-L1 degraders based on the berberine (BBR) and palmatine (PMT) bioactive frameworks and explore their translational potential for cancer immunotherapy using a peptide-drug conjugate strategy. Chemical modifications at the O-9 position of PMT dramatically enhance the PD-L1 degradation capacity. Further conjugation of PMT degraders with an anti-PD-L1 peptide featuring disulfide linkers enables efficient GSH-specific prodrug activation, yielding synergistic immunotherapeutic benefits through both external PD-L1 blockade and internal PD-L1 degradation mechanisms. This work elucidates the compelling charm of the discovery and application of PD-L1 degraders, offering solutions to the challenges in advancing cancer immunotherapy in widespread clinics.
Collapse
Affiliation(s)
- Zekun Zeng
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Chenghao Li
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Shujing Liu
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Wei Wei
- Department of Ultrasound Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Ye Zhou
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Simeng Wang
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Mengjun Sui
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Mengdan Li
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Shumei Lin
- Department of Infectious Disease Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Yangyang Cheng
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Peng Hou
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| |
Collapse
|
4
|
Ahuja R, Shivhare V, Konar AD. Recent Advances in Smart Self-Assembled Bioinspired Hydrogels: A Bridging Weapon for Emerging Health Care Applications from Bench to Bedside. Macromol Rapid Commun 2024; 45:e2400255. [PMID: 38802265 DOI: 10.1002/marc.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Stimuli-responsive low molecular weight hydrogel interventions for Biomedical challenges are a rapidly evolving paradigm in the bottom-up approach recently. Peptide-based self-assembled nano biomaterials present safer alternatives to their non-degradable counterparts as demanded for today's most urged clinical needs.Although a plethora of work has already been accomplished, programming hydrogelators with appropriate functionalities requires a better understanding as the impact of the macromolecular structure of the peptides and subsequently, their self-assembled nanostructures remain unidentified. Henceforth this review focuses on two aspects: Firstly, the underlying guidelines for building biomimetic strategies to tailor scaffolds leading to hydrogelation along with the role of non-covalent interactions that are the key components of various self-assembly processes. In the second section, it is aimed to bring together the recent achievements with designer assembly concerning their self-aggregation behaviour and applications mainly in the biomedical arena like drug delivery carrier design, antimicrobial, anti-inflammatory as well as wound healing materials. Furthermore, it is anticipated that this article will provide a conceptual demonstration of the different approaches taken towards the construction of these task-specific designer hydrogels. Finally, a collective effort among the material scientists is required to pave the path for the entrance of these intelligent materials into medicine from bench to bedside.
Collapse
Affiliation(s)
- Rishabh Ahuja
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
| | - Vaibhav Shivhare
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
| | - Anita Dutt Konar
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
- University Grants Commission, New Delhi, 110002, India
| |
Collapse
|
5
|
Zhu R, Liao HY, Huang YC, Shen HL. Application of Injectable Hydrogels as Delivery Systems in Osteoarthritis and Rheumatoid Arthritis. Br J Hosp Med (Lond) 2024; 85:1-41. [PMID: 39212571 DOI: 10.12968/hmed.2024.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Osteoarthritis and rheumatoid arthritis, though etiologically distinct, are both inflammatory joint diseases that cause progressive joint injury, chronic pain, and loss of function. Therefore, long-term treatment with a focus on relieving symptoms is needed. At present, the primary treatment for arthritis is drug therapy, both oral and intravenous. Although significant progress has been achieved for these treatment methods in alleviating symptoms, certain prominent drawbacks such as the substantial side effects and limited absorption of medications call for an urgent need for improved drug delivery methods. Injected hydrogels can be used as a delivery system to deliver drugs to the joint cavity in a controlled manner and continuously release them, thereby enhancing drug retention in the joint cavity to improve therapeutic effectiveness, which is attributed to the desirable attributes of the delivery system such as low immunogenicity, good biodegradability and biocompatibility. This review summarizes the types of injectable hydrogels and analyzes their applications as delivery systems in arthritis treatment. We also explored how hydrogels counteract inflammation, bone and cartilage degradation, and oxidative stress, while promoting joint cartilage regeneration in the treatment of osteoarthritis (OA) and rheumatoid arthritis (RA). This review also highlights new approaches to developing injectable hydrogels as delivery systems for OA and RA.
Collapse
Affiliation(s)
- Rong Zhu
- Department of Rheumatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Hai-Yang Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yi-Chen Huang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Hai-Li Shen
- Department of Rheumatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Sis MJ, Liu D, Allen I, Webber MJ. Iterative Design Reveals Molecular Domain Relationships in Supramolecular Peptide-Drug Conjugates. Biomacromolecules 2024; 25:4482-4491. [PMID: 38870408 DOI: 10.1021/acs.biomac.4c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Supramolecular peptide-drug conjugates (sPDCs) are prepared by covalent attachment of a drug moiety to a peptide motif programmed for one-dimensional self-assembly, with subsequent physical entanglement of these fibrillar structures enabling formation of nanofibrous hydrogels. This class of prodrug materials presents an attractive platform for mass-efficient and site-specific delivery of therapeutic agents using a discrete, single-component molecular design. However, a continued challenge in sPDC development is elucidating relationships between supramolecular interactions in their drug and peptide domains and the resultant impacts of these domains on assembly outcomes and material properties. Inclusion of a saturated alkyl segment alongside the prodrug in the hydrophobic domain of sPDCs could relieve some of the necessity for ordered, prodrug-produg interactions. Accordingly, nine sPDCs are prepared here to iterate the design variables of amino acid sequence and hydrophobic prodrug-alkyl block design. All molecules spontaneously formed hydrogels under physiological conditions, indicating a less hindered thermodynamic path to self-assembly relative to previous prodrug-only designs. However, material studies on the supramolecular arrangement, formation, and mechanical properties of the resultant sPDC hydrogels as well as their drug release profiles showed complex relationships between the hydrophobic and peptide domains in the formation and function of the resulting assemblies. Together, these results indicate that sPDC material properties are intrinsically linked to holistic molecular design with coupled contributions from their prodrug and peptide domains in directing properties of the emergent materials.
Collapse
Affiliation(s)
- Matthew J Sis
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Dongping Liu
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Isabella Allen
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
7
|
Huang S, Yang J, Xie T, Jiang Y, Hong Y, Liu X, He X, Buratto D, Zhang D, Zhou R, Liang T, Bai X. Inhibition of DEF-p65 Interactions as a Potential Avenue to Suppress Tumor Growth in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401845. [PMID: 38757623 PMCID: PMC11267266 DOI: 10.1002/advs.202401845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/28/2024] [Indexed: 05/18/2024]
Abstract
The limited success of current targeted therapies for pancreatic cancer underscores an urgent demand for novel treatment modalities. The challenge in mitigating this malignancy can be attributed to the digestive organ expansion factor (DEF), a pivotal yet underexplored factor in pancreatic tumorigenesis. The study uses a blend of in vitro and in vivo approaches, complemented by the theoretical analyses, to propose DEF as a promising anti-tumor target. Analysis of clinical samples reveals that high expression of DEF is correlated with diminished survival in pancreatic cancer patients. Crucially, the depletion of DEF significantly impedes tumor growth. The study further discovers that DEF binds to p65, shielding it from degradation mediated by the ubiquitin-proteasome pathway in cancer cells. Based on these findings and computational approaches, the study formulates a DEF-mimicking peptide, peptide-031, designed to disrupt the DEF-p65 interaction. The effectiveness of peptide-031 in inhibiting tumor proliferation has been demonstrated both in vitro and in vivo. This study unveils the oncogenic role of DEF while highlighting its prognostic value and therapeutic potential in pancreatic cancer. In addition, peptide-031 is a promising therapeutic agent with potent anti-tumor effects.
Collapse
Affiliation(s)
- Sicong Huang
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310000China
- Key Laboratory of Pancreatic Disease of Zhejiang ProvinceHangzhou310000China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang ProvinceHangzhou310000China
| | - Jiaqi Yang
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310000China
- Key Laboratory of Pancreatic Disease of Zhejiang ProvinceHangzhou310000China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang ProvinceHangzhou310000China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic DiseasesHangzhou310000China
| | - Teng Xie
- Institute of Quantitative Biology, College of Life SciencesZhejiang UniversityHangzhou310000China
- Shanghai Institute for Advanced StudyZhejiang UniversityShanghai200000China
| | - Yangwei Jiang
- Institute of Quantitative Biology, College of Life SciencesZhejiang UniversityHangzhou310000China
| | - Yifan Hong
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310000China
- Key Laboratory of Pancreatic Disease of Zhejiang ProvinceHangzhou310000China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang ProvinceHangzhou310000China
| | - Xinyuan Liu
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310000China
- Key Laboratory of Pancreatic Disease of Zhejiang ProvinceHangzhou310000China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang ProvinceHangzhou310000China
| | - Xuyan He
- Life Sciences InstituteZhejiang UniversityHangzhou310000China
| | - Damiano Buratto
- Institute of Quantitative Biology, College of Life SciencesZhejiang UniversityHangzhou310000China
- Shanghai Institute for Advanced StudyZhejiang UniversityShanghai200000China
| | - Dong Zhang
- Institute of Quantitative Biology, College of Life SciencesZhejiang UniversityHangzhou310000China
- Shanghai Institute for Advanced StudyZhejiang UniversityShanghai200000China
| | - Ruhong Zhou
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310000China
- Institute of Quantitative Biology, College of Life SciencesZhejiang UniversityHangzhou310000China
- Shanghai Institute for Advanced StudyZhejiang UniversityShanghai200000China
- Department of ChemistryColumbia UniversityNew York10027USA
- Cancer CenterZhejiang UniversityHangzhou310000China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310000China
- Key Laboratory of Pancreatic Disease of Zhejiang ProvinceHangzhou310000China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang ProvinceHangzhou310000China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic DiseasesHangzhou310000China
- Cancer CenterZhejiang UniversityHangzhou310000China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310000China
- Key Laboratory of Pancreatic Disease of Zhejiang ProvinceHangzhou310000China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang ProvinceHangzhou310000China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic DiseasesHangzhou310000China
- Cancer CenterZhejiang UniversityHangzhou310000China
| |
Collapse
|
8
|
Yu T, Hu T, Na K, Zhang L, Lu S, Guo X. Glutamine-derived peptides: Current progress and future directions. Compr Rev Food Sci Food Saf 2024; 23:e13386. [PMID: 38847753 DOI: 10.1111/1541-4337.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/25/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Glutamine, the most abundant amino acid in the body, plays a critical role in preserving immune function, nitrogen balance, intestinal integrity, and resistance to infection. However, its limited solubility and instability present challenges for its use a functional nutrient. Consequently, there is a preference for utilizing glutamine-derived peptides as an alternative to achieve enhanced functionality. This article aims to review the applications of glutamine monomers in clinical, sports, and enteral nutrition. It compares the functional effectiveness of monomers and glutamine-derived peptides and provides a comprehensive assessment of glutamine-derived peptides in terms of their classification, preparation, mechanism of absorption, and biological activity. Furthermore, this study explores the potential integration of artificial intelligence (AI)-based peptidomics and synthetic biology in the de novo design and large-scale production of these peptides. The findings reveal that glutamine-derived peptides possess significant structure-related bioactivities, with the smaller molecular weight fraction serving as the primary active ingredient. These peptides possess the ability to promote intestinal homeostasis, exert hypotensive and hypoglycemic effects, and display antioxidant properties. However, our understanding of the structure-function relationships of glutamine-derived peptides remains largely exploratory at current stage. The combination of AI based peptidomics and synthetic biology presents an opportunity to explore the untapped resources of glutamine-derived peptides as functional food ingredients. Additionally, the utilization and bioavailability of these peptides can be enhanced through the use of delivery systems in vivo. This review serves as a valuable reference for future investigations of and developments in the discovery, functional validation, and biomanufacturing of glutamine-derived peptides in food science.
Collapse
Affiliation(s)
- Tianfei Yu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Tianshuo Hu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Shuang Lu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, Wuhan City, China
| |
Collapse
|
9
|
Mu R, Zhu D, Abdulmalik S, Wijekoon S, Wei G, Kumbar SG. Stimuli-responsive peptide assemblies: Design, self-assembly, modulation, and biomedical applications. Bioact Mater 2024; 35:181-207. [PMID: 38327824 PMCID: PMC10847779 DOI: 10.1016/j.bioactmat.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
Peptide molecules have design flexibility, self-assembly ability, high biocompatibility, good biodegradability, and easy functionalization, which promote their applications as versatile biomaterials for tissue engineering and biomedicine. In addition, the functionalization of self-assembled peptide nanomaterials with other additive components enhances their stimuli-responsive functions, promoting function-specific applications that induced by both internal and external stimulations. In this review, we demonstrate recent advance in the peptide molecular design, self-assembly, functional tailoring, and biomedical applications of peptide-based nanomaterials. The strategies on the design and synthesis of single, dual, and multiple stimuli-responsive peptide-based nanomaterials with various dimensions are analyzed, and the functional regulation of peptide nanomaterials with active components such as metal/metal oxide, DNA/RNA, polysaccharides, photosensitizers, 2D materials, and others are discussed. In addition, the designed peptide-based nanomaterials with temperature-, pH-, ion-, light-, enzyme-, and ROS-responsive abilities for drug delivery, bioimaging, cancer therapy, gene therapy, antibacterial, as well as wound healing and dressing applications are presented and discussed. This comprehensive review provides detailed methodologies and advanced techniques on the synthesis of peptide nanomaterials from molecular biology, materials science, and nanotechnology, which will guide and inspire the molecular level design of peptides with specific and multiple functions for function-specific applications.
Collapse
Affiliation(s)
- Rongqiu Mu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sama Abdulmalik
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Suranji Wijekoon
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering & Department of Materials Science and Engineering, University of Connecticut, Storrs, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| |
Collapse
|
10
|
Abioye RO, Camaño Echavarría JA, Obeme-Nmom JI, Yiridoe MS, Ogunrinola OA, Ezema MD, Udenigwe CC. Self-Assembled Food Peptides: Recent Advances and Perspectives in Food and Health Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8372-8379. [PMID: 38579274 DOI: 10.1021/acs.jafc.4c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Self-assembling peptides are rapidly gaining attention as novel biomaterials for food and biomedical applications. Peptides self-assemble when triggered by physical or chemical factors due to their versatile physicochemical characteristics. Peptide self-assembly, when combined with the health-promoting bioactivity of peptides, can also result in a plethora of biofunctionalities of the biomaterials. This perspective highlights current developments in the use of food-derived self-assembling peptides as biomaterials, bioactive nutraceuticals, and potential dual functioning bioactive biomaterials. Also discussed are the challenges and opportunities in the use of self-assembling bioactive peptides in designing biocompatible, biostable, and bioavailable multipurpose biomaterials.
Collapse
Affiliation(s)
- Raliat O Abioye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jairo Andrés Camaño Echavarría
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- CNRS, LRGP, Université de Lorraine, F-54000 Nancy, France
| | - Joy I Obeme-Nmom
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Martha S Yiridoe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Oluwaseyi A Ogunrinola
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Matthew D Ezema
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Biochemistry, Federal University Oye-Ekiti, PMB 373 Oye-Ekiti, Ekiti State, Nigeria
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
11
|
Yu S, Ye Z, Roy R, Sonani RR, Pramudya I, Xian S, Xiang Y, Liu G, Flores B, Nativ-Roth E, Bitton R, Egelman EH, Webber MJ. Glucose-Triggered Gelation of Supramolecular Peptide Nanocoils with Glucose-Binding Motifs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311498. [PMID: 38095904 PMCID: PMC11031314 DOI: 10.1002/adma.202311498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Indexed: 12/28/2023]
Abstract
Peptide self-assembly is a powerful tool to prepare functional materials at the nanoscale. Often, the resulting materials have high aspect-ratio, with intermolecular β-sheet formation underlying 1D fibrillar structures. Inspired by dynamic structures in nature, peptide self-assembly is increasingly moving toward stimuli-responsive designs wherein assembled structures are formed, altered, or dissipated in response to a specific cue. Here, a peptide bearing a prosthetic glucose-binding phenylboronic acid (PBA) is demonstrated to self-assemble into an uncommon nanocoil morphology. These nanocoils arise from antiparallel β-sheets, with molecules aligned parallel to the long axis of the coil. The binding of glucose to the PBA motif stabilizes and elongates the nanocoil, driving entanglement and gelation at physiological glucose levels. The glucose-dependent gelation of these materials is then explored for the encapsulation and release of a therapeutic agent, glucagon, that corrects low blood glucose levels. Accordingly, the release of glucagon from the nanocoil hydrogels is inversely related to glucose level. When evaluated in a mouse model of severe acute hypoglycemia, glucagon delivered from glucose-stabilized nanocoil hydrogels demonstrates increased protection compared to delivery of the agent alone or within a control nanocoil hydrogel that is not stabilized by glucose.
Collapse
Affiliation(s)
- Sihan Yu
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, 105 McCourtney Hall, Notre Dame, IN 46556, USA
| | - Zhou Ye
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, 105 McCourtney Hall, Notre Dame, IN 46556, USA
| | - Rajdip Roy
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, 105 McCourtney Hall, Notre Dame, IN 46556, USA
| | - Ravi R Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Irawan Pramudya
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, 105 McCourtney Hall, Notre Dame, IN 46556, USA
| | - Sijie Xian
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, 105 McCourtney Hall, Notre Dame, IN 46556, USA
| | - Yuanhui Xiang
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, 105 McCourtney Hall, Notre Dame, IN 46556, USA
| | - Guoqiang Liu
- Integrated Biomedical Sciences Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Belen Flores
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, 105 McCourtney Hall, Notre Dame, IN 46556, USA
| | - Einat Nativ-Roth
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ronit Bitton
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, 105 McCourtney Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
12
|
Wang Y, Zhang L, Liu C, Luo Y, Chen D. Peptide-Mediated Nanocarriers for Targeted Drug Delivery: Developments and Strategies. Pharmaceutics 2024; 16:240. [PMID: 38399294 PMCID: PMC10893007 DOI: 10.3390/pharmaceutics16020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Effective drug delivery is essential for cancer treatment. Drug delivery systems, which can be tailored to targeted transport and integrated tumor therapy, are vital in improving the efficiency of cancer treatment. Peptides play a significant role in various biological and physiological functions and offer high design flexibility, excellent biocompatibility, adjustable morphology, and biodegradability, making them promising candidates for drug delivery. This paper reviews peptide-mediated drug delivery systems, focusing on self-assembled peptides and peptide-drug conjugates. It discusses the mechanisms and structural control of self-assembled peptides, the varieties and roles of peptide-drug conjugates, and strategies to augment peptide stability. The review concludes by addressing challenges and future directions.
Collapse
Affiliation(s)
- Yubo Wang
- Medical College, Guangxi University, Da-Xue-Dong Road No. 100, Nanning 530004, China;
| | - Lu Zhang
- School of Life Sciences, Xiamen University, Xiamen 361005, China;
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| | - Yiming Luo
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou 351002, China
| | - Dengyue Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| |
Collapse
|
13
|
Yin Q, Han H, Shi K, Zhou J, Zheng S, Yao K, Shentu X. Targeted dexamethasone nano-prodrug for corneal neovascularization management. Biomed J 2024; 47:100592. [PMID: 37004870 PMCID: PMC10826162 DOI: 10.1016/j.bj.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/01/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND To overcome the drawbacks of traditional therapy for corneal neovascularization (CNV), we evaluated the efficacy of polyethylene glycol (PEG)-conjugated Ala-Pro-Arg-Pro-Gly (APRPG) peptide modified dexamethasone (Dex), a novel nano-prodrug (Dex-PEG-APRPG, DPA). METHODS Characterization of DPA nano-prodrug were measured with transmission electron microscopy (TEM) and dynamic light scattering (DLS) analyses. Cytotoxicity and effects on cell migration and tube formation of DPA were evaluated in vitro. A murine CNV model was established by cornea alkali burn. The injured corneas were given eye drops of DPA (0.2 mM), Dex solution (0.2 mM), Dexp (2 mM), or normal saline three times a day. After two weeks, eyes were obtained for the analysis of histopathology, immunostaining, and mRNA expression. RESULTS DPA with an average diameter of 30 nm, presented little cytotoxicity and had good ocular biocompatibility. More importantly, DPA showed specific targeting to vascular endothelial cells with efficient inhibition on cell migration and tube formation. In a mouse CNV model, clinical, histological, and immunohistochemical examination results revealed DPA had a much stronger angiogenesis suppression than Dex, resembling a clinical drug with an order of magnitude higher concentration. This was ascribed to the significant downregulations in the expression of pro-angiogenic and pro-inflammatory factors in the corneas. In vivo imaging results also demonstrated that APRPG could prolong ocular retention time. CONCLUSIONS This study suggests that DPA nano-prodrug occupies advantages of specific targeting ability and improved bioavailability over conventional therapy, and holds great potential for safe and efficient CNV therapy.
Collapse
Affiliation(s)
- Qichuan Yin
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, China
| | - Haijie Han
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, China
| | - Kexin Shi
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, China
| | - Jiayue Zhou
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, China
| | - Sifan Zheng
- GKT School of Medical Education, King's College London, London, SE1 1UL, England, UK
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, China.
| | - Xingchao Shentu
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Lv Y, Li W, Liao W, Jiang H, Liu Y, Cao J, Lu W, Feng Y. Nano-Drug Delivery Systems Based on Natural Products. Int J Nanomedicine 2024; 19:541-569. [PMID: 38260243 PMCID: PMC10802180 DOI: 10.2147/ijn.s443692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Natural products have proven to have significant curative effects and are increasingly considered as potential candidates for clinical prevention, diagnosis, and treatment. Compared with synthetic drugs, natural products not only have diverse structures but also exhibit a range of biological activities against different disease states and molecular targets, making them attractive for development in the field of medicine. Despite advancements in the use of natural products for clinical purposes, there remain obstacles that hinder their full potential. These challenges include issues such as limited solubility and stability when administered orally, as well as short durations of effectiveness. To address these concerns, nano-drug delivery systems have emerged as a promising solution to overcome the barriers faced in the clinical application of natural products. These systems offer notable advantages, such as a large specific surface area, enhanced targeting capabilities, and the ability to achieve sustained and controlled release. Extensive in vitro and in vivo studies have provided further evidence supporting the efficacy and safety of nanoparticle-based systems in delivering natural products in preclinical disease models. This review describes the limitations of natural product applications and the current status of natural products combined with nanotechnology. The latest advances in nano-drug delivery systems for delivery of natural products are considered from three aspects: connecting targeting warheads, self-assembly, and co-delivery. Finally, the challenges faced in the clinical translation of nano-drugs are discussed.
Collapse
Affiliation(s)
- Ying Lv
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wenqing Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wei Liao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Haibo Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Yuwei Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Jiansheng Cao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wenfei Lu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Yufei Feng
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| |
Collapse
|
15
|
Xue H, Ju Y, Ye X, Dai M, Tang C, Liu L. Construction of intelligent drug delivery system based on polysaccharide-derived polymer micelles: A review. Int J Biol Macromol 2024; 254:128048. [PMID: 37967605 DOI: 10.1016/j.ijbiomac.2023.128048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Micelles are nanostructures developed via the spontaneous assembly of amphiphilic polymers in aqueous systems, which possess the advantages of high drug stability or active-ingredient solubilization, targeted transport, controlled release, high bioactivity, and stability. Polysaccharides have excellent water solubility, biocompatibility, and degradability, and can be modified to achieve a hydrophobic core to encapsulate hydrophobic drugs, improve drug biocompatibility, and achieve regulated delivery of the loaded drug. Micelles drug delivery systems based on polysaccharides and their derivatives show great potential in the biomedical field. This review discusses the principles of self-assembly of amphiphilic polymers and the formation of micelles; the preparation of amphiphilic polysaccharides is described in detail, and an overview of common polysaccharides and their modifications is provided. We focus on the review of strategies for encapsulating drugs in polysaccharide-derived polymer micelles (PDPMs) and building intelligent drug delivery systems. This review provides new research directions that will help promote future research and development of PDPMs in the field of drug carriers.
Collapse
Affiliation(s)
- Huaqian Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; School of Pharmacy, Ningxia Medical University, Ningxia 750004, China
| | - Yikun Ju
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
16
|
Wang H, Mills J, Sun B, Cui H. Therapeutic Supramolecular Polymers: Designs and Applications. Prog Polym Sci 2024; 148:101769. [PMID: 38188703 PMCID: PMC10769153 DOI: 10.1016/j.progpolymsci.2023.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The self-assembly of low-molecular-weight building motifs into supramolecular polymers has unlocked a new realm of materials with distinct properties and tremendous potential for advancing medical practices. Leveraging the reversible and dynamic nature of non-covalent interactions, these supramolecular polymers exhibit inherent responsiveness to their microenvironment, physiological cues, and biomolecular signals, making them uniquely suited for diverse biomedical applications. In this review, we intend to explore the principles of design, synthesis methodologies, and strategic developments that underlie the creation of supramolecular polymers as carriers for therapeutics, contributing to the treatment and prevention of a spectrum of human diseases. We delve into the principles underlying monomer design, emphasizing the pivotal role of non-covalent interactions, directionality, and reversibility. Moreover, we explore the intricate balance between thermodynamics and kinetics in supramolecular polymerization, illuminating strategies for achieving controlled sizes and distributions. Categorically, we examine their exciting biomedical applications: individual polymers as discrete carriers for therapeutics, delving into their interactions with cells, and in vivo dynamics; and supramolecular polymeric hydrogels as injectable depots, with a focus on their roles in cancer immunotherapy, sustained drug release, and regenerative medicine. As the field continues to burgeon, harnessing the unique attributes of therapeutic supramolecular polymers holds the promise of transformative impacts across the biomedical landscape.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jason Mills
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Boran Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
17
|
Jiang Y, Li W, Wang Z, Lu J. Lipid-Based Nanotechnology: Liposome. Pharmaceutics 2023; 16:34. [PMID: 38258045 PMCID: PMC10820119 DOI: 10.3390/pharmaceutics16010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Over the past several decades, liposomes have been extensively developed and used for various clinical applications such as in pharmaceutical, cosmetic, and dietetic fields, due to its versatility, biocompatibility, and biodegradability, as well as the ability to enhance the therapeutic index of free drugs. However, some challenges remain unsolved, including liposome premature leakage, manufacturing irreproducibility, and limited translation success. This article reviews various aspects of liposomes, including its advantages, major compositions, and common preparation techniques, and discusses present U.S. FDA-approved, clinical, and preclinical liposomal nanotherapeutics for treating and preventing a variety of human diseases. In addition, we summarize the significance of and challenges in liposome-enabled nanotherapeutic development and hope it provides the fundamental knowledge and concepts about liposomes and their applications and contributions in contemporary pharmaceutical advancement.
Collapse
Affiliation(s)
- Yanhao Jiang
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
| | - Wenpan Li
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
| | - Zhiren Wang
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
| | - Jianqin Lu
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
- Clinical and Translational Oncology Program, NCI-Designated University of Arizona Comprehensive Cancer Center, Tucson, AZ 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
18
|
Salehi T, Raeisi Estabragh MA, Salarpour S, Ohadi M, Dehghannoudeh G. Absorption enhancer approach for protein delivery by various routes of administration: a rapid review. J Drug Target 2023; 31:950-961. [PMID: 37842966 DOI: 10.1080/1061186x.2023.2271680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
As bioactive molecules, peptides and proteins are essential in living organisms, including animals and humans. Defects in their function lead to various diseases in humans. Therefore, the use of proteins in treating multiple diseases, such as cancers and hepatitis, is increasing. There are different routes to administer proteins, which have limitations due to their large and hydrophilic structure. Another limitation is the presence of biological and lipophilic membranes that do not allow proteins to pass quickly. There are different strategies to increase the absorption of proteins from these biological membranes. One of these strategies is to use compounds as absorption enhancers. Absorption enhancers are compounds such as surfactants, phospholipids and cyclodextrins that increase protein passage through the biological membrane and their absorption by different mechanisms. This review focuses on using other absorption enhancers and their mechanism in protein administration routes.
Collapse
Affiliation(s)
- Toktam Salehi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Raeisi Estabragh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
19
|
Stepanova M, Nikiforov A, Tennikova T, Korzhikova-Vlakh E. Polypeptide-Based Systems: From Synthesis to Application in Drug Delivery. Pharmaceutics 2023; 15:2641. [PMID: 38004619 PMCID: PMC10674432 DOI: 10.3390/pharmaceutics15112641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Synthetic polypeptides are biocompatible and biodegradable macromolecules whose composition and architecture can vary over a wide range. Their unique ability to form secondary structures, as well as different pathways of modification and biofunctionalization due to the diversity of amino acids, provide variation in the physicochemical and biological properties of polypeptide-containing materials. In this review article, we summarize the advances in the synthesis of polypeptides and their copolymers and the application of these systems for drug delivery in the form of (nano)particles or hydrogels. The issues, such as the diversity of polypeptide-containing (nano)particle types, the methods for their preparation and drug loading, as well as the influence of physicochemical characteristics on stability, degradability, cellular uptake, cytotoxicity, hemolysis, and immunogenicity of polypeptide-containing nanoparticles and their drug formulations, are comprehensively discussed. Finally, recent advances in the development of certain drug nanoformulations for peptides, proteins, gene delivery, cancer therapy, and antimicrobial and anti-inflammatory systems are summarized.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Alexey Nikiforov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, Petergof, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| |
Collapse
|
20
|
Croitoriu A, Chiriac AP, Rusu AG, Ghilan A, Ciolacu DE, Stoica I, Nita LE. Morphological Evaluation of Supramolecular Soft Materials Obtained through Co-Assembly Processes. Gels 2023; 9:886. [PMID: 37998976 PMCID: PMC10671250 DOI: 10.3390/gels9110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Low-molecular-weight gelators (LMWGs) are compounds with an intrinsic tendency to self-assemble forming various supramolecular architectures via non-covalent interactions. Considering that the development of supramolecular assemblies through the synergy of molecules is not entirely understood at the molecular level, this study introduced a Fmoc-short peptide and four Fmoc-amino acids as building blocks for the self-assembly/co-assembly process. Hence, we investigated the formation of supramolecular gels starting from the molecular aggregation following two triggering approaches: solvent/co-solvent method and pH switch. The complex morphological analysis (POM, AFM, and STEM) offered an insight into the spontaneous formation of well-ordered nanoaggregates. Briefly, POM and AFM images demonstrated that self-assembled gels present various morphologies like dendrimer, spherulite, and vesicle, whereas all co-assembled supramolecular systems exhibit fibrillar morphologies as a result of the interaction between co-partners of each system. STEM study has confirmed that the molecules interact and join together, finally forming a fibrous network, an aspect seen in both self-assembled and co-assembled gels. XRD allowed the determination of the molecular arrangement. The study emphasized that the Fmoc motif protected the amino groups and facilitated gelation through additional π-π interactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Loredana E. Nita
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.C.); (A.P.C.); (A.G.); (D.E.C.); (I.S.)
| |
Collapse
|
21
|
Li B, Huang Y, Bao J, Xu Z, Yan X, Zou Q. Supramolecular Nanoarchitectonics Based on Antagonist Peptide Self-Assembly for Treatment of Liver Fibrosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304675. [PMID: 37433983 DOI: 10.1002/smll.202304675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 07/13/2023]
Abstract
Therapeutic peptides have attracted increasing attention as anti-fibrotic drug candidates. However, the rapid degradation and insufficient liver accumulation of therapeutic peptides have seriously hampered their clinical translation. Here, the use of supramolecular nanoarchitectonics is reported to fabricate nanodrugs from therapeutic peptides for treating liver fibrosis. Self-assembling antagonist peptides are rationally designed and manipulated into uniform peptide nanoparticles with well-defined nanostructures and uniform sizes. Significantly, the peptide nanoparticles show enhanced accumulation in liver sites and limited distribution in other tissues. In vivo results show that the peptide nanoparticles exhibit greatly enhanced anti-fibrotic activity compared to the pristine antagonist along with good biocompatibility. These results indicate that self-assembly is a promising nanoarchitectonics approach to enhance the anti-fibrotic activity of therapeutic peptides for treating liver fibrosis.
Collapse
Affiliation(s)
- Bowen Li
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Jianwei Bao
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Zixuan Xu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qianli Zou
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230000, P. R. China
| |
Collapse
|
22
|
Wang H, Su H, Xu T, Cui H. Utilizing the Hofmeister Effect to Induce Hydrogelation of Nonionic Supramolecular Polymers into a Therapeutic Depot. Angew Chem Int Ed Engl 2023; 62:e202306652. [PMID: 37669026 DOI: 10.1002/anie.202306652] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/06/2023]
Abstract
Nonionic hydrogels are of particular interest for long-term therapeutic implantation due to their minimal immunogenicity relative to their charged counterparts. However, in situ formation of nonionic supramolecular hydrogels under physiological conditions has been a challenging task. In this context, we report on our discovery of salt-triggered hydrogelation of nonionic supramolecular polymers (SPs) formed by self-assembling prodrug hydrogelators (SAPHs) through the Hofmeister effect. The designed SAPHs consist of two SN-38 units, which is an active metabolite of the anticancer drug irinotecan, and a short peptide grafted with two or four oligoethylene glycol (OEG) segments. Upon self-assembly in water, the resultant nonionic SPs can be triggered to gel upon addition of phosphate salts. Our 1 H NMR studies revealed that the added phosphates led to a change in the chemical shift of the methylene protons, suggestive of a disruption of the water-ether hydrogen bonds and consequent reorganization of the hydration shell surrounding the SPs. This deshielding effect, commensurate with the amount of salt added, likely promoted associative interactions among the SAPH filaments to percolate into a 3D network. The formed hydrogels exhibited a sustained release profile of SN-38 hydrogelator that acted potently against cancer cells.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hao Su
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tian Xu
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
23
|
Simple Complexity: Incorporating Bioinspired Delivery Machinery within Self-Assembled Peptide Biogels. Gels 2023; 9:gels9030199. [PMID: 36975648 PMCID: PMC10048788 DOI: 10.3390/gels9030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Bioinspired self-assembly is a bottom-up strategy enabling biologically sophisticated nanostructured biogels that can mimic natural tissue. Self-assembling peptides (SAPs), carefully designed, form signal-rich supramolecular nanostructures that intertwine to form a hydrogel material that can be used for a range of cell and tissue engineering scaffolds. Using the tools of nature, they are a versatile framework for the supply and presentation of important biological factors. Recent developments have shown promise for many applications such as therapeutic gene, drug and cell delivery and yet are stable enough for large-scale tissue engineering. This is due to their excellent programmability—features can be incorporated for innate biocompatibility, biodegradability, synthetic feasibility, biological functionality and responsiveness to external stimuli. SAPs can be used independently or combined with other (macro)molecules to recapitulate surprisingly complex biological functions in a simple framework. It is easy to accomplish localized delivery, since they can be injected and can deliver targeted and sustained effects. In this review, we discuss the categories of SAPs, applications for gene and drug delivery, and their inherent design challenges. We highlight selected applications from the literature and make suggestions to advance the field with SAPs as a simple, yet smart delivery platform for emerging BioMedTech applications.
Collapse
|
24
|
Sedighi M, Shrestha N, Mahmoudi Z, Khademi Z, Ghasempour A, Dehghan H, Talebi SF, Toolabi M, Préat V, Chen B, Guo X, Shahbazi MA. Multifunctional Self-Assembled Peptide Hydrogels for Biomedical Applications. Polymers (Basel) 2023; 15:1160. [PMID: 36904404 PMCID: PMC10007692 DOI: 10.3390/polym15051160] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Self-assembly is a growth mechanism in nature to apply local interactions forming a minimum energy structure. Currently, self-assembled materials are considered for biomedical applications due to their pleasant features, including scalability, versatility, simplicity, and inexpensiveness. Self-assembled peptides can be applied to design and fabricate different structures, such as micelles, hydrogels, and vesicles, by diverse physical interactions between specific building blocks. Among them, bioactivity, biocompatibility, and biodegradability of peptide hydrogels have introduced them as versatile platforms in biomedical applications, such as drug delivery, tissue engineering, biosensing, and treating different diseases. Moreover, peptides are capable of mimicking the microenvironment of natural tissues and responding to internal and external stimuli for triggered drug release. In the current review, the unique characteristics of peptide hydrogels and recent advances in their design, fabrication, as well as chemical, physical, and biological properties are presented. Additionally, recent developments of these biomaterials are discussed with a particular focus on their biomedical applications in targeted drug delivery and gene delivery, stem cell therapy, cancer therapy and immune regulation, bioimaging, and regenerative medicine.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853076, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Neha Shrestha
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
- Department of Biomedicine and Translational Research, Research Institute for Bioscience and Biotechnology, Kathmandu P.O. Box 7731, Nepal
| | - Zahra Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Zahra Khademi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Hamideh Dehghan
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Seyedeh Fahimeh Talebi
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Maryam Toolabi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Bozhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xindong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
25
|
Karballaei Mirzahosseini H, Sheikhi M, Najmeddin F, Shirangi M, Mojtahedzadeh M. 3D self-assembled nanocarriers for drug delivery. Drug Metab Rev 2023; 55:140-162. [PMID: 36772815 DOI: 10.1080/03602532.2023.2172182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023]
Abstract
There are many benefits to drug delivery from drug-carrier nanostructure systems. It might be developed to carefully control drug release rates or to deliver a precise amount of a therapeutic substance to particular body areas. Self-assembling is the process by which molecules and nanoparticles spontaneously organize into organized clusters. For instance, proteins and peptides can interact with one another to create highly organized supramolecular structures with various properties, such as helical ribbons and fibrous scaffolds. Another advantage of self-assembly is that it may be effective with a variety of materials, including metals, oxides, inorganic salts, polymers, semiconductors, and even organic semiconductors. Fullerene, graphene, and carbon nanotubes (CNTs), three of the most fundamental classes of three-dimensionally self-assembling nanostructured carbon-based materials, are essential for the development of modern nanotechnologies. Self-assembled nanomaterials are used in a variety of fields, including nanotechnology, imaging, and biosensors. This review study begins with a summary of various major 3D nanomaterials, including graphene oxide, CNTs, and nanodiamond, as well as 3D self-assembled polyfunctionalized nanostructures and adaptable nanocarriers for drug delivery.
Collapse
Affiliation(s)
| | - Mojgan Sheikhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Najmeddin
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Shirangi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Mojtahedzadeh
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Abraham B, Agredo P, Mensah SG, Nilsson BL. Anion Effects on the Supramolecular Self-Assembly of Cationic Phenylalanine Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15494-15505. [PMID: 36473193 PMCID: PMC9776537 DOI: 10.1021/acs.langmuir.2c01394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Supramolecular hydrogels have emerged as a class of promising biomaterials for applications such as drug delivery and tissue engineering. Self-assembling peptides have been well studied for such applications, but low molecular weight (LMW) amino acid-derived gelators have attracted interest as low-cost alternatives with similar emergent properties. Fluorenylmethyloxycarbonyl-phenylalanine (Fmoc-Phe) is one such privileged motif often chosen due to its inherent self-assembly potential. Previously, we developed cationic Fmoc-Phe-DAP gelators that assemble into hydrogel networks in aqueous NaCl solutions of sufficient ionic strength. The chloride anions in these solutions screen the cationic charge of the gelators to enable self-assembly to occur. Herein, we report the effects of varying the anions of sodium salts on the gelation potential, nanoscale morphology, and hydrogel viscoelastic properties of Fmoc-Phe-DAP and two of its fluorinated derivatives, Fmoc-3F-Phe-DAP and Fmoc-F5-Phe-DAP. It was observed that both the anion identity and gelator structure had a significant impact on the self-assembly and gelation properties of these derivatives. Changing the anion identity resulted in significant polymorphism of the nanoscale morphology of the assembled states that was dependent on the chemical structure of the gelator. The emergent viscoelastic character of the hydrogel networks was also found to be reliant on the anion identity and gelator structure. These results demonstrate the complex interplay between the gelator and environment that have a profound and often unpredictable impact on both self-assembly properties and emergent viscoelasticity in supramolecular hydrogels formed by LMW compounds. This work also illustrates the current lack of understanding that limits the rational design of potential biomaterials that will be in contact with complex biological fluids and provides motivation for additional research to correlate the chemical structure of LMW gelators with the structure and emergent properties of the resulting supramolecular assemblies as a function of environment.
Collapse
Affiliation(s)
- Brittany
L. Abraham
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Pamela Agredo
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Samantha G. Mensah
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Bradley L. Nilsson
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
- Materials
Science Program, University of Rochester, Rochester, New York 14627-0166, United States
| |
Collapse
|
27
|
Zhang L, Tian Y, Li M, Wang M, Wu S, Jiang Z, Wang Q, Wang W. Peptide nano 'bead-grafting' for SDT-facilitated immune checkpoints blocking. Chem Sci 2022; 13:14052-14062. [PMID: 36540822 PMCID: PMC9728588 DOI: 10.1039/d2sc02728c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/13/2022] [Indexed: 09/21/2023] Open
Abstract
Combination therapies based on immune checkpoint blockade (ICB) are currently the mainstay of cancer treatment, in which the synergetic delivery of multiple drugs is the essential step. Although nanoparticle drugs (NPDs) show satisfactory anticancer effects, the promotion of active co-delivery of NPDs is premature, since the processes are usually difficult to predict and control. Targeting peptide self-assemblies have been widely used as carriers for small-molecular drugs, but remain elusive for NPDs. We describe here peptide-based nano 'bead-grafting' for the active delivery of quantum-dot NPDs through a co-assembly method. Based on a 'de novo' design, we used a 'one-bead-one-compound (OBOC)' combinatorial chemical screening method to select a peptide RT with high affinity for the immune checkpoint CD47, which could also form biocompatible nanofibers and efficiently trap Ag2S quantum dots along the self-assembly path. This system can combine ICB therapy and sonodynamic therapy (SDT) to effectively inhibit tumor growth. Moreover, the tumor antigen produced by SDT can activate the adaptive immune system, which enhances the anti-tumor immune response of the ICB and shows efficient inhibition of both primary and distant tumors. This study provides a new strategy for the active control and delivery of NPDs and a new option for ICB therapy with immune checkpoints that are highly susceptible to systemic side effects.
Collapse
Affiliation(s)
- Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Yuwei Tian
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Mengzhen Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Minxuan Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Shang Wu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Zhenqi Jiang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University Guangzhou 510632 China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| |
Collapse
|
28
|
Korovkina O, Polyakov D, Korzhikov-Vlakh V, Korzhikova-Vlakh E. Stimuli-Responsive Polypeptide Nanoparticles for Enhanced DNA Delivery. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238495. [PMID: 36500587 PMCID: PMC9736633 DOI: 10.3390/molecules27238495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
The development of non-viral delivery systems for effective gene therapy is one of the current challenges in modern biomedicinal chemistry. In this paper, the synthesis of pH- and redox-responsive amphiphilic polypeptides for intracellular DNA delivery is reported and discussed. Two series of polypeptides consisting of L-lysine, L-phenylalanine, L-histidine, and L-cysteine as well as the same amino acids with L-glutamic acid were synthesized by a combination of copolymerization of N-carboxyanhydrides of α-amino acids and post-polymerization modification of the resulting copolymers. The presence of histidine provided pH-sensitive properties under weakly acidic conditions specific to endosomal pH. In turn, the presence of cysteine allowed for the formation of redox-responsive disulfide bonds, which stabilized the self-assembled nanoparticles in the extracellular environment but could degrade inside the cell. The formation of intraparticle disulfide bonds resulted in their compactization from 200-250 to 55-100 nm. Empty and pDNA-loaded cross-linked nanoparticles showed enhanced stability in various media compared to non-crosslinked nanoparticles. At the same time, the addition of glutathione promoted particle degradation and nucleic acid release. The delivery systems were able to retain their size and surface charge at polypeptide/pDNA ratios of 10 or higher. GFP expression in HEK 293 was induced by the delivery of pEGFP-N3 with the developed polypeptide nanoparticles. The maximal transfection efficacy (70%) was observed when the polypeptide/pDNA ratio was 100.
Collapse
Affiliation(s)
- Olga Korovkina
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Dmitry Polyakov
- Institute of Experimental Medicine, Acad. Pavlov Street 12, 197376 St. Petersburg, Russia
| | - Viktor Korzhikov-Vlakh
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
29
|
Oliveira CBP, Gomes V, Ferreira PMT, Martins JA, Jervis PJ. Peptide-Based Supramolecular Hydrogels as Drug Delivery Agents: Recent Advances. Gels 2022; 8:706. [PMID: 36354614 PMCID: PMC9689023 DOI: 10.3390/gels8110706] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/19/2023] Open
Abstract
Supramolecular peptide hydrogels have many important applications in biomedicine, including drug delivery applications for the sustained release of therapeutic molecules. Targeted and selective drug administration is often preferential to systemic drug delivery, as it can allow reduced doses and can avoid the toxicity and side-effects caused by off-target binding. New discoveries are continually being reported in this rapidly developing field. In this review, we report the latest developments in supramolecular peptide-based hydrogels for drug delivery, focusing primarily on discoveries that have been reported in the last four years (2018-present). We address clinical points, such as peptide self-assembly and drug release, mechanical properties in drug delivery, peptide functionalization, bioadhesive properties and drug delivery enhancement strategies, drug release profiles, and different hydrogel matrices for anticancer drug loading and release.
Collapse
Affiliation(s)
| | | | | | | | - Peter J. Jervis
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
30
|
Komuro H, Aminova S, Lauro K, Harada M. Advances of engineered extracellular vesicles-based therapeutics strategy. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:655-681. [PMID: 36277506 PMCID: PMC9586594 DOI: 10.1080/14686996.2022.2133342] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of lipid bilayer membrane-bound vesicles which encapsulate bioactive molecules, such as nucleic acids, proteins, and lipids. They mediate intercellular communication through transporting internally packaged molecules, making them attractive therapeutics carriers. Over the last decades, a significant amount of research has implied the potential of EVs servings as drug delivery vehicles for nuclear acids, proteins, and small molecular drugs. However, several challenges remain unresolved before the clinical application of EV-based therapeutics, including lack of specificity, stability, biodistribution, storage, large-scale manufacturing, and the comprehensive analysis of EV composition. Technical development is essential to overcome these issues and enhance the pre-clinical therapeutic effects. In this review, we summarize the current advancements in EV engineering which demonstrate their therapeutic potential.
Collapse
Affiliation(s)
- Hiroaki Komuro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Shakhlo Aminova
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Katherine Lauro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
31
|
Huang H, Kiick KL. Peptide-based assembled nanostructures that can direct cellular responses. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac92b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Natural originated materials have been well-studied over the past several decades owing to their higher biocompatibility compared to the traditional polymers. Peptides, consisting of amino acids, are among the most popular programable building blocks, which is becoming a growing interest in nanobiotechnology. Structures assembled using those biomimetic peptides allow the exploration of chemical sequences beyond those been routinely used in biology. In this Review, we discussed the most recent experimental discoveries on the peptide-based assembled nanostructures and their potential application at the cellular level such as drug delivery. In particular, we explored the fundamental principles of peptide self-assembly and the most recent development in improving their interactions with biological systems. We believe that as the fundamental knowledge of the peptide assemblies evolves, the more sophisticated and versatile nanostructures can be built, with promising biomedical applications.
Collapse
|
32
|
Zheng J, Song X, Yang Z, Yin C, Luo W, Yin C, Ni Y, Wang Y, Zhang Y. Self-assembly hydrogels of therapeutic agents for local drug delivery. J Control Release 2022; 350:898-921. [PMID: 36089171 DOI: 10.1016/j.jconrel.2022.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Advanced drug delivery systems are of vital importance to enhance therapeutic efficacy. Among various recently developed formulations, self-assembling hydrogels composed of therapeutic agents have shown promising potential for local drug delivery owing to their excellent biocompatibility, high drug-loading efficiency, low systemic toxicity, and sustained drug release behavior. In particular, therapeutic agents self-assembling hydrogels with well-defined nanostructures are beneficial for direct delivery to the target site via injection, not only improving drug availability, but also extending their retention time and promoting cellular uptake. In brief, the self-assembly approach offers better opportunities to improve the precision of pharmaceutical treatment and achieve superior treatment efficacies. In this review, we intend to cover the recent developments in therapeutic agent self-assembling hydrogels. First, the molecular structures, self-assembly mechanisms, and application of self-assembling hydrogels are systematically outlined. Then, we summarize the various self-assembly strategies, including the single therapeutic agent, metal-coordination, enzyme-instruction, and co-assembly of multiple therapeutic agents. Finally, the potential challenges and future perspectives are discussed. We hope that this review will provide useful insights into the design and preparation of therapeutic agent self-assembling hydrogels.
Collapse
Affiliation(s)
- Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhaoyu Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chao Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunyang Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
33
|
Alharbi N, Skwarczynski M, Toth I. The influence of component structural arrangement on peptide vaccine immunogenicity. Biotechnol Adv 2022; 60:108029. [PMID: 36028180 DOI: 10.1016/j.biotechadv.2022.108029] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
Abstract
Peptide-based subunit vaccines utilise minimal immunogenic components (i.e. peptides) to generate highly specific immune responses, without triggering adverse reactions. However, strong adjuvants and/or effective delivery systems must be incorporated into such vaccines, as peptide antigens cannot induce substantial immune responses on their own. Unfortunately, many adjuvants are too weak or too toxic to be used in combination with peptide antigens. These shortcomings have been addressed by the conjugation of peptide antigens with lipidic/ hydrophobic adjuvanting moieties. The conjugates have shown promising safety profiles and improved immunogenicity without the help of traditional adjuvants and have been efficient in inducing desired immune responses following various routes of administration, including subcutaneous, oral and intranasal. However, not only conjugation per se, but also component arrangement influences vaccine efficacy. This review highlights the importance of influence of the vaccine chemical structure modification on the immune responses generated. It discusses a variety of factors that affect the immunogenicity of peptide conjugates, including: i) self-adjuvanting moiety length and number; ii) the orientation of epitopes and self-adjuvanting moieties in the conjugate; iii) the presence of spacers between conjugated components; iv) multiepitopic arrangement; and v) the effect of chirality on vaccine efficacy.
Collapse
Affiliation(s)
- Nedaa Alharbi
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; University of Jeddah, College of Science and Arts, Department of Chemistry, Jeddah, Saudi Arabia
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
34
|
Abraham BL, Mensah SG, Gwinnell BR, Nilsson BL. Side-chain halogen effects on self-assembly and hydrogelation of cationic phenylalanine derivatives. SOFT MATTER 2022; 18:5999-6008. [PMID: 35920399 DOI: 10.1039/d2sm00713d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low molecular weight (LMW) supramolecular hydrogels have great potential as next-generation biomaterials for drug delivery, tissue engineering, and regenerative medicine. The design of LMW gelators is complicated by the lack of understanding regarding how the chemical structure of the gelator correlates to self-assembly potential and emergent hydrogel material properties. The fluorenylmethyloxycarbonyl-phenylalanine (Fmoc-Phe) motif is a privileged scaffold that is prone to undergo self-assembly into self-supporting hydrogel networks. Cationic Fmoc-Phe-DAP derivatives modified with diaminopropane (DAP) at the C-terminus have been developed that self-assemble into hydrogel networks in aqueous solutions of sufficient ionic strength. We report herein the impact of side-chain halogenation on the self-assembly and hydrogelation properties of Fmoc-Phe-DAP derivatives. A systematic study of the self-assembly and hydrogelation of monohalogenated Fmoc-Phe-DAP derivatives with F, Cl, or Br atoms in the ortho, meta, or para positions of the phenyl side chain reveal significant differences in self-assembly and gelation potential, nanoscale assembly morphology, and hydrogel viscoelastic properties as a function of halogen identity and substitution position. These results demonstrate the profound impact that subtle changes to the chemical scaffold can have on the behavior of LMW supramolecular gelators and illustrate the ongoing difficulty of predicting the emergent self-assembly and hydrogelation behavior of LMW gelators that differ even modestly in chemical structure.
Collapse
Affiliation(s)
- Brittany L Abraham
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | - Samantha G Mensah
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | | | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
35
|
Mosseri A, Sancho‐Albero M, Leone M, Nava D, Secundo F, Maggioni D, De Cola L, Romanelli A. Chiral Fibers Formation Upon Assembly of Tetraphenylalanine Peptide Conjugated to a PNA Dimer. Chemistry 2022; 28:e202200693. [PMID: 35474351 PMCID: PMC9325372 DOI: 10.1002/chem.202200693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/17/2022]
Abstract
Self‐assembly of biomolecules such as peptides, nucleic acids or their analogues affords supramolecular objects, exhibiting structures and physical properties dependent on the amino‐acid or nucleobase composition. Conjugation of the peptide diphenylalanine (FF) to peptide nucleic acids triggers formation of self‐assembled structures, mainly stabilized by interactions between FF. In this work we report formation of homogeneous chiral fibers upon self‐assembly of the hybrid composed of the tetraphenylalanine peptide (4F) conjugated to the PNA dimer adenine‐thymine (at). In this case nucleobases seem to play a key role in determining the morphology and chirality of the fibers. When the PNA “at” is replaced by guanine‐cytosine dimer “gc”, disordered structures are observed. Spectroscopic characterization of the self‐assembled hybrids, along with AFM and SEM studies is reported. Finally, a structural model consistent with the experimental evidence has also been obtained, showing how the building blocks of 4Fat arrange to give helical fibers.
Collapse
Affiliation(s)
- Andrea Mosseri
- Dipartimento di Scienze Farmaceutiche Università degli Studi di Milano via Venezian 21 20133 Milano Italy
| | - Maria Sancho‐Albero
- Department of Molecular Biochemistry and Pharmacology Istituto di Ricerche Farmacologiche Mario Negri IRCCS 20156 Milano Italy
| | - Marilisa Leone
- Istituto di Biostrutture e Bioimmagini – CNR via Mezzocannone 16 80134 Naples Italy
| | - Donatella Nava
- Dipartimento di Scienze Farmaceutiche Università degli Studi di Milano via Venezian 21 20133 Milano Italy
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, CNR via Mario Bianco 9 Milan 20131 Italy
| | - Daniela Maggioni
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Luisa De Cola
- Dipartimento di Scienze Farmaceutiche Università degli Studi di Milano via Venezian 21 20133 Milano Italy
- Department of Molecular Biochemistry and Pharmacology Istituto di Ricerche Farmacologiche Mario Negri IRCCS 20156 Milano Italy
| | - Alessandra Romanelli
- Dipartimento di Scienze Farmaceutiche Università degli Studi di Milano via Venezian 21 20133 Milano Italy
| |
Collapse
|
36
|
Sis MJ, Ye Z, La Costa K, Webber MJ. Energy Landscapes of Supramolecular Peptide–Drug Conjugates Directed by Linker Selection and Drug Topology. ACS NANO 2022; 16:9546-9558. [PMID: 35639629 PMCID: PMC10019486 DOI: 10.1021/acsnano.2c02804] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Affiliation(s)
- Matthew J. Sis
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Zhou Ye
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Katherine La Costa
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew J. Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
37
|
Wang H, Monroe M, Leslie F, Flexner C, Cui H. Supramolecular nanomedicines through rational design of self-assembling prodrugs. Trends Pharmacol Sci 2022; 43:510-521. [PMID: 35459589 DOI: 10.1016/j.tips.2022.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 01/23/2023]
Abstract
Advancements in the development of nanomaterials have led to the creation of a plethora of functional constructs as drug delivery vehicles to address many dire medical needs. The emerging prodrug strategy provides an alternative solution to create nanomedicines of extreme simplicity by directly using the therapeutic agents as molecular building blocks. This Review outlines different prodrug-based drug delivery systems, highlights the advantages of the prodrug strategy for therapeutic delivery, and demonstrates how combinations of different functionalities - such as stimuli responsiveness, targeting propensity, and multidrug conjugation - can be incorporated into designed prodrug delivery systems. Furthermore, we discuss the opportunities and challenges facing this rapidly growing field.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Maya Monroe
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Faith Leslie
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Charles Flexner
- Divisions of Clinical Pharmacology and Infectious Diseases, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Center of Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
38
|
Li J, Wang Z, Han H, Xu Z, Li S, Zhu Y, Chen Y, Ge L, Zhang Y. Short and simple peptide-based pH-sensitive hydrogel for antitumor drug delivery. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Omar J, Ponsford D, Dreiss CA, Lee TC, Loh XJ. Supramolecular Hydrogels: Design Strategies and Contemporary Biomedical Applications. Chem Asian J 2022; 17:e202200081. [PMID: 35304978 DOI: 10.1002/asia.202200081] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Indexed: 12/19/2022]
Abstract
Self-assembly of supramolecular hydrogels is driven by dynamic, non-covalent interactions between molecules. Considerable research effort has been exerted to fabricate and optimise supramolecular hydrogels that display shear-thinning, self-healing, and reversibility, in order to develop materials for biomedical applications. This review provides a detailed overview of the chemistry behind the dynamic physicochemical interactions that sustain hydrogel formation (hydrogen bonding, hydrophobic interactions, ionic interactions, metal-ligand coordination, and host-guest interactions). Novel design strategies and methodologies to create supramolecular hydrogels are highlighted, which offer promise for a wide range of applications, specifically drug delivery, wound healing, tissue engineering and 3D bioprinting. To conclude, future prospects are briefly discussed, and consideration given to the steps required to ultimately bring these biomaterials into clinical settings.
Collapse
Affiliation(s)
- Jasmin Omar
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Daniel Ponsford
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK
| | - Tung-Chun Lee
- Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Materials Science and Engineering, National University of Singapore, Singapore
| |
Collapse
|
40
|
Zhang T, Ouyang X, Gou S, Zhang Y, Yan N, Chang L, Li B, Zhang F, Liu H, Ni J. Novel Synovial Targeting Peptide-Sinomenine Conjugates as a Potential Strategy for the Treatment of Rheumatoid Arthritis. Int J Pharm 2022; 617:121628. [PMID: 35245636 DOI: 10.1016/j.ijpharm.2022.121628] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/19/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
Abstract
Sinomenine (SIN) is an effective anti-inflammatory agent, but its therapeutic efficacy is limited by its short half-life and the high dosage required. Tissue-specific strategies have the potential to overcome these limitations. The synovial homing peptide (CKSTHDRLC) was identified to have high synovial endothelium targeting affinity. In this work, two peptide-drug conjugates (PDCs), conjugate (L) and conjugate (C), were synthesized, in which SIN was covalently connected to the linear and cyclic synovial homing peptide, respectively, via a 6-aminocaproic acid linker. An evaluation of biostability showed that conjugate (C) was more stable in mouse serum and inflammatory joint homogenate than conjugate (L). The two conjugates gradually released free SIN. Interestingly, conjugate (L) self-cyclized via a disulfide bridge in a biological environment, which significantly impacted its biostability. It had an almost equipotent half-life in serum but faster degradation in the inflammatory joint than conjugate (C). Therefore, conjugate (C) exhibited better therapeutic efficacy and tissue targeting. All the results indicated that PDCs particularly in its cyclic form might be more efficient for targeted deliver and represent a potential strategy for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Tianyue Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xu Ouyang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sanhu Gou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Na Yan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Linlin Chang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Beibei Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fangyan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hui Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Jingman Ni
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China.
| |
Collapse
|
41
|
Gray VP, Amelung CD, Duti IJ, Laudermilch EG, Letteri RA, Lampe KJ. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering. Acta Biomater 2022; 140:43-75. [PMID: 34710626 PMCID: PMC8829437 DOI: 10.1016/j.actbio.2021.10.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022]
Abstract
A core challenge in biomaterials, with both fundamental significance and technological relevance, concerns the rational design of bioactive microenvironments. Designed properly, peptides can undergo supramolecular assembly into dynamic, physical hydrogels that mimic the mechanical, topological, and biochemical features of native tissue microenvironments. The relatively facile, inexpensive, and automatable preparation of peptides, coupled with low batch-to-batch variability, motivates the expanded use of assembling peptide hydrogels for biomedical applications. Integral to realizing dynamic peptide assemblies as functional biomaterials for tissue engineering is an understanding of the molecular and macroscopic features that govern assembly, morphology, and biological interactions. In this review, we first discuss the design of assembling peptides, including primary structure (sequence), secondary structure (e.g., α-helix and β-sheets), and molecular interactions that facilitate assembly into multiscale materials with desired properties. Next, we describe characterization tools for elucidating molecular structure and interactions, morphology, bulk properties, and biological functionality. Understanding of these characterization methods enables researchers to access a variety of approaches in this ever-expanding field. Finally, we discuss the biological properties and applications of peptide-based biomaterials for engineering several important tissues. By connecting molecular features and mechanisms of assembling peptides to the material and biological properties, we aim to guide the design and characterization of peptide-based biomaterials for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: Engineering peptide-based biomaterials that mimic the topological and mechanical properties of natural extracellular matrices provide excellent opportunities to direct cell behavior for regenerative medicine and tissue engineering. Here we review the molecular-scale features of assembling peptides that result in biomaterials that exhibit a variety of relevant extracellular matrix-mimetic properties and promote beneficial cell-biomaterial interactions. Aiming to inspire and guide researchers approaching this challenge from both the peptide biomaterial design and tissue engineering perspectives, we also present characterization tools for understanding the connection between peptide structure and properties and highlight the use of peptide-based biomaterials in neural, orthopedic, cardiac, muscular, and immune engineering applications.
Collapse
Affiliation(s)
- Vincent P Gray
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Connor D Amelung
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Israt Jahan Duti
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Emma G Laudermilch
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Rachel A Letteri
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| |
Collapse
|
42
|
Schiattarella C, Diaferia C, Gallo E, Della Ventura B, Morelli G, Vitagliano L, Velotta R, Accardo A. Solid-state optical properties of self-assembling amyloid-like peptides with different charged states at the terminal ends. Sci Rep 2022; 12:759. [PMID: 35031624 PMCID: PMC8760239 DOI: 10.1038/s41598-021-04394-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022] Open
Abstract
The self-assembling of small peptides not only leads to the formation of intriguing nanoarchitectures, but also generates materials with unexpected functional properties. Oligopeptides can form amyloid-like cross-β assemblies that are able to emit intrinsic photoluminescence (PL), over the whole near-UV/visible range, whose origin is still largely debated. As proton transfer between the peptide chain termini within the assembly is one of the invoked interpretations of this phenomenon, we here evaluated the solid state PL properties of a series of self-assembled hexaphenylalanine peptides characterized by a different terminal charge state. Overall, our data indicate that the charge state of these peptides has a marginal role in the PL emission as all systems exhibit very similar multicolour PL associated with a violation of the Kasha’s rule. On the other hand, charged/uncharged ends occasionally produce differences in the quantum yields. The generality of these observations has been proven by extending these analyses to the Aβ16–21 peptide. Collectively, the present findings provide useful information for deciphering the code that links the spectroscopic properties of these assemblies to their structural/electronic features.
Collapse
Affiliation(s)
- Chiara Schiattarella
- Institute of Applied Sciences and Intelligent Systems, CNR, Via P. Castellino 111, 80131, Naples, Italy
| | - Carlo Diaferia
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Enrico Gallo
- IRCCS Synlab SDN, Via Gianturco 113, 80143, Naples, Italy
| | - Bartolomeo Della Ventura
- Department of Physics "Ettore Pancini", University of Naples "Federico II", Via Cintia 26, 80125, Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), CNR, Via Mezzocannone 16, 80134, Naples, Italy
| | - Raffaele Velotta
- Department of Physics "Ettore Pancini", University of Naples "Federico II", Via Cintia 26, 80125, Naples, Italy.
| | - Antonella Accardo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy.
| |
Collapse
|
43
|
Osipova O, Zakharova N, Pyankov I, Egorova A, Kislova A, Lavrentieva A, Kiselev A, Tennikova T, Korzhikova-Vlakh E. Amphiphilic pH-Sensitive polypeptides for siRNA delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Das S, Das D. Rational Design of Peptide-based Smart Hydrogels for Therapeutic Applications. Front Chem 2021; 9:770102. [PMID: 34869218 PMCID: PMC8635208 DOI: 10.3389/fchem.2021.770102] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Peptide-based hydrogels have captivated remarkable attention in recent times and serve as an excellent platform for biomedical applications owing to the impressive amalgamation of unique properties such as biocompatibility, biodegradability, easily tunable hydrophilicity/hydrophobicity, modular incorporation of stimuli sensitivity and other functionalities, adjustable mechanical stiffness/rigidity and close mimicry to biological molecules. Putting all these on the same plate offers smart soft materials that can be used for tissue engineering, drug delivery, 3D bioprinting, wound healing to name a few. A plethora of work has been accomplished and a significant progress has been realized using these peptide-based platforms. However, designing hydrogelators with the desired functionalities and their self-assembled nanostructures is still highly serendipitous in nature and thus a roadmap providing guidelines toward designing and preparing these soft-materials and applying them for a desired goal is a pressing need of the hour. This review aims to provide a concise outline for that purpose and the design principles of peptide-based hydrogels along with their potential for biomedical applications are discussed with the help of selected recent reports.
Collapse
Affiliation(s)
- Saurav Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
45
|
Chen S, Liu Y, Liang R, Hong G, An J, Peng X, Zheng WH, Song F. Self-assembly of amphiphilic peptides to construct activatable nanophotosensitizers for theranostic photodynamic therapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.06.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Hiew SH, Wang JK, Koh K, Yang H, Bacha A, Lin J, Yip YS, Vos MIG, Chen L, Sobota RM, Tan NS, Tay CY, Miserez A. Bioinspired short peptide hydrogel for versatile encapsulation and controlled release of growth factor therapeutics. Acta Biomater 2021; 136:111-123. [PMID: 34551327 DOI: 10.1016/j.actbio.2021.09.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022]
Abstract
A short bioinspired octapeptide, GV8, can self-assemble under mild conditions into biodegradable supramolecular physical hydrogels with high storage modulus and good biocompatibility. GV8 hydrogels can encapsulate both single or multiple macromolecular protein-based therapeutics in a simple one-pot formulation manner, making it a promising candidate to address challenges faced by existing synthetic polymer or peptide hydrogels with complex gelation and drug-encapsulation processes. Alongside its versatility, the hydrogel exhibits concentration-dependent storage modulus and controlled drug-release action. We demonstrate that GV8 hydrogels loaded with adipose-derived mesenchymal stem cells (ADMSC) secretome remain mechanically robust, and exhibit promising potential for wound healing applications by preserving secretome activity while maintaining a constant supply of ADMSC secretome to promote epithelial cell migration. Overall, our work highlights the potential of GV8 peptide hydrogel as a versatile and safe carrier for encapsulation and delivery of macromolecular therapeutics. STATEMENT OF SIGNIFICANCE: Supramolecular peptide hydrogels are a popular choice for protein-based macromolecular therapeutics delivery; however, despite the development of abundant hydrogel systems, several challenges limit their adaptability and practical applications. GV8 short peptide hydrogel circumvents these drawbacks and demonstrates the ability to function as a versatile growth factor (GF) encapsulant. It can encapsulate precise concentrations of complex adipose-derived mesenchymal stem cells secretome mixtures with a one-pot formulation approach and perform controlled release of GFs with preserved activity without compromising the self-assembly and mechanical properties of the hydrogel's supramolecular network. The significance of GV8 hydrogel lies in its gelation simplicity and versatility to encapsulate and deliver macromolecular therapeutics, thus representing a promising biomaterial for regenerative medicine applications.
Collapse
Affiliation(s)
- Shu Hui Hiew
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798.
| | - Jun Kit Wang
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798
| | - Kenrick Koh
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798; NTU Institute for Health Technologies, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 637335
| | - Haibo Yang
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798
| | - Abbas Bacha
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798
| | - Junquan Lin
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798
| | - Yun Sheng Yip
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232
| | | | - Liyan Chen
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore, 138673
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore, 138673; Bioinformatics Institute, Agency for Science, Technology and Research (A(∗)STAR), Singapore, 138671
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232
| | - Chor Yong Tay
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798; School of Biological Sciences, Nanyang Technological University, Singapore, 637551; Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, Singapore, 637141.
| | - Ali Miserez
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798; School of Biological Sciences, Nanyang Technological University, Singapore, 637551.
| |
Collapse
|
47
|
Wang C, Fu L, Hu Z, Zhong Y. A mini-review on peptide-based self-assemblies and their biological applications. NANOTECHNOLOGY 2021; 33:062004. [PMID: 34649227 DOI: 10.1088/1361-6528/ac2fe3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Peptide-based supramolecular self-assembly from peptide monomers into well-organized nanostructures, has attracted extensive attentions towards biomedical and biotechnological applications in recent decades. This spontaneous and reversible assembly process involving non-covalent bonding interactions can be artificially regulated. In this review, we have elaborated different strategies to modulate the peptide self-assembly through tuning the physicochemical and environmental conditions, includingpH, light, temperature, solvent, and enzyme. Detailed introduction of biological applications and future potential of the peptide-based nano-assemblies will also be given.
Collapse
Affiliation(s)
- Chenlei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Linping Fu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhiyuan Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yeteng Zhong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
48
|
Diaferia C, Schiattarella C, Gallo E, Della Ventura B, Morelli G, Velotta R, Vitagliano L, Accardo A. Fluorescence Emission of Self-assembling Amyloid-like Peptides: Solution versus Solid State. Chemphyschem 2021; 22:2215-2221. [PMID: 34496136 PMCID: PMC8597038 DOI: 10.1002/cphc.202100570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Indexed: 01/15/2023]
Abstract
Analysis of the intrinsic UV-visible fluorescence exhibited by self-assembling amyloid-like peptides in solution and in solid the state highlights that their physical state has a profound impact on the optical properties. In the solid state, a linear dependence of the fluorescence emission peaks as a function of excitation wavelength is detected. On the contrary, an excitation-independent emission is observed in solution. The present findings constitute a valuable benchmark for current and future explanations of the fluorescence emission by amyloids.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy andResearch Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 16Naples80134Italy
| | - Chiara Schiattarella
- Institute of Applied Sciences and Intelligent Systems, CNRVia P. Castellino 111Naples80131Italy
| | | | - Bartolomeo Della Ventura
- Department of Physics “Ettore Pancini”University of Naples “Federico II”Via Cintia 26Naples80125Italy
| | - Giancarlo Morelli
- Department of Pharmacy andResearch Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 16Naples80134Italy
| | - Raffaele Velotta
- Department of Physics “Ettore Pancini”University of Naples “Federico II”Via Cintia 26Naples80125Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), CNRVia Mezzocannone 1680134NaplesItaly
| | - Antonella Accardo
- Department of Pharmacy andResearch Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II”Via Mezzocannone 16Naples80134Italy
| |
Collapse
|
49
|
Sangji MH, Sai H, Chin SM, Lee SR, R Sasselli I, Palmer LC, Stupp SI. Supramolecular Interactions and Morphology of Self-Assembling Peptide Amphiphile Nanostructures. NANO LETTERS 2021; 21:6146-6155. [PMID: 34259001 DOI: 10.1021/acs.nanolett.1c01737] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The morphology of supramolecular peptide nanostructures is difficult to predict given their complex energy landscapes. We investigated peptide amphiphiles containing β-sheet forming domains that form twisted nanoribbons in water. We explained the morphology based on a balance between the energetically favorable packing of molecules in the center of the nanostructures, the unfavorable packing at the edges, and the deformations due to packing of twisted β-sheets. We find that morphological polydispersity of PA nanostructures is determined by peptide sequences, and the twisting of their internal β-sheets. We also observed a change in the supramolecular chirality of the nanostructures as the peptide sequence was modified, although only amino acids with l-configuration were used. Upon increasing charge repulsion between molecules, we observed a change in morphology to long cylinders and then rodlike fragments and spherical micelles. Understanding the self-assembly mechanisms of peptide amphiphiles into nanostructures should be useful to optimize their well-known functions.
Collapse
Affiliation(s)
- M Hussain Sangji
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Bio-Inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hiroaki Sai
- Simpson Querrey Institute, Northwestern University, 303 E Superior, Chicago, Illinois 60611, United States
- Center for Bio-Inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Stacey M Chin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sieun Ruth Lee
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Ivan R Sasselli
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, 303 E Superior, Chicago, Illinois 60611, United States
| | - Liam C Palmer
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, 303 E Superior, Chicago, Illinois 60611, United States
- Center for Bio-Inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, 676 N St. Clair, Chicago, Illinois 60611, United States
- Simpson Querrey Institute, Northwestern University, 303 E Superior, Chicago, Illinois 60611, United States
- Center for Bio-Inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
50
|
Yu S, Xian S, Ye Z, Pramudya I, Webber MJ. Glucose-Fueled Peptide Assembly: Glucagon Delivery via Enzymatic Actuation. J Am Chem Soc 2021; 143:12578-12589. [PMID: 34280305 DOI: 10.1021/jacs.1c04570] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nature achieves remarkable function from the formation of transient, nonequilibrium materials realized through continuous energy input. The role of enzymes in catalyzing chemical transformations to drive such processes, often as part of stimuli-directed signaling, governs both material formation and lifetime. Inspired by the intricate nonequilibrium nanostructures of the living world, this work seeks to create transient materials in the presence of a consumable glucose stimulus under enzymatic control of glucose oxidase. Compared to traditional glucose-responsive materials, which typically engineer degradation to release insulin under high-glucose conditions, the transient nanofibrillar hydrogel materials here are stabilized in the presence of glucose but destabilized under conditions of limited glucose to release encapsulated glucagon. In the context of blood glucose control, glucagon offers a key antagonist to insulin in responding to hypoglycemia by signaling the release of glucose stored in tissues so as to restore normal blood glucose levels. Accordingly, these materials are evaluated in a prophylactic capacity in diabetic mice to release glucagon in response to a sudden drop in blood glucose brought on by an insulin overdose. Delivery of glucagon using glucose-fueled nanofibrillar hydrogels succeeds in limiting the onset and severity of hypoglycemia in mice. This general strategy points to a new paradigm in glucose-responsive materials, leveraging glucose as a stabilizing cue for responsive glucagon delivery in combating hypoglycemia. Moreover, compared to most fundamental reports achieving nonequilibrium and/or fueled classes of materials, the present work offers a rare functional example using a disease-relevant fuel to drive deployment of a therapeutic.
Collapse
Affiliation(s)
- Sihan Yu
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Sijie Xian
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Zhou Ye
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Irawan Pramudya
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Matthew J Webber
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| |
Collapse
|