1
|
Shalbi F, Ali AR. A mini-review on integrase inhibitors: The cornerstone of next-generation HIV treatment. Eur J Med Chem 2024; 279:116900. [PMID: 39332384 DOI: 10.1016/j.ejmech.2024.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Integrase inhibitors represent one of the most remarkable and effective advances in the treatment of HIV-1 infection. Their lack of human cellular equivalence has established integrase as a unique and ideal target for HIV-1 treatment. Over the last two decades, a variety of drugs and small molecule inhibitors have been developed to control or treat HIV infection. Many of these FDA-approved drugs are considered first-line options for AIDS patients. Unfortunately, resistance to these drugs has dictated the development of novel and more efficacious antiretroviral drugs. In this review article, we illustrate the key classes of antiretroviral integrase inhibitors available. We provide a comprehensive analysis of recent advancements in the development of integrase inhibitors, focusing on novel compounds and their distinct mechanisms of action. Our literature review highlights emerging allosteric integrase inhibitors that offer improved efficacy, resistance profiles, and pharmacokinetics. By integrating these recent advancements and clinical insights, this review aims to provide a thorough and updated understanding of integrase inhibitors, emphasizing their evolving role in HIV treatment.
Collapse
Affiliation(s)
- Fathi Shalbi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed R Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
2
|
Apaza-Ticona L, Beltrán M, Moraga E, Cossio D, Bermejo P, Guerra JA, Alcamí J, Bedoya LM. Maca (Lepidium meyenii Walp.) inhibits HIV-1 infection through the activity of thiadiazole alkaloids in viral integration. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118613. [PMID: 39047879 DOI: 10.1016/j.jep.2024.118613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Lepidium meyenii Walp. (maca) has been traditionally used for centuries in the Central Andes region both as food and as medicine. In the last decades, its fertility enhancer properties have gained importance, with the majority of the scientific literature related to this topic. However, other traditional uses are less known as metabolic or infectious diseases. AIM OF THE STUDY The main purpose of this study is to investigate the anti-infectious activity of L. meyenii, specifically in HIV-1 infection. There are previous reports of the transcriptional related activity of L. meyenii extracts in human T lymphocytes via transcription factors as NF-κB. Since T lymphocytes are the main target of HIV-1 infection and NF-κB is strongly involved in HIV-1 transcription, L. meyenii could display antiviral activity. MATERIAL AND METHODS Chromatography and spectroscopy techniques were used to isolate and identify the compounds in the active extracts. An antiviral assay system based on recombinant viruses was used to evaluate the anti-HIV activity. Cell toxicity was tested for all the extracts and compounds. Viral entry was studied using VSV-HIV chimera viruses and reverse transcription and viral integration were studied by qPCR of viral DNA in infected cells. Finally, viral transcription was studied in primary lymphocytes transfected with HIV-1 or NF-κB luciferase reporter plasmids. RESULTS n-Hexane extracts of purple maca displayed anti-HIV activity in an in vitro assay. A bioassay-guided fractionation led to the identification of three thiadiazole alkaloids with antiviral activity. All the compounds were able to inhibit HIV infection of MT-2 cell lines and primary lymphocytes (PBMCs) with IC50 values in the low micromolar range. The mechanism of action differs between the three compounds: one of them showed activity on viral entry, and all the three compounds inhibited viral integration at low concentrations. Remarkably, none of the compounds inhibited reverse transcription or viral transcription. CONCLUSIONS n-Hexane extracts of the purple ecotype of L. meyenii inhibit HIV-1 infection in vitro and three active thiadiazole alkaloids were isolated acting mainly on viral integration and viral entry.
Collapse
Affiliation(s)
- Luis Apaza-Ticona
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Manuela Beltrán
- AIDS Immunopathology Department, National Centre of Microbiology, Carlos III Health Institute, Ctra. Pozuelo Km. 2, 28224, Madrid, Spain.
| | - Elisa Moraga
- HIV Unit, Hospital Clínic-IDIBAPS, University of Barcelona, c/ Rosselló, 149-153, 08036, Barcelona, Spain.
| | - David Cossio
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Paulina Bermejo
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - José A Guerra
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - José Alcamí
- AIDS Immunopathology Department, National Centre of Microbiology, Carlos III Health Institute, Ctra. Pozuelo Km. 2, 28224, Madrid, Spain.
| | - Luis M Bedoya
- AIDS Immunopathology Department, National Centre of Microbiology, Carlos III Health Institute, Ctra. Pozuelo Km. 2, 28224, Madrid, Spain; Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| |
Collapse
|
3
|
M.Ravichandran S, M.McFadden W, A.Snyder A, G.Sarafianos S. State of the ART (antiretroviral therapy): Long-acting HIV-1 therapeutics. Glob Health Med 2024; 6:285-294. [PMID: 39483451 PMCID: PMC11514626 DOI: 10.35772/ghm.2024.01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 11/03/2024]
Abstract
Human immunodeficiency virus (HIV) impacts millions of individuals worldwide, and well over 2/3 of those living with HIV are accessing antiviral therapies that are successfully repressing viral replication. Most often, HIV treatments and prevention are administered in the form of daily pills as combinations of multiple drugs. An emergent and effective strategy for suppressing viral replication is the application of long-acting antiretroviral therapy (LAART), or antivirals that require less-frequent, non-daily doses. Thus far, the repertoire of LAARTs includes the widely used antiviral classes of non-nucleoside reverse transcriptase inhibitors (NNRTIs) and integrase strand transfer inhibitors (INSTIs) and has recently expanded to include a capsid-targeting antiviral. Possible future additions are nucleoside reverse transcriptase inhibitors (NRTIs) and nucleoside reverse transcriptase translocation inhibitors (NRTTIs). Here, we discuss the different strategies of using long-acting compounds to treat or prevent HIV-1 infection by targeting reverse transcriptase, integrase, and capsid.
Collapse
Affiliation(s)
- Shreya M.Ravichandran
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - William M.McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Alexa A.Snyder
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Stefan G.Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
4
|
Kiarie IW, Hoffka G, Laporte M, Leyssen P, Neyts J, Tőzsér J, Mahdi M. Efficacy of Integrase Strand Transfer Inhibitors and the Capsid Inhibitor Lenacapavir against HIV-2, and Exploring the Effect of Raltegravir on the Activity of SARS-CoV-2. Viruses 2024; 16:1607. [PMID: 39459940 PMCID: PMC11512360 DOI: 10.3390/v16101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Retroviruses perpetuate their survival by incorporating a copy of their genome into the host cell, a critical step catalyzed by the virally encoded integrase. The viral capsid plays an important role during the viral life cycle, including nuclear importation in the case of lentiviruses and integration targeting events; hence, targeting the integrase and the viral capsid is a favorable therapeutic strategy. While integrase strand transfer inhibitors (INSTIs) are recommended as first-line regimens given their high efficacy and tolerability, lenacapavir is the first capsid inhibitor and the newest addition to the HIV treatment arsenal. These inhibitors are however designed for treatment of HIV-1 infection, and their efficacy against HIV-2 remains widely understudied and inconclusive, supported only by a few limited phenotypic susceptibility studies. We therefore carried out inhibition profiling of a panel of second-generation INSTIs and lenacapavir against HIV-2 in cell culture, utilizing pseudovirion inhibition profiling assays. Our results show that the tested INSTIs and lenacapavir exerted excellent efficacy against ROD-based HIV-2 integrase. We further evaluated the efficacy of raltegravir and other INSTIs against different variants of SARS-CoV-2; however, contrary to previous in silico findings, the inhibitors did not demonstrate significant antiviral activity.
Collapse
Affiliation(s)
- Irene Wanjiru Kiarie
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Gyula Hoffka
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Manon Laporte
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.L.); (P.L.); (J.N.)
| | - Pieter Leyssen
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.L.); (P.L.); (J.N.)
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Rue du Trône 98, 1050 Brussels, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.L.); (P.L.); (J.N.)
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Rue du Trône 98, 1050 Brussels, Belgium
| | - József Tőzsér
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (G.H.)
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (G.H.)
| |
Collapse
|
5
|
Huvelle S, Pinon A, Coulon C, Bonasera T, Chapon C, Naninck T, Le Grand R, Parry CM, Kuhnast B, Caillé F. Improved Automated Radiosynthesis of [ 18F]Dolutegravir: Toward Clinical Applications. ACS OMEGA 2024; 9:41732-41741. [PMID: 39398184 PMCID: PMC11465247 DOI: 10.1021/acsomega.4c05893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Positron emission tomography imaging using radiolabeled dolutegravir (DTG) is an interesting approach to understand the biodistribution of this antiretroviral drug at HIV-1 sanctuary sites. In the course of clinical translation, we depict herein an improved and pharmaceutically compliant radiosynthesis of [18F]DTG from an original tin precursor. The radiosynthesis was achieved in two steps by copper-mediated radiofluorination, followed by enol ether deprotection using a kit-based AllInOne module. Ready-to-inject [18F]DTG was obtained in 20 ± 5% (n = 12) decay-corrected radiochemical yield within 90 min, representing a 4-fold increase compared to the previously published three-step radiosynthesis. Quality control was carried out with three consecutive [18F]DTG productions according to the current European Pharmacopoeia guidelines, which include pH determination, identity and purity (chemical, radiochemical, and radionuclide) assessments, residual solvent quantification, dosage of lithium, copper, and tin traces, sterility and bacterial endotoxin tests. [18F]DTG (∼2 GBq) was obtained with a molar activity of 59 ± 2 GBq/μmol at the time of injection and was suitable for human applications.
Collapse
Affiliation(s)
- Steve Huvelle
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale Paris-Saclay (BioMaps), Orsay 91401, France
- Université
Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune,
Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses 92260, France
| | - Antoine Pinon
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale Paris-Saclay (BioMaps), Orsay 91401, France
| | - Christine Coulon
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale Paris-Saclay (BioMaps), Orsay 91401, France
| | - Thomas Bonasera
- GSK,
Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Catherine Chapon
- Université
Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune,
Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses 92260, France
| | - Thibaut Naninck
- Université
Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune,
Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses 92260, France
| | - Roger Le Grand
- Université
Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune,
Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses 92260, France
| | - Chris M. Parry
- ViiV
Healthcare, 980 Great West Road, London TW8 9GS, U.K.
| | - Bertrand Kuhnast
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale Paris-Saclay (BioMaps), Orsay 91401, France
| | - Fabien Caillé
- Université
Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale
Multimodale Paris-Saclay (BioMaps), Orsay 91401, France
| |
Collapse
|
6
|
Akiyama T, Johns BA, Taoda Y, Yoshida H, Taishi T, Kawasuji T, Murai H, Yoshinaga T, Sato A, Seki T, Koyama M, Miki S, Kawauchi-Miki S, Kagitani-Suyama A, Fujiwara T. Molecular design and evaluation of aza-polycyclic carbamoyl pyridones as HIV-1 integrase strand transfer inhibitors. Bioorg Med Chem Lett 2024; 111:129902. [PMID: 39059564 DOI: 10.1016/j.bmcl.2024.129902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Integrase strand transfer inhibitors (INSTIs) are the most prescribed anchor drug in antiretroviral therapy. Today, there is an increasing need for long-acting treatment of HIV-1 infection. Improving drug pharmacokinetics and anti-HIV-1 activity are key to developing more robust inhibitors suitable for long-acting formulations, but 2nd-generation INSTIs have chiral centers, making it difficult to conduct further exploration. In this study, we designed aza-tricyclic and aza-bicyclic carbamoyl pyridone scaffolds which are devoid of the problematic hemiaminal stereocenter present in dolutegravir (DTG). This scaffold hopping made it easy to introduce several substituents, and evolving structure-activity studies using these scaffolds resulted in several leads with promising properties.
Collapse
Affiliation(s)
- Toshiyuki Akiyama
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan.
| | - Brian A Johns
- GlaxoSmithKline Research & Development, Infectious Diseases Therapeutic Area Unit, Five Moore Drive, Research Triangle Park, NC 27709, United States
| | - Yoshiyuki Taoda
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Hiroshi Yoshida
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Teruhiko Taishi
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Takashi Kawasuji
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Hitoshi Murai
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Tomokazu Yoshinaga
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Akihiko Sato
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Takahiro Seki
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Mikiko Koyama
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Shigeru Miki
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Shinobu Kawauchi-Miki
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Akemi Kagitani-Suyama
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Tamio Fujiwara
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| |
Collapse
|
7
|
Hossain MS, Alom MS, Kader MS, Hossain MA, Halim MA. Structure-Guided Antiviral Peptides Identification Targeting the HIV-1 Integrase. ACS PHYSICAL CHEMISTRY AU 2024; 4:464-475. [PMID: 39346608 PMCID: PMC11428276 DOI: 10.1021/acsphyschemau.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 10/01/2024]
Abstract
HIV-1 integrase (IN), a major protein in the HIV life cycle responsible for integrating viral cDNA into the host DNA, represents a promising drug target. Small peptides have emerged as antiviral therapeutics for HIV because of their facile synthesis, highly selective nature, and fewer side effects. However, selecting the best candidates from a vast pool of peptides is a daunting task. In this study, multistep virtual screening was employed to identify potential peptides from a list of 280 HIV inhibitory peptides. Initially, 80 peptides were selected based on their minimum inhibitory concentrations (MIC). Then, molecular docking was performed to evaluate their binding scores compared to HIP000 and HIP00N which are experimentally validated HIV-1 integrase binding peptides that were used as a positive and negative control, respectively. The top-scoring docked complexes, namely, IN-HIP1113, IN-HIP1140, IN-HIP1142, IN-HIP678, IN-HIP776, and IN-HIP777, were subjected to initial 500 ns molecular dynamics (MD) simulations. Subsequently, HIP776, HIP777, and HIP1142 were selected for an in-depth mechanistic study of peptide interactions, with multiple simulations conducted for each complex spanning one microsecond. Independent simulations of the peptides, along with comparisons to the bound state, were performed to elucidate the conformational dynamics of the peptides. These peptides exhibit strong interactions with specific residues, as revealed by snapshot interaction analysis. Notably, LYS159, LYS156, VAL150, and GLU69 residues are prominently involved in these interactions. Additionally, residue-based binding free energy (BFE) calculations highlight the significance of HIS67, GLN148, GLN146, and SER147 residues within the binding pocket. Furthermore, the structure-activity relationship (SAR) analysis demonstrated that aromatic amino acids and the overall volume of peptides are the two major contributors to the docking scores. The best peptides will be validated experimentally by incorporating SAR properties, aiming to develop them as therapeutic agents and structural models for future peptide-based HIV-1 drug design, addressing the urgent need for effective HIV treatments.
Collapse
Affiliation(s)
- Md Shahadat Hossain
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka 1215, Bangladesh
- Department of Pharmacy, Faculty of Life Science, Mawlana Bhashani Science & Technology University, Tangail 1902, Bangladesh
| | - Md Siddik Alom
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | - Mohammad A Halim
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia 30144, United States
| |
Collapse
|
8
|
Sun M, Manson ML, Guo T, de Lange ECM. CNS Viral Infections-What to Consider for Improving Drug Treatment: A Plea for Using Mathematical Modeling Approaches. CNS Drugs 2024; 38:349-373. [PMID: 38580795 PMCID: PMC11026214 DOI: 10.1007/s40263-024-01082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/07/2024]
Abstract
Neurotropic viruses may cause meningitis, myelitis, encephalitis, or meningoencephalitis. These inflammatory conditions of the central nervous system (CNS) may have serious and devastating consequences if not treated adequately. In this review, we first summarize how neurotropic viruses can enter the CNS by (1) crossing the blood-brain barrier or blood-cerebrospinal fluid barrier; (2) invading the nose via the olfactory route; or (3) invading the peripheral nervous system. Neurotropic viruses may then enter the intracellular space of brain cells via endocytosis and/or membrane fusion. Antiviral drugs are currently used for different viral CNS infections, even though their use and dosing regimens within the CNS, with the exception of acyclovir, are minimally supported by clinical evidence. We therefore provide considerations to optimize drug treatment(s) for these neurotropic viruses. Antiviral drugs should cross the blood-brain barrier/blood cerebrospinal fluid barrier and pass the brain cellular membrane to inhibit these viruses inside the brain cells. Some antiviral drugs may also require intracellular conversion into their active metabolite(s). This illustrates the need to better understand these mechanisms because these processes dictate drug exposure within the CNS that ultimately determine the success of antiviral drugs for CNS infections. Finally, we discuss mathematical model-based approaches for optimizing antiviral treatments. Thereby emphasizing the potential of CNS physiologically based pharmacokinetic models because direct measurement of brain intracellular exposure in living humans faces ethical restrictions. Existing physiologically based pharmacokinetic models combined with in vitro pharmacokinetic/pharmacodynamic information can be used to predict drug exposure and evaluate efficacy of antiviral drugs within the CNS, to ultimately optimize the treatments of CNS viral infections.
Collapse
Affiliation(s)
- Ming Sun
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Martijn L Manson
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Tingjie Guo
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
9
|
Mahajan PS, Smith SJ, Li M, Craigie R, Hughes SH, Zhao XZ, Burke TR. N-Substituted Bicyclic Carbamoyl Pyridones: Integrase Strand Transfer Inhibitors that Potently Inhibit Drug-Resistant HIV-1 Integrase Mutants. ACS Infect Dis 2024; 10:917-927. [PMID: 38346249 PMCID: PMC10928719 DOI: 10.1021/acsinfecdis.3c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 03/09/2024]
Abstract
HIV-1 integrase (IN) is an important molecular target for the development of anti-AIDS drugs. A recently FDA-approved second-generation integrase strand transfer inhibitor (INSTI) cabotegravir (CAB, 2021) is being marketed for use in long-duration antiviral formulations. However, missed doses during extended therapy can potentially result in persistent low levels of CAB that could select for resistant mutant forms of IN, leading to virological failure. We report a series of N-substituted bicyclic carbamoyl pyridones (BiCAPs) that are simplified analogs of CAB. Several of these potently inhibit wild-type HIV-1 in single-round infection assays in cultured cells and retain high inhibitory potencies against a panel of viral constructs carrying resistant mutant forms of IN. Our lead compound, 7c, proved to be more potent than CAB against the therapeutically important resistant double mutants E138K/Q148K (>12-fold relative to CAB) and G140S/Q148R (>36-fold relative to CAB). A significant number of the BiCAPs also potently inhibit the drug-resistant IN mutant R263K, which has proven to be problematic for the FDA-approved second-generation INSTIs.
Collapse
Affiliation(s)
- Pankaj S Mahajan
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Steven J Smith
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Min Li
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Robert Craigie
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
10
|
Hikichi Y, Grover JR, Schäfer A, Mothes W, Freed EO. Epistatic pathways can drive HIV-1 escape from integrase strand transfer inhibitors. SCIENCE ADVANCES 2024; 10:eadn0042. [PMID: 38427738 PMCID: PMC10906922 DOI: 10.1126/sciadv.adn0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
People living with human immunodeficiency virus (HIV) receiving integrase strand transfer inhibitors (INSTIs) have been reported to experience virological failure in the absence of resistance mutations in integrase. To elucidate INSTI resistance mechanisms, we propagated HIV-1 in the presence of escalating concentrations of the INSTI dolutegravir. HIV-1 became resistant to dolutegravir by sequentially acquiring mutations in the envelope glycoprotein (Env) and the nucleocapsid protein. The selected Env mutations enhance the ability of the virus to spread via cell-cell transfer, thereby increasing the multiplicity of infection (MOI). While the selected Env mutations confer broad resistance to multiple classes of antiretrovirals, the fold resistance is ~2 logs higher for INSTIs than for other classes of drugs. We demonstrate that INSTIs are more readily overwhelmed by high MOI than other classes of antiretrovirals. Our findings advance the understanding of how HIV-1 can evolve resistance to antiretrovirals, including the potent INSTIs, in the absence of drug-target gene mutations.
Collapse
Affiliation(s)
- Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jonathan R. Grover
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Alicia Schäfer
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
11
|
Sun Q, Biswas A, Lyumkis D, Levy R, Deng N. Elucidating the Molecular Determinants of the Binding Modes of a Third-Generation HIV-1 Integrase Strand Transfer Inhibitor: The Importance of Side Chain and Solvent Reorganization. Viruses 2024; 16:76. [PMID: 38257776 PMCID: PMC11154245 DOI: 10.3390/v16010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The first- and second-generation clinically used HIV-1 integrase (IN) strand transfer inhibitors (INSTIs) are key components of antiretroviral therapy (ART), which work by blocking the integration step in the HIV-1 replication cycle that is catalyzed by a nucleoprotein assembly called an intasome. However, resistance to even the latest clinically used INSTIs is beginning to emerge. Developmental third-generation INSTIs, based on naphthyridine scaffolds, are promising candidates to combat drug-resistant viral variants. Among these novel INSTIs, compound 4f exhibits two distinct conformations when binding with intasomes from HIV-1 and the closely related prototype foamy virus (PFV) despite the high structural similarity of their INSTI binding pockets. The molecular mechanism and the key active site residues responsible for these differing binding modes in closely related intasomes remain elusive. To unravel the molecular determinants governing the two distinct binding modes, we applied a novel molecular dynamics-based free energy method that utilizes alchemical pathways to overcome the sampling challenges associated with transitioning between the two bound conformations of ligand 4f within the crowded environments of the INSTI binding pockets in these intasomes. The calculated conformational free energies successfully recapitulate the experimentally observed binding mode preferences in the two viral intasomes. Analysis of the simulated structures suggests that the observed binding mode preferences are caused by amino acid residue differences in both the front and the central catalytic sub-pocket of the INSTI binding site in HIV-1 and PFV. Additional free energy calculations on mutants of HIV-1 and PFV revealed that while both sub-pockets contribute to binding mode selection, the central sub-pocket plays a more important role. These results highlight the importance of both side chain and solvent reorganization, as well as the conformational entropy in determining the ligand binding mode, and will help inform the development of more effective INSTIs for combatting drug-resistant viral variants.
Collapse
Affiliation(s)
- Qinfang Sun
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA 19122, USA; (Q.S.); (R.L.)
| | - Avik Biswas
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (A.B.); (D.L.)
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (A.B.); (D.L.)
- Graduate Schools for Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronald Levy
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA 19122, USA; (Q.S.); (R.L.)
| | - Nanjie Deng
- Department of Chemistry and Physical Sciences, Pace University, New York, NY 10038, USA
| |
Collapse
|
12
|
Sun Q, Biswas A, Lyumkis D, Levy R, Deng N. Elucidating the molecular determinants for binding modes of a third-generation HIV-1 integrase strand transfer inhibitor: Importance of side chain and solvent reorganization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569269. [PMID: 38077045 PMCID: PMC10705364 DOI: 10.1101/2023.11.29.569269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The first and second-generation clinically used HIV-1 integrase (IN) strand transfer inhibitors (INSTIs) are key components of antiretroviral therapy (ART), which work by blocking the integration step in the HIV-1 replication cycle that is catalyzed by a nucleoprotein assembly called an intasome. However, resistance to even the latest clinically used INSTIs is beginning to emerge. Developmental third-generation INSTIs, based on naphthyridine scaffold, are promising candidates to combat drug-resistant viral variants. Among these novel INSTIs, compound 4f exhibits two distinct conformations when binding to intasomes from HIV-1 and the closely related prototype foamy virus (PFV), despite the high structural similarity of their INSTI binding pockets. The molecular mechanism and the key active site residues responsible for these differing binding modes in closely related intasomes remain elusive. To unravel the molecular determinants governing the two distinct binding modes, we employ a novel molecular dynamics-based free energy approach that utilizes alchemical pathways to overcome the sampling challenges associated with transitioning between two ligand conformations within crowded environments along physical pathways. The calculated conformational free energies successfully recapitulate the experimentally observed binding mode preferences in the two viral intasomes. Analysis of the simulated structures suggests that the observed binding mode preferences are caused by amino acid residue differences in both the front and the central catalytic sub-pocket of the INSTI binding site in HIV-1 and PFV. Additional free energy calculations on mutants of HIV-1 and PFV revealed that while both sub-pockets contribute to the binding mode selection, the central sub-pocket plays a more important role. These results highlight the importance of both side chain and solvent reorganization, as well as the conformational entropy in determining the ligand binding mode and will help inform the development of more effective INSTIs for combatting drug-resistant viral variants.
Collapse
Affiliation(s)
- Qinfang Sun
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA 19122
| | - Avik Biswas
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, CA 92037
- Department of Physics, University of California San Diego, La Jolla, CA, 92093
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, CA 92037
- Graduate schools for Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, 92093
| | - Ronald Levy
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA 19122
| | - Nanjie Deng
- Department of Chemistry and Physical Sciences, Pace University, New York, NY10038
| |
Collapse
|
13
|
Mulindwa F, Castelnuovo B, Brusselaers N, Bollinger R, Yendewa G, Amutuhaire W, Mukashaka C, Schwarz JM. Should dolutegravir always be withheld in people with HIV on dolutegravir with incident diabetes mellitus? a case report. BMC Infect Dis 2023; 23:744. [PMID: 37904127 PMCID: PMC10617153 DOI: 10.1186/s12879-023-08712-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/14/2023] [Indexed: 11/01/2023] Open
Abstract
Dolutegravir (DTG), an integrase strand transfer inhibitor is currently the recommended first and second line anti-retroviral therapy (ART) anchor agent by the World Health Organization due to its favorable side effect profile, high efficacy and genetic barrier to resistance.Despite its very good side effect profile, there have been multiple case reports of ART experienced patients developing hyperglycemia within weeks to a few months after switching to DTG preceded by weight loss. At population level, however, DTG as well as other integrase inhibitors have been demonstrated to have a reduced risk of incident diabetes mellitus (T2DM) compared to other HIV drug classes.Following multiple similar reports of accelerated hyperglycemia in Uganda during the first pilot year of DTG use, the Uganda Ministry of Health recommended withholding dolutegravir in all patients who develop diabetes. Whether this recommendation should be applied to all patients with incident T2DM remains to be demonstrated.We present a clinical case of an HIV positive ART naïve man who was diagnosed with T2DM after 36 weeks on DTG. We describe changes in blood glucose, glycated hemoglobin, insulin resistance and pancreatic beta cell function before and after withholding DTG. We demonstrated that he was phenotypically different from the reported cases of accelerated hyperglycemia and he continued to have worsening insulin resistance despite withholding DTG. His blood glucose improved with dietary T2DM management. It is possible he had an inherent risk of developing T2DM independent of his exposure to DTG. This put in question whether DTG should universally be withheld in PLHIV with incident T2DM in Uganda.
Collapse
Affiliation(s)
- Frank Mulindwa
- Capacity Building Unit, Makerere University Infectious Diseases Institute, Kampala, Uganda.
- Global Health Institute, Antwerp University, Antwerp, Belgium.
| | - Barbara Castelnuovo
- Capacity Building Unit, Makerere University Infectious Diseases Institute, Kampala, Uganda
| | - Nele Brusselaers
- Global Health Institute, Antwerp University, Antwerp, Belgium
- Centre for Translational Microbiome Research, Department of Microbiology, Tumour and Cell Biology, Karolinska University, Stockholm, Sweden
| | | | - George Yendewa
- Department of Internal Medicine, Case Western Reserve University, Cleveland, USA
| | | | - Claudine Mukashaka
- Capacity Building Unit, Makerere University Infectious Diseases Institute, Kampala, Uganda
| | - Jean-Marc Schwarz
- School of Medicine, University of California San Francisco, San Francisco, USA
- Department of Basic Sciences, Touro University California College of Osteopathic Medicine, Vallejo, CA, USA
| |
Collapse
|
14
|
Jaryal R, Khan SA. Liquid-assisted mechanochemical synthesis, crystallographic, theoretical and molecular docking study on HIV instasome of novel copper complexes: (µ-acetato)-bis(2,2'-bipyridine)-copper and bromidotetrakis(2-methyl-1H-imidazole)-copper bromide. Biometals 2023; 36:975-996. [PMID: 37010713 DOI: 10.1007/s10534-023-00498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/01/2023] [Indexed: 04/04/2023]
Abstract
In the present work the two new Cu(II) complexes, (µ-acetato)-bis(2,2'-bipyridine)-copper [Cu(bpy)2(CH3CO2)] and bromidotetrakis(2-methyl-1H-imidazole)-copper bromide [Cu(2-methylimid)4Br]Br have been synthesized by liquid assisted mechanochemical method. The [Cu(bpy)2(CH3CO2)] complex (1) and [Cu(2-methylimid)4Br]Br complex (2) characterised by IR and UV-visible spectroscopy and the structure are confirmed by XRD diffraction studies. Complex (1) crystallized in the Monoclinic with the space group of C2/c where a = 24.312(5) Å, b = 8.5892(18) Å, c = 14.559(3) Å, α = 90°, β = 106.177(7)° and γ = 90° and Complex (2) crystallized in the Tetragonal with the space group of P4nc, a = 9.9259(2) Å, b = 9.9259(2) Å, c = 10.9357(2) Å, α = 90°, β = 90° and γ = 90°. The complex (1) has distorted octahedral geometry where the acetate ligand showed bidentate bridging with the central metal ion and complex (2) has slightly deformed square pyramidal geometry. The HOMO-LUMO energy gap value and the low chemical potential showed that the complex (2) is stable and difficult to polarize compare to complex (1). The molecular docking study of complexes with the HIV instasome nucleoprotein showed the binding energy values - 7.1 and - 5.3 kcal/mol for complex (1) and complex (2) respectively. The negative binding energy values showed the complexes have affinity to bind with HIV instasome nucleoproteins. The in-silico pharmacokinetic study of the complex (1) and complex (2) showed non AMES toxicity, non-carcinogens and low honey Bee toxicity but weakly inhibit Human Ether-a-go-go-related gene.
Collapse
Affiliation(s)
- Ruchika Jaryal
- Chemistry Department, DAV PG College, Jai Prakash University, Siwan, Bihar, 841226, India.
| | - Shamshad Ahmad Khan
- Chemistry Department, DAV PG College, Jai Prakash University, Siwan, Bihar, 841226, India
| |
Collapse
|
15
|
Tocco G, Canton S, Laus A, Caboni P, Le Grice SFJ, Tramontano E, Esposito F. Dihydroxyphenyl- and Heteroaromatic-Based Thienopyrimidinones to Tackle HIV-1 LEDGF/p75-Dependent IN Activity. Molecules 2023; 28:6700. [PMID: 37764476 PMCID: PMC10537185 DOI: 10.3390/molecules28186700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
The spread of Human Immunodeficiency Virus (HIV) still represents a global public health issue of major concern, and would benefit from unveiling unique viral features as targets for drug design. In this respect, HIV-1 integrase (IN), due to the absence of homologs in human cells, is a popular target for the synthesis of novel selective compounds. Moreover, as drug-resistant viral strains are rapidly evolving, the development of novel allosteric inhibitors is acutely required. Recently, we have observed that Kuwanon-L, quinazolinones and thienopyrimidinones containing at least one polyphenol unit, effectively inhibited HIV-1 IN activity. Thus, in the present research, novel dihydroxyphenyl-based thienopyrimidinone derivatives were investigated for their LEDGF/p75-dependent IN inhibitory activity. Our findings indicated a close correlation between the position of the OH group on the phenyl moiety and IN inhibitory activity of these compounds. As catechol may be involved in cytotoxicity, its replacement by other aromatic scaffolds was also exploited. As a result, compounds 21-23, 25 and 26 with enhanced IN inhibitory activity provided good lead candidates, with 25 being the most selective for IN. Lastly, UV spectrometric experiments suggested a plausible allosteric mode of action, as none of the thienopirimidinones showed Mg2+ chelation properties otherwise typical of IN strand transfer inhibitors (INSTIs).
Collapse
Affiliation(s)
- Graziella Tocco
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| | - Serena Canton
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| | - Antonio Laus
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| | - Stuart F. J. Le Grice
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA;
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| |
Collapse
|
16
|
Starosotnikov AM, Bastrakov MA. Recent Developments in the Synthesis of HIV-1 Integrase Strand Transfer Inhibitors Incorporating Pyridine Moiety. Int J Mol Sci 2023; 24:ijms24119314. [PMID: 37298265 DOI: 10.3390/ijms24119314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Human immunodeficiency virus (HIV) causes one of the most dangerous diseases-acquired immunodeficiency syndrome (AIDS). An estimated about 40 million people are currently living with HIV worldwide, most of whom are already on antiretroviral therapy. This makes the development of effective drugs to combat this virus very relevant. Currently, one of the dynamically developing areas of organic and medicinal chemistry is the synthesis and identification of new compounds capable of inhibiting HIV-1 integrase-one of the HIV enzymes. A significant number of studies on this topic are published annually. Many compounds inhibiting integrase incorporate pyridine core. Therefore, this review is an analysis of the literature on the methods for the synthesis of pyridine-containing HIV-1 integrase inhibitors since 2003 to the present.
Collapse
Affiliation(s)
- Alexey M Starosotnikov
- N.D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, 119991 Moscow, Russia
| | - Maxim A Bastrakov
- N.D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, 119991 Moscow, Russia
| |
Collapse
|
17
|
Mahajan PS, Burke TR. Synthetic Approaches to a Key Pyridone-carboxylic Acid Precursor Common to the HIV-1 Integrase Strand Transfer Inhibitors Dolutegravir, Bictegravir, and Cabotegravir. Org Process Res Dev 2023; 27:847-853. [PMID: 37229216 PMCID: PMC10204085 DOI: 10.1021/acs.oprd.3c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 05/27/2023]
Abstract
Dolutegravir (DTG), Bictegravir (BIC), and Cabotegravir (CAB) are the second-generation integrase strand transfer inhibitors (INSTIs) that have been FDA-approved for the treatment of HIV-1 infection. Preparation of these INSTIs utilizes the common intermediate 1-(2,2-dimethoxyethyl)-5-methoxy-6-(methoxycarbonyl)-4-oxo-1,4-dihydropyridine-3-carboxylic acid (6). Presented herein is a literature and patent review of synthetic routes used to access the pharmaceutically important intermediate 6. The review highlights the ways in which small fine-tuned synthetic modifications have been used to achieve good yields and regioselectivity of ester hydrolysis.
Collapse
|
18
|
Mahajan PS, Smith SJ, Hughes SH, Zhao X, Burke TR. A Practical Approach to Bicyclic Carbamoyl Pyridones with Application to the Synthesis of HIV-1 Integrase Strand Transfer Inhibitors. Molecules 2023; 28:molecules28031428. [PMID: 36771093 PMCID: PMC9919513 DOI: 10.3390/molecules28031428] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
An efficient one-pot synthetic method has been developed for the preparation of bicyclic carbamoyl pyridones from the known common intermediate methyl 5-((2,4-difluorobenzyl)carbamoyl)-1-(2,2-dimethoxyethyl)-3-methoxy-4-oxo-1,4-dihydropyridine-2-carboxylate (8). The scalable protocol is facile and employs readily available reagents, needing only a single purification as the final step. The utility of the approach was demonstrated by preparing a library of HIV-1 integrase strand transfer inhibitors (INSTIs) that differ by the presence or absence of a double bond in the B-ring of the bicyclic carbamoyl pyridines 6 and 7. Several of the analogs show good antiviral potencies in single-round HIV-1 replication antiviral assays and show no cytotoxicity in cell culture assays. In general, the compounds with a B-ring double bond have higher antiviral potencies than their saturated congeners. Our methodology should be applicable to the synthesis of a range of new metal-chelating analogs.
Collapse
Affiliation(s)
- Pankaj S. Mahajan
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Steven J. Smith
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Xuezhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Terrence R. Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
- Correspondence: ; Tel.: +1-301-846-5906; Fax: +1-301-846-6033
| |
Collapse
|
19
|
Taoda Y, Sugiyama S, Seki T. New designs for HIV-1 integrase inhibitors: a patent review (2018-present). Expert Opin Ther Pat 2023; 33:51-66. [PMID: 36750766 DOI: 10.1080/13543776.2023.2178300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Combination antiretroviral therapy (cART) has dramatically reduced morbidity and mortality of HIV-1-infected patients. Integrase strand transfer inhibitors (INSTIs) play an important role as a key drug in cART. The second-generation INSTIs are very potent, but due to the emergence of highly resistant viruses and the demand for more conveniently usable drugs, the development of 'third-generation' INSTIs and mechanistically different inhibitors is actively being pursued. AREAS COVERED This article reviews the patents (from 2018 to the present) for two classes of HIV-1 integrase inhibitors of INSTIs and integrase-LEDGF/p75 allosteric inhibitors (INLAIs). EXPERT OPINION Since the approval of the second-generation INSTI dolutegravir, the design of new INSTIs has been mostly focused on its scaffold, carbamoylpyridone (CAP). This CAP scaffold is used not only for HIV-1 INSTIs but also for drug discoveries targeting other viral enzymes. With the approval of cabotegravir as a regimen of long-acting injection in combination with rilpivirine, there is a growing need for longer-acting agents. INLAIs have been intensely studied by many groups but have yet to reach the market. However, INLAIs have recently been reported to also function as a latency promoting agent (LPA), indicating further development possibilities.
Collapse
Affiliation(s)
- Yoshiyuki Taoda
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd, Toyonaka-shi, Japan
| | - Shuichi Sugiyama
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd, Toyonaka-shi, Japan
| | - Takahiro Seki
- Laboratory for Medicinal Chemistry Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd, Toyonaka-shi, Japan
| |
Collapse
|
20
|
Troyano-Hernáez P, Reinosa R, Holguín A. Genetic Diversity and Low Therapeutic Impact of Variant-Specific Markers in HIV-1 Pol Proteins. Front Microbiol 2022; 13:866705. [PMID: 35910645 PMCID: PMC9330395 DOI: 10.3389/fmicb.2022.866705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence and spread of new HIV-1 variants pose a challenge for the effectiveness of antiretrovirals (ARV) targeting Pol proteins. During viral evolution, non-synonymous mutations have fixed along the viral genome, leading to amino acid (aa) changes that can be variant-specific (V-markers). Those V-markers fixed in positions associated with drug resistance mutations (DRM), or R-markers, can impact drug susceptibility and resistance pathways. All available HIV-1 Pol sequences from ARV-naïve subjects were downloaded from the United States Los Alamos HIV Sequence Database, selecting 59,733 protease (PR), 6,437 retrotranscriptase (RT), and 6,059 integrase (IN) complete sequences ascribed to the four HIV-1 groups and group M subtypes and circulating recombinant forms (CRFs). Using a bioinformatics tool developed in our laboratory (EpiMolBio), we inferred the consensus sequences for each Pol protein and HIV-1 variant to analyze the aa conservation in Pol. We analyzed the Wu–Kabat protein variability coefficient (WK) in PR, RT, and IN group M to study the susceptibility of each site to evolutionary replacements. We identified as V-markers the variant-specific aa changes present in >75% of the sequences in variants with >5 available sequences, considering R-markers those V-markers that corresponded to DRM according to the IAS-USA2019 and Stanford-Database 9.0. The mean aa conservation of HIV-1 and group M consensus was 82.60%/93.11% in PR, 88.81%/94.07% in RT, and 90.98%/96.02% in IN. The median group M WK was 10 in PR, 4 in RT, and 5 in IN. The residues involved in binding or catalytic sites showed a variability <0.5%. We identified 106 V-markers: 31 in PR, 28 in RT, and 47 in IN, present in 11, 12, and 13 variants, respectively. Among them, eight (7.5%) were R-markers, present in five variants, being minor DRM with little potential effect on ARV susceptibility. We present a thorough analysis of Pol variability among all HIV-1 variants circulating to date. The relatively high aa conservation observed in Pol proteins across HIV-1 variants highlights their critical role in the viral cycle. However, further studies are needed to understand the V-markers’ impact on the Pol proteins structure, viral cycle, or treatment strategies, and periodic variability surveillance studies are also required to understand PR, RT, and IN evolution.
Collapse
|
21
|
Vergni D, Santoni D, Bouba Y, Lemme S, Fabeni L, Carioti L, Bertoli A, Gennari W, Forbici F, Perno CF, Gagliardini R, Ceccherini-Silberstein F, Santoro MM. Evaluation of HIV-1 integrase variability by combining computational and probabilistic approaches. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 101:105294. [PMID: 35513162 DOI: 10.1016/j.meegid.2022.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/24/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
This study aimed at updating previous data on HIV-1 integrase variability, by using effective bioinformatics methods combining different statistical instruments from simple entropy and mutation rate to more specific approaches such as Hellinger distance. A total of 2133 HIV-1 integrase sequences were analyzed in: i) 1460 samples from drug-naïve [DN] individuals; ii) 386 samples from drug-experienced but INI-naïve [IN] individuals; iii) 287 samples from INI-experienced [IE] individuals. Within the three groups, 76 amino acid positions were highly conserved (≤0.2% variation, Hellinger distance: <0.25%), with 35 fully invariant positions; while, 80 positions were conserved (>0.2% to <1% variation, Hellinger distance: <1%). The H12-H16-C40-C43 and D64-D116-E152 motifs were all well conserved. Some residues were affected by dramatic changes in their mutation distributions, especially between DN and IE samples (Hellinger distance ≥1%). In particular, 15 positions (D6, S24, V31, S39, L74, A91, S119, T122, T124, T125, V126, K160, N222, S230, C280) showed a significant decrease of mutation rate in IN and/or IE samples compared to DN samples. Conversely, 8 positions showed significantly higher mutation rate in samples from treated individuals (IN and/or IE) compared to DN. Some of these positions, such as E92, T97, G140, Y143, Q148 and N155, were already known to be associated with resistance to integrase inhibitors; other positions including S24, M154, V165 and D270 are not yet documented to be associated with resistance. Our study confirms the high conservation of HIV-1 integrase and identified highly invariant positions using robust and innovative methods. The role of novel mutations located in the critical region of HIV-1 integrase deserves further investigation.
Collapse
Affiliation(s)
- Davide Vergni
- Istituto per le Applicazioni del Calcolo "Mauro Picone" - CNR, Rome, Italy.
| | - Daniele Santoni
- Istituto di Analisi dei Sistemi ed. Informatica "Antonio Ruberti" - CNR, Rome, Italy
| | - Yagai Bouba
- Chantal BIYA International Reference Centre for research on HIV/AIDS prevention and management (CIRCB), Yaoundé, Cameroon; Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Saverio Lemme
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Lavinia Fabeni
- Laboratory of Virology, IRCCS, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Luca Carioti
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Ada Bertoli
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy; Laboratory of Virology, University Hospital "Tor Vergata", Rome, Italy
| | - William Gennari
- Microbiology and Virology Unit, University Hospital, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Forbici
- Laboratory of Virology, IRCCS, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Carlo Federico Perno
- Multimodal Laboratory Research Department, Children Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Roberta Gagliardini
- HIV/AIDS Department, IRCCS, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | | | | | | |
Collapse
|
22
|
Rocchi C, Gouet P, Parissi V, Fiorini F. The C-Terminal Domain of HIV-1 Integrase: A Swiss Army Knife for the Virus? Viruses 2022; 14:v14071397. [PMID: 35891378 PMCID: PMC9316232 DOI: 10.3390/v14071397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/31/2022] Open
Abstract
Retroviral integrase is a multimeric enzyme that catalyzes the integration of reverse-transcribed viral DNA into the cellular genome. Beyond integration, the Human immunodeficiency virus type 1 (HIV-1) integrase is also involved in many other steps of the viral life cycle, such as reverse transcription, nuclear import, virion morphogenesis and proviral transcription. All these additional functions seem to depend on the action of the integrase C-terminal domain (CTD) that works as a molecular hub, interacting with many different viral and cellular partners. In this review, we discuss structural issues concerning the CTD, with particular attention paid to its interaction with nucleic acids. We also provide a detailed map of post-translational modifications and interaction with molecular partners.
Collapse
Affiliation(s)
- Cecilia Rocchi
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
| | - Patrice Gouet
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
| | - Vincent Parissi
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
- Fundamental Microbiology and Pathogenicity (MFP), CNRS, University of Bordeaux, UMR5234, 33405 Bordeaux, France
| | - Francesca Fiorini
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
- Correspondence: ; Tel.: +33-4-72722624; Fax: +33-4-72722616
| |
Collapse
|
23
|
Taki E, Soleimani F, Asadi A, Ghahramanpour H, Namvar A, Heidary M. Cabenuva: the last FDA-approved drug to treat HIV. Expert Rev Anti Infect Ther 2022; 20:1135-1147. [PMID: 35596583 DOI: 10.1080/14787210.2022.2081153] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The conventional combination antiretroviral therapy (cART) besides all its benefits, exhibited poor adherence to daily pill administration, life-long treatment period and emergence of viral resistance. The development of long-acting (LA) drugs have changed the management of common medical conditions for human immunodeficiency virus (HIV). Cabenuva is the first LA antiretroviral injectable drug composed of nano-formulation of cabotegravir (CAB) and rilpivirine (RPV). AREAS COVERED In this review article, we aim to have a brief overview of results of major clinical trials which administrated cabenuva for patients considering the efficacy and safety profiles. Moreover, we discuss about CAB and RPV chemical structure, mechanism of action, activity against drug-sensitive and resistant HIV and pharmacodynamics/ pharmacokinetics properties. EXPERT OPINION Based on the results of the ATLAS and FLAIR trials, cabenuva regimen once-monthly has shown equal effectivity to oral cART in maintaining HIV-1 suppression in patients. Furthermore, ATLAS-2M study revealed the non-inferiority of cabenuva regimen every 8 weeks compared to every 4 weeks. The injectable LA ART, reduces the number of treatment intake as well as increases adherence especially in patients with HIV-related stigma. Administration of extended-release agents probably minimize the risk of treatment-related toxicity and resistance related to sub-optimal adherence to oral ART, so cabenuva can be suggested as a suitable alternative for HIV infection control in current era.
Collapse
Affiliation(s)
- Elahe Taki
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Soleimani
- Department of Chemistry, Medicinal Chemistry Research Laboratory, Shiraz University of Technology, Shiraz, Iran
| | - Arezoo Asadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghahramanpour
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Namvar
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
24
|
Nishiyama T, Takada T, Takeuchi H, Iwami S. Maternal embryonic leucine zipper kinase (MELK) optimally regulates the HIV-1 uncoating process. J Theor Biol 2022; 545:111152. [DOI: 10.1016/j.jtbi.2022.111152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
|
25
|
Passos DO, Li M, Craigie R, Lyumkis D. Retroviral integrase: Structure, mechanism, and inhibition. Enzymes 2021; 50:249-300. [PMID: 34861940 DOI: 10.1016/bs.enz.2021.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The retroviral protein Integrase (IN) catalyzes concerted integration of viral DNA into host chromatin to establish a permanent infection in the target cell. We learned a great deal about the mechanism of catalytic integration through structure/function studies over the previous four decades of IN research. As one of three essential retroviral enzymes, IN has also been targeted by antiretroviral drugs to treat HIV-infected individuals. Inhibitors blocking the catalytic integration reaction are now state-of-the-art drugs within the antiretroviral therapy toolkit. HIV-1 IN also performs intriguing non-catalytic functions that are relevant to the late stages of the viral replication cycle, yet this aspect remains poorly understood. There are also novel allosteric inhibitors targeting non-enzymatic functions of IN that induce a block in the late stages of the viral replication cycle. In this chapter, we will discuss the function, structure, and inhibition of retroviral IN proteins, highlighting remaining challenges and outstanding questions.
Collapse
Affiliation(s)
| | - Min Li
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Robert Craigie
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, La Jolla, CA, United States; The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
26
|
Menéndez-Arias L, Delgado R. Update and latest advances in antiretroviral therapy. Trends Pharmacol Sci 2021; 43:16-29. [PMID: 34742581 DOI: 10.1016/j.tips.2021.10.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/27/2022]
Abstract
Since the first cases of AIDS appeared in 1981, human immunodeficiency virus type 1 (HIV-1) infection has reached pandemic proportions. Forty years later, research has led to the approval of more than 30 antiretroviral drugs, while combination therapies have turned HIV-1 infection into a chronic, but manageable disease. Still, drug toxicity and acquired and transmitted drug resistance remain as major threats to therapy success. In this review, we provide an overview on currently available anti-HIV drugs and the latest developments in antiretroviral therapy, focused on new antiretroviral agents acting on known and unexploited antiviral targets, prevention therapies aimed to improve available drug combinations, and research on new long-acting therapies, particularly those involving novel drug candidates such as lenacapavir or islatravir.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Rafael Delgado
- Laboratory of Molecular Microbiology. Instituto de Investigación Hospital 12 de Octubre (Imas12) and The University Complutense School of Medicine, Madrid, Spain.
| |
Collapse
|
27
|
Coffin JM, Hughes SH. Clonal Expansion of Infected CD4+ T Cells in People Living with HIV. Viruses 2021; 13:v13102078. [PMID: 34696507 PMCID: PMC8537114 DOI: 10.3390/v13102078] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 01/16/2023] Open
Abstract
HIV infection is not curable with current antiretroviral therapy (ART) because a small fraction of CD4+ T cells infected prior to ART initiation persists. Understanding the nature of this latent reservoir and how it is created is essential to development of potentially curative strategies. The discovery that a large fraction of the persistently infected cells in individuals on suppressive ART are members of large clones greatly changed our view of the reservoir and how it arises. Rather than being the products of infection of resting cells, as was once thought, HIV persistence is largely or entirely a consequence of infection of cells that are either expanding or are destined to expand, primarily due to antigen-driven activation. Although most of the clones carry defective proviruses, some carry intact infectious proviruses; these clones comprise the majority of the reservoir. A large majority of both the defective and the intact infectious proviruses in clones of infected cells are transcriptionally silent; however, a small fraction expresses a few copies of unspliced HIV RNA. A much smaller fraction is responsible for production of low levels of infectious virus, which can rekindle infection when ART is stopped. Further understanding of the reservoir will be needed to clarify the mechanism(s) by which provirus expression is controlled in the clones of cells that constitute the reservoir.
Collapse
Affiliation(s)
- John M. Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA;
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, National Cancer Institute in Frederick, Frederick, MD 21702, USA
- Correspondence:
| |
Collapse
|
28
|
Ndashimye E, Li Y, Reyes PS, Avino M, Olabode AS, Kityo CM, Kyeyune F, Nankya I, Quiñones-Mateu ME, Barr SD, Arts EJ. High-level resistance to bictegravir and cabotegravir in subtype A- and D-infected HIV-1 patients failing raltegravir with multiple resistance mutations. J Antimicrob Chemother 2021; 76:2965-2974. [PMID: 34453542 DOI: 10.1093/jac/dkab276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/02/2021] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES The second-generation integrase strand transfer inhibitor (INSTI) bictegravir is becoming accessible in low- and middle-income countries (LMICs), and another INSTI, cabotegravir, has recently been approved as a long-acting injectable. Data on bictegravir and cabotegravir susceptibility in raltegravir-experienced HIV-1 subtype A- and D-infected patients carrying drug resistance mutations (DRMs) remain very scarce in LMICs. PATIENTS AND METHODS HIV-1 integrase (IN)-recombinant viruses from eight patients failing raltegravir-based third-line therapy in Uganda were genotypically and phenotypically tested for susceptibility to bictegravir and cabotegravir. Ability of these viruses to integrate into human genomes was assessed in MT-4 cells. RESULTS HIV-1 IN-recombinant viruses harbouring single primary mutations (N155H or Y143R/S) or in combination with secondary INSTI mutations (T97A, M50I, L74IM, E157Q, G163R or V151I) were susceptible to both bictegravir and cabotegravir. However, combinations of primary INSTI-resistance mutations such as E138A/G140A/G163R/Q148R or E138K/G140A/S147G/Q148K led to decreased susceptibility to both cabotegravir (fold change in EC50 values from 429 to 1000×) and bictegravir (60 to 100×), exhibiting a high degree of cross-resistance. However, these same IN-recombinant viruses showed impaired integration capacity (14% to 48%) relative to the WT HIV-1 NL4-3 strain in the absence of drug. CONCLUSIONS Though not currently widely accessible in most LMICs, bictegravir and cabotegravir offer a valid alternative to HIV-infected individuals harbouring subtype A and D HIV-1 variants with reduced susceptibility to first-generation INSTIs but previous exposure to raltegravir may reduce efficacy, more so with cabotegravir.
Collapse
Affiliation(s)
- Emmanuel Ndashimye
- Department of Microbiology and Immunology, Western University, London, Canada.,Joint Clinical Research Centre, Kampala, Uganda.,Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Yue Li
- Department of Microbiology and Immunology, Western University, London, Canada
| | - Paul S Reyes
- Department of Microbiology and Immunology, Western University, London, Canada
| | - Mariano Avino
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| | - Abayomi S Olabode
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| | | | - Fred Kyeyune
- Joint Clinical Research Centre, Kampala, Uganda.,Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Immaculate Nankya
- Joint Clinical Research Centre, Kampala, Uganda.,Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | | | - Stephen D Barr
- Department of Microbiology and Immunology, Western University, London, Canada
| | - Eric J Arts
- Department of Microbiology and Immunology, Western University, London, Canada
| |
Collapse
|
29
|
Smith SJ, Zhao XZ, Passos DO, Pye VE, Cherepanov P, Lyumkis D, Burke TR, Hughes SH. HIV-1 Integrase Inhibitors with Modifications That Affect Their Potencies against Drug Resistant Integrase Mutants. ACS Infect Dis 2021; 7:1469-1482. [PMID: 33686850 PMCID: PMC8205226 DOI: 10.1021/acsinfecdis.0c00819] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
Integrase strand transfer inhibitors
(INSTIs) block the integration
step of the retroviral lifecycle and are first-line drugs used for
the treatment of HIV-1/AIDS. INSTIs have a polycyclic core with heteroatom
triads, chelate the metal ions at the active site, and have a halobenzyl
group that interacts with viral DNA attached to the core by a flexible
linker. The most broadly effective INSTIs inhibit both wild-type (WT)
integrase (IN) and a variety of well-known mutants. However, because
there are mutations that reduce the potency of all of the available
INSTIs, new and better compounds are needed. Models based on recent
structures of HIV-1 and red-capped mangabey SIV INs suggest modifications
in the INSTI structures that could enhance interactions with the 3′-terminal
adenosine of the viral DNA, which could improve performance against
INSTI resistant mutants. We designed and tested a series of INSTIs
having modifications to their naphthyridine scaffold. One of the new
compounds retained good potency against an expanded panel of HIV-1
IN mutants that we tested. Our results suggest the possibility of
designing inhibitors that combine the best features of the existing
compounds, which could provide additional efficacy against known HIV-1
IN mutants.
Collapse
Affiliation(s)
- Steven J. Smith
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Dario Oliveira Passos
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Valerie E. Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
- St Mary’s Hospital, Department of Infectious Disease, Imperial College London, Section of Virology, Norfolk Place, London W2 1PG, U.K
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Terrence R. Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
30
|
Smith SJ, Zhao XZ, Passos DO, Pye VE, Cherepanov P, Lyumkis D, Burke TR, Hughes SH. HIV-1 Integrase Inhibitors with Modifications That Affect Their Potencies against Drug Resistant Integrase Mutants. ACS Infect Dis 2021. [PMID: 33686850 DOI: 10.1021/acsinfecdis.0c00819/suppl_file/id0c00819_liveslides.mp4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Integrase strand transfer inhibitors (INSTIs) block the integration step of the retroviral lifecycle and are first-line drugs used for the treatment of HIV-1/AIDS. INSTIs have a polycyclic core with heteroatom triads, chelate the metal ions at the active site, and have a halobenzyl group that interacts with viral DNA attached to the core by a flexible linker. The most broadly effective INSTIs inhibit both wild-type (WT) integrase (IN) and a variety of well-known mutants. However, because there are mutations that reduce the potency of all of the available INSTIs, new and better compounds are needed. Models based on recent structures of HIV-1 and red-capped mangabey SIV INs suggest modifications in the INSTI structures that could enhance interactions with the 3'-terminal adenosine of the viral DNA, which could improve performance against INSTI resistant mutants. We designed and tested a series of INSTIs having modifications to their naphthyridine scaffold. One of the new compounds retained good potency against an expanded panel of HIV-1 IN mutants that we tested. Our results suggest the possibility of designing inhibitors that combine the best features of the existing compounds, which could provide additional efficacy against known HIV-1 IN mutants.
Collapse
Affiliation(s)
- Steven J Smith
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Dario Oliveira Passos
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Valerie E Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
- St Mary's Hospital, Department of Infectious Disease, Imperial College London, Section of Virology, Norfolk Place, London W2 1PG, U.K
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
31
|
Engelman KD, Engelman AN. Long-Acting Cabotegravir for HIV/AIDS Prophylaxis. Biochemistry 2021; 60:1731-1740. [PMID: 34029457 DOI: 10.1021/acs.biochem.1c00157] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The retrovirus HIV-1 is the etiological agent of the decades-long AIDS pandemic. Although vaccination is the most common preexposure route to prevent acquisition of viral disease, scalable efficacious vaccination strategies have yet to be developed for HIV-1. By contrast, small molecule inhibitors of the HIV-1 enzymes reverse transcriptase, integrase, and protease have been developed that effectively block virus replication. Three different drug compounds are commonly prescribed for people living with HIV as once-daily oral tablets. Once-daily pills composed of two different reverse transcriptase inhibitors are moreover approved as preexposure prophylaxis (PrEP) treatment for virus naïve individuals who may partake in behaviors associated with increased risk of HIV-1 acquisition such as unprotected sex or injection drug use. Long-acting (LA) injectable HIV-1 enzyme inhibitors are at the same time being developed to sidestep adherence noncompliance issues that can arise from self-administered once-daily oral dosing regimens. Cabotegravir (CAB)-LA, which inhibits integrase strand transfer activity, has in recent clinical trials been shown to prevent HIV-1 acquisition more effectively than once-daily oral dosed reverse transcriptase inhibitors. In this Perspective, we examine bench to bedside aspects of CAB-LA treatment and development, starting from the biochemical basis of HIV-1 integration and pharmacological inhibition of integrase catalysis. We also review the results of recent clinical trials that evaluated CAB-LA, as well as the promises and challenges that surround its use for HIV/AIDS PrEP.
Collapse
Affiliation(s)
- Kathleen D Engelman
- MassBiologics, University of Massachusetts Medical School, 460 Walk Hill Street, Boston, Massachusetts 02126, United States
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States.,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| |
Collapse
|
32
|
Abstract
The HIV integrase (IN) strand transfer inhibitor (INSTI) bictegravir (BIC) has a long dissociation half-life (t1/2) from wild-type IN-DNA complexes: BIC 163 hr > dolutegravir (DTG) 96 hr > raltegravir (RAL) 10 hr > elvitegravir (EVG) 3.3 hr. In cells, BIC had more durable antiviral activity against wild-type HIV after drug washout than RAL or EVG. BIC also had a longer t1/2 and maintained longer antiviral activity after drug washout than DTG with the clinically relevant resistance IN mutant G140S+Q148H. Structural analyses indicate that BIC makes more contacts with the IN-DNA complex than DTG mainly via its bicyclic ring system which may contribute to more prolonged residence time and resilience against many resistance mutations.
Collapse
|
33
|
Smith SJ, Zhao XZ, Passos DO, Lyumkis D, Burke TR, Hughes SH. Integrase Strand Transfer Inhibitors Are Effective Anti-HIV Drugs. Viruses 2021; 13:v13020205. [PMID: 33572956 PMCID: PMC7912079 DOI: 10.3390/v13020205] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Integrase strand transfer inhibitors (INSTIs) are currently recommended for the first line treatment of human immunodeficiency virus type one (HIV-1) infection. The first-generation INSTIs are effective but can select for resistant viruses. Recent advances have led to several potent second-generation INSTIs that are effective against both wild-type (WT) HIV-1 integrase and many of the first-generation INSTI-resistant mutants. The emergence of resistance to these new second-generation INSTIs has been minimal, which has resulted in alternative treatment strategies for HIV-1 patients. Moreover, because of their high antiviral potencies and, in some cases, their bioavailability profiles, INSTIs will probably have prominent roles in pre-exposure prophylaxis (PrEP). Herein, we review the current state of the clinically relevant INSTIs and discuss the future outlook for this class of antiretrovirals.
Collapse
Affiliation(s)
- Steven J. Smith
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (X.Z.Z.); (T.R.B.J.)
| | - Dario Oliveira Passos
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (D.O.P.); (D.L.)
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (D.O.P.); (D.L.)
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Terrence R. Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (X.Z.Z.); (T.R.B.J.)
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
- Correspondence:
| |
Collapse
|
34
|
Elliott JL, Kutluay SB. Going beyond Integration: The Emerging Role of HIV-1 Integrase in Virion Morphogenesis. Viruses 2020; 12:E1005. [PMID: 32916894 PMCID: PMC7551943 DOI: 10.3390/v12091005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 integrase enzyme (IN) plays a critical role in the viral life cycle by integrating the reverse-transcribed viral DNA into the host chromosome. This function of IN has been well studied, and the knowledge gained has informed the design of small molecule inhibitors that now form key components of antiretroviral therapy regimens. Recent discoveries unveiled that IN has an under-studied yet equally vital second function in human immunodeficiency virus type 1 (HIV-1) replication. This involves IN binding to the viral RNA genome in virions, which is necessary for proper virion maturation and morphogenesis. Inhibition of IN binding to the viral RNA genome results in mislocalization of the viral genome inside the virus particle, and its premature exposure and degradation in target cells. The roles of IN in integration and virion morphogenesis share a number of common elements, including interaction with viral nucleic acids and assembly of higher-order IN multimers. Herein we describe these two functions of IN within the context of the HIV-1 life cycle, how IN binding to the viral genome is coordinated by the major structural protein, Gag, and discuss the value of targeting the second role of IN in virion morphogenesis.
Collapse
Affiliation(s)
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA;
| |
Collapse
|