1
|
Sharma G, Gupta DP, Halder A, Banerjee A, Srivastava S. Cysteamine Nanoemulsion Delivery by Inhalation to Attenuate Adverse Effects of Exposure to Cigarette Smoke: A Metabolomics Study in Wistar Rats. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:421-437. [PMID: 38979603 DOI: 10.1089/omi.2024.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
There is a pressing need for novel pharmacological interventions and drug delivery innovations to attenuate the cigarette smoke-associated oxidative stress and lung disease. We report here on the attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and metabolomics of Wistar rats exposed to cigarette smoke for 28 days. The animals were treated for 15 days with plain cysteamine given orally or cysteamine as nanoemulsion given orally or via inhalation. The study design also included two control groups as follows: rats exposed to cigarette smoke but did not receive a treatment (diseased control group) and rats neither exposed to cigarette smoke nor a treatment (normal control group). The targeted metabolomics using Parallel Reaction Monitoring showed that in the diseased control group, ornithine, nicotinamide, xanthine, hypoxanthine, and caprolactam were increased compared with the normal control group. In addition, (±)8(9)-DiHET, which was initially downregulated in the diseased control group, exhibited a reversal of this trend with cysteamine nanoemulsion given via inhalation. The cysteamine nanoemulsion delivered by inhalation highlighted the importance of the route of drug administration for targeting the lungs. To the best of our knowledge, this is the first work to use ATR-FTIR and metabolomics in Wistar rat lung tissues, suggesting how cysteamine nanoemulsion can potentially reduce cigarette smoke-induced oxidative damage. The metabolites reported herein have potential implications for discovery of novel theranostics and, thus, to cultivate diagnostic and therapeutic innovation for early prevention and treatment of cigarette smoke-associated lung diseases.
Collapse
Affiliation(s)
- Gautam Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Debarghya Pratim Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ankit Halder
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Thorne D, McHugh D, Simms L, Lee KM, Fujimoto H, Moses S, Gaca M. Applying new approach methodologies to assess next-generation tobacco and nicotine products. FRONTIERS IN TOXICOLOGY 2024; 6:1376118. [PMID: 38938663 PMCID: PMC11208635 DOI: 10.3389/ftox.2024.1376118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/30/2024] [Indexed: 06/29/2024] Open
Abstract
In vitro toxicology research has accelerated with the use of in silico, computational approaches and human in vitro tissue systems, facilitating major improvements evaluating the safety and health risks of novel consumer products. Innovation in molecular and cellular biology has shifted testing paradigms, with less reliance on low-throughput animal data and greater use of medium- and high-throughput in vitro cellular screening approaches. These new approach methodologies (NAMs) are being implemented in other industry sectors for chemical testing, screening candidate drugs and prototype consumer products, driven by the need for reliable, human-relevant approaches. Routine toxicological methods are largely unchanged since development over 50 years ago, using high-doses and often employing in vivo testing. Several disadvantages are encountered conducting or extrapolating data from animal studies due to differences in metabolism or exposure. The last decade saw considerable advancement in the development of in vitro tools and capabilities, and the challenges of the next decade will be integrating these platforms into applied product testing and acceptance by regulatory bodies. Governmental and validation agencies have launched and applied frameworks and "roadmaps" to support agile validation and acceptance of NAMs. Next-generation tobacco and nicotine products (NGPs) have the potential to offer reduced risks to smokers compared to cigarettes. These include heated tobacco products (HTPs) that heat but do not burn tobacco; vapor products also termed electronic nicotine delivery systems (ENDS), that heat an e-liquid to produce an inhalable aerosol; oral smokeless tobacco products (e.g., Swedish-style snus) and tobacco-free oral nicotine pouches. With the increased availability of NGPs and the requirement of scientific studies to support regulatory approval, NAMs approaches can supplement the assessment of NGPs. This review explores how NAMs can be applied to assess NGPs, highlighting key considerations, including the use of appropriate in vitro model systems, deploying screening approaches for hazard identification, and the importance of test article characterization. The importance and opportunity for fit-for-purpose testing and method standardization are discussed, highlighting the value of industry and cross-industry collaborations. Supporting the development of methods that are accepted by regulatory bodies could lead to the implementation of NAMs for tobacco and nicotine NGP testing.
Collapse
Affiliation(s)
- David Thorne
- BAT (Investments) Ltd., Southampton, Hampshire, United Kingdom
| | - Damian McHugh
- PMI R&D Philip Morris Products S. A., Neuchâtel, Switzerland
| | - Liam Simms
- Imperial Brands, Bristol, United Kingdom
| | - K. Monica Lee
- Altria Client Services LLC, Richmond, VA, United States
| | | | | | - Marianna Gaca
- BAT (Investments) Ltd., Southampton, Hampshire, United Kingdom
| |
Collapse
|
3
|
Wang M, Cheng Q, Wu Z, Fan L, Zeng L, Chen H. Multidimensional assessment of the biological effects of electronic cigarettes on lung bronchial epithelial cells. Sci Rep 2024; 14:4445. [PMID: 38396087 PMCID: PMC10891173 DOI: 10.1038/s41598-024-55140-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/20/2024] [Indexed: 02/25/2024] Open
Abstract
Cigarette smoke (CS) exposure is known to cause injury to respiratory tract epithelial cells and is a contributing factor in the development of chronic obstructive pulmonary disease and lung cancer. Electronic cigarettes (e-cigarettes) are gaining popularity as a potential substitute for conventional cigarettes due to their potential for aiding smoking cessation. However, the safety of e-cigarettes remains uncertain, and scientific evidence on this topic is still limited. In this study, we aimed to investigate the effects of CS and e-cigarette smoke (ECS) of different flavors on human lung bronchial epithelial cells. Real-time smoke exposure was carried out using an air-liquid interface system, and cell viability was assessed. RNA-Seq transcriptome analysis was performed to compare the differences between CS and ECS. The transcriptome analysis revealed a significantly higher number of differentially expressed genes in CS than in ECS. Moreover, the impact of mint-flavored e-cigarettes on cells was found to be greater than that of tobacco-flavored e-cigarettes, as evidenced by the greater number of differentially expressed genes. These findings provide a reference for future safety research on traditional cigarettes and e-cigarettes, particularly those of different flavors. The use of omics-scale methodologies has improved our ability to understand the biological effects of CS and ECS on human respiratory tract epithelial cells, which can aid in the development of novel approaches for smoking cessation and lung disease prevention.
Collapse
Affiliation(s)
- Meng Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, 31021, China
| | - Qing Cheng
- Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Zehong Wu
- RELX Science Center, Shenzhen RELX Tech. Co. Ltd., Shenzhen, 518101, China
| | - Longjiang Fan
- Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Hongyu Chen
- Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| |
Collapse
|
4
|
Lenski M, Zarcone G, Maallem S, Garçon G, Lo-Guidice JM, Allorge D, Anthérieu S. Metabolomics Provides Novel Insights into the Potential Toxicity Associated with Heated Tobacco Products, Electronic Cigarettes, and Tobacco Cigarettes on Human Bronchial Epithelial BEAS-2B Cells. TOXICS 2024; 12:128. [PMID: 38393223 PMCID: PMC10893046 DOI: 10.3390/toxics12020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
Smoking is an established risk factor for various pathologies including lung cancer. Electronic cigarettes (e-cigs) and heated tobacco products (HTPs) have appeared on the market in recent years, but their safety or, conversely, their toxicity has not yet been demonstrated. This study aimed to compare the metabolome of human lung epithelial cells exposed to emissions of e-cigs, HTPs, or 3R4F cigarettes in order to highlight potential early markers of toxicity. BEAS-2B cells were cultured at the air-liquid interface and exposed to short-term emissions from e-cigs set up at low or medium power, HTPs, or 3R4F cigarettes. Untargeted metabolomic analyses were performed using liquid chromatography coupled with mass spectrometry. Compared to unexposed cells, both 3R4F cigarette and HTP emissions affected the profiles of exogenous compounds, one of which is carcinogenic, as well as those of endogenous metabolites from various pathways including oxidative stress, energy metabolism, and lipid metabolism. However, these effects were observed at lower doses for cigarettes (2 and 4 puffs) than for HTPs (60 and 120 puffs). No difference was observed after e-cig exposure, regardless of the power conditions. These results suggest a lower acute toxicity of e-cig emissions compared to cigarettes and HTPs in BEAS-2B cells. The pathways deregulated by HTP emissions are also described to be altered in respiratory diseases, emphasizing that the toxicity of HTPs should not be underestimated.
Collapse
Affiliation(s)
- Marie Lenski
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France; (M.L.); (G.Z.); (S.M.); (G.G.); (J.-M.L.-G.); (D.A.)
- CHU Lille, Unité Fonctionnelle de Toxicologie, F-59037 Lille, France
| | - Gianni Zarcone
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France; (M.L.); (G.Z.); (S.M.); (G.G.); (J.-M.L.-G.); (D.A.)
| | - Saïd Maallem
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France; (M.L.); (G.Z.); (S.M.); (G.G.); (J.-M.L.-G.); (D.A.)
| | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France; (M.L.); (G.Z.); (S.M.); (G.G.); (J.-M.L.-G.); (D.A.)
| | - Jean-Marc Lo-Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France; (M.L.); (G.Z.); (S.M.); (G.G.); (J.-M.L.-G.); (D.A.)
| | - Delphine Allorge
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France; (M.L.); (G.Z.); (S.M.); (G.G.); (J.-M.L.-G.); (D.A.)
- CHU Lille, Unité Fonctionnelle de Toxicologie, F-59037 Lille, France
| | - Sébastien Anthérieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France; (M.L.); (G.Z.); (S.M.); (G.G.); (J.-M.L.-G.); (D.A.)
| |
Collapse
|
5
|
Shilenok I, Kobzeva K, Stetskaya T, Freidin M, Soldatova M, Deykin A, Soldatov V, Churnosov M, Polonikov A, Bushueva O. SERPINE1 mRNA Binding Protein 1 Is Associated with Ischemic Stroke Risk: A Comprehensive Molecular-Genetic and Bioinformatics Analysis of SERBP1 SNPs. Int J Mol Sci 2023; 24:8716. [PMID: 37240062 PMCID: PMC10217814 DOI: 10.3390/ijms24108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The SERBP1 gene is a well-known regulator of SERPINE1 mRNA stability and progesterone signaling. However, the chaperone-like properties of SERBP1 have recently been discovered. The present pilot study investigated whether SERBP1 SNPs are associated with the risk and clinical manifestations of ischemic stroke (IS). DNA samples from 2060 unrelated Russian subjects (869 IS patients and 1191 healthy controls) were genotyped for 5 common SNPs-rs4655707, rs1058074, rs12561767, rs12566098, and rs6702742 SERBP1-using probe-based PCR. The association of SNP rs12566098 with an increased risk of IS (risk allele C; p = 0.001) was observed regardless of gender or physical activity level and was modified by smoking, fruit and vegetable intake, and body mass index. SNP rs1058074 (risk allele C) was associated with an increased risk of IS exclusively in women (p = 0.02), non-smokers (p = 0.003), patients with low physical activity (p = 0.04), patients with low fruit and vegetable consumption (p = 0.04), and BMI ≥25 (p = 0.007). SNPs rs1058074 (p = 0.04), rs12561767 (p = 0.01), rs12566098 (p = 0.02), rs6702742 (p = 0.036), and rs4655707 (p = 0.04) were associated with shortening of activated partial thromboplastin time. Thus, SERBP1 SNPs represent novel genetic markers of IS. Further studies are required to confirm the relationship between SERBP1 polymorphism and IS risk.
Collapse
Affiliation(s)
- Irina Shilenok
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Division of Neurology, Kursk Emergency Hospital, 305035 Kursk, Russia
| | - Ksenia Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Tatiana Stetskaya
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Maxim Freidin
- Department of Biology, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Science, 634050 Tomsk, Russia
| | - Maria Soldatova
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Alexey Deykin
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Vladislav Soldatov
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Alexey Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| |
Collapse
|
6
|
Tulen CBM, Duistermaat E, Cremers JWJM, Klerx WNM, Fokkens PHB, Weibolt N, Kloosterboer N, Dentener MA, Gremmer ER, Jessen PJJ, Koene EJC, Maas L, Opperhuizen A, van Schooten FJ, Staal YCM, Remels AHV. Smoking-Associated Exposure of Human Primary Bronchial Epithelial Cells to Aldehydes: Impact on Molecular Mechanisms Controlling Mitochondrial Content and Function. Cells 2022; 11:3481. [PMID: 36359877 PMCID: PMC9655975 DOI: 10.3390/cells11213481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 09/21/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a devastating lung disease primarily caused by exposure to cigarette smoke (CS). During the pyrolysis and combustion of tobacco, reactive aldehydes such as acetaldehyde, acrolein, and formaldehyde are formed, which are known to be involved in respiratory toxicity. Although CS-induced mitochondrial dysfunction has been implicated in the pathophysiology of COPD, the role of aldehydes therein is incompletely understood. To investigate this, we used a physiologically relevant in vitro exposure model of differentiated human primary bronchial epithelial cells (PBEC) exposed to CS (one cigarette) or a mixture of acetaldehyde, acrolein, and formaldehyde (at relevant concentrations of one cigarette) or air, in a continuous flow system using a puff-like exposure protocol. Exposure of PBEC to CS resulted in elevated IL-8 cytokine and mRNA levels, increased abundance of constituents associated with autophagy, decreased protein levels of molecules associated with the mitophagy machinery, and alterations in the abundance of regulators of mitochondrial biogenesis. Furthermore, decreased transcript levels of basal epithelial cell marker KRT5 were reported after CS exposure. Only parts of these changes were replicated in PBEC upon exposure to a combination of acetaldehyde, acrolein, and formaldehyde. More specifically, aldehydes decreased MAP1LC3A mRNA (autophagy) and BNIP3 protein (mitophagy) and increased ESRRA protein (mitochondrial biogenesis). These data suggest that other compounds in addition to aldehydes in CS contribute to CS-induced dysregulation of constituents controlling mitochondrial content and function in airway epithelial cells.
Collapse
Affiliation(s)
- Christy B. M. Tulen
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands
| | - Evert Duistermaat
- National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | | | - Walther N. M. Klerx
- National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Paul H. B. Fokkens
- National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Naömi Weibolt
- National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Nico Kloosterboer
- Department of Pediatrics, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
- Primary Lung Culture (PLUC) Facility, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands
| | - Mieke A. Dentener
- Primary Lung Culture (PLUC) Facility, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Respiratory Medicine, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands
| | - Eric R. Gremmer
- National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Phyllis J. J. Jessen
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands
| | - Evi J. C. Koene
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands
| | - Lou Maas
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands
| | - Antoon Opperhuizen
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands
- Office of Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), 3511 GG Utrecht, The Netherlands
| | - Frederik-Jan van Schooten
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands
| | - Yvonne C. M. Staal
- National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Alexander H. V. Remels
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
7
|
Kim HY, Lee HS, Kim IH, Kim Y, Ji M, Oh S, Kim DY, Lee W, Kim SH, Paik MJ. Comprehensive Targeted Metabolomic Study in the Lung, Plasma, and Urine of PPE/LPS-Induced COPD Mice Model. Int J Mol Sci 2022; 23:ijms23052748. [PMID: 35269890 PMCID: PMC8911395 DOI: 10.3390/ijms23052748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: Progression of chronic obstructive pulmonary disease (COPD) leads to irreversible lung damage and inflammatory responses; however, biomarker discovery for monitoring of COPD progression remains challenging. (2) Methods: This study evaluated the metabolic mechanisms and potential biomarkers of COPD through the integrated analysis and receiver operating characteristic (ROC) analysis of metabolic changes in lung, plasma, and urine, and changes in morphological characteristics and pulmonary function in a model of PPE/LPS-induced COPD exacerbation. (3) Results: Metabolic changes in the lungs were evaluated as metabolic reprogramming to counteract the changes caused by the onset of COPD. In plasma, several combinations of phenylalanine, 3-methylhistidine, and polyunsaturated fatty acids have been proposed as potential biomarkers; the α-aminobutyric acid/histidine ratio has also been reported, which is a novel candidate biomarker for COPD. In urine, a combination of succinic acid, isocitric acid, and pyruvic acid has been proposed as a potential biomarker. (4) Conclusions: This study proposed potential biomarkers in plasma and urine that reflect altered lung metabolism in COPD, concurrently with the evaluation of the COPD exacerbation model induced by PPE plus LPS administration. Therefore, understanding these integrative mechanisms provides new insights into the diagnosis, treatment, and severity assessment of COPD.
Collapse
Affiliation(s)
- Hyeon-Young Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup 56212, Korea; (H.-Y.K.); (I.-H.K.)
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
| | - Hyeon-Seong Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (H.-S.L.); (W.L.)
- Korea Institute of Science and Technology, Gangneung Institute of Natural Products, Gangneung 25451, Korea
| | - In-Hyeon Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup 56212, Korea; (H.-Y.K.); (I.-H.K.)
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
| | - Youngbae Kim
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea; (Y.K.); (M.J.); (S.O.); (D.-Y.K.)
| | - Moongi Ji
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea; (Y.K.); (M.J.); (S.O.); (D.-Y.K.)
| | - Songjin Oh
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea; (Y.K.); (M.J.); (S.O.); (D.-Y.K.)
| | - Doo-Young Kim
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea; (Y.K.); (M.J.); (S.O.); (D.-Y.K.)
- Hyundai Pharm, New Drug Discovery Lab, Yongin 17089, Korea
| | - Wonjae Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Korea; (H.-S.L.); (W.L.)
| | - Sung-Hwan Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup 56212, Korea; (H.-Y.K.); (I.-H.K.)
- Correspondence: (S.-H.K.); (M.-J.P.); Tel.: +82-63-570-8757 (S.-H.K.); +82-61-750-3762 (M.-J.P.)
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea; (Y.K.); (M.J.); (S.O.); (D.-Y.K.)
- Correspondence: (S.-H.K.); (M.-J.P.); Tel.: +82-63-570-8757 (S.-H.K.); +82-61-750-3762 (M.-J.P.)
| |
Collapse
|
8
|
Tulen CBM, Wang Y, Beentjes D, Jessen PJJ, Ninaber DK, Reynaert NL, van Schooten FJ, Opperhuizen A, Hiemstra PS, Remels AHV. Dysregulated mitochondrial metabolism upon cigarette smoke exposure in various human bronchial epithelial cell models. Dis Model Mech 2022; 15:dmm049247. [PMID: 35344036 PMCID: PMC8990921 DOI: 10.1242/dmm.049247] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/29/2021] [Indexed: 01/13/2023] Open
Abstract
Exposure to cigarette smoke (CS) is the primary risk factor for developing chronic obstructive pulmonary disease. The impact of CS exposure on the molecular mechanisms involved in mitochondrial quality control in airway epithelial cells is incompletely understood. Undifferentiated or differentiated primary bronchial epithelial cells were acutely/chronically exposed to whole CS (WCS) or CS extract (CSE) in submerged or air-liquid interface conditions. Abundance of key regulators controlling mitochondrial biogenesis, mitophagy and mitochondrial dynamics was assessed. Acute exposure to WCS or CSE increased the abundance of components of autophagy and receptor-mediated mitophagy in all models. Although mitochondrial content and dynamics appeared to be unaltered in response to CS, changes in both the molecular control of mitochondrial biogenesis and a shift toward an increased glycolytic metabolism were observed in particular in differentiated cultures. These alterations persisted, at least in part, after chronic exposure to WCS during differentiation and upon subsequent discontinuation of WCS exposure. In conclusion, smoke exposure alters the regulation of mitochondrial metabolism in airway epithelial cells, but observed alterations may differ between various culture models used. This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Christy B. M. Tulen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Ying Wang
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Daan Beentjes
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Phyllis J. J. Jessen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Dennis K. Ninaber
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Niki L. Reynaert
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
- Primary Lung Culture Facility, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
- Office of Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority, PO Box 8433, 3503 RK Utrecht, The Netherlands
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Alexander H. V. Remels
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
9
|
Cipollina C, Bruno A, Fasola S, Cristaldi M, Patella B, Inguanta R, Vilasi A, Aiello G, La Grutta S, Torino C, Pace E. Cellular and Molecular Signatures of Oxidative Stress in Bronchial Epithelial Cell Models Injured by Cigarette Smoke Extract. Int J Mol Sci 2022; 23:1770. [PMID: 35163691 PMCID: PMC8836577 DOI: 10.3390/ijms23031770] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Exposure of the airways epithelium to environmental insults, including cigarette smoke, results in increased oxidative stress due to unbalance between oxidants and antioxidants in favor of oxidants. Oxidative stress is a feature of inflammation and promotes the progression of chronic lung diseases, including Chronic Obstructive Pulmonary Disease (COPD). Increased oxidative stress leads to exhaustion of antioxidant defenses, alterations in autophagy/mitophagy and cell survival regulatory mechanisms, thus promoting cell senescence. All these events are amplified by the increase of inflammation driven by oxidative stress. Several models of bronchial epithelial cells are used to study the molecular mechanisms and the cellular functions altered by cigarette smoke extract (CSE) exposure, and to test the efficacy of molecules with antioxidant properties. This review offers a comprehensive synthesis of human in-vitro and ex-vivo studies published from 2011 to 2021 describing the molecular and cellular mechanisms evoked by CSE exposure in bronchial epithelial cells, the most used experimental models and the mechanisms of action of cellular antioxidants systems as well as natural and synthetic antioxidant compounds.
Collapse
Affiliation(s)
- Chiara Cipollina
- Ri.MED Foundation, 90133 Palermo, Italy; (C.C.); (M.C.)
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (A.B.); (S.F.); (S.L.G.); (E.P.)
| | - Andreina Bruno
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (A.B.); (S.F.); (S.L.G.); (E.P.)
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy
| | - Salvatore Fasola
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (A.B.); (S.F.); (S.L.G.); (E.P.)
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy
| | | | - Bernardo Patella
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (B.P.); (R.I.); (G.A.)
| | - Rosalinda Inguanta
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (B.P.); (R.I.); (G.A.)
| | - Antonio Vilasi
- Institute of Clinical Physiology, National Research Council, 89124 Reggio Calabria, Italy;
| | - Giuseppe Aiello
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (B.P.); (R.I.); (G.A.)
| | - Stefania La Grutta
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (A.B.); (S.F.); (S.L.G.); (E.P.)
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy
| | - Claudia Torino
- Institute of Clinical Physiology, National Research Council, 89124 Reggio Calabria, Italy;
| | - Elisabetta Pace
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (A.B.); (S.F.); (S.L.G.); (E.P.)
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy
| |
Collapse
|
10
|
Primavessy D, Metz J, Schnur S, Schneider M, Lehr CM, Hittinger M. Pulmonary in vitro instruments for the replacement of animal experiments. Eur J Pharm Biopharm 2021; 168:62-75. [PMID: 34438019 DOI: 10.1016/j.ejpb.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/19/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Advanced in vitro systems often combine a mechanical-physical instrument with a biological component e.g. cell culture models. For testing of aerosols, it is of advantage to consider aerosol behavior, particle deposition and lung region specific cell lines. Although there are many good reviews on the selection of cell cultures, articles on instruments are rare. This article focuses on the development of in vitro instruments targeting the exposure of aerosols on cell cultures. In this context, guidelines for toxicity investigation are taken into account as the aim of new methods must be the prediction of human relevant data and the replacement of existing animal experiments. We provide an overview on development history of research-based instruments from a pharmaceutical point of view. The standardized commercial devices resulting from the research-based instruments are presented and the future perspectives on pulmonary in vitro devices are discussed.
Collapse
Affiliation(s)
- Daniel Primavessy
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany.
| | - Julia Metz
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany
| | - Sabrina Schnur
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany; Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany; Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Marius Hittinger
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany; 3RProducts Marius Hittinger, Blieskastel, Germany
| |
Collapse
|
11
|
Chen H, Chen X, Shen Y, Yin X, Liu F, Liu L, Yao J, Chu Q, Wang Y, Qi H, Timko MP, Fang W, Fan L. Signaling pathway perturbation analysis for assessment of biological impact of cigarette smoke on lung cells. Sci Rep 2021; 11:16715. [PMID: 34408184 PMCID: PMC8373939 DOI: 10.1038/s41598-021-95938-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Exposure to cigarette smoke (CS) results in injury to the epithelial cells of the human respiratory tract and has been implicated as a causative factor in the development of chronic obstructive pulmonary disease and lung cancers. The application of omics-scale methodologies has improved the capacity to understand cellular signaling processes underlying response to CS exposure. We report here the development of an algorithm based on quantitative assessment of transcriptomic profiles and signaling pathway perturbation analysis (SPPA) of human bronchial epithelial cells (HBEC) exposed to the toxic components present in CS. HBEC were exposed to CS of different compositions and for different durations using an ISO3308 smoking regime and the impact of exposure was monitored in 2263 signaling pathways in the cell to generate a total effect score that reflects the quantitative degree of impact of external stimuli on the cells. These findings support the conclusion that the SPPA algorithm provides an objective, systematic, sensitive means to evaluate the biological impact of exposures to CS of different compositions making a powerful comparative tool for commercial product evaluation and potentially for other known or potentially toxic environmental smoke substances.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China.,Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Xi Chen
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.,Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Yifei Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xinxin Yin
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Fangjie Liu
- Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Lu Liu
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Jie Yao
- Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Qinjie Chu
- Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Yaqin Wang
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hongyan Qi
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Michael P Timko
- Department of Biology and Public Health Sciences, University of Virginia, Charlottesville, VA, 22904, USA
| | - Weijia Fang
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China.
| | - Longjiang Fan
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China. .,Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China. .,Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Haswell LE, Smart D, Jaunky T, Baxter A, Santopietro S, Meredith S, Camacho OM, Breheny D, Thorne D, Gaca MD. The development of an in vitro 3D model of goblet cell hyperplasia using MUC5AC expression and repeated whole aerosol exposures. Toxicol Lett 2021; 347:45-57. [PMID: 33892128 DOI: 10.1016/j.toxlet.2021.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/17/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Abstract
Goblet cell hyperplasia and overproduction of airway mucin are characteristic features of the lung epithelium of smokers and COPD patients. Tobacco heating products (THPs) are a potentially less risky alternative to combustible cigarettes, and through continued use solus THPs may reduce smoking-related disease risk. Using the MucilAir™ in vitro lung model, a 6-week feasibility study was conducted investigating the effect of repeated cigarette smoke (1R6F), THP aerosol and air exposure. Tissues were exposed to nicotine-matched whole aerosol doses 3 times/week. Endpoints assessed were dosimetry, tight-junction integrity, cilia beat frequency (CBF) and active area (AA), cytokine secretion and airway mucin MUC5AC expression. Comparison of incubator and air exposed controls indicated exposures did not have a significant effect on the transepithelial electrical resistance (TEER), CBF and AA of the tissues. Cytokine secretion indicated clear differences in secretion patterns in response to 1R6F and THP exposure. 1R6F exposure resulted in a significant decrease in the TEER and AA (p=0.000 and p=0.000, respectively), and an increase in MUC5AC positive cells (p=0.002). Repeated THP exposure did not result in a significant change in MUC5AC positive cells. This study demonstrates repeated cigarette smoke whole aerosol exposure can induce these morphological changes in vitro.
Collapse
Affiliation(s)
- Linsey E Haswell
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK.
| | - David Smart
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Tomasz Jaunky
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Andrew Baxter
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | | | - Stuart Meredith
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Oscar M Camacho
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Damien Breheny
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - David Thorne
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Marianna D Gaca
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| |
Collapse
|
13
|
Watzky M, de Dieuleveult M, Letessier A, Saint-Ruf C, Miotto B. Assessing the consequences of environmental exposures on the expression of the human receptor and proteases involved in SARS-CoV-2 cell-entry. ENVIRONMENTAL RESEARCH 2021; 195:110317. [PMID: 33069705 PMCID: PMC7560643 DOI: 10.1016/j.envres.2020.110317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/09/2020] [Accepted: 10/07/2020] [Indexed: 05/06/2023]
Abstract
The role of environmental condition on the infection by the novel pathogenic SARS-CoV-2 virus remains uncertain. In here, exploiting a large panel of publicly available genome-wide data, we investigated whether the human receptor ACE2 and human proteases TMPRSS2, FURIN and CATHEPSINs (B, L and V), which are involved in SARS-CoV-2 cell entry, are transcriptionally regulated by environmental cues. We report that more than 50 chemicals modulate the expression of ACE2 or human proteases important for SARS-CoV-2 cell entry. We further demonstrate that transcription factor AhR, which is commonly activated by pollutants, binds to the promoter of TMPRSS2 and enhancers and/or promoters of Cathepsin B, L and V encoding genes. Our exploratory study documents an influence of environmental exposures on the expression of genes involved in SARS-CoV-2 cell entry. These results could be conceptually and medically relevant to our understanding of the COVID-19 disease, and should be further explored in laboratory and epidemiologic studies.
Collapse
Affiliation(s)
- Manon Watzky
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014, PARIS, France
| | - Maud de Dieuleveult
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014, PARIS, France
| | - Anne Letessier
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014, PARIS, France
| | - Claude Saint-Ruf
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014, PARIS, France
| | - Benoit Miotto
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014, PARIS, France.
| |
Collapse
|
14
|
An interlaboratory in vitro aerosol exposure system reference study. TOXICOLOGY RESEARCH AND APPLICATION 2021. [DOI: 10.1177/2397847321992752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Given the complexity of inhaled substances, the aerosol exposure environment has seen diversification and development of setups in conjunction with the evolving in vitro toxicology space. Each laboratory uses its in vitro exposure system differently (different protocols, adaptations, and biological analysis). Unfortunately, as systems diversify, so does the complexity of comparing multiple systems in a “standardized” manner. As yet, no one has compared simply whether these diverse systems can all generate a consistent aerosol stream, which is paramount prior to transit and exposure. This study has compared, at source, aerosol generation (using nicotine as an exposure marker) in nine in vitro whole-aerosol exposure setups (seven different systems) across five distinct geographically independent locations, including the UK, the USA, Switzerland, Germany, and Japan. The results demonstrate that, despite system-wide differences (adaptations, nuances, and application), these systems—when appropriately maintained and used under a prescribed set of established conditions can all generate a consistent and statistically comparable aerosol stream. These data will be invaluable for new researchers and established laboratories, so they may benchmark against this study. Finally, this interlaboratory comparison combined with the wealth of transit and exposure interface data, may help the environment move towards a truly validated and consistent approach to aerosol exposure. Such an approach could be replicated for other aerosolized products, such as e-cigarettes and heated tobacco products.
Collapse
|
15
|
Pieters VM, Co IL, Wu NC, McGuigan AP. Applications of Omics Technologies for Three-Dimensional In Vitro Disease Models. Tissue Eng Part C Methods 2021; 27:183-199. [PMID: 33406987 DOI: 10.1089/ten.tec.2020.0300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Omics technologies, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, lipidomics, multiomics, and integrated modalities, have greatly contributed to our understanding of various diseases by enabling researchers to probe the molecular wiring of cellular systems in a high-throughput and precise manner. With the development of tissue-engineered three-dimensional (3D) in vitro disease models, such as organoids and spheroids, there is potential of integrating omics technologies with 3D disease models to elucidate the complex links between genotype and phenotype. These 3D disease models have been used to model cancer, infectious disease, toxicity, neurological disorders, and others. In this review, we provide an overview of omics technologies, highlight current and emerging studies, discuss the associated experimental design considerations, barriers and challenges of omics technologies, and provide an outlook on the future applications of omics technologies with 3D models. Overall, this review aims to provide a valuable resource for tissue engineers seeking to leverage omics technologies for diving deeper into biological discovery. Impact statement With the emergence of three-dimensional (3D) in vitro disease models, tissue engineers are increasingly interested to investigate these systems to address biological questions related to disease mechanism, drug target discovery, therapy resistance, and more. Omics technologies are a powerful and high-throughput approach, but their application for 3D disease models is not maximally utilized. This review illustrates the achievements and potential of using omics technologies to leverage the full potential of 3D in vitro disease models. This will improve the quality of such models, advance our understanding of disease, and contribute to therapy development.
Collapse
Affiliation(s)
- Vera M Pieters
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Ileana L Co
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Nila C Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Alison P McGuigan
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Cervena T, Vojtisek-Lom M, Vrbova K, Ambroz A, Novakova Z, Elzeinova F, Sima M, Beranek V, Pechout M, Macoun D, Klema J, Rossnerova A, Ciganek M, Topinka J, Rossner P. Ordinary Gasoline Emissions Induce a Toxic Response in Bronchial Cells Grown at Air-Liquid Interface. Int J Mol Sci 2020; 22:E79. [PMID: 33374749 PMCID: PMC7801947 DOI: 10.3390/ijms22010079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Gasoline engine emissions have been classified as possibly carcinogenic to humans and represent a significant health risk. In this study, we used MucilAir™, a three-dimensional (3D) model of the human airway, and BEAS-2B, cells originating from the human bronchial epithelium, grown at the air-liquid interface to assess the toxicity of ordinary gasoline exhaust produced by a direct injection spark ignition engine. The transepithelial electrical resistance (TEER), production of mucin, and lactate dehydrogenase (LDH) and adenylate kinase (AK) activities were analyzed after one day and five days of exposure. The induction of double-stranded DNA breaks was measured by the detection of histone H2AX phosphorylation. Next-generation sequencing was used to analyze the modulation of expression of the relevant 370 genes. The exposure to gasoline emissions affected the integrity, as well as LDH and AK leakage in the 3D model, particularly after longer exposure periods. Mucin production was mostly decreased with the exception of longer BEAS-2B treatment, for which a significant increase was detected. DNA damage was detected after five days of exposure in the 3D model, but not in BEAS-2B cells. The expression of CYP1A1 and GSTA3 was modulated in MucilAir™ tissues after 5 days of treatment. In BEAS-2B cells, the expression of 39 mRNAs was affected after short exposure, most of them were upregulated. The five days of exposure modulated the expression of 11 genes in this cell line. In conclusion, the ordinary gasoline emissions induced a toxic response in MucilAir™. In BEAS-2B cells, the biological response was less pronounced, mostly limited to gene expression changes.
Collapse
Affiliation(s)
- Tereza Cervena
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (M.S.)
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic
| | - Michal Vojtisek-Lom
- Centre of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00 Prague, Czech Republic; (M.V.-L.); (V.B.)
| | - Kristyna Vrbova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (M.S.)
| | - Antonin Ambroz
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (M.S.)
| | - Zuzana Novakova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (M.S.)
| | - Fatima Elzeinova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (M.S.)
| | - Michal Sima
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (M.S.)
| | - Vit Beranek
- Centre of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00 Prague, Czech Republic; (M.V.-L.); (V.B.)
| | - Martin Pechout
- Department of Vehicles and Ground Transport, Czech University of Life Sciences in Prague, Kamycka 129, 165 21 Prague, Czech Republic; (M.P.); (D.M.)
| | - David Macoun
- Department of Vehicles and Ground Transport, Czech University of Life Sciences in Prague, Kamycka 129, 165 21 Prague, Czech Republic; (M.P.); (D.M.)
| | - Jiri Klema
- Department of Computer Science, Czech Technical University in Prague, 121 35 Prague, Czech Republic;
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (A.R.); (J.T.)
| | - Miroslav Ciganek
- Department of Chemistry and Toxicology, Veterinary Research Institute, 621 00 Brno, Czech Republic;
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (A.R.); (J.T.)
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (M.S.)
| |
Collapse
|
17
|
Ito S, Matsumura K, Ishimori K, Ishikawa S. In vitro long-term repeated exposure and exposure switching of a novel tobacco vapor product in a human organotypic culture of bronchial epithelial cells. J Appl Toxicol 2020; 40:1248-1258. [PMID: 32319113 PMCID: PMC7496418 DOI: 10.1002/jat.3982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
Next‐generation tobacco products and nicotine delivery systems such as heat‐not‐burn tobacco products and electronic cigarettes, the usage of which is expected to have a beneficial impact on public health, have gained popularity over the past decade. However, the risks associated with the long‐term use of such products are still incompletely understood. Although the risks of these products should be clarified through epidemiological studies, such studies are normally performed based on each product category, not product‐by‐product. Therefore, investigation of the risk on a product‐by‐product basis is important to provide specific scientific evidence. In the current study, we performed the 40‐day repeated exposure of in vitro human bronchial epithelial tissues to cigarette smoke (CS) or vapor from our proprietary novel tobacco vapor product (NTV). In addition, tissue samples exposed to CS were switched to NTV or CS exposure was stopped at 20 days to reflect a situation where smokers switched to NTV or ceased to smoke. All tissue samples were assessed in terms of toxicity, inflammation and transcriptomic alterations. Tissue samples switched to NTV and the cessation of exposure samples showed recovery from CS‐induced damage although there was a time‐course difference. Moreover, repeated exposure to NTV produced negligible effects on the tissue samples while CS produced cumulative effects. Our results suggest that the use of NTV, including switching to NTV from cigarette smoking, has fewer effects on bronchial epithelial tissues than continuing smoking. We carried out the 40‐day repeated exposure of in vitro bronchial epithelial tissues to cigarette smoke (CS) or vapor from novel tobacco vapor product (NTV) and intermediate switching from CS exposure to NTV exposure. Long‐term exposure to NTV resulted in negligible effect on the tissues. Moreover, the tissues that intermediately switched to NTV exposure showed recovery from CS‐induced damage similar to exposure cessation. These results implied that exposure to NTV showed few effects on bronchial epithelial tissues.
Collapse
Affiliation(s)
- Shigeaki Ito
- Scientific Product Assessment Center, Japan Tobacco Inc., Yokohama, Japan
| | - Kazushi Matsumura
- Scientific Product Assessment Center, Japan Tobacco Inc., Yokohama, Japan
| | - Kanae Ishimori
- Scientific Product Assessment Center, Japan Tobacco Inc., Yokohama, Japan
| | - Shinkichi Ishikawa
- Scientific Product Assessment Center, Japan Tobacco Inc., Yokohama, Japan
| |
Collapse
|
18
|
Comparison of experimentally measured and computational fluid dynamic predicted deposition and deposition uniformity of monodisperse solid particles in the Vitrocell® AMES 48 air-liquid-interface in-vitro exposure system. Toxicol In Vitro 2020; 67:104870. [PMID: 32330563 DOI: 10.1016/j.tiv.2020.104870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 11/22/2022]
Abstract
Accurately determining the delivered dose is critical to understanding biological response due to cell exposure to chemical constituents in aerosols. Deposition efficiency and uniformity of deposition was measured experimentally using monodisperse solid fluorescent particles with mass median aerodynamic diameters (MMAD) of 0.51, 1.1, 2.2 and 3.3 μm in the Vitrocell® AMES 48 air-liquid-interface (ALI) in vitro exposure system. Experimental results were compared with computational fluid dynamic, (CFD; using both Lagrangian and Eulerian approaches) predicted deposition efficiency and uniformity for a single row (N = 6) of petri dishes in the Vitrocell® AMES 48 system. The average experimentally measured deposition efficiency ranged from 0.007% to 0.43% for 0.51-3.3 μm MMAD particles, respectively. There was good agreement between average experimentally measured and the CFD predicted particle deposition efficiency, regardless of approach. Experimentally measured and CFD predicted average uniformity of deposition was greater than 45% of the mean for all particle diameters. During this work a new design was introduced by the manufacturer and evaluated using Lagragian CFD. Lagragian CFD predictions showed better uniformity of deposition, but reduced deposition efficiency with the new design. Deposition efficiency and variability in particle deposition across petri dishes for solid particles should be considered when designing exposure regimens using the Vitrocell® AMES 48 ALI in vitro exposure system.
Collapse
|
19
|
Matsumura K, Kurachi T, Ishikawa S, Kitamura N, Ito S. Regional differences in airway susceptibility to cigarette smoke: An investigational case study of epithelial function and gene alterations in in vitroairway epithelial three-dimensional cultures. TOXICOLOGY RESEARCH AND APPLICATION 2020. [DOI: 10.1177/2397847320911629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cigarette smoke (CS) is a risk factor contributing to lung remodeling in chronic obstructive pulmonary disease (COPD). COPD is a heterogeneous disease because many factors contribute in varying degrees to the resulting airflow limitations in different regions of the respiratory tract. This heterogeneity makes it difficult to understand mechanisms behind COPD development. In the current study, we investigate the regional heterogeneity of the acute response to CS exposure between large and small airways using in vitro three-dimensional (3D) cultures. We used two in vitro 3D human airway epithelial tissues from large and small airway epithelial cells, namely, MucilAir™ and SmallAir™, respectively, which were derived from the same single healthy donor to eliminate donor differences. Impaired epithelial functions and altered gene expression were observed in SmallAir™ exposed to CS at the lower dose and earlier period following the last exposure compared with MucilAir™. In addition, severe damage in SmallAir™ was retained for a longer duration than MucilAir™. Transcriptomic analysis showed that although well-known CS-inducible biological processes (i.e. inflammation, cell fate, and metabolism) were disturbed with consistent activity in both tissues exposed to CS, we elucidated distinctively regulated genes in only MucilAir™ and SmallAir™, which were mostly related to catalytic and transporter activities. Our findings suggest that CS exposure elicited epithelial dysfunction through almost the same perturbed pathways in both airways; however, they expressed different genes related to metabolic and transporter activities in response to CS exposure which may contribute to cytotoxic heterogeneity to the response to CS in the respiratory tract.
Collapse
Affiliation(s)
- Kazushi Matsumura
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Yokohama, Kanagawa, Japan
| | - Takeshi Kurachi
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Yokohama, Kanagawa, Japan
| | - Shinkichi Ishikawa
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Yokohama, Kanagawa, Japan
| | - Nobumasa Kitamura
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Yokohama, Kanagawa, Japan
| | - Shigeaki Ito
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Yokohama, Kanagawa, Japan
| |
Collapse
|
20
|
Lee JD, Kim HY, Kang K, Jeong HG, Song MK, Tae IH, Lee SH, Kim HR, Lee K, Chae S, Hwang D, Kim S, Kim HS, Kim KB, Lee BM. Integration of transcriptomics, proteomics and metabolomics identifies biomarkers for pulmonary injury by polyhexamethylene guanidine phosphate (PHMG-p), a humidifier disinfectant, in rats. Arch Toxicol 2020; 94:887-909. [PMID: 32080758 DOI: 10.1007/s00204-020-02657-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
|
21
|
Matsumura K, Ito S. Novel biomarker genes which distinguish between smokers and chronic obstructive pulmonary disease patients with machine learning approach. BMC Pulm Med 2020; 20:29. [PMID: 32013930 PMCID: PMC6998147 DOI: 10.1186/s12890-020-1062-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is combination of progressive lung diseases. The diagnosis of COPD is generally based on the pulmonary function testing, however, difficulties underlie in prognosis of smokers or early stage of COPD patients due to the complexity and heterogeneity of the pathogenesis. Computational analyses of omics technologies are expected as one of the solutions to resolve such complexities. Methods We obtained transcriptomic data by in vitro testing with exposures of human bronchial epithelial cells to the inducers for early events of COPD to identify the potential descriptive marker genes. With the identified genes, the machine learning technique was employed with the publicly available transcriptome data obtained from the lung specimens of COPD and non-COPD patients to develop the model that can reflect the risk continuum across smoking and COPD. Results The expression levels of 15 genes were commonly altered among in vitro tissues exposed to known inducible factors for earlier events of COPD (exposure to cigarette smoke, DNA damage, oxidative stress, and inflammation), and 10 of these genes and their corresponding proteins have not previously reported as COPD biomarkers. Although these genes were able to predict each group with 65% accuracy, the accuracy with which they were able to discriminate COPD subjects from smokers was only 29%. Furthermore, logistic regression enabled the conversion of gene expression levels to a numerical index, which we named the “potential risk factor (PRF)” index. The highest significant index value was recorded in COPD subjects (0.56 at the median), followed by smokers (0.30) and non-smokers (0.02). In vitro tissues exposed to cigarette smoke displayed dose-dependent increases of PRF, suggesting its utility for prospective risk estimation of tobacco products. Conclusions Our experimental-based transcriptomic analysis identified novel genes associated with COPD, and the 15 genes could distinguish smokers and COPD subjects from non-smokers via machine-learning classification with remarkable accuracy. We also suggested a PRF index that can quantitatively reflect the risk continuum across smoking and COPD pathogenesis, and we believe it will provide an improved understanding of smoking effects and new insights into COPD.
Collapse
Affiliation(s)
- Kazushi Matsumura
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan.
| | - Shigeaki Ito
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan
| |
Collapse
|
22
|
rs11927381 Polymorphism and Type 2 Diabetes Mellitus: Contribution of Smoking to the Realization of Susceptibility to the Disease. Bull Exp Biol Med 2020; 168:313-316. [PMID: 31938912 DOI: 10.1007/s10517-020-04698-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 10/25/2022]
Abstract
In the study that included 579 patients with type 2 diabetes mellitus and 542 healthy individuals from Slavonic population, an association was found between IGF2BP2 gene rs11927381 polymorphism and increased risk of developing the disease. However, this association was observed for smoking patients and was not detected for non-smokers. Bioinformatics analysis showed that the spectrum of transcription factors binding with high-risk C allele differ from the spectrum of transcription factors specifically binding with the reference T allele; these factors are involved in the regulation of the biosynthesis of ketone bodies and cellular response to glucocorticoid hormones. The results suggest that smoking plays a trigger role in the relationship of the polymorphic variant rs11927381 of the IGF2BP2 gene with the development of type 2 diabetes mellitus.
Collapse
|
23
|
Zhou J, Li Q, Liu C, Pang R, Yin Y. Plasma Metabolomics and Lipidomics Reveal Perturbed Metabolites in Different Disease Stages of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2020; 15:553-565. [PMID: 32210549 PMCID: PMC7073598 DOI: 10.2147/copd.s229505] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a common disease characterized by persistent respiratory symptoms and airflow restriction. It is usually manifested as airway and/or alveolar abnormalities caused by significant exposure to harmful particulates or gases. OBJECTIVE We aim to explore plasma metabolomic changes in the acute exacerbation stage of COPD (AECOPD) and stable stage of COPD (Stable COPD) to identify potential biomarkers for diagnosis or prognosis in clinical practice. METHODS Untargeted metabolomics and lipidomics analyses were performed to investigate dysregulated molecules in blood plasma of AECOPD patients (n=48) and Stable COPD (n=48), and a cohort of healthy people were included as a control group (n=48). Statistical analysis and bioinformatics analysis were performed to reveal dysregulated metabolites and perturbed metabolic pathways. SVM-based multivariate ROC analysis was used for candidate biomarker screening. RESULTS A total of 142 metabolites and 688 lipids were dysregulated in COPD patients. Pathway enrichment analysis showed that several metabolic pathways were perturbed after COPD onset. Several biomarker panels were proposed for diagnosis of COPD vs healthy control and AECOPD vs Stable COPD with AUC greater than 0.9. CONCLUSION Numerous plasma metabolites and several metabolic pathways were detected relevant to COPD disease onset or progression. These metabolites may be considered as candidate biomarkers for diagnosis or prognosis of COPD. The perturbed pathways involved in COPD provide clues for further pathological mechanism studies of COPD.
Collapse
Affiliation(s)
- Juntuo Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing100083, People’s Republic of China
| | - Qiuyu Li
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Chengyang Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing100191, People’s Republic of China
| | - Ruifang Pang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing100083, People’s Republic of China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing100191, People’s Republic of China
- Correspondence: Yuxin Yin Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing100191, People’s Republic of China Email
| |
Collapse
|
24
|
Takanami Y, Kitamura N, Ito S. LC/MS analysis of three-dimensional model cells exposed to cigarette smoke or aerosol from a novel tobacco vapor product. J Toxicol Sci 2020; 45:769-782. [PMID: 33268677 DOI: 10.2131/jts.45.769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A novel tobacco vapor product (NTV) contains tobacco leaves and generates nicotine-containing aerosols using heating elements. Subchronic biological effects have been evaluated previously using three-dimensional bronchial epithelial model cells by repeated exposure to cigarette smoke (CS) and the NTV aerosols; however, the intracellular exposure characteristics have not been studied in detail. In this study, cells were initially exposed to an aqueous extract (AqE) of cigarette smoke (CS) at two concentration levels, and the cell lysate underwent untargeted analysis by LC-high resolution mass spectrometry to determine the exogenous compounds present in the cells. Among the thousands of peaks detected, four peaks showed a CS-dependency, which were reproducibly detected. Two of the peaks were nicotine and nicotine N-oxide, and the other two putative compounds were myosmine and norharman. The cells were then exposed to an AqE of CS in various combinations of exposure and post-exposure culture durations. Post-exposure culturing of cells with fresh medium markedly decreased the peak areas of the four compounds. The in-vitro switching study of CS to NTV aerosols was investigated by intermittently exposing cells to an AqE of CS four times, followed by exposure to either an AqE of CS, NTV aerosol or medium another four times. Switching to NTV reduced myosmine and norharman levels, which are known CS constituents. The results indicate that extracellular compounds inside cells reflect the exposure state outside cells. Thus, monitoring functional changes to cells in these exposure experiments is feasible.
Collapse
Affiliation(s)
| | | | - Shigeaki Ito
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc
| |
Collapse
|
25
|
Rossner P, Cervena T, Vojtisek-Lom M, Vrbova K, Ambroz A, Novakova Z, Elzeinova F, Margaryan H, Beranek V, Pechout M, Macoun D, Klema J, Rossnerova A, Ciganek M, Topinka J. The Biological Effects of Complete Gasoline Engine Emissions Exposure in a 3D Human Airway Model (MucilAir TM) and in Human Bronchial Epithelial Cells (BEAS-2B). Int J Mol Sci 2019; 20:E5710. [PMID: 31739528 PMCID: PMC6888625 DOI: 10.3390/ijms20225710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/30/2019] [Accepted: 11/12/2019] [Indexed: 01/31/2023] Open
Abstract
The biological effects induced by complete engine emissions in a 3D model of the human airway (MucilAirTM) and in human bronchial epithelial cells (BEAS-2B) grown at the air-liquid interface were compared. The cells were exposed for one or five days to emissions generated by a Euro 5 direct injection spark ignition engine. The general condition of the cells was assessed by the measurement of transepithelial electrical resistance and mucin production. The cytotoxic effects were evaluated by adenylate kinase (AK) and lactate dehydrogenase (LDH) activity. Phosphorylation of histone H2AX was used to detect double-stranded DNA breaks. The expression of the selected 370 relevant genes was analyzed using next-generation sequencing. The exposure had minimal effects on integrity and AK leakage in both cell models. LDH activity and mucin production in BEAS-2B cells significantly increased after longer exposures; DNA breaks were also detected. The exposure affected CYP1A1 and HSPA5 expression in MucilAirTM. There were no effects of this kind observed in BEAS-2B cells; in this system gene expression was rather affected by the time of treatment. The type of cell model was the most important factor modulating gene expression. In summary, the biological effects of complete emissions exposure were weak. In the specific conditions used in this study, the effects observed in BEAS-2B cells were induced by the exposure protocol rather than by emissions and thus this cell line seems to be less suitable for analyses of longer treatment than the 3D model.
Collapse
Affiliation(s)
- Pavel Rossner
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Tereza Cervena
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic
| | - Michal Vojtisek-Lom
- Center of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00 Prague, Czech Republic; (M.V.-L.); (V.B.)
| | - Kristyna Vrbova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Antonin Ambroz
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Zuzana Novakova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Fatima Elzeinova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Hasmik Margaryan
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Vit Beranek
- Center of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00 Prague, Czech Republic; (M.V.-L.); (V.B.)
| | - Martin Pechout
- Department of Vehicles and Ground Transport, Czech University of Life Sciences in Prague, Kamycka 129, 165 21 Prague, Czech Republic; (M.P.); (D.M.)
| | - David Macoun
- Department of Vehicles and Ground Transport, Czech University of Life Sciences in Prague, Kamycka 129, 165 21 Prague, Czech Republic; (M.P.); (D.M.)
| | - Jiri Klema
- Department of Computer Science, Czech Technical University in Prague, 12135 Prague, Czech Republic;
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Miroslav Ciganek
- Department of Chemistry and Toxicology, Veterinary Research Institute, 621 00 Brno, Czech Republic;
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| |
Collapse
|
26
|
An Updated Overview of Metabolomic Profile Changes in Chronic Obstructive Pulmonary Disease. Metabolites 2019; 9:metabo9060111. [PMID: 31185592 PMCID: PMC6631716 DOI: 10.3390/metabo9060111] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a common and heterogeneous respiratory disease, is characterized by persistent and incompletely reversible airflow limitation. Metabolomics is applied to analyze the difference of metabolic profile based on the low-molecular-weight metabolites (<1 kDa). Emerging metabolomic analysis may provide insights into the pathogenesis and diagnosis of COPD. This review aims to summarize the alteration of metabolites in blood/serum/plasma, urine, exhaled breath condensate, lung tissue samples, etc. from COPD individuals, thereby uncovering the potential pathogenesis of COPD according to the perturbed metabolic pathways. Metabolomic researches have indicated that the dysfunctions of amino acid metabolism, lipid metabolism, energy production pathways, and the imbalance of oxidations and antioxidations might lead to local and systematic inflammation by activating the Nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway and releasing inflammatory cytokines, like interleutin-6 (IL-6), tumor necrosis factor-α, and IL-8. In addition, they might cause protein malnutrition and oxidative stress and contribute to the development and exacerbation of COPD.
Collapse
|