1
|
Singh PK, Kumar BS, Nandi S, Gupta PSP, Mondal S. αCypermethrin-Induced Biochemical and Molecular Cascades Underlying Ovine Ovarian Granulosa Cell Dysfunctions. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39676339 DOI: 10.1002/tox.24459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/30/2024] [Accepted: 09/17/2024] [Indexed: 12/17/2024]
Abstract
The present study was conducted to evaluate the impact of α-Cypermethrin (αCYP), the second most commonly used pesticide in India, on the ovine ovarian granulosa cells (GCs) viability, growth, apoptosis, and steroidogenesis. GCs collected from abattoir-derived ovine ovaries were cultured for 3/6 days in the presence of various concentrations of αCYP (0, 1, 10, 25, 50, and 100 μM). The results revealed a binary effect on GCs, where metabolic activity and viability rates were significantly (p < 0.05) lower from 25 μM onwards. Estrogen concentration was significantly low from the 1 μM dose, whereas progesterone concentration showed a significant increase (10 μM) in the spent media of cultured GCs. The cytotoxicity in the GCs exposed to αCYP revealed significant changes in LDH, ROS, CUPRAC, and GST activity (all at 25 μM) and MDA (at 10 μM) compared to those observed in the control group. The gene expression profiles of cultured GCs showed a significant up-regulation of CYP11A1, FSHR (all at 1 μM), StAR, BAX, and CASP3 (all at 10 μM), 3βHSD1 (at 25 μM), and significant down-regulation of CYP17A1 and ERS2 (all at 25 μM), CYP19A1 and 17βHSD (all at 1 μM), ESR1 and BCL2 (all at 10 μM) in comparison to those observed in control groups. The results of the present experiment demonstrated that αCYP affected the growth and functional parameters of GCs, the expression of steroid hormone-associated genes, and hormone secretion.
Collapse
Affiliation(s)
- Poonam Kumari Singh
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | | | - Sumanta Nandi
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | | | - Sukanta Mondal
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| |
Collapse
|
2
|
Ventura-Hernández KI, Delgado-Alvarado E, Pawar TJ, Olivares-Romero JL. Chirality in Insecticide Design and Efficacy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20722-20737. [PMID: 39255417 DOI: 10.1021/acs.jafc.4c05363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Chirality plays a crucial role in the design and efficacy of insecticides, significantly influencing their biological activity, selectivity, and environmental impact. Recent advancements in chiral insecticides have focused on enhancing their effectiveness, reducing toxicity to nontarget organisms, and improving environmental sustainability. This review provides a comprehensive overview of the current state of knowledge on chiral insecticides, including neonicotinoids, isoxazolines, and sulfiliminyls. We discuss the stereochemistry, synthetic development, mode of action, and environmental fate of these compounds. The review highlights the importance of chirality in optimizing insecticidal properties and underscores the need for continued research into novel chiral compounds and advanced synthesis technologies. By understanding the role of chirality, we can develop more effective and environmentally friendly insecticides for sustainable pest management.
Collapse
Affiliation(s)
- Karla Irazú Ventura-Hernández
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Xalapa, Veracruz, México CP 91073
- Instituto de Química Aplicada, Universidad Veracruzana, Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa-Enríquez, Veracruz, México 91190
| | - Enrique Delgado-Alvarado
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Blvd. Av. Ruiz Cortines No. 455 Fracc. Costa Verde, Boca del Río, Veracruz, México 94294
| | - Tushar Janardan Pawar
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Xalapa, Veracruz, México CP 91073
| | - José Luis Olivares-Romero
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Xalapa, Veracruz, México CP 91073
| |
Collapse
|
3
|
Jeong DH, Jung DW, Lee HS. Confirmation of the steroid hormone receptor-mediated endocrine disrupting potential of fenvalerate following the Organization for Economic Cooperation and Development test guidelines, and its estrogen receptor α-dependent effects on lipid accumulation. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109955. [PMID: 38844189 DOI: 10.1016/j.cbpc.2024.109955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
In this study, we focused on confirming the steroid hormone receptor-mediated endocrine-disrupting potential of the pyrethroid insecticide fenvalerate and unraveling the underlying mechanisms. Therefore, we assessed estrogen receptor-α (ERα)- and androgen receptor (AR)-mediated responses in vitro using a hormone response element-dependent transcription activation assay with a luciferase reporter following the Organization for Economic Cooperation and Development (OECD) test guidelines. We observed that fenvalerate acted as estrogen by inducing the translocation of cytosolic ERα to the nucleus via ERα dimerization, whereas it exhibited no AR-mediated androgen response element-dependent luciferase activity. Furthermore, we confirmed that fenvalerate-induced activation of ERα caused lipid accumulation, promoted in a fenvalerate-dependent manner in 3 T3-L1 adipocytes. Moreover, fenvalerate-induced lipid accumulation was inhibited in the presence of an ERα-selective antagonist, whereas it remained unaffected in the presence of a glucocorticoid receptor (GR)-specific inhibitor. In addition, fenvalerate was found to stimulate the expression of transcription factors that promote lipid accumulation in 3 T1-L1 adipocytes, and co-treatment with an ERα-selective antagonist suppressed adipogenic/ lipogenic transcription factors at both mRNA and protein levels. These findings suggest that fenvalerate exposure may lead to lipid accumulation by interfering with ERα activation-dependent processes, thus causing an ERα-mediated endocrine-disrupting effect.
Collapse
Affiliation(s)
- Da-Hyun Jeong
- GreenTech-based Food Safety Research Group, BK21 Four, Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Da-Woon Jung
- GreenTech-based Food Safety Research Group, BK21 Four, Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hee-Seok Lee
- GreenTech-based Food Safety Research Group, BK21 Four, Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea; Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
4
|
He F, Mu X, Zhang Y, Wang Y, Geng J, Geng Y, Ma Y, Yin X, Gao R, Chen X, He J. Late gestational exposure to fenvalerate impacts ovarian reserve in neonatal mice via YTHDF2-mediated P-body assembly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171790. [PMID: 38508253 DOI: 10.1016/j.scitotenv.2024.171790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Fenvalerate (FEN), a type II pyrethroid pesticide, finds extensive application in agriculture, graziery and public spaces for pest control, resulting in severe environmental pollution. As an environmental endocrine disruptor with estrogen-like activity, exposure to FEN exhibited adverse effects on ovarian functions. Additionally, the presence of the metabolite of FEN in women's urine shows a positive association with the risk of primary ovarian insufficiency (POI). In mammals, the primordial follicle pool established during the early life serves as a reservoir for storing all available oocytes throughout the female reproductive life. The initial size of the primordial follicle pool and the rate of its depletion affect the occurrence of POI. Nevertheless, there is very limited research about the impact of FEN exposure on primordial folliculogenesis. In this study, pregnant mice were orally administrated with 0.2, 2.0 and 20.0 mg/kg FEN from 16.5 to 18.5 days post-coitus (dpc). Ovaries exposed to FEN exhibited the presence of large germ-cell cysts that persist on 1 days post-parturition (1 dpp), followed by a significant reduction in the total number of oocytes in pups on 5 dpp. Moreover, the levels of m6A-RNA and its associated proteins METTL3 and YTHDF2 were significantly increased in the ovaries exposed to FEN. The increased YTHDF2 promoted the assembly of the cytoplasmic processing bodies (P-body) in the oocytes, accompanied with altered expression of transcripts. Additionally, when YTHDF2 was knocked-down in fetal ovary cultures, the primordial folliculogenesis disrupted by FEN exposure was effectively restored. Further, the female offspring exposed to FEN displayed ovarian dysfunctions reminiscent of POI in early adulthood, characterized by decreases in ovarian coefficient and female hormone levels. Therefore, the present study revealed that exposure to FEN during late pregnancy disrupted primordial folliculogenesis by YTHDF2-mediated P-body assembly, causing enduring adverse effects on female fertility.
Collapse
Affiliation(s)
- Fei He
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; School of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yan Zhang
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Yongheng Wang
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; School of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Jianwei Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; School of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; School of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yidan Ma
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Yin
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Rufei Gao
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Xuemei Chen
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Junlin He
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
5
|
Alotaibi BS, Abdel-Rahman Mohamed A, Abd-Elhakim YM, Noreldin AE, Elhamouly M, Khamis T, El-Far AH, Alosaimi ME, Dahran N, Alqahtani LS, Nicotra M, El-Gamal M, Di Cerbo A. Exploring the link between pyrethroids exposure and dopaminergic degeneration through morphometric, immunofluorescence, and in-silico approaches: the therapeutic role of chitosan-encapsulated curcumin nanoparticles. Front Pharmacol 2024; 15:1388784. [PMID: 38751787 PMCID: PMC11094265 DOI: 10.3389/fphar.2024.1388784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction: The synthetic pyrethroid derivative fenpropathrin (FNE), a commonly used insecticide, has been associated with various toxic effects in mammals, particularly neurotoxicity. The study addressed the hallmarks of the pathophysiology of Parkinson's disease upon oral exposure to fenpropathrin (FNE), mainly the alteration of dopaminergic markers, oxidative stress, and molecular docking in rat models. In addition, the protective effect of curcumin-encapsulated chitosan nanoparticles (CRM-Chs-NPs) was also assessed. Methods: In a 60-day trial, 40 male Sprague Dawley rats were divided into 4 groups: Control, CRM-Chs-NPs (curcumin-encapsulated chitosan nanoparticles), FNE (15 mg/kg bw), and FNE + CRM-Chs-NPs. Results: FNE exposure induced reactive oxygen species generation, ATP production disruption, activation of inflammatory and apoptotic pathways, mitochondrial function and dynamics impairment, neurotransmitter level perturbation, and mitophagy promotion in rat brains. Molecular docking analysis revealed that FNE interacts with key binding sites of dopamine synthesis and transport proteins. On the other hand, CRM-Chs-NPs mitigated FNE's toxic effects by enhancing mitochondrial dynamics, antioxidant activity, and ATP production and promoting anti-inflammatory and antiapoptotic responses. Conclusion: In summary, FNE appears to induce dopaminergic degeneration through various mechanisms, and CRM-Chs-NPs emerged as a potential therapeutic intervention for protecting the nervous tissue microenvironment.
Collapse
Affiliation(s)
- Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed E. Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Moustafa Elhamouly
- Cytology and Histology Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Manal E. Alosaimi
- Department of Basic Health Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mario Nicotra
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Mohamed El-Gamal
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Biological Sciences, Faculty of Science, New Mansoura University, New Mansoura City, Egypt
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| |
Collapse
|
6
|
Zhu Q, Li Y, Ma J, Ma H, Liang X. Potential factors result in diminished ovarian reserve: a comprehensive review. J Ovarian Res 2023; 16:208. [PMID: 37880734 PMCID: PMC10598941 DOI: 10.1186/s13048-023-01296-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
The ovarian reserve is defined as the quantity of oocytes stored in the ovary or the number of oocytes that can be recruited. Ovarian reserve can be affected by many factors, including hormones, metabolites, initial ovarian reserve, environmental problems, diseases, and medications, among others. With the trend of postponing of pregnancy in modern society, diminished ovarian reserve (DOR) has become one of the most common challenges in current clinical reproductive medicine. Attributed to its unclear mechanism and complex clinical features, it is difficult for physicians to administer targeted treatment. This review focuses on the factors associated with ovarian reserve and discusses the potential influences and pathogenic factors that may explain the possible mechanisms of DOR, which can be improved or built upon by subsequent researchers to verify, replicate, and establish further study findings, as well as for scientists to find new treatments.
Collapse
Affiliation(s)
- Qinying Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jianhong Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hao Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, No.1, Donggangxi Rd, Chengguan District, 730000, Lanzhou, China.
| |
Collapse
|
7
|
Allethrin Promotes Apoptosis and Autophagy Associated with the Oxidative Stress-Related PI3K/AKT/mTOR Signaling Pathway in Developing Rat Ovaries. Int J Mol Sci 2022; 23:ijms23126397. [PMID: 35742842 PMCID: PMC9224321 DOI: 10.3390/ijms23126397] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
The increased concern regarding the reduction in female fertility and the impressive numbers of women undergoing fertility treatment support the existence of environmental factors beyond inappropriate programming of developing ovaries. Among these factors are pyrethroids, which are currently some of the most commonly used pesticides worldwide. The present study was performed to investigate the developmental effects of the pyrethroid-based insecticide allethrin on ovarian function in rat offspring in adulthood. We mainly focused on the roles of oxidative stress, apoptosis, autophagy and the related pathways in ovarian injury. Thirty-day-old Wistar albino female rats were intragastrically administered 0 (control), 34.2 or 68.5 mg/kg body weight allethrin after breeding from Day 6 of pregnancy until delivery. We found that allethrin-induced ovarian histopathological damage was accompanied by elevations in oxidative stress and apoptosis. Interestingly, the number of autophagosomes in allethrin-treated ovaries was higher, and this increase was correlated with the upregulated expression of genes and proteins related to the autophagic marker LC-3. Furthermore, allethrin downregulated the expression of PI3K, AKT and mTOR in allethrin-treated ovaries compared with control ovaries. Taken together, the findings of this study suggest that exposure to the pyrethroid-based insecticide allethrin adversely affects both the follicle structure and function in rat offspring during adulthood. Specifically, allethrin can induce excessive oxidative stress and defective autophagy-related apoptosis, probably through inactivation of the PI3K/AKT/mTOR signaling pathway, and these effects may contribute to ovarian dysfunction and impaired fertility in female offspring.
Collapse
|
8
|
Zhou X, Lei D, Tang J, Wu M, Ye H, Zhang Q. Whole genome sequencing and analysis of fenvalerate degrading bacteria Citrobacter freundii CD-9. AMB Express 2022; 12:51. [PMID: 35523901 PMCID: PMC9076782 DOI: 10.1186/s13568-022-01392-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
Citrobacter freundii CD-9 is a Gram-negative bacteria sourced from factory sludge that can use fenvalerate as its sole carbon source and has a broad degradation spectrum for pyrethroid pesticides. The whole genome of CD-9 sequenced using Illumina HiSeq PE150 was reported in this study. The CD-9 genome size was 5.33 Mb and the G + C content was 51.55%. A total of 5291 coding genes, 9 5s-rRNA, and 79 tRNA were predicted bioinformatically. 3586 genes annotated to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database that can be involved in 173 metabolic pathways, including various microbial metabolic pathways that degrade exogenous chemicals, especially those that degrade aromatic compounds, and also produce a variety of bioactive substances. Fifty genes related to pyrethroid degradation were identified in the C. freundii CD-9 genome, including 9 dioxygenase, 25 hydrolase, and 16 esterase genes. Notably, RT-qPCR results showed that from the predicted 13 genes related to fenvalerate degradation, the expression of six genes, including esterase, HAD family hydrolase, lipolytic enzyme, and gentisic acid dioxygenase, was induced in the presence of fenvalerate. In this study, the key genes and degradation mechanism of C. freundii CD-9 were analyzed and the results provide scientific evidence to support its application in environmental bioremediation. It can establish application models for different environmental pollution management by constructing genetically engineered bacteria for efficient fenvalerate or developing enzyme formulations that can be industrially produced.
Collapse
|
9
|
Radwan P, Wielgomas B, Radwan M, Krasiński R, Kilanowicz-Sapota A, Banaszczyk R, Jurewicz J. Synthetic Pyrethroids Exposure and Embryological Outcomes: A Cohort Study in Women from Fertility Clinic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095117. [PMID: 35564520 PMCID: PMC9100335 DOI: 10.3390/ijerph19095117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Pyrethroids exposure has been associated with adverse reproductive outcome. However, there is no study that explores the effect of environmental exposure and embryological outcomes. This question was addressed in a prospective cohort of couples undergoing fertility treatment. The study aims to assess the association between urinary metabolites of synthetic pyrethroids and embryological outcomes (MII oocyte count, top quality embryo, fertilization and implantation rate). We included 450 women aged 25−45 undergoing assisted reproductive technology (ART) cycle at Infertility Clinic in Poland. Urine samples were collected at the time of fertility procedure(s) to assess four urinary synthetic pyrethroids concentrations (3-phenoxybenzoic acid (3PBA), cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-DCCA), trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (trans-DCCA), cis-2,2-dibromovinyl-2,2-dimethylocyclopropane-1-carboxylic acid (DBCA)) using validated gas chromatography ion-tap mass spectrometry and calculated for each cycle-specific metabolite. To evaluate the effect of environmental exposure to synthetic pyrethroids and embryological outcomes (methaphase II (MII) oocyte yield, top quality embryo, fertilization rate, implantation rate), multivariable generalized linear mixed analyses with random intercepts were prepared. Urinary 3-PBA concentrations decrease MII oocyte count (p = 0.007) in the fourth quartile (>75 percentile) compared to women in the first quartile (≤25 percentile). Additionally, when 3-PBA was treated as continuous variable, the negative association between exposure to pyrethroids and MII oocyte count was also observed (p = 0.012). Exposure to other pyrethroid metabolities (CDCCA, TDCCA, DBCA) was not related to any of the examined embryological outcomes. Exposure to synthetic pyrethroids may be associated with poorer embryological outcome among couples seeking fertility treatments. As this is the first study on this topic, the results need to be confirmed in further studies.
Collapse
Affiliation(s)
- Paweł Radwan
- Gameta Health Centre, 7 Cybernetyki St., 02-677 Warsaw, Poland;
- Gameta, Kielce-Regional Science-Technology Centre, 45 Podzamcze St., Chęciny, 26-060 Kielce, Poland
| | - Bartosz Wielgomas
- Department of Toxicology, Medical University of Gdańsk, 107 Hallera St., 80-416 Gdansk, Poland;
| | - Michał Radwan
- Department of Gynecology and Reproduction, Gameta Hospital, 34/36 Rudzka St., 95-030 Rzgow, Poland; (M.R.); (R.K.); (R.B.)
- Faculty of Health Sciences, Mazovian State University in Plock, 2 Dabrowskiego Sq., 09-402 Plock, Poland
| | - Rafał Krasiński
- Department of Gynecology and Reproduction, Gameta Hospital, 34/36 Rudzka St., 95-030 Rzgow, Poland; (M.R.); (R.K.); (R.B.)
| | - Anna Kilanowicz-Sapota
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland;
| | - Renata Banaszczyk
- Department of Gynecology and Reproduction, Gameta Hospital, 34/36 Rudzka St., 95-030 Rzgow, Poland; (M.R.); (R.K.); (R.B.)
| | - Joanna Jurewicz
- Department of Chemical Safety, Nofer Institute of Occupational Medicine, 8 Teresy St., 91-348 Lodz, Poland
- Correspondence:
| |
Collapse
|
10
|
Yang Y, Wang C, Shen H, Fan H, Liu J, Wu N. Cis-bifenthrin inhibits cortisol and aldosterone biosynthesis in human adrenocortical H295R cells via cAMP signaling cascade. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103784. [PMID: 34896276 DOI: 10.1016/j.etap.2021.103784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Cis-bifenthrin (cis-BF) is a common-used pyrethroid insecticide frequently detected in environmental and biological matrices. Mounting evidence highlights the endocrine disrupting effects of cis-BF due to anti-estrogenic or anti-androgenic activity. However, little is known about the exposure effects of cis-BF on adrenal cortex function. In this study, effects of cis-BF on biosynthesis of adrenal steroids, as well as the potential mechanisms were investigated in human adrenocortical carcinoma (H295R) cells. Cis-BF decreased basal production levels of cortisol and aldosterone, as well as cAMP-induced production of cortisol. Both he basal and cAMP-stimulated transcriptional levels of several steroidogenic genes were significantly down-regulated by cis-BF. As an important rate-limiting enzyme in steroidogenesis, the protein level of StAR was prohibited by cis-BF on both basal and cAMP-induced conditions. Intracellular level of cAMP was significantly reduced by cis-BF. Overall, these data suggest that cis-BF may inhibit the biosynthesis of cortisol and aldosterone via disrupting cAMP signaling cascade.
Collapse
Affiliation(s)
- Ye Yang
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China.
| | - Chunlei Wang
- Department of Public Health, Yu Hang No.2 People's Hospital, Hangzhou 311100, China
| | - Hong Shen
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Hongliang Fan
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Jing Liu
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nanxiang Wu
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| |
Collapse
|
11
|
Chronic exposure to low concentrations of chlorpyrifos affects normal cyclicity and histology of the uterus in female rats. Food Chem Toxicol 2021; 156:112515. [PMID: 34400204 DOI: 10.1016/j.fct.2021.112515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/15/2023]
Abstract
Chlorpyrifos (CPF), the most used insecticide in Argentina, can act as an endocrine disruptor at low doses. We previously demonstrated that chronic exposure to CPF induces hormonal imbalance in vivo. The aim of this work was to study the effects of low concentrations of CPF (0.01 and 1 mg/kg/day) on the reproductive system of virgin adult rats. In the ovary, we studied the effects of CPF on steroidogenesis by determining steroid hormone content by RIA and CYP11 and CYP19 enzyme expression by qRT-PCR. The estrous cycle was evaluated by microscopic observation of vaginal smear, as well as by changes in uterine histology. In endometrium, we determined the fractal dimension and expression of PCNA, ERα and PR by IHC. Our results showed that chronic exposure to CPF affects ovarian steroid synthesis, causing alterations in the normal cyclicity of animals. In addition, CPF induced proliferative changes in the uterus, suggesting that it could affect reproduction or act as a risk factor in the development of uterine proliferative pathologies.
Collapse
|
12
|
Abstract
Human and animal welfare primarily depends on the availability of food and surrounding environment. Over a century and half, the quest to identify agents that can enhance food production and protection from vector borne diseases resulted in the identification and use of a variety of pesticides, of which the pyrethroid based ones emerged as the best choice. Pesticides while improved the quality of life, on the other hand caused enormous health risks. Because of their percolation into drinking water and food chain and usage in domestic settings, humans unintentionally get exposed to the pesticides on a daily basis. The health hazards of almost all known pesticides at a variety of doses and exposure times are reported. This review provides a comprehensive summation on the historical, epidemiological, chemical and biological (physiological, biochemical and molecular) aspects of pyrethroid based insecticides. An overview of the available knowledge suggests that the synthetic pyrethroids vary in their chemical and toxic nature and pose health hazards that range from simple nausea to cancers. Despite large number of reports, studies that focused on identifying the health hazards using doses that are equivalent or relevant to human exposure are lacking. It is high time such studies are conducted to provide concrete evidence on the hazards of consuming pesticide contaminated food. Policy decisions to decrease the residual levels of pesticides in agricultural products and also to encourage organic farming is suggested.
Collapse
Affiliation(s)
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| |
Collapse
|
13
|
Wu Y, Jiao Z, Wan Z, Qu S. Role of autophagy and oxidative stress to astrocytes in fenpropathrin-induced Parkinson-like damage. Neurochem Int 2021; 145:105000. [PMID: 33617931 DOI: 10.1016/j.neuint.2021.105000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/31/2021] [Accepted: 02/15/2021] [Indexed: 11/17/2022]
Abstract
Fenpropathrin is an insecticide that is widely used in agriculture. It remains unknown whether fenpropathrin exposure increases the risk of Parkinson's disease. We found that fenpropathrin increased oxidative stress both in vitro and in vivo. Additionally, fenpropathrin increased production of ROS, NOS2, and HO-1, and decreased SOD and GSH in astrocytes. We further found that fenpropathrin-mediated oxidative stress might inhibit autophagic flow, including decreased expression of LC3A/B and enhanced expression of SQSTM1 via down-regulation of CDK-5, an upstream marker of autophagy. In mice, autophagy was slightly different from that found in astrocytes, as reflected in the increased expressions of LC3A/B and SQSTM1. Our findings elucidate the toxicological phenomena and pathogenic mechanisms of fenpropathrin and may provide guidance for improved pesticide control and environmental protection.
Collapse
Affiliation(s)
- Yixuan Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong, 510515, China; School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhigang Jiao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong, 510515, China; School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhiting Wan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
14
|
Lu J, Wu Q, Yang Q, Li G, Wang R, Liu Y, Duan C, Duan S, He X, Huang Z, Peng X, Yan W, Jiang J. Molecular mechanism of reproductive toxicity induced by beta-cypermethrin in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108894. [PMID: 32949816 DOI: 10.1016/j.cbpc.2020.108894] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
Beta-cypermethrin, a type II synthetic pyrethroid insecticide, is widely used in pest control. Several studies have demonstrated that beta-cypermethrin can affect the reproductive system of mammals. However, there is still a scarcity of information about the reproductive toxicity to fish induced by beta-cypermethrin and its molecular mechanism. Therefore, this study was conducted to address this scientific question, in which the adult zebrafish were exposed to 0 (blank control), 0 (acetone solvent control), 0.1, 0.5, and 2.5 μg/L of beta-cypermethrin for 21 days. A decrease in cumulative egg production of zebrafish was observed, indicating that beta-cypermethrin had a negative impact on reproductive capacity of zebrafish. Regarding the histomorphological analysis of gonads, the delay of gonadal development was observed after exposure for 21 days. In addition, significant changes in plasma 17β-estradiol (E2) and testosterone (T) were found in zebrafish. Further exploration showed that the transcription levels of hypothalamic-pituitary-gonadal (HPG) axis-related genes were remarkably changed, which corresponded well with the alterations of hormone levels. These results demonstrated that beta-cypermethrin might have an adverse effect on the reproduction system of zebrafish through delaying gonadal development, disturbing sex hormone secretion, and affecting HPG axis gene expression. This study suggests that beta-cypermethrin poses a potential threat to the reproduction of fish populations, and the toxicity assessment of beta-cypermethrin plays a vital role in the environmental risk assessment of pesticides.
Collapse
Affiliation(s)
- Juanli Lu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Cihu Road, Huangshigang District, Huangshi 435002, China
| | - Qing Yang
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiqi Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingxin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Cunyu Duan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyun Duan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuanyi He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuo Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xitian Peng
- Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wei Yan
- Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
15
|
Yang Y, Huang W, Yuan L. Effects of Environment and Lifestyle Factors on Premature Ovarian Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:63-111. [PMID: 33523430 DOI: 10.1007/978-981-33-4187-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Premature ovarian insufficiency (POI) or primary ovarian failure is defined as a cessation of the menstrual cycle in women younger than 40 years old. It is strictly defined as more than 4 months of oligomenorrhea or amenorrhea in a woman <40 years old, associated with at least two follicle-stimulating hormone (FSH) levels >25 U/L in the menopausal range, detected more than 4 weeks apart. It is estimated that POI was affected 1 and 2% of women. Although 80% of POI cases are of unknown etiology, it is suggested that genetic disorder, autoimmune origin, toxins, and environmental factors, as well as personal lifestyles, may be risk factors of developing POI. In this section, we will discuss the influences of environmental and lifestyle factors on POI. Moreover updated basic research findings regarding how these environmental factors affect female ovarian function via epigenetic regulations will also be discussed.
Collapse
Affiliation(s)
- Yihua Yang
- Guangxi Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Weiyu Huang
- Guangxi Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lifang Yuan
- Guangxi Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
16
|
Jurewicz J, Radwan P, Wielgomas B, Radwan M, Karwacka A, Kałużny P, Piskunowicz M, Dziewirska E, Hanke W. Exposure to pyrethroid pesticides and ovarian reserve. ENVIRONMENT INTERNATIONAL 2020; 144:106028. [PMID: 32795752 DOI: 10.1016/j.envint.2020.106028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/09/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Synthetic pyretroids are among the most common pesticides currently used worldwide. Animal studies suggest that exposure to pyrethroids could dysregulated the function of the ovary, mainly follicular development and/or synthesis of the reproductive hormone. Nevertheless data regarding the effect of exposure on female ovarian function is limited. So the aim of the present study is to assess the effect of exposure to synthetic pyrethroids on ovarian reserve. MATERIALS AND METHODS The study population consists of 511 females aged 25-39 years attending infertility clinics for diagnostic purposes, because of couples' infertility. Validated gas chromatography ion-tap mass spectrometry method was used to assess the urinary concentrations of pyrethroid metabolites (CDDCA (cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid), TDDCA (trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid), 3PBA (3-phenoxybenzoic acid) and DBCA (cis-2,2-dibromovinyl-2,2-dimethylcyclopropane-1-carboxylic acid)). Ovarian reserve was assessed using parameters of ovarian reserve (antral follicle count and concentrations of hormones: AMH (anti-Mullerian hormone), FSH (follicle stimulating hormone) and E2 (estradiol)). RESULTS In the present analysis the association was found between urinary concentrations of 3-PBA and levels of AMH (p = 0.03), FSH (p = 0.04) and antral follicle count (p = 0.02). Urinary level of CDCCA, TDCCA and DBCA was not associated with any examined parameters of ovarian reserve. CONCLUSIONS Synthetic pyrethroids may affect female ovarian reserve. As this is the first, preliminary study the results need confirmation in a further detailed investigations.
Collapse
Affiliation(s)
- Joanna Jurewicz
- Department of Chemical Safety, Nofer Institute of Occupational Medicine, 8 Teresy St, 91-362 Lodz, Poland.
| | - Paweł Radwan
- "Gameta", 7 Cybernetyki St, 02-677 Warsaw, Poland; "Gameta", Kielce-Regional Science-Technology Centre, 45 Podzamcze St, 26-060 Chęciny, Poland
| | - Bartosz Wielgomas
- Department of Toxicology, Medical University of Gdańsk, 107 Hallera St, Gdańsk, Poland.
| | - Michał Radwan
- Department of Gynecology and Reproduction, "Gameta" Hospital, 34/36 Rudzka St, 95-030 Rzgów, Poland; Faculty of Health Sciences, The State University of Applied Sciences in Plock, 2 Dabrowskiego Sq, 09-402 Plock, Poland
| | | | - Paweł Kałużny
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, 8 Teresy St, 91-362 Lodz, Poland
| | - Marta Piskunowicz
- Department of Toxicology, Medical University of Gdańsk, 107 Hallera St, Gdańsk, Poland
| | - Emila Dziewirska
- Department of Chemical Safety, Nofer Institute of Occupational Medicine, 8 Teresy St, 91-362 Lodz, Poland
| | - Wojciech Hanke
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, 8 Teresy St, 91-362 Lodz, Poland
| |
Collapse
|
17
|
Sharma A, Shukla A, Attri K, Kumar M, Kumar P, Suttee A, Singh G, Barnwal RP, Singla N. Global trends in pesticides: A looming threat and viable alternatives. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110812. [PMID: 32512419 DOI: 10.1016/j.ecoenv.2020.110812] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Pesticides are widely used chemical compounds in agriculture to destroy insects, pests and weeds. In modern era, they form an indispensable part of agricultural and health practices. Globally, nearly 3 billion kg of pesticides are used every year with a budget of ~40 billion USD. This extensive usage has increased the crop yield as well as led to significant reduction in harvest losses and thereby, enhanced food availability. On the other hand, indiscriminate usage of these chemicals has led to several environmental implications and caused adverse effects on human health. Epidemiological evidences have revealed the harmful effects of pesticides exposure on various organs including liver, brain, lungs and colon. Recent investigations have shown that pesticides can also lead to fatal consequences such as cancer among individuals. These chemicals enter ecosystem, thus hampering the sensitive environmental equilibrium through bio-accumulation. Due to their non-biodegradable nature, they can persist in nature for years and are regarded as potent biohazard. Worldwide, very few surveillance methods have been considered, which can bring awareness among the individuals, therefore the present review is an attempt to delineate consequences induced by various types of pesticide exposure on the environment. Further, the prospective of biopesticides use could facilitate the increase of crop production without compromising human health.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, 160014, India; UIPS, Panjab University, Chandigarh, 160014, India
| | - Ananya Shukla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India; Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Kriti Attri
- Department of Biophysics, Panjab University, Chandigarh, 160014, India; Biological Sciences, Indian Institute of Science Education and Research, Mohali, 140306, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, 151001, India
| | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Gurpal Singh
- UIPS, Panjab University, Chandigarh, 160014, India
| | | | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
18
|
Babeľová J, Šefčíková Z, Čikoš Š, Kovaříková V, Špirková A, Pisko J, Koppel J, Fabian D. In vitro exposure to pyrethroid-based products disrupts development of mouse preimplantation embryos. Toxicol In Vitro 2019; 57:184-193. [DOI: 10.1016/j.tiv.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
|
19
|
Ye X, Liu J. Effects of pyrethroid insecticides on hypothalamic-pituitary-gonadal axis: A reproductive health perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:590-599. [PMID: 30476888 DOI: 10.1016/j.envpol.2018.11.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Pyrethroids, a class of ubiquitous insecticides, have been recognized as endocrine-disrupting chemicals (EDCs). A lot of studies have implied the endocrine-disrupting effects of pyrethroids on the hypothalamic-pituitary-gonadal (HPG) axis. However, there are few review articles regarding the effects of pyrethroids on the HPG axis of mammal and human, especially new research progress made in this area. The present review sums up the effects of pyrethroids on the HPG axis-related reproductive outcomes, including epidemiological investigations based on human biomonitoring, animal studies and in vitro tests. Mechanisms have described that the endocrine-disrupting effects of pyrethroids on mammal can be mediated via the interaction with steroid receptors, the direct action on ion channels and signaling molecules. Finally, we summarize the current research gaps and suggest future directions in this topic.
Collapse
Affiliation(s)
- Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Hu Y, Ji L, Zhang Y, Shi R, Han W, Tse LA, Pan R, Wang Y, Ding G, Xu J, Zhang Q, Gao Y, Tian Y. Organophosphate and Pyrethroid Pesticide Exposures Measured before Conception and Associations with Time to Pregnancy in Chinese Couples Enrolled in the Shanghai Birth Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:077001. [PMID: 30044228 PMCID: PMC6108871 DOI: 10.1289/ehp2987] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Pesticides have been associated with reproductive disorders, but there is limited research on pesticide exposures and human fertility. OBJECTIVE We aimed to investigate the effects of preconception exposure to pesticides on time to pregnancy (TTP) and on infertility in a general population of couples planning to become pregnant in Shanghai, China. METHOD A total of 615 women who were planning a pregnancy were enrolled before conception and were prospectively followed for 1 y to observe their TTP. Preconception pesticide exposures were assessed by measuring urinary metabolites of organophosphates (OPs) and pyrethroids (PYRs). Fecundability odds ratios (FORs) and odds ratios (ORs) of infertility were estimated using Cox and logistic regression models, respectively. All analyses were repeated after restricting the sample to nulliparous women (n=569). RESULTS After adjusting for age, prepregnancy BMI, current smoking, education, annual household income, age at menarche, and two items from the Perceived Stress Scale (PSS-10), women in the highest quartile of diethylthiophosphate (DETP; an OP metabolite) had significantly longer TTP [adjusted FOR=0.68 (95% CI: 0.51, 0.92)] and increased infertility [adjusted OR=2.17 (95% CI: 1.19, 3.93)] compared with women in the lowest quartile. The highest versus lowest quartile of 3-phenoxybenzoic acid (3PBA; a PYR metabolite) was associated with longer TTP and infertility, with significant associations in nulliparous women [adjusted FOR=0.72 (95% CI: 0.53, 0.98); adjusted OR for infertility=2.03 (95% CI: 1.10, 3.74)]. CONCLUSION Our study provides some of the first evidence that preconception OP and PYR exposures are associated with decreased fertility in Chinese couples. Given that OPs and PYRs are rapidly metabolized in humans, more studies are needed to confirm our findings. https://doi.org/10.1289/EHP2987.
Collapse
Affiliation(s)
- Yi Hu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Ji
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenchao Han
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lap Ah Tse
- Division of Occupational and Environmental Health, Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rui Pan
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guodong Ding
- Department of Pediatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Xu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingying Zhang
- Obstetrical Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | |
Collapse
|
21
|
Li C, Cao M, Ma L, Ye X, Song Y, Pan W, Xu Z, Ma X, Lan Y, Chen P, Liu W, Liu J, Zhou J. Pyrethroid Pesticide Exposure and Risk of Primary Ovarian Insufficiency in Chinese Women. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3240-3248. [PMID: 29444570 DOI: 10.1021/acs.est.7b06689] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pyrethroids are a class of widely used insecticides. Female animal studies suggested that pyrethroid exposure impaired ovarian function, which resulted in similar symptoms of primary ovarian insufficiency (POI). However, it is still unknown whether this association applies to women. In this case-control study, a total of 172 POI patients and 247 control women were recruited in Zhejiang, China. The urinary concentrations of metabolites of pyrethroids, 3-phenoxybenzoic acid (3-PBA) and 4-fluoro-3-phenoxybenzoic acid (4-F-3-PBA), as well as the serum concentrations of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and anti-Mullerian hormone (AMH) were determined. The associations of pyrethroid metabolites with POI and POI-related hormones were accessed using unconditional logistic regression. Higher urinary levels of 3-PBA were significantly associated with increased risk of POI [adjusted odds ratio (OR) = 2.344, 95% CI: 1.193-4.607 for the highest vs lowest quartile of 3-PBA, p = 0.013]. Stratified analyses showed that each log increase in urinary 3-PBA concentration was significantly associated with an induction in odds of 51.0% being in the highest quartile of FSH and 28.6% being in the highest quartile of LH levels, whereas a 25.9% reduction in odds of being in the highest quartile of AMH levels (All p for trend <0.05). To our knowledge, this is the first case-control study to report an association of pyrethroid exposure with increased risk of POI in women.
Collapse
Affiliation(s)
- Chunming Li
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine , Zhejiang University , Hangzhou 310006 , China
| | - Miaofeng Cao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Linjuan Ma
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine , Zhejiang University , Hangzhou 310006 , China
| | - Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Yang Song
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine , Zhejiang University , Hangzhou 310006 , China
| | - Wuye Pan
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Zhengfen Xu
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine , Zhejiang University , Hangzhou 310006 , China
| | - Xiaochen Ma
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Yibing Lan
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine , Zhejiang University , Hangzhou 310006 , China
| | - Peiqiong Chen
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine , Zhejiang University , Hangzhou 310006 , China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
- Research Center for Air Pollution and Health , Zhejiang University , Hangzhou 310058 , China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
- Research Center for Air Pollution and Health , Zhejiang University , Hangzhou 310058 , China
| | - Jianhong Zhou
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine , Zhejiang University , Hangzhou 310006 , China
| |
Collapse
|
22
|
Al-Hamdani NM, Yajurvedi H. Effect of cypermethrin on the ovarian activity and its impact on fertility and pubertal onset of offspring. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2017. [DOI: 10.1016/j.bjbas.2017.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Aerobic degradation of fenvalerate by a Gram-positive bacterium, Bacillus flexus strain XJU-4. 3 Biotech 2017; 7:320. [PMID: 28955617 DOI: 10.1007/s13205-017-0957-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022] Open
Abstract
Synthetic pyrethroid-fenvalerate-is one of the most widespread toxic pollutants and has adverse effect on living systems. However, little is known about its biotransformation mechanism in different microorganisms. To elucidate the pathway that might be involved in the catabolism of fenvalerate, we used Bacillus flexus strain XJU-4 (3-nitrobenzoate degrading organism) as an ideal fenvalerate degrading bacterium. Thin layer chromatography, high performance liquid chromatography and gas chromatography-mass spectrometry analysis results revealed that 3-phenoxybenzoate, protocatechuate, and catechol are the three main by-products of fenvalerate metabolism. Additionally, the bacterial cell-free enzymes showed the activities of fenvalerate hydrolyzing esterase, 3-phenoxybenzaldehyde dehydrogenase, 3-phenoxybenzoate dioxygenase, phenol hydroxylase, protocatechuate 2,3-dioxygenase and catechol-2,3-dioxygenase. Thus, in strain XJU-4, protocatechuate and catechol were further metabolized through meta-cleavage pathway. Moreover, laboratory-scale soil experiments results suggest that B. flexus strain XJU-4 is a suitable contender for bioremediation of pyrethroid fenvalerate-contaminated sites.
Collapse
|
24
|
Marettova E, Maretta M, Legáth J. Effect of pyrethroids on female genital system. Review. Anim Reprod Sci 2017; 184:132-138. [PMID: 28735887 DOI: 10.1016/j.anireprosci.2017.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022]
Abstract
Pyrethroids have been associated with a range of toxicological effects on various organs in animals.Recent animal studies suggest that neurodevelopmental, reproductive, and immunological effects may result following exposure to some pyrethroids at levels below those that induce overt signs of neurotoxicity. A variety of pyrethroids and their metabolites have the potential to affect the reproductive system. Dose-dependent effects on reproduction are associated with exposure across pyrethroid types. In mammals, permethrin and tetramethrin and cypermethrin have been found to be associated with adverse effects at high doses. Fenvalerate, deltamethrin, cypermethrin, caused morphometric and structural changes in the female genital organs. These pyrethroids affect ovulation, cause atresia of follicles, decrease the number of follicular cells, oocytes and corpora lutea and induce vesicular atrophy of the endometrial glands. The potential hormonal activity of pyrethroids showed that certain pyrethroids and their metabolites have multiple effects on the endocrine system. The level of steroid hormones, such as progesterone and estradiol, was inhibited. The pyrethorids may have the potential to mimic estrogens or to inhibit estrogen action. Some metabolites of pyrethroids, in particular permethrin and cypermethrin, are more likely to interact with the cellular estrogen receptors than the parent pyrethroids. Though several pyrethroids posses low toxicity, some pyrethroids, such as deltamethrin, cypermethrin, fenvalerate and bifenthrin have showed considerable toxicity.
Collapse
Affiliation(s)
- Elena Marettova
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic.
| | - Milan Maretta
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Jaroslav Legáth
- Department of Toxicology and Pharmacy, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| |
Collapse
|
25
|
Wang B, Liu JJ, Wang Y, Fu L, Shen R, Yu Z, Wang H, Chen YH, Zhang C, Meng XH, Xu DX. Maternal Fenvalerate Exposure Induces Fetal Intrauterine Growth Restriction Through Disrupting Placental Thyroid Hormone Receptor Signaling. Toxicol Sci 2017; 157:377-386. [DOI: 10.1093/toxsci/kfx052] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
26
|
Dohlman TM, Jahnke MM, West JK, Phillips PE, Gunn PJ. Effects of label-dose permethrin administration in yearling beef cattle: I. Reproductive function and embryo quality of superovulated heifers. Theriogenology 2016; 85:1528-1533. [DOI: 10.1016/j.theriogenology.2015.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 11/30/2022]
|
27
|
Anti-Müllerian hormone and lifestyle, reproductive, and environmental factors among women in rural South Africa. Epidemiology 2016; 26:429-35. [PMID: 25710247 DOI: 10.1097/ede.0000000000000265] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Few data exist regarding anti-Müllerian hormone, a marker of ovarian reserve, in relation to environmental factors with potential ovarian toxicity. METHODS This analysis included 420 women from Limpopo, South Africa studied in 2010-2011. Women were administered comprehensive questionnaires, and plasma concentrations of anti-Müllerian hormone and dichlorodiphenyltrichloroethane were determined. We used separate multivariable models to examine the associations between natural log-transformed anti-Müllerian hormone concentration (ng/ml) and each of the lifestyle, reproductive, and environmental factors of interest, adjusted for age, body mass index, education, and parity. RESULTS The median age of women was 24 years (interquartile range [IQR] = 22 to 26); the median anti-Müllerian hormone concentration was 3.1 ng/ml (IQR = 2.0 to 6.0). Women who reported indoor residual spraying in homes with painted walls (indicative of exposure to pyrethroids) had 25% lower (95% confidence interval [CI] = -39%, -8%) anti-Müllerian hormone concentrations compared with women who reported no spraying. Little evidence of decreased anti-Müllerian hormone concentrations was observed among women with the highest dichlorodiphenyltrichloroethane levels. Compared with women who used an electric stove, no association was observed among women who cooked indoors over open wood fires. The findings also suggested lower anti-Müllerian hormone concentrations among women who drank coffee (-19% [95% CI = -31%, -5%]) or alcohol (-21% [95% CI = -36%, -3%]). CONCLUSIONS These are among the first data regarding anti-Müllerian hormone concentrations relative to pesticides and indoor air pollution. Our results are suggestive of decreased ovarian reserve associated with exposure to pyrethroid pesticides, which is consistent with laboratory animal data.
Collapse
|
28
|
Han W, Gao L, Li X, Wang L, Yan Y, Che G, Hu B, Lin X, Song M. A fluorescent molecularly imprinted polymer sensor synthesized by atom transfer radical precipitation polymerization for determination of ultra trace fenvalerate in the environment. RSC Adv 2016. [DOI: 10.1039/c6ra11632a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, novel fluorescence molecularly imprinted polymers (FMIPs) were prepared via atom transfer radical precipitation polymerization (ATRPP) for the optical detection of trace fenvalerate (FE).
Collapse
Affiliation(s)
- Wenjuan Han
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- People's Republic of China
| | - Lin Gao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- People's Republic of China
| | - Xiuying Li
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- People's Republic of China
| | - Liang Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- People's Republic of China
| | - Yongsheng Yan
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- People's Republic of China
- School of Chemistry and Chemical Engineering
| | - Guangbo Che
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- People's Republic of China
| | - Bo Hu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- People's Republic of China
| | - Xue Lin
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- People's Republic of China
| | - Minshan Song
- School of Mathematics and Physics
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- People's Republic of China
| |
Collapse
|
29
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1338] [Impact Index Per Article: 133.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
30
|
Xia D, Parvizi N, Zhou Y, Xu K, Jiang H, Li R, Hang Y, Lu Y. Paternal fenvalerate exposure influences reproductive functions in the offspring. Reprod Sci 2013; 20:1308-15. [PMID: 23548413 DOI: 10.1177/1933719113483015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fenvalerate (Fen), a synthetic pyrethroid insecticide, has been shown to have adverse effects on male reproductive system. Thus, the aim of the present study was to elucidate whether these adverse effects are passed from exposed male mice to their offspring. Adult male mice received Fen (10 mg/kg) daily for 30 days and mated with untreated females to produce offspring. Fenvalerate significantly changed the methylation status of angiotensin I-converting enzyme (Ace), forkhead box O3 (Foxo3a), huntingtin-associated protein 1 (Hap1), nuclear receptor subfamily 3 (Nr3c2), promyelocytic leukemia (Pml), and Prostaglandin F2 receptor negative regulator (Ptgfrn) genes in paternal mice sperm genomic DNA. Further, Fen significantly increased sperm abnormalities; serum testosterone and estradiol-17ß level in adult male (F0) and their male offspring (F1). Further, paternal Fen treatment significantly increased the length of estrous cycle, serum estradiol-17ß concentration in estrus, and progesterone levels in diestrus in female offspring (F1). These findings suggest that adverse effects of paternal Fen exposure on reproductive functions can be seen not only in treated males (F0) but also in their offsprings.
Collapse
Affiliation(s)
- Dong Xia
- 1Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yu FB, Shan SD, Luo LP, Guan LB, Qin H. Isolation and characterization of a Sphingomonas sp. strain F-7 degrading fenvalerate and its use in bioremediation of contaminated soil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2013; 48:198-207. [PMID: 23356341 DOI: 10.1080/03601234.2013.730299] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A fenvalerate-degrading bacterial strain F-7 was isolated from long-term contaminated sludge. Based on morphological, physiological and biochemical characterization, and phylogenetic analysis of 16S rRNA gene sequence, strain F-7 was identified as Sphingomonas sp. The bacterium could utilize fenvalerate as the sole source of carbon. An amount measuring 100 mg L(-1) fenvalerate was completely degraded within 72 h and 3-phenoxybenzoic acid (3-PBA) was detected as a major metabolite. The result indicates that S. sp. F-7 might metabolize fenvalerate by hydrolysis of carboxylester linkage. It was capable of degrading permethrin, fenpropathrin, beta-cypermethrin, cyhalothrin, deltamethrin, bifenthrin and 3-PBA. Further studies demonstrated that the strain was multi-resistant to heavy metals and antibiotics. In addition, degradative enzymes involved were confirmed as intracellular distributed and constitutively expressed. Furthermore, application of the strain was found to accelerate the removal of fenvalerate in soil. This is the first report of fenvalerate degrading strain isolated from S. sp. These results might help with future research in better understanding of pyrethroid biodegradation and highlight S. sp. F-7 might have potential for practical application in bioremediation of fenvalerate-contaminated sites.
Collapse
Affiliation(s)
- Fang B Yu
- Department of Environmental Sciences, College of Environment and Resource Sciences, Zhejiang Agricultural and Forestry University, Linan, China
| | | | | | | | | |
Collapse
|
32
|
Involvement of IGF-I signaling pathway in the regulation of steroidogenesis in mouse Leydig cells treated with fenvalerate. Toxicology 2012; 292:151-5. [DOI: 10.1016/j.tox.2011.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/08/2011] [Accepted: 12/12/2011] [Indexed: 11/22/2022]
|
33
|
Guerra MT, de Toledo FC, Kempinas WDG. In utero and lactational exposure to fenvalerate disrupts reproductive function in female rats. Reprod Toxicol 2011; 32:298-303. [DOI: 10.1016/j.reprotox.2011.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 06/27/2011] [Accepted: 08/05/2011] [Indexed: 10/17/2022]
|
34
|
Chen S, Hu Q, Hu M, Luo J, Weng Q, Lai K. Isolation and characterization of a fungus able to degrade pyrethroids and 3-phenoxybenzaldehyde. BIORESOURCE TECHNOLOGY 2011; 102:8110-8116. [PMID: 21727000 DOI: 10.1016/j.biortech.2011.06.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 06/06/2011] [Accepted: 06/13/2011] [Indexed: 05/31/2023]
Abstract
Fungal strain HU, isolated from activated sludge and identified as a member of the genus Cladosporium based on morphology and sequencing of 28S rRNA, was shown to degrade 90% of fenvalerate, fenpropathrin, β-cypermethrin, deltamethrin, bifenthrin, and permethrin (100 mgL(-1)) within 5 days. Fenvalerate was utilized as sole carbon and energy source and co-metabolized in the presence of sucrose. Degradation of fenvalerate occurred at pH 5-10 at 18-38°C. The fungus first hydrolyzed the carboxylester linkage to produce α-hydroxy-3-phenoxy-benzeneacetonitrile and 3-phenoxybenzaldehyde, and subsequently degraded these two compounds with a q(max), K(s) and K(i) of 1.73 d(-1), 99.20 mgL(-1) and 449.75 mgL(-1), respectively. Degradation followed first-order kinetics. These results show that the fungal strain may possess potential to be used in bioremediation of pyrethroid-contaminated environments.
Collapse
Affiliation(s)
- Shaohua Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou 510642, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Meng XH, Liu P, Wang H, Zhao XF, Xu ZM, Chen GH, Xu DX. Gender-specific impairments on cognitive and behavioral development in mice exposed to fenvalerate during puberty. Toxicol Lett 2011; 203:245-51. [DOI: 10.1016/j.toxlet.2011.03.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/17/2011] [Accepted: 03/21/2011] [Indexed: 12/31/2022]
|
36
|
Liu J, Yang Y, Yang Y, Zhang Y, Liu W. Disrupting effects of bifenthrin on ovulatory gene expression and prostaglandin synthesis in rat ovarian granulosa cells. Toxicology 2011; 282:47-55. [DOI: 10.1016/j.tox.2011.01.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/04/2011] [Accepted: 01/10/2011] [Indexed: 12/13/2022]
|
37
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2011; 18:83-98. [PMID: 21178692 DOI: 10.1097/med.0b013e3283432fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Liu P, Meng XH, Wang H, Ji YL, Zhao M, Zhao XF, Xu ZM, Chen YH, Zhang C, Xu DX. Effects of pubertal fenvalerate exposure on testosterone and estradiol synthesis and the expression of androgen and estrogen receptors in the developing brain. Toxicol Lett 2011; 201:181-9. [PMID: 21232584 DOI: 10.1016/j.toxlet.2010.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/23/2010] [Accepted: 12/27/2010] [Indexed: 10/18/2022]
Abstract
Fenvalerate is a potential endocrine disruptor. Several studies have demonstrated that fenvalerate disrupts testosterone (T) synthesis in testes. T and estradiol (E(2)) are de novo synthesized in the developing brain. Thus, the aim of the present study was to investigate the effects of pubertal fenvalerate exposure on the synthesis of T and E(2) and the expression of androgen receptor (AR) and estrogen receptors (ERs) in cerebral cortex. CD-1 mice were orally administered daily with either vehicle or fenvalerate (7.5 or 30 mg/kg) from postnatal day (PND) 28 to PND56. The level of T and E(2) in cerebral cortex was significantly decreased in males exposed to fenvalerate. In agreement with the decrease in T and E(2) syntheses, the expression of 17β-HSD, a key enzyme for T synthesis, was significantly reduced in cerebral cortex of fenvalerate-exposed males. Conversely, in females, the expression of 17β-HSD in cerebral cortex was mildly up-regulated by fenvalerate and the level of T and E(2) was mildly increased. Pubertal fenvalerate exposure had no effect on the expression of StAR, P450(17α) and P450scc, the key enzymes for T synthesis, and P450 aromatase, the key enzyme for E(2) synthesis, in cerebral cortex of males and females. Interestingly, the expression of AR in cerebral cortex was up-regulated in male and female mice exposed to fenvalerate, whereas pubertal fenvalerate exposure did not affect the level of ERα and ERβ in cerebral cortex. Taken together, these results suggest that pubertal fenvalerate exposure disrupts T and E(2) synthesis and the expression of AR in cerebral cortex. These changes of steroid status in the developing brain might be deleterious for neurobehavioral development.
Collapse
Affiliation(s)
- Ping Liu
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chen S, Yang L, Hu M, Liu J. Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Appl Microbiol Biotechnol 2010; 90:755-67. [DOI: 10.1007/s00253-010-3035-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/20/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
|