1
|
Peters AE, Ford EA, Roman SD, Bromfield EG, Nixon B, Pringle KG, Sutherland JM. Impact of Bisphenol A and its alternatives on oocyte health: a scoping review. Hum Reprod Update 2024; 30:653-691. [PMID: 39277428 PMCID: PMC11532624 DOI: 10.1093/humupd/dmae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA) is an endocrine disrupting chemical released from plastic materials, including food packaging and dental sealants, persisting in the environment and ubiquitously contaminating ecosystems and human populations. BPA can elicit an array of damaging health effects and, alarmingly, 'BPA-free' alternatives mirror these harmful effects. Bisphenol exposure can negatively impact female fertility, damaging both the ovary and oocytes therein. Such damage can diminish reproductive capacity, pregnancy success, and offspring health. Despite global government regulations in place to indicate 'safe' BPA exposure levels, these policies have not considered the effects of bisphenols on oocyte health. OBJECTIVE AND RATIONALE This scoping review was conducted to evaluate evidence on the effects of BPA and BPA alternatives on standardized parameters of oocyte health. In doing so, this review addresses a critical gap in the literature providing a comprehensive, up-to-date synthesis of the effects of bisphenols on oocyte health. SEARCH METHODS This scoping review was conducted in accordance with PRISMA guidelines. Four databases, Medline, Embase, Scopus, and Web of Science, were searched twice (23 February 2022 and 1 August 2023) to capture studies assessing mammalian oocyte health post-bisphenol exposure. Search terms regarding oocytes, ovarian follicles, and bisphenols were utilized to identify relevant studies. Manuscripts written in English and reporting the effect of any bisphenol on mammalian oocyte health from all years were included. Parameters for toxicological studies were evaluated, including the number of bisphenol concentrations/doses tested, dosing regimen, biological replicates and/or animal numbers, and statistical information (for human studies). Standardized parameters of oocyte health including follicle counts, oocyte yield, oocyte meiotic capacity, morphology of oocyte and cumulus cells, and oocyte meiotic spindle integrity were extracted across the studies. OUTCOMES After screening 3147 studies, 107 studies of either humans or mammalian animal models or humans were included. Of the in vitro exposure studies, 96.3% (26/27) and 94.1% (16/17) found at least one adverse effect on oocyte health using BPA or BPA alternatives (including BHPF, BPAF, BPB, BPF, and BPS), respectively. These included increased meiotic cell cycle arrest, altered morphology, and abnormal meiotic spindle/chromosomal alignment. In vivo, 85.7% (30/35) of studies on BPA and 92.3% (12/13) on BPA alternatives documented adverse effects on follicle development, morphology, or spindle/chromosome alignment. Importantly, these effects were recorded using levels below those deemed 'safe' for human exposure. Over half (11/21) of all human observational studies showed associations between higher urinary BPA levels and reduced antral follicle counts or oocyte yield in IVF patients. Recommendations are presented based on the identified shortcomings of the current evidence, incorporating elements of FDA requirements for future research in the field. WIDER IMPLICATIONS These data highlight the detrimental impacts of low-level BPA and BPA alternative exposure, contributing to poor oocyte quality and reduced fertility. These outcomes are valuable in promoting the revision of current policies and guidelines pertaining to BPA exposure internationally. This study serves as a valuable resource to scientists, providing key recommendations on study design, reporting elements, and endpoint measures to strengthen future studies. Ultimately, this review highlights oocyte health as a fundamentally important endpoint in reproductive toxicological studies, indicating an important direction for future research into endocrine disrupting chemicals to improve fertility outcomes.
Collapse
Affiliation(s)
- Alexandra E Peters
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Emmalee A Ford
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- The Research Centre, Family Planning Australia, Newington, NSW, Australia
| | - Shaun D Roman
- Department of Research, NSW Health Pathology, Newcastle, NSW, Australia
| | - Elizabeth G Bromfield
- Faculty of Science, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
- School of Environmental and Life Sciences, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- School of Environmental and Life Sciences, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Kirsty G Pringle
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jessie M Sutherland
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
2
|
Ma N, Liu X, Zhao L, Liu Y, Peng X, Ma D, Ma L, Kiyama R, Dong S. Bisphenol P induces increased oxidative stress in renal tissues of C57BL/6 mice and human renal cortical proximal tubular epithelial cells, resulting in kidney injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175159. [PMID: 39094650 DOI: 10.1016/j.scitotenv.2024.175159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Bisphenol P (BPP) has been detected in human biological samples; however studies on its nephrotoxicity are scarce. Given the susceptibility of kidneys to endocrine-disrupting chemicals, there is an urgent need to investigate the renal toxicity of BPP. This study aimed to evaluate the effects of different concentrations of BPPs on the kidneys of C57BL/6 mice and elucidate the underlying mechanisms of renal damage using a combination of mouse renal transcriptomic data and human renal proximal tubular epithelial cells (HK-2). Mice were exposed to BPP (0, 0.3, 30, 3000 μg/kg bw/d) via gavage for 5 weeks. Renal injury was assessed based on changes in body and kidney weights, serum renal function indices, and histopathological examination. Transcriptomic analysis identified differentially expressed genes and pathways, whereas cellular assays were used to measure cell viability, reactive oxygen species (ROS), apoptosis, and the expression of key genes and proteins. The results show that BPP exposure induces renal injury, as evidenced by increased body weight, abnormal renal function indices, and renal tissue damage. Transcriptomic analysis revealed alterations in genes and pathways related to oxidative stress, p53 signaling, autophagy, and apoptosis. Cellular experiments confirmed that BPP induces oxidative stress and apoptosis. Furthermore, BPP exposure significantly inhibits autophagy, potentially exacerbating apoptosis and contributing to kidney injury. Treatment with a ROS inhibitor (N-Acetylcysteine, NAC) mitigated BPP-induced autophagy inhibition and apoptosis, implicating oxidative stress as a key factor. BPP exposure may lead to renal injury through excessive ROS accumulation, oxidative stress, inflammatory responses, autophagy inhibition, and increased apoptosis. The effects of NAC highlight the role of oxidative stress in BPP-induced nephrotoxicity. These findings enhance our understanding of BPP-induced nephrotoxicity and underscore the need to control BPP exposure to prevent renal disease. This study emphasized the importance of evaluating the safety of new Bisphenol A analogs, including BPP, in environmental toxicology.
Collapse
Affiliation(s)
- Nana Ma
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Xia Liu
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Lining Zhao
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Yue Liu
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Xinyi Peng
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Dan Ma
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Lei Ma
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Ryoiti Kiyama
- Kyushu Sangyo University, 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan
| | - Sijun Dong
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China.
| |
Collapse
|
3
|
Mhaouty-Kodja S, Zalko D, Tait S, Testai E, Viguié C, Corsini E, Grova N, Buratti FM, Cabaton NJ, Coppola L, De la Vieja A, Dusinska M, El Yamani N, Galbiati V, Iglesias-Hernández P, Kohl Y, Maddalon A, Marcon F, Naulé L, Rundén-Pran E, Salani F, Santori N, Torres-Ruiz M, Turner JD, Adamovsky O, Aiello-Holden K, Dirven H, Louro H, Silva MJ. A critical review to identify data gaps and improve risk assessment of bisphenol A alternatives for human health. Crit Rev Toxicol 2024:1-58. [PMID: 39436315 DOI: 10.1080/10408444.2024.2388712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 10/23/2024]
Abstract
Bisphenol A (BPA), a synthetic chemical widely used in the production of polycarbonate plastic and epoxy resins, has been associated with a variety of adverse effects in humans including metabolic, immunological, reproductive, and neurodevelopmental effects, raising concern about its health impact. In the EU, it has been classified as toxic to reproduction and as an endocrine disruptor and was thus included in the candidate list of substances of very high concern (SVHC). On this basis, its use has been banned or restricted in some products. As a consequence, industries turned to bisphenol alternatives, such as bisphenol S (BPS) and bisphenol F (BPF), which are now found in various consumer products, as well as in human matrices at a global scale. However, due to their toxicity, these two bisphenols are in the process of being regulated. Other BPA alternatives, whose potential toxicity remains largely unknown due to a knowledge gap, have also started to be used in manufacturing processes. The gradual restriction of the use of BPA underscores the importance of understanding the potential risks associated with its alternatives to avoid regrettable substitutions. This review aims to summarize the current knowledge on the potential hazards related to BPA alternatives prioritized by European Regulatory Agencies based on their regulatory relevance and selected to be studied under the European Partnership for the Assessment of Risks from Chemicals (PARC): BPE, BPAP, BPP, BPZ, BPS-MAE, and TCBPA. The focus is on data related to toxicokinetic, endocrine disruption, immunotoxicity, developmental neurotoxicity, and genotoxicity/carcinogenicity, which were considered the most relevant endpoints to assess the hazard related to those substances. The goal here is to identify the data gaps in BPA alternatives toxicology and hence formulate the future directions that will be taken in the frame of the PARC project, which seeks also to enhance chemical risk assessment methodologies using new approach methodologies (NAMs).
Collapse
Affiliation(s)
- Sakina Mhaouty-Kodja
- CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Daniel Zalko
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Testai
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Catherine Viguié
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Nathalie Grova
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Franca Maria Buratti
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Nicolas J Cabaton
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Lucia Coppola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio De la Vieja
- Endocrine Tumor Unit from Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Maria Dusinska
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Naouale El Yamani
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Valentina Galbiati
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Patricia Iglesias-Hernández
- Endocrine Tumor Unit from Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Ambra Maddalon
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Francesca Marcon
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Lydie Naulé
- CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Elise Rundén-Pran
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Francesca Salani
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Nicoletta Santori
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Mónica Torres-Ruiz
- National Center for Environmental Health (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Jonathan D Turner
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Ondrej Adamovsky
- Faculty of Science, Masaryk University, RECETOX, Brno, Czech Republic
| | | | - Hubert Dirven
- Department of Chemical Toxicology - Division of Climate and the Environment, Norwegian Institute of Public Health, Oslo, Norway
| | - Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Su J, Yang X, Xu H, Pei Y, Liu QS, Zhou Q, Jiang G. Screening (ant)agonistic activities of xenobiotics on the retinoic acid receptor alpha (RARα) using in vitro and in silico analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174717. [PMID: 38997027 DOI: 10.1016/j.scitotenv.2024.174717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Retinoic acid receptors (RARs) are known as crucial endocrine receptors that could mediate a broad diversity of biological processes. However, the data on endocrine disrupting effects of emerging chemicals by targeting RAR (ant)agonism are far from sufficient. Herein, we investigated the RARα agonistic or antagonistic activities for 75 emerging chemicals of concern, and explored their interactions with this receptor. A recombinant two-hybrid yeast assay was used to examine the RARα activities of the test chemicals, wherein 7 showed effects of RARα agonism and 54 exerted potentials of RARα antagonism. The representative chemicals with RARα agonistic activities, i.e. 4-hydroxylphenol (4-HP) and bisphenol AF (BPAF), significantly increased the mRNA levels of CRABP2 and CYP26A1, while 4 select chemicals with RARα antagonistic potentials, including bisphenol A (BPA), tetrabromobisphenol A (TBBPA), 4-tert-octylphenol (4-t-OP), and 4-n-nonylphenol (4-n-NP), conversely decreased the transcriptional levels of the test genes. The in silico molecular docking analysis using 3 different approaches further confirmed the substantial binding between the chemicals with RARα activities and this nuclear receptor protein. This work highlights the promising strategy for screening endocrine-disrupting effects of emerging chemicals of concern by targeting RARα (ant)agonism.
Collapse
Affiliation(s)
- Jiahui Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hanqing Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China
| | - Yao Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Turker Yavas F, Sevil Kilimci F, Akkoc AN, Sahiner HS, Bardakci Yilmaz Ö. Melatonin's protective role against Bisphenol F and S-induced skeletal damage: A morphometric and histological study in rat. Ann Anat 2024; 256:152314. [PMID: 39053668 DOI: 10.1016/j.aanat.2024.152314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
This study aimed to evaluate the potential effects of Bisphenol F and S exposure on the skeletal structures of Sprague-Dawley rats. Given the increasing concern about the potential endocrine-disrupting effects of Bisphenol analogs on bone health, this research sought to elucidate their impact in conjunction with Melatonin. Using 80 male Sprague Dawley rats, bones were subjected to a 3-point bending test to assess mechanical properties, and histopathological evaluation was conducted after fixation and decalcification. Statistical analysis was performed using SPSS. The results of the mechanical tests revealed significant differences in deformation and elastic modulus values between groups treated with Bisphenol F+Melatonin and Bisphenol S+Melatonin compared to the control groups. However, the histological images showed no significant differences between the groups. In the discussion, it was noted that the injection of Bisphenol F and Melatonin together increased bone hardness, suggesting that Bisphenol F and Bisphenol S may mitigate the negative effects of melatonin on bone. We attributed the absence of histological differences to the male gender of the studied rats and previous exposure considerations. This study shows that Melatonin can reduce Bisphenol F and Bisphenol S' rapid adjustment effects and increase bone elasticity. The side effects of Bisphenol F and S, as well as the prophylactic effects of Melatonin, can be observed and improved by carefully adjusting the duration, dose, and gender selection.
Collapse
Affiliation(s)
- Firuze Turker Yavas
- Aydın Adnan Menderes University, Faculty of Veterinary Medicine, Department of Anatomy, Aydin 09016, Turkey.
| | - Figen Sevil Kilimci
- Aydın Adnan Menderes University, Faculty of Veterinary Medicine, Department of Anatomy, Aydin 09016, Turkey
| | - Ayse Nur Akkoc
- Aydın Adnan Menderes University, Faculty of Veterinary Medicine, Department of Pathology, Aydin 09016, Turkey
| | - Hande Sultan Sahiner
- Aydın Adnan Menderes University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Aydin 09016, Turkey
| | - Özge Bardakci Yilmaz
- Aydın Adnan Menderes University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Aydin 09016, Turkey
| |
Collapse
|
6
|
Yasuda A, Murase W, Kubota A, Uramaru N, Okuda K, Hakota R, Ikeda A, Kojima H. Effects of di-(2-ethylhexyl) phthalate and its metabolites on transcriptional activity via human nuclear receptors and gene expression in HepaRG cells. Toxicol In Vitro 2024; 101:105943. [PMID: 39341470 DOI: 10.1016/j.tiv.2024.105943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in polyvinyl chloride products. DEHP exposure in humans is of great concern due to its endocrine-disrupting properties. In this study, we characterized the agonistic activities of DEHP and its five metabolites, mono-(2-ethylhexyl) phthalate (MEHP), 5OH-MEHP, 5oxo-MEHP, 5cx-MEPP and 2cx-MMHP against human nuclear receptors, peroxisome proliferator-activated receptor α (PPARα), pregnane X receptor (PXR), and constitutive androstane receptor (CAR) using transactivation assays. In the PPARα assay, the order of the agonistic activity was MEHP >> 5cx-MEPP >5OH-MEHP, 5oxo-MEHP >2cx-MMHP > DEHP, with DEHP significantly inhibiting MEHP-induced PPARα agonistic activity. This finding was compared to the results from in silico docking simulation. In the PXR assay, DEHP showed PXR agonistic activity more potent than that of MEHP, whereas the other metabolites showed little activity. In the CAR assay, none of the tested compounds showed agonistic activity. Moreover, the expression levels of PPARα-, PXR-, and CAR-target genes in HepaRG cells exposed to DEHP or MEHP were investigated using qRT-PCR analysis. As a result, exposure to these compounds significantly upregulated PXR/CAR target genes (CYP3A4 and CYP2B6), but not PPARα target genes (CYP4A11, etc.) in HepaRG cells. Taken together, these results suggest that direct PXR and/or indirect CAR activation by several DEHP metabolites may be involved in the endocrine disruption by altering hormone metabolism.
Collapse
Affiliation(s)
- Ayaka Yasuda
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Wataru Murase
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Naoto Uramaru
- School of Health and Social Services, Center for University-wide Education, Saitama Prefectural University, 820 San-Nomiya, Koshigaya, Saitama 343-8540, Japan; Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Katsuhiro Okuda
- Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Ryo Hakota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuko Ikeda
- Hokkaido University Faculty of Health Sciences, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| |
Collapse
|
7
|
Dogra K, Lalwani D, Dogra S, Panday DP, Raval NP, Trivedi M, Mora A, Hernandez MSG, Snyder SA, Mahlknecht J, Kumar M. Indian and global scenarios of Bisphenol A distribution and its new analogues: Prevalence & probability exceedance. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135128. [PMID: 39094315 DOI: 10.1016/j.jhazmat.2024.135128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
We compare, the prevalence, fate, and sources of Bisphenol A both globally and in India. India has the highest concentration of BPA and Bisphenol S(BPS) in general, with vegetables, particularly corn, beans, strings, and raw or canned vegetables, being the largest contributors. Among all the matrices, bisphenols (BPs) are found in the highest concentration in food, followed by surface water, wastewater, and indoor dust. BPA, BPS, and BPF are the most commonly reported analogues in India, with BPA being the most dominant category used worldwide. The highest concentration of BPs is observed in Uttar Pradesh, Punjab and Haryana that are three major agricultural states of India however, there is still a research gap regarding the dietary exposure to BPs on an individual level. Environmentally detected BPA occurs in a range of below detection to 10636 ng. L-1, with significant geographic variations. Interestingly, the order of abundance in India was maximum for BPS, which is contrary to the global average, where BPA is observed as most abundant. BPS is found to be the most common BPs analogue in surface water worldwide, with limited removal efficiency by both naturally remediation and conventional treatment methods. Similar patterns were observed in the US-India and Japan-Korea regions in terms of their source-sink-prevalence-fate dynamics. The probability of exceeding safe concentrations of BPs is higher in India and Korea, suggesting that these countries are more vulnerable to high prevalence concentrations and the subsequent public health hazards.
Collapse
Affiliation(s)
- Kanika Dogra
- Sustainability Cluster, School of Advance Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Dipa Lalwani
- Department of Environmental Science & Technology, Institute of Science and Technology for Advanced Studies and Research (ISTAR), Anand, Gujarat, India
| | - Shiwangi Dogra
- Sustainability Cluster, School of Advance Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Durga Prasad Panday
- Sustainability Cluster, School of Advance Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Nirav P Raval
- Department of Environmental Science and Engineering, School of Engineering, SRM University-AP, Andhra Pradesh, 522240, India
| | - Murgesh Trivedi
- Department of Environmental and Life Science, KSKV Kachchh University, Bhuj, 370001, Gujarat, India
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| | | | - Shane A Snyder
- Sustainability Cluster, School of Advance Engineering, UPES, Dehradun, Uttarakhand 248007, India; School of Civil & Environmental Engineering, Georgia Institute of Technology, 30332 USA
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| | - Manish Kumar
- Sustainability Cluster, School of Advance Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico.
| |
Collapse
|
8
|
Franko N, Kodila A, Sollner Dolenc M. Adverse outcomes of the newly emerging bisphenol A substitutes. CHEMOSPHERE 2024; 364:143147. [PMID: 39168390 DOI: 10.1016/j.chemosphere.2024.143147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
BPA and its analogues are facing increasingly stringent regulations restricting their use due to the increasing knowledge of their harmful effects. It is therefore expected that novel BPA analogues and alternatives will replace them in plastic products, cans and thermal paper to circumvent restrictions imposed by legislation. This raises concerns about the safety of "BPA-free" products, as they contain BPA substitutes whose safety has not been sufficiently assessed prior to their market introduction. The regulatory agencies have recognised BPAP, BPBP, BPC2, BPE, BPFL, BPG, BPP, BPPH, BPS-MAE, BPS-MPE, BP-TMC, BPZ and the alternatives BTUM, D-90, UU and PF201 as compound with insufficient data regarding their safety. We demonstrate that the mentioned compounds are present in consumer products, food and the environment, thus exhibiting toxicological risk not only to humans, but also to other species where their toxic effects have already been described. Results of in silico, in vitro and in vivo studies examining the endocrine disruption and other effects of BPA analogues show that they disrupt the endocrine system by targeting various nuclear receptors, impairing reproductive function and causing toxic effects such as hepatotoxicity, altered behaviour and impaired reproductive function. In vitro and in vivo data on BPA alternatives are literally non-existent, although these compounds are already present in commonly used thermal papers. However, in silico studies predicted that they might cause adverse effects as well. The aim of this article is to comprehensively collate the information on selected BPA substitutes to illustrate their potential toxicity and identify safety gaps.
Collapse
Affiliation(s)
- Nina Franko
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Anja Kodila
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Marija Sollner Dolenc
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
9
|
Gokso̷yr SØ, Yadetie F, Johansen CT, Jacobsen RG, Lille-Lango̷y R, Gokso̷yr A, Karlsen OA. Interaction of Bisphenol A and Its Analogs with Estrogen and Androgen Receptor from Atlantic Cod ( Gadus morhua). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14098-14109. [PMID: 39087390 PMCID: PMC11325555 DOI: 10.1021/acs.est.4c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
The widespread use of bisphenol A (BPA) in polycarbonate plastics and epoxy resins has made it a prevalent environmental pollutant in aquatic ecosystems. BPA poses a significant threat to marine and freshwater wildlife due to its documented endocrine-disrupting effects on various species. Manufacturers are increasingly turning to other bisphenol compounds as supposedly safer alternatives. In this study, we employed in vitro reporter gene assays and ex vivo precision-cut liver slices from Atlantic cod (Gadus morhua) to investigate whether BPA and 11 BPA analogs exhibit estrogenic, antiestrogenic, androgenic, or antiandrogenic effects by influencing estrogen or androgen receptor signaling pathways. Most bisphenols, including BPA, displayed estrogenic properties by activating the Atlantic cod estrogen receptor alpha (gmEra). BPB, BPE, and BPF exhibited efficacy similar to or higher than that of BPA, with BPB and BPAF being more potent agonists. Additionally, some bisphenols, like BPG, induced estrogenic effects in ex vivo liver slices despite not activating gmEra in vitro, suggesting structural modifications by hepatic biotransformation enzymes. While only BPC2 and BPAF activated the Atlantic cod androgen receptor alpha (gmAra), several bisphenols exhibited antiandrogenic effects by inhibiting gmAra activity. This study underscores the endocrine-disrupting impact of bisphenols on aquatic organisms, emphasizing that substitutes for BPA may pose equal or greater risks to both the environment and human health.
Collapse
Affiliation(s)
| | - Fekadu Yadetie
- Department of Biological
Sciences, University of Bergen, Bergen N-5020, Norway
| | | | | | - Roger Lille-Lango̷y
- Department of Biological
Sciences, University of Bergen, Bergen N-5020, Norway
| | - Anders Gokso̷yr
- Department of Biological
Sciences, University of Bergen, Bergen N-5020, Norway
| | - Odd André Karlsen
- Department of Biological
Sciences, University of Bergen, Bergen N-5020, Norway
| |
Collapse
|
10
|
Park CG, Adnan KM, Cho H, Ryu CS, Yoon J, Kim YJ. A combined in vitro-in silico method for assessing the androgenic activities of bisphenol A and its analogues. Toxicol In Vitro 2024; 98:105838. [PMID: 38710238 DOI: 10.1016/j.tiv.2024.105838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Interactions between endocrine-disruptor chemicals (EDCs) and androgen receptor (AR) have adverse effects on the endocrine system, leading to human reproductive dysfunction. Bisphenol A (BPA) is an EDC that can damage both the environment and human health. Although numerous BPA analogues have been produced as substitutes for BPA, few studies have evaluated their endocrine-disrupting abilities. We assessed the (anti)-androgenic activities of BPA and its analogues using a yeast-based reporter assay. The BPA analogues tested were bisphenol S (BPS), 4-phenylphenol (4PP), 4,4'-(9-fluorenyliden)-diphenol (BPFL), tetramethyl bisphenol F (TMBPF), and tetramethyl bisphenol A (TMBPA). We also conducted molecular docking and dynamics simulations to assess the interactions of BPA and its analogues with the ligand-binding domain of human AR (AR-LBD). Neither BPA nor its analogues had androgenic activity; however, all except BPFL exerted robust anti-androgenic effects. Consistent with the in vitro results, anti-androgenic analogues of BPA formed hydrogen bonding patterns with key residues that differed from the patterns of endogenous hormones, indicating that the analogues display in inappropriate orientations when interacting with the binding pocket of AR-LBD. Our findings indicate that BPA and its analogues disrupt androgen signaling by interacting with the AR-LBD. Overall, BPA and its analogues display endocrine-disrupting activity, which is mediated by AR.
Collapse
Affiliation(s)
- Chang Gyun Park
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany; Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Karim Md Adnan
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany; Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Hyunki Cho
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany; Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Chang Seon Ryu
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany
| | - Juyong Yoon
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany.
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany.
| |
Collapse
|
11
|
Pathak RK, Jung DW, Shin SH, Ryu BY, Lee HS, Kim JM. Deciphering the mechanisms and interactions of the endocrine disruptor bisphenol A and its analogs with the androgen receptor. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133935. [PMID: 38442602 DOI: 10.1016/j.jhazmat.2024.133935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Bisphenol A (BPA) and its various forms used as BPA alternatives in industries are recognized toxic compounds and antiandrogenic endocrine disruptors. These chemicals are widespread in the environment and frequently detected in biological samples. Concerns exist about their impact on hormones, disrupting natural biological processes in humans, together with their negative impacts on the environment and biotic life. This study aims to characterize the interaction between BPA analogs and the androgen receptor (AR) and the effect on the receptor's normal activity. To achieve this goal, molecular docking was conducted with BPA and its analogs and dihydrotestosterone (DHT) as a reference ligand. Four BPA analogs exhibited higher affinity (-10.2 to -8.7 kcal/mol) for AR compared to BPA (-8.6 kcal/mol), displaying distinct interaction patterns. Interestingly, DHT (-11.0 kcal/mol) shared a binding pattern with BPA. ADMET analysis of the top 10 compounds, followed by molecular dynamics simulations, revealed toxicity and dynamic behavior. Experimental studies demonstrated that only BPA disrupts DHT-induced AR dimerization, thereby affecting AR's function due to its binding nature. This similarity to DHT was observed during computational analysis. These findings emphasize the importance of targeted strategies to mitigate BPA toxicity, offering crucial insights for interventions in human health and environmental well-being.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Da-Woon Jung
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Seung-Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea; Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
12
|
Sharin T, Leinen LJ, Schreiber D, Swenson VA, Emsley SA, Trammell EJ, Videau P, Crump D, Gaylor MO. Description of Solvent-Extractable Chemicals in Thermal Receipts and Toxicological Assessment of Bisphenol S and Diphenyl Sulfone. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:63. [PMID: 38615298 DOI: 10.1007/s00128-024-03871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/16/2024] [Indexed: 04/15/2024]
Abstract
Research on thermal receipts has previously focused on the toxic effects of dermal exposure from the most publicized developers (e.g., bisphenol A (BPA) and bisphenol S (BPS)), while no studies have reported on the other solvent-extractable compounds therein. Diphenyl sulfone (DPS) is a sensitizer added to thermal receipts, but little is known about DPS concentrations in receipts or potential toxicity. Here, we quantified BPA, BPS, and DPS concentrations and tentatively identified the solvent-extractable compounds of thermal receipts collected from three South Dakota (USA) cities during 2016-2017. An immortalized chicken hepatic cell line, cultured as 3D spheroids, was used to screen effects of DPS, BPS, and 17ß estradiol (E2; 0.1-1000 µM) on cell viability and gene expression changes. These chemicals elicited limited cytotoxicity with LC50 values ranging from 113 to 143 µM, and induced dysregulation in genes associated with lipid and bile acid homeostasis. Taken together, this study generated novel information on solvent-extractable chemicals from thermal receipts and toxicity data for DPS.
Collapse
Affiliation(s)
- Tasnia Sharin
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - Lucas J Leinen
- Department of Chemistry, Dakota State University, Madison, SD, USA
| | - David Schreiber
- Department of Chemistry, Dakota State University, Madison, SD, USA
| | - Vaille A Swenson
- Department of Chemistry, Dakota State University, Madison, SD, USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Sarah A Emsley
- Department of Biology, Southern Oregon University, Ashland, OR, USA
| | - E Jamie Trammell
- Environmental Science and Policy Program, Southern Oregon University, Ashland, OR, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR, USA.
| | - Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada.
| | - Michael O Gaylor
- Department of Chemistry, Dakota State University, Madison, SD, USA.
- Bayer Crop Science, Chesterfield, MO, USA.
| |
Collapse
|
13
|
Cooper BL, Salameh S, Posnack NG. Comparative cardiotoxicity assessment of bisphenol chemicals and estradiol using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci 2024; 198:273-287. [PMID: 38310357 PMCID: PMC10964748 DOI: 10.1093/toxsci/kfae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
Bisphenol A (BPA) is commonly used to manufacture consumer and medical-grade plastics. Due to health concerns, BPA substitutes are being incorporated-including bisphenol S (BPS) and bisphenol F (BPF)-without a comprehensive understanding of their toxicological profile. Previous studies suggest that bisphenol chemicals perturb cardiac electrophysiology in a manner that is similar to 17β-estradiol (E2). We aimed to compare the effects of E2 with BPA, BPF, and BPS using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Cardiac parameters were evaluated using microelectrode array (MEA) technology and live-cell fluorescent imaging. Cardiac metrics remained relatively stable after exposure to nanomolar concentrations (1-1000 nM) of E2, BPA, BPF, or BPS. At higher micromolar concentrations, chemical exposures decreased the depolarization spike amplitude, and shortened the field potential, action potential duration, and calcium transient duration (E2 ≥ BPA ≥ BPF ≫ BPS). Cardiomyocyte physiology was largely undisturbed by BPS. BPA-induced effects were exaggerated when coadministered with an L-type calcium channel (LTCC) antagonist or E2, and reduced when coadministered with an LTCC agonist or an estrogen receptor alpha antagonist. E2-induced effects were not exaggerated by coadministration with an LTCC antagonist. Although the observed cardiac effects of E2 and BPA were similar, a few distinct differences suggest that these chemicals may act (in part) through different mechanisms. hiPSC-CM are a useful model for screening cardiotoxic chemicals, nevertheless, the described findings should be validated using a more complex ex vivo and/or in vivo model.
Collapse
Affiliation(s)
- Blake L Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
| | - Shatha Salameh
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
- Department of Pediatrics, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
| |
Collapse
|
14
|
Liu J, Malekoltojari A, Asokakumar A, Chow V, Li L, Li H, Grimaldi M, Dang N, Campbell J, Barrett H, Sun J, Navarre W, Wilson D, Wang H, Mani S, Balaguer P, Anakk S, Peng H, Krause HM. Diindoles produced from commensal microbiota metabolites function as endogenous CAR/Nr1i3 ligands. Nat Commun 2024; 15:2563. [PMID: 38519460 PMCID: PMC10960024 DOI: 10.1038/s41467-024-46559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024] Open
Abstract
Numerous studies have demonstrated the correlation between human gut bacteria and host physiology, mediated primarily via nuclear receptors (NRs). Despite this body of work, the systematic identification and characterization of microbe-derived ligands that regulate NRs remain a considerable challenge. In this study, we discover a series of diindole molecules produced from commensal bacteria metabolites that act as specific agonists for the orphan constitutive androstane receptor (CAR). Using various biophysical analyses we show that their nanomolar affinities are comparable to those of synthetic CAR agonists, and that they can activate both rodent and human CAR orthologues, which established synthetic agonists cannot. We also find that the diindoles, diindolylmethane (DIM) and diindolylethane (DIE) selectively up-regulate bona fide CAR target genes in primary human hepatocytes and mouse liver without causing significant side effects. These findings provide new insights into the complex interplay between the gut microbiome and host physiology, as well as new tools for disease treatment.
Collapse
Affiliation(s)
- Jiabao Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Ainaz Malekoltojari
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Anjana Asokakumar
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Vimanda Chow
- Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Hao Li
- Department of Molecular Pharmacology; Department of Genetics; Department of Medicine; Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, Inserm, U1194, France
| | - Nathanlown Dang
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jhenielle Campbell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - William Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Derek Wilson
- Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Sridhar Mani
- Department of Molecular Pharmacology; Department of Genetics; Department of Medicine; Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, Inserm, U1194, France
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
- School of the Environment, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| | - Henry M Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Bonaldo B, Casile A, Ostuni MT, Bettarelli M, Nasini S, Marraudino M, Panzica G, Gotti S. Perinatal exposure to bisphenol A or S: Effects on anxiety-related behaviors and serotonergic system. CHEMOSPHERE 2024; 349:140827. [PMID: 38042429 DOI: 10.1016/j.chemosphere.2023.140827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Bisphenols, synthetic organic compounds used in the production of plastics, are an extremely abundant class of Endocrine Disrupting Chemicals, i.e., exogenous chemicals or mixtures of chemicals that can interfere with any aspect of hormone action. Exposure to BPs can lead to a wide range of effects, and it is especially dangerous if it occurs during specific critical periods of life. Focusing on the perinatal exposure to BPA or its largely used substitute BPS, we investigated the effects on anxiety-related behaviors and the serotonergic system, which is highly involved in controlling these behaviors, in adult mice. We treated C57BL/6J dams orally with a dose of 4 μg/kg body weight/day (i.e., EFSA TDI) of BPA or BPS dissolved in corn oil or with vehicle alone, at the onset of mating and continued treatment until the offspring were weaned. Adult offspring of both sexes performed the elevated plus maze and the open field tests. Then, we analyzed the serotonergic system in dorsal (DR) and median (MnR) raphe nuclei by immunohistochemical techniques. Behavioral tests highlighted alterations in BPA- and BPS-treated mice, suggesting different effects of the bisphenols exposure on anxiety-related behavior in males (anxiolytic) and females (anxiogenic). The analysis of the serotonergic system highlighted a sex dimorphism in the DR only, with control females showing higher values of serotonin immunoreactivity (5-HT-ir) than control males. BPA-treated males displayed a significant increase of 5-HT-ir in all analyzed nuclei, whereas BPS-treated males showed an increase in ventral DR only. In females, both bisphenols-treated groups showed a significant increase of 5-HT-ir in dorsal DR compared to the controls, and BPA-treated females also showed a significant increase in MnR.These results provide evidence that exposure during the early phases of life to BPA or BPS alters anxiety and the raphe serotonergic neurons in a sex-dependent manner.
Collapse
Affiliation(s)
- Brigitta Bonaldo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy; Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy.
| | - Antonino Casile
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy; School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 9, Camerino, 62032, Italy
| | - Marialaura Teresa Ostuni
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy
| | - Martina Bettarelli
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy
| | - Sofia Nasini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti 2, 35131, Padua, PD, Italy
| | - Marilena Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - GianCarlo Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| |
Collapse
|
16
|
Pötzl B, Kürzinger L, Stopper H, Fassnacht M, Kurlbaum M, Dischinger U. Endocrine Disruptors: Focus on the Adrenal Cortex. Horm Metab Res 2024; 56:78-90. [PMID: 37884032 PMCID: PMC10764154 DOI: 10.1055/a-2198-9307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous substances known to interfere with endocrine homeostasis and promote adverse health outcomes. Their impact on the adrenal cortex, corticosteroids and their physiological role in the organism has not yet been sufficiently elucidated. In this review, we collect experimental and epidemiological evidence on adrenal disruption by relevant endocrine disruptors. In vitro data suggest significant alterations of gene expression, cell signalling, steroid production, steroid distribution, and action. Additionally, morphological studies revealed disturbances in tissue organization and development, local inflammation, and zone-specific hyperplasia. Finally, endocrine circuits, such as the hypothalamic-pituitary-adrenal axis, might be affected by EDCs. Many questions regarding the detection of steroidogenesis disruption and the effects of combined toxicity remain unanswered. Not only due to the diverse mode of action of adrenal steroids and their implication in many common diseases, there is no doubt that further research on endocrine disruption of the adrenocortical system is needed.
Collapse
Affiliation(s)
- Benedikt Pötzl
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
| | - Lydia Kürzinger
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of
Würzburg, Würzburg, Germany
| | - Martin Fassnacht
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
| | - Max Kurlbaum
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
- Central Laboratory, Core Unit Clinical Mass Spectrometry, University
Hospital of Würzburg, Würzburg, Germany
| | - Ulrich Dischinger
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
| |
Collapse
|
17
|
Mora Lagares L, Vračko M. Ecotoxicological Evaluation of Bisphenol A and Alternatives: A Comprehensive In Silico Modelling Approach. J Xenobiot 2023; 13:719-739. [PMID: 38132707 PMCID: PMC10744758 DOI: 10.3390/jox13040046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Bisphenol A (BPA), a compound widely used in industrial applications, has raised concerns due to its environmental impact. As a key component in the manufacture of polycarbonate plastics and epoxy resins used in many consumer products, concerns about potential harm to human health and the environment are unavoidable. This study seeks to address these concerns by evaluating a range of potential BPA alternatives, focusing on their ecotoxicological properties. The research examines 76 bisphenols, including BPA derivatives, using a variety of in silico ecotoxicological models, although it should be noted that these models were not developed exclusively for this particular class of compounds. Consequently, interpretations should be made with caution. The results of this study highlight specific compounds of potential environmental concern and underscore the need to develop more specific models for BPA alternatives that will allow for more accurate and reliable assessment.
Collapse
Affiliation(s)
- Liadys Mora Lagares
- Laboratory for Cheminformatics, Theory Department, National Institute of Chemistry, 1000 Ljubljana, Slovenia;
| | | |
Collapse
|
18
|
Cooper BL, Salameh S, Posnack NG. Comparative cardiotoxicity assessment of bisphenol chemicals and estradiol using human induced pluripotent stem cell-derived cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557564. [PMID: 37745451 PMCID: PMC10515916 DOI: 10.1101/2023.09.13.557564] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Bisphenol A (BPA) is commonly used to manufacture consumer and medical-grade plastics. Due to health concerns, BPA substitutes are being incorporated - including bisphenol S (BPS) and bisphenol F (BPF) - without a comprehensive understanding of their toxicological profile. Objective Previous studies suggest that bisphenol chemicals perturb cardiac electrophysiology in a manner that is similar to 17β-estradiol (E2). We aimed to compare the effects of E2 with BPA, BPF, and BPS using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Methods Cardiac parameters were evaluated using microelectrode array (MEA) technology and live-cell fluorescent imaging at baseline and in response to chemical exposure (0.001-100 μM). Results Cardiac metrics remained relatively stable after exposure to nanomolar concentrations (1-1,000 nM) of E2, BPA, BPF, or BPS. At higher micromolar concentrations, chemical exposures resulted in a decrease in the depolarizing spike amplitude, shorter field potential and action potential duration, shorter calcium transient duration, and decrease in hiPSC-CM contractility (E2 > BPA > BPF >> BPS). Cardiomyocyte physiology was largely undisturbed by BPS exposure. BPA-induced effects were exaggerated when co-administered with an L-type calcium channel antagonist (verapamil) or E2 - and reduced when co-administered with an L-type calcium channel agonist (Bay K8644) or an estrogen receptor alpha antagonist (MPP). E2-induced effects generally mirrored those of BPA, but were not exaggerated by co-administration with an L-type calcium channel antagonist. Discussion Collectively across multiple cardiac endpoints, E2 was the most potent and BPS was the least potent disruptor of hiPSC-CM function. Although the observed cardiac effects of E2 and BPA were similar, a few distinct differences suggest that these chemicals may act (in part) through different mechanisms. hiPSC-CM are a useful model for screening cardiotoxic chemicals, nevertheless, the described in vitro findings should be validated using a more complex ex vivo and/or in vivo model.
Collapse
|
19
|
Liang Y, Gong Y, Jiang Q, Yu Y, Zhang J. Environmental endocrine disruptors and pregnane X receptor action: A review. Food Chem Toxicol 2023; 179:113976. [PMID: 37532173 DOI: 10.1016/j.fct.2023.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
The pregnane X receptor (PXR) is a kind of orphan nuclear receptor activated by a series of ligands. Environmental endocrine disruptors (EEDs) are a wide class of molecules present in the environment that are suspected to have adverse effects on the endocrine system by interfering with the synthesis, transport, degradation, or action of endogenous hormones. Since EEDs may modulate human/rodent PXR, this review aims to summarize EEDs as PXR modulators, including agonists and antagonists. The modular structure of PXR is also described, interestingly, the pharmacology of PXR have been confirmed to vary among different species. Furthermore, PXR play a key role in the regulation of endocrine function. Endocrine disruption of EEDs via PXR and its related pathways are systematically summarized. In brief, this review may provide a way to understand the roles of EEDs in interaction with the nuclear receptors (such as PXR) and the related pathways.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
20
|
Borghese MM, Huang R, MacPherson S, Gaudreau E, Gagné S, Ashley-Martin J, Fisher M, Booij L, Bouchard MF, Arbuckle TE. A descriptive analysis of first trimester urinary concentrations of 14 bisphenol analogues in the MIREC Canadian pregnancy cohort. Int J Hyg Environ Health 2023; 253:114225. [PMID: 37542835 DOI: 10.1016/j.ijheh.2023.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Concern over the health effects of BPA, particularly for the developing fetus, has led to an increasing use of bisphenol analogues in industrial and consumer products, which may be as hormonally active as BPA. Biomonitoring data for many bisphenol analogues, especially in pregnant populations, are limited. METHODS We measured concentrations of 14 bisphenol analogues in 1st trimester urine samples (n = 1851) from the Maternal-Infant Research on Environmental Chemicals (MIREC) Canadian pregnancy cohort (2008-2011). We examined patterns of exposure according to sociodemographic and sampling characteristics as well as occupation and frequency of consumption of canned fish within the previous 3 months. RESULTS BPA was detected in 89% of participants with a specific gravity standardized geometric mean concentration of 0.990 μg/L. Biphenol 4,4' (BP 4,4'), 4,4'-dihydroxydiphenyl ether (DHDPE), and bisphenol E (BPE) were detected in >97% of participants. Bisphenol F (BPF) and bisphenol S (BPS) were detected in >60% of participants. Specific gravity standardized geometric mean concentrations of these 5 compounds ranged from 0.024 to 0.564 μg/L. Nine bisphenol analogues were detected in <9% of participants. Concentrations of BP 4,4', DHDPE, and BPE were higher in younger women and those with higher pre-pregnancy BMI, lower household income, lower education, and among smokers. We found a similar pattern of differences in BPF for age, education, and smoking status while BPS similarly differed across categories of pre-pregnancy BMI. Participants who were unemployed or working in the service industry had higher molar sum of 7 bisphenol analogues than those working in healthcare, education, or an office setting. Canned fish consumption was not related to bisphenol analogue concentrations. CONCLUSION BP 4,4', DHDPE, BPE, BPF, and BPS were highly detected in 1st trimester urine samples in this large pan-Canadian pregnancy cohort. This suggests widespread exposure to these analogues around 2008-2011 and warrants further investigation into associations with health outcomes.
Collapse
Affiliation(s)
- M M Borghese
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - R Huang
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - S MacPherson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - E Gaudreau
- Centre du Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Quebec, Canada.
| | - S Gagné
- Centre du Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Quebec, Canada.
| | - J Ashley-Martin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - M Fisher
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - L Booij
- Department of Psychiatry, McGill University, Montréal, Québec, Canada; Sainte-Justine University Hospital Research Center, Montréal, Québec, Canada; Department of Environmental and Occupational Health, School of Public Health of the University of Montreal, Montréal, Québec, Canada.
| | - M F Bouchard
- Department of Environmental and Occupational Health, School of Public Health of the University of Montreal, Montréal, Québec, Canada.
| | - T E Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
21
|
Murase W, Kubota A, Ikeda-Araki A, Terasaki M, Nakagawa K, Shizu R, Yoshinari K, Kojima H. Effects of perfluorooctanoic acid (PFOA) on gene expression profiles via nuclear receptors in HepaRG cells: Comparative study with in vitro transactivation assays. Toxicology 2023:153577. [PMID: 37302725 DOI: 10.1016/j.tox.2023.153577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA), a synthetic perfluorinated eight-carbon organic chemical, has been reported to induce hepatotoxicity, including increased liver weight, hepatocellular hypertrophy, necrosis, and increased peroxisome proliferation in rodents. Epidemiological studies have demonstrated associations between serum PFOA levels and various adverse effects. In this study, we investigated the gene expression profiles of human HepaRG cells exposed to 10 and 100 μM PFOA for 24h. Treatment with 10 and 100 μM PFOA significantly modulated the expression of 190 genes and 996 genes, respectively. In particular, genes upregulated or downregulated by 100µM PFOA included peroxisome proliferator-activated receptor (PPAR) signaling genes related to lipid metabolism, adipocyte differentiation, and gluconeogenesis. In addition, we identified the "Nuclear receptors-meta pathways" following the activation of other nuclear receptors: constitutive androstane receptor (CAR), pregnane X receptor (PXR) and farnesoid X receptor (FXR), and the transcription factor, nuclear factor E2-related factor 2 (Nrf2). The expression levels of some target genes (CYP4A11, CYP2B6, CYP3A4, CYP7A1, and GPX2) of these nuclear receptors and Nrf2 were confirmed using quantitative reverse transcription polymerase chain reaction. Next, we performed transactivation assays using COS-7 or HEK293 cells to investigate whether these signaling-pathways were activated by the direct effects of PFOA on human PPARα, CAR, PXR, FXR and Nrf2. PFOA activated PPARα in a concentration-dependent manner, but did not activate CAR, PXR, FXR, or Nrf2. Taken together, these results suggest that PFOA affects the hepatic transcriptomic responses of HepaRG cells through direct activation of PPARα and indirect activation of CAR, PXR FXR and Nrf2. Our finding indicates that PPARα activation found in the "Nuclear receptors-meta pathways" functions as a molecular initiating event for PFOA, and indirect activation of alternative nuclear receptors and Nrf2 also provide important molecular mechanisms in PFOA-induced human hepatotoxicity.
Collapse
Affiliation(s)
- Wataru Murase
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuko Ikeda-Araki
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Koji Nakagawa
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Ryota Shizu
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kouichi Yoshinari
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| |
Collapse
|
22
|
Wang J, Wu C, Zhang X, Song Y, Wang B, Zhang K, Sun M. Developmental neurotoxic effects of bisphenol A and its derivatives in Drosophila melanogaster. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115098. [PMID: 37269611 DOI: 10.1016/j.ecoenv.2023.115098] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
As a result of the ban on bisphenol A (BPA), a hormone disruptor with developmental neurotoxicity, several BPA derivatives (BPs) have been widely used in industrial production. However, there are no effective methods for assessing the neurodevelopmental toxic effects of BPs. To address this, a Drosophila exposure model was established, and W1118 was reared in food containing these BPs. Results showed that each BPs displayed different semi-lethal doses ranging from 1.76 to 19.43 mM. Exposure to BPs delayed larval development and affected axonal growth, resulting in the abnormal crossing of the midline of axons in the β lobules of mushroom bodies, but the damage caused by BPE and BPF was relatively minor. BPC, BPAF, and BPAP have the most significant effects on locomotor behavior, whereas BPC exhibited the most affected social interactions. Furthermore, exposure to high-dose BPA, BPC, BPS, BPAF, and BPAP also significantly increased the expression of Drosophila estrogen-related receptors. These demonstrated that different kinds of BPs had different levels of neurodevelopmental toxicity, and the severity was BPZ > BPC and BPAF > BPB > BPS > BPAP ≈ BPAl ≈ BPF > BPE. Therefore, BPZ, BPC, BPS, BPAF, and BPAP should be evaluated as potential alternatives to BPA.
Collapse
Affiliation(s)
- Jie Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunyan Wu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xing Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyuan Song
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Binquan Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ke Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingkuan Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
23
|
Agarwal R, Joshi SS. Toxicity of Bisphenol in Pregnant Females: First Review of Literature in Humans. Cureus 2023; 15:e39168. [PMID: 37332408 PMCID: PMC10276200 DOI: 10.7759/cureus.39168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Bisphenol analogues are widely used in consumer products such as disposable dinnerware, canned food, personal care products, bottled beverages, and more, and dietary exposure is the main pathway. Bisphenol A is used to manufacture synthetic resins and commercial plastics in large quantities. According to epidemiological and animal studies, bisphenols disrupt the reproductive, immunological, and metabolic systems. These analogues are estrogenic like Bisphenol A, although human studies are limited. We did a thorough search of the literature on the toxicity of bisphenol on reproductive and endocrine systems in pregnancy, focusing particularly on human studies. Hence, we present a comprehensive literature review on this topic. During our literature search, three epidemiological studies and one human observational study demonstrated a substantial link between bisphenol toxicity and recurrent miscarriages. The aforementioned research shows that bisphenol may harm pregnancy and cause miscarriages. We believe this is the first literature review on the topic.
Collapse
Affiliation(s)
- Radhika Agarwal
- Physiology, All India Institute of Medical Sciences Rishikesh, Rishikesh, IND
| | - Shrirang S Joshi
- Emergency Medicine, All India Institute of Medical Sciences, New Delhi, IND
| |
Collapse
|
24
|
Gayrard V, Viguie C, Cabaton N, Person E, Zalko D, Grandin F, Berrebi A, Metsu D, Toutain PL, Picard-Hagen N. Importance of relative binding of bisphenol A and bisphenol S to plasma proteins for predicting their in vivo potencies. Toxicol Appl Pharmacol 2023; 466:116477. [PMID: 36940861 DOI: 10.1016/j.taap.2023.116477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Many studies suggest that the potential impact of bisphenol S (BPS) as an endocrine disruptor is comparable to that of bisphenol A (BPA). However, in vitro-to-in vivo and from animal to human extrapolations require knowledge of the plasma free fraction of the active endocrine compounds. The present study aimed to characterise BPA and BPS binding to plasma proteins both in humans and different animal species. The plasma protein binding of BPA and BPS was assessed by equilibrium dialysis in plasma from adult female mice, rats, monkeys, early and late pregnant women as well as paired cord blood, early and late pregnant sheep and foetal sheep. The fraction of free BPA was independent of plasma concentrations and ranged between 4% and 7% in adults. This fraction was 2 to 3.5 times lower than that of BPS in all species except sheep, ranging from 3% to 20%. Plasma binding of BPA and BPS was not affected by the stage of pregnancy, BPA and BPS free fractions representing about 4% and 9% during early and late human pregnancy, respectively. These fractions were lower than the free fractions of BPA (7%) and BPS (12%) in cord blood. Our results suggest that similarly to BPA, BPS is extensively bound to proteins, mainly albumin. The higher fraction of free BPS compared to BPA may have implications for human exposure assessment since BPS free plasma concentrations are expected to be 2 to 3.5 times higher than that of BPA for similar plasma concentration.
Collapse
Affiliation(s)
- Véronique Gayrard
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Catherine Viguie
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nicolas Cabaton
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Elodie Person
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Daniel Zalko
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Flore Grandin
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Alain Berrebi
- Service de Gynécologie Obstétrique, Hôpital Paule de Viguier, CHU de Toulouse, 330 avenue de Grande Bretagne, 31059 Toulouse, France
| | - David Metsu
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Pierre-Louis Toutain
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France; The Royal Veterinary College, University of London, London, United Kingdom
| | - Nicole Picard-Hagen
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
25
|
Zhang W, Ma X, Zhang Y, Tong W, Zhang X, Liang Y, Song M. Obesogenic effect of Bisphenol P on mice via altering the metabolic pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114703. [PMID: 36857923 DOI: 10.1016/j.ecoenv.2023.114703] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/12/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol P (BPP), structurally similar to bisphenol A, is commonly identified in the samples of environment, food, and humans. Unfortunately, very little information is currently available on adverse effects of BPP. The obesogenic effects and underlying mechanisms of BPP on mice were investigated in this study. Compared with the control, high-resolution microcomputed tomography (micro-CT) scans displayed that the visceral fat volume of mice was significantly increased at a dose of 5 mg/kg/day after BPP exposure for 14 days, whereas the subcutaneous fat volume remained unchanged. Nontargeted metabolomic analysis revealed that BPP significantly perturbed the metabolic pathways of mouse livers, and acetyl-CoA was identified as the potential key metabolite responsible for the visceral fat induced by BPP. These findings recommend that a great deal of attention should be paid to the obesogenic properties of BPP as a result of its widely utilized and persistence in the environment.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuerui Ma
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Yijia Zhang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Wanjing Tong
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Xing Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Maoyong Song
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, 430056 Wuhan, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Lyu Z, Harada KH, Kim S, Fujitani T, Hitomi T, Pan R, Park N, Fujii Y, Kho Y, Choi K. Temporal trends in bisphenol exposures and associated health risk among Japanese women living in the Kyoto area from 1993 to 2016. CHEMOSPHERE 2023; 316:137867. [PMID: 36642136 DOI: 10.1016/j.chemosphere.2023.137867] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Bisphenols, and especially bisphenol A, are widely used as components of epoxy resins and polycarbonate. Widespread detection and potential health risks have led to bisphenol A being replaced by other alternatives, including structurally similar bisphenol analogs. Several bisphenol analogs are suspected to have similar adverse health consequences. This study examined the temporal trends in bisphenol exposure among a group of Japanese women from 1993 to 2016, and assessed the associated health risks. METHODS We used archived single spot urine samples of healthy Japanese women living in the Kyoto area (n = 133) collected in 1993, 2000, 2003, 2009, 2011, and 2016. We measured the concentrations of 10 bisphenols in these samples. RESULTS A sharp increase in the detection rates of bisphenol F was observed after 2000. There was a distinct downward trend in urinary bisphenol A concentrations and an upward trend in bisphenol E concentrations after 2009. While the hazard index for all measured bisphenols was below 1 in all subjects, bisphenol F was determined as the most important risk driver after 2000, rather than bisphenol A. DISCUSSION Trends of decreasing bisphenol A and increasing bisphenol E exposure especially after 2011, along with no significant change in the sum of all bisphenol analogs in urine, provide clear evidence that bisphenol A has been replaced by other bisphenols in the study population. We found no significant change in the total exposure to bisphenols during the study period. Bisphenol F might become the most important bisphenol in terms of risk, while cumulative risks due to all bisphenol exposure were deemed insignificant. Considering the accumulating evidence indicating adverse effects at lower exposure levels, further studies are warranted to assess exposure and risk from bisphenol A analogs.
Collapse
Affiliation(s)
- Zhaoqing Lyu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan.
| | - Sungmin Kim
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Republic of Korea
| | - Tomoko Fujitani
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan
| | - Toshiaki Hitomi
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki, 216-8511, Japan
| | - Rui Pan
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan; Department of Global Environmental Health, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Nayoun Park
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Republic of Korea
| | - Yukiko Fujii
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
27
|
Nowak K, Jakopin Ž. In silico profiling of endocrine-disrupting potential of bisphenol analogues and their halogenated transformation products. Food Chem Toxicol 2023; 173:113623. [PMID: 36657698 DOI: 10.1016/j.fct.2023.113623] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
Due to its endocrine-disrupting properties, bisphenol A (BPA) is being phased out from plastics, thermal paper and epoxy resins, and its replacements are being introduced into the market. Bisphenols are released into the environment, where they can undergo halogenation. Unlike BPA, the endocrine-disrupting potential of BPA analogues and their halogenated transformation products has not been extensively studied. The aim of this study was to evaluate the endocrine-disrupting potential of 18 BPA analogues and their halogenated derivatives by calculating affinities for 14 human nuclear receptors utilizing the Endocrine Disruptome and VirtualToxLab™ in silico tools. Our simulations identified AR, ERs, and GR as the most favorable targets of bisphenols and their derivatives. Several BPA analogues displayed a higher predicted potential for endocrine disruption than BPA. Our models highlighted BPZ and BPPH as the most hazardous in terms of predicted endocrine activities. Halogenation, in general, was predicted to increase the binding affinity of bisphenols for AR, ERβ, MR, GR, PPARγ, and TRβ. Notably, mono- or 2,2'-di-halogenated bisphenols exhibited the highest potential for endocrine disruption. In vitro corroboration of the obtained results should be the next milestone in evaluating the safety of BPA substitutes and their halogenated transformation products.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Poland
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, University of Ljubljana, Slovenia.
| |
Collapse
|
28
|
Ma Y, Taxvig C, Rodríguez-Carrillo A, Mustieles V, Reiber L, Kiesow A, Löbl NM, Fernández MF, Hansen TVA, Valente MJ, Kolossa-Gehring M, David M, Vinggaard AM. Human risk associated with exposure to mixtures of antiandrogenic chemicals evaluated using in vitro hazard and human biomonitoring data. ENVIRONMENT INTERNATIONAL 2023; 173:107815. [PMID: 36822008 PMCID: PMC10030311 DOI: 10.1016/j.envint.2023.107815] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Scientific evidence for underestimated toxicity from unintentional exposure to chemical mixtures is mounting. Yet, harmonized approaches on how to assess the actual risk of mixtures is lacking. As part of the European Joint programme 'Human Biomonitoring for Europe' we explored a novel methodology for mixture risk assessment of chemicals affecting male reproductive function. METHODOLOGY We explored a methodology for chemical mixture risk assessment based on human in vitro data combined with human exposure data, thereby circumventing the drawbacks of using hazard data from rodents and estimated exposure intake levels. Human androgen receptor (hAR) antagonism was selected as the most important molecular initiating event linked to adverse outcomes on male reproductive health. RESULTS Our work identified 231 chemicals able to interfere with hAR activity. Among these were 61 finally identified as having both reliable hAR antagonist and human biomonitoring data. Calculation of risk quotients indicated that PCBs (118, 138, 157), phthalates (BBP, DBP, DIBP), benzophenone-3, PFOS, methylparaben, triclosan, some pesticides (i.e cypermethrin, β-endosulfan, methylparathion, p,p-DDE), and a PAH metabolite (1-hydroxypyrene) contributed to the mixture effect. The major chemical mixture drivers were PCB 118, BBP, PFOS, DBP, and the UV filter benzophenone-3, together contributing with 75% of the total mixture effect that was primarily driven by high exposure values. CONCLUSIONS This viable way forward for mixture risk assessment of chemicals has the advantages of (1) being a more comprehensive mixture risk assessment also covering data-poor chemicals, and (2) including human data only. However, the approach is subjected to uncertainties in terms of in vitro to in vivo extrapolation, it is not ready for decision making, and needs further development. Still, the results indicate a concern for adverse effects on reproductive function in highly exposed boys, especially when considering additional exposure to data-poor chemicals and chemicals acting by other mechanisms of action.
Collapse
Affiliation(s)
- Yanying Ma
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Camilla Taxvig
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Andrea Rodríguez-Carrillo
- Center for Biomedical Research (CIBM), University of Granada, Spain; Instituto de Investigación Biosanitaria Ibs Granada, Spain
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Spain; Instituto de Investigación Biosanitaria Ibs Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), 18100, Spain
| | | | | | | | - Mariana F Fernández
- Center for Biomedical Research (CIBM), University of Granada, Spain; Instituto de Investigación Biosanitaria Ibs Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), 18100, Spain
| | | | - Maria João Valente
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | | - Anne Marie Vinggaard
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
29
|
Zhan W, Tang W, Shen X, Xu H, Zhang J. Exposure to bisphenol A and its analogs and polycystic ovarian syndrome in women of childbearing age: A multicenter case-control study. CHEMOSPHERE 2023; 313:137463. [PMID: 36470355 DOI: 10.1016/j.chemosphere.2022.137463] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/02/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND/OBJECTIVES In recent years, the reproductive toxicity of new bisphenol analogs has garnered much interest, but it remains to be determined whether bisphenol analogs affect polycystic ovarian syndrome (PCOS). METHODS This study utilized data from a multicenter hospital-based case-control study conducted in 2014-2016 to examine the association between endocrine-disrupting chemicals and infertility in China. 321 PCOS cases and 412 controls were included in the current analysis. We quantified seven bisphenol analogs in urine samples, including bisphenol A (BPA), bisphenol AP (BPAP), bisphenol AF (BPAF), bisphenol B (BPB), bisphenol S (BPS), bisphenol P (BPP), and bisphenol Z (BPZ). Spearman correlation and generalized linear regression were used in assessing the relationship between bisphenol analogs and hormonal parameters. To examine the association of bisphenol analogs with odds of PCOS, multiple logistic regression, and two multi-pollutant models [quantile-based g-computation (QGC) and extreme gradient boosting (XGBoost) methods] were used. RESULTS After covariates adjustment, BPA, BPS, and BPAF were positively correlated with testosterone (T) in the control group (P < 0.05). Dose-response relationships were discovered between BPA, BPS, BPZ, and BPAF quartiles and PCOS. Mixed exposure to seven bisphenol analogs was found to be positively associated with the odds of PCOS (adjusted odds ratio = 1.26; 1.12-1.45), which was primarily driven by BPS (weight = 0.51), BPZ (weight = 0.26), and BPAF (weight = 0.23). Women who were overweight or obese tended to have a stronger association between bisphenol analogs and PCOS than normal-weight women. CONCLUSIONS Environmental exposure to bisphenol analogs was associated with increased odds of PCOS in this case-control study. This association was stronger among obese and overweight women.
Collapse
Affiliation(s)
- Wenqiang Zhan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weifeng Tang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaoli Shen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hong Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
30
|
Cao M, Wei J, Pan Y, Wang L, Li Z, Hu Y, Liang Y, Cao H. Antagonistic mechanisms of bisphenol analogues on the estrogen receptor α in zebrafish embryos: Experimental and computational studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159259. [PMID: 36220475 DOI: 10.1016/j.scitotenv.2022.159259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) can disturb the estrogen receptor α (ERα)-mediated signaling pathway, which results in endocrine-disrupting effects and reproductive toxicity. Most BPA analogues as alternatives were evidenced to generate estrogenic activity as agonists or partial agonists of ERα. Recent studies indicated that certain BPA analogues, such as bisphenol M (BPM), bisphenol P (BPP), and bisphenol FL (BPFL), exhibited strong anti-estrogenic effects comparable with the typical antagonist 4-hydroxytamoxifen. However, conflicting findings were also observed for the compounds in different in vitro assays, and whether these BPA analogues can elicit an in vivo effect on ERα at environmentally relevant concentrations remains unknown. The underlying structural basis of estrogenic/anti-estrogenic activity should be further elucidated at the atomic level. To address these issues, we combined zebrafish-based in vivo and in silico methods to assess the effects of the compounds on ERα. The results show that the expressions of ERα-mediated downstream related genes in zebrafish embryos decreased after exposed to the compounds. Further molecular dynamics simulations were used to probe the antagonistic mechanisms of the compounds on ERα. The key H-bonding interactions were identified as important ligand recognition by ERα in the analysis of binding modes and binding free energy calculations. In summary, the current study provides preliminary in vivo evidence of fish species for the anti-estrogenic activity of certain BPA analogues.
Collapse
Affiliation(s)
- Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jinbo Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yu Pan
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zhunjie Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yeli Hu
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
31
|
Gély CA, Lacroix MZ, Roques BB, Toutain PL, Gayrard V, Picard-Hagen N. Comparison of toxicokinetic properties of eleven analogues of Bisphenol A in pig after intravenous and oral administrations. ENVIRONMENT INTERNATIONAL 2023; 171:107722. [PMID: 36584424 DOI: 10.1016/j.envint.2022.107722] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Due to the restrictions of its use, Bisphenol A (BPA) has been replaced by many structurally related bisphenols (BPs) in consumer products. The endocrine disrupting potential similar to that of BPA has been described for several bisphenols, there is therefore an urgent need of toxicokinetic (TK) data for these emerging BPs in order to evaluate if their internal exposure could increase the risk of endocrine disruption. We investigated TK behaviors of eleven BPA substitutes (BPS, BPAF, BPB, BPF, BPM, BPZ, 3-3BPA, BP4-4, BPAP, BPP, and BPFL) by intravenous and oral administrations of mixtures of them to piglets and serial collection of blood over 72 h and urine over 24 h, to evaluate their disposition. Data were analyzed using nonlinear mixed-effects modeling and a comparison was made with TK predicted by the generic model HTTK package. The low urinary excretion of some BPs, in particular BPM, BPP and BPFL, is an important aspect to consider in predicting human exposure based on urine biomonitoring. Despite their structural similarities, for the same oral dose, all BPA analogues investigated showed a higher systemic exposure (area under the plasma concentration-time curve (AUC) of the unconjugated Bisphenol) than BPA (2 to 4 fold for 3-3BPA, BPAF, BPB and BPZ, 7-20 fold for BP4-4, BPAP, BPP, BPFL, BPF and BPM and 150 fold for BPS) due mainly to a considerable variation of oral bioavailability (proportion of BP administered by oral route that attains the systemic circulation unchanged). Given similarities in the digestive tract between pigs and humans, our TK data suggest that replacing BPA with some of its alternatives, particularly BPS, will likely lead to higher internal exposure to potential endocrine disruptive compounds. These findings are crucial for evaluating the risk of human exposure to these emerging BPs.
Collapse
Affiliation(s)
- Clémence A Gély
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| | | | | | - Pierre-Louis Toutain
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France; The Royal Veterinary College, University of London, London, United Kingdom.
| | - Véronique Gayrard
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Nicole Picard-Hagen
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
32
|
Bernal K, Touma C, Erradhouani C, Boronat-Belda T, Gaillard L, Al Kassir S, Le Mentec H, Martin-Chouly C, Podechard N, Lagadic-Gossmann D, Langouet S, Brion F, Knoll-Gellida A, Babin PJ, Sovadinova I, Babica P, Andreau K, Barouki R, Vondracek J, Alonso-Magdalena P, Blanc E, Kim MJ, Coumoul X. Combinatorial pathway disruption is a powerful approach to delineate metabolic impacts of endocrine disruptors. FEBS Lett 2022; 596:3107-3123. [PMID: 35957500 DOI: 10.1002/1873-3468.14465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023]
Abstract
The prevalence of metabolic diseases, such as obesity, diabetes, metabolic syndrome and chronic liver diseases among others, has been rising for several years. Epidemiology and mechanistic (in vivo, in vitro and in silico) toxicology have recently provided compelling evidence implicating the chemical environment in the pathogenesis of these diseases. In this review, we will describe the biological processes that contribute to the development of metabolic diseases targeted by metabolic disruptors, and will propose an integrated pathophysiological vision of their effects on several organs. With regard to these pathomechanisms, we will discuss the needs, and the stakes of evolving the testing and assessment of endocrine disruptors to improve the prevention and management of metabolic diseases that have become a global epidemic since the end of last century.
Collapse
Affiliation(s)
- Kévin Bernal
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Charbel Touma
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Chedi Erradhouani
- Université Paris Cité, France.,Ecotoxicologie des substances et des milieux, Parc ALATA, INERIS, Verneuil-en-Halatte, France
| | - Talía Boronat-Belda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Lucas Gaillard
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Sara Al Kassir
- Department of Life and Health Sciences, INSERM U1211, MRGM, University of Bordeaux, Pessac, France
| | - Hélène Le Mentec
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Corinne Martin-Chouly
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Normand Podechard
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Dominique Lagadic-Gossmann
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Sophie Langouet
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - François Brion
- Ecotoxicologie des substances et des milieux, Parc ALATA, INERIS, Verneuil-en-Halatte, France
| | - Anja Knoll-Gellida
- Department of Life and Health Sciences, INSERM U1211, MRGM, University of Bordeaux, Pessac, France
| | - Patrick J Babin
- Department of Life and Health Sciences, INSERM U1211, MRGM, University of Bordeaux, Pessac, France
| | - Iva Sovadinova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karine Andreau
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Robert Barouki
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Jan Vondracek
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Paloma Alonso-Magdalena
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Etienne Blanc
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Min Ji Kim
- INSERM UMR-S 1124, Paris, France.,Université Sorbonne Paris Nord, Bobigny, France
| | - Xavier Coumoul
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| |
Collapse
|
33
|
Pesonen M, Vähäkangas K. Contribution of common plastic-related endocrine disruptors to epithelial-mesenchymal transition (EMT) and tumor progression. CHEMOSPHERE 2022; 309:136560. [PMID: 36152835 DOI: 10.1016/j.chemosphere.2022.136560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Many chemicals, including many endocrine disruptors (EDCs) are known to leach out from various plastic consumer products and waste, and are widespread in the environment. EDCs are a large group of contaminants that can interfere with hormonal metabolism or function. In addition, there are in the literature implications of contribution by EDCs in tumor progression, the last stage of carcinogenesis driven by cells with a metastatic phenotype. The process of epithelial cells losing their apical-basal polarity and cell-to-cell contacts, and acquiring migration and invasive properties typical of mesenchymal cells is called epithelial-mesenchymal transition (EMT). It is essential for tumor progression. In human cells, plastic-related EDCs, (phthalates, bisphenol A, and the alkylphenols: nonylphenol and octylphenol) reduce epithelial E-cadherin, and increase mesenchymal N-cadherin and extracellular matrix metalloproteinases. These changes are hallmarks of EMT. In xenograft mouse studies, EDCs increase migration of cells and metastatic growth in distant tissues. Their contribution to EMT and tumor progression, the topic of this review, is important from public health perspective, because of the ubiquitous exposure to these EDCs. In this mini-review we also discuss molecular mechanisms associated with EDC-induced EMT and tumor progression.
Collapse
Affiliation(s)
- Maija Pesonen
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| | - Kirsi Vähäkangas
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
34
|
Yu M, Tang Q, Lei B, Yang Y, Xu L. Bisphenol AF Promoted the Growth of Uterus and Activated Estrogen Signaling Related Targets in Various Tissues of Nude Mice with SK-BR-3 Xenograft Tumor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15743. [PMID: 36497816 PMCID: PMC9741110 DOI: 10.3390/ijerph192315743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Environmental estrogens can promote the growth, migration, and invasion of breast cancer. However, few studies evaluate adverse health impacts of environmental estrogens on other organs of breast cancer patients. Therefore, the present study investigated the effects of environmental estrogen bisphenol AF (BPAF) on the main organs of female Balb/cA nude mice with SK-BR-3 xenograft tumor by detecting the organ development and gene expression of targets associated with G protein-coupled estrogen receptor 1 (GPER1)-mediated phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinase (MAPK) signaling pathways in hypothalamus, ovary, uterus, liver, and kidney. The results showed that BPAF at 20 mg/kg bw/day markedly increased the uterine weight and the uterine coefficient of nude mice compared to SK-BR-3 bearing tumor control, indicating that BPAF promoted the growth of uterus due to its estrogenic activity. Additionally, BPAF significantly up-regulated the mRNA relative expression of most targets related to nuclear estrogen receptor alpha (ERα) and GPER1-mediated signaling pathways in the hypothalamus, followed by the ovary and uterus, and the least in the liver and kidney, indicating that BPAF activated different estrogen activity related targets in different tissues. In addition, BPAF markedly up-regulated the mRNA expression of GPER1 in all tested tissues, and the molecular docking showed that BPAF could dock into GPER1. Because gene change is an early event of toxicity response, these findings suggested that BPAF might aggravate the condition of breast cancer patients through exerting its estrogenic activity via the GPER1 pathway in various organs.
Collapse
|
35
|
Frederiksen H, Ljubicic ML, Upners EN, Fischer MB, Busch AS, Hagen CP, Juul A, Andersson AM. Benzophenones, bisphenols and other polychlorinated/phenolic substances in Danish infants and their parents - including longitudinal assessments before and after introduction to mixed diet. ENVIRONMENT INTERNATIONAL 2022; 169:107532. [PMID: 36170755 DOI: 10.1016/j.envint.2022.107532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Humans are widely exposed to chemicals with known or suspected endocrine disrupting effects. Among those are several benzophenones, bisphenols and other phenols commonly used in consumer products. OBJECTIVES To provide human biomonitoring data from young families including infants and their parents as well as longitudinal data of infants exclusively breastfed versus on mixed diet. METHOD Twenty-two benzophenones, bisphenols and other phenols, were measured in urine sample sets collected from more than 100 infants and their parents (the TRIO study) and in paired samples from 61 infants when exclusively breastfed and after introduction of mixed diet (the FOOD study). RESULTS Twelve out of 22 substances were detectable in more than half of the urine samples from infants, mothers or fathers. Large variation in excreted levels of almost all the substances were observed. The TRIO study showed that infants had comparable or even significantly higher daily urinary excretion (DUE) of benzophenone, 4-hydroxy-benzophenone, bisphenol A, bisphenol S, triclosan and 2-phenylphenol than their parents. In the FOOD study, exclusively breastfed infants had higher or similar DUE of triclosan and benzophenones compared to when they received mixed diet. Urinary levels of triclosan and the benzophenones, BP-1 and BP-3 were significantly correlated between all trio members, indicating exposure from the same sources at home. For triclosan, BP-1 and BP-3, the within family variation was lower than between families in the TRIO study. Many substances were positively correlated both within infants and parents, indicating that some families were exposed to several of these substances concurrently. CONCLUSION Participants in this study excreted relatively low chemical levels, however, simultaneous exposure to several chemicals with endocrine disrupting abilities is of concern due to the dose-additive effects of these substances in combination with other chemicals.
Collapse
Affiliation(s)
- Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, DK-2100 Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, DK-2100 Copenhagen, Denmark.
| | - Marie Lindhardt Ljubicic
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, DK-2100 Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Emmie N Upners
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, DK-2100 Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Margit Bistrup Fischer
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, DK-2100 Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Alexander Siegfried Busch
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, DK-2100 Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Casper P Hagen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, DK-2100 Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, DK-2100 Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, DK-2100 Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, DK-2100 Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, DK-2100 Copenhagen, Denmark
| |
Collapse
|
36
|
Li S, Bian L, Yang C, Van Schepdael A, Wang X. Migration study of phenolic endocrine disruptors from pacifiers to saliva simulant by solid phase microextraction with amino-functionalized microporous organic network coated fiber. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129505. [PMID: 35809366 DOI: 10.1016/j.jhazmat.2022.129505] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Parabens, bisphenols, and triclosan are used in many baby products, including pacifiers. However, the migration through oral saliva will result in a potential health risk. The present study proposes a sensitive and simple method for the analysis of these chemicals in saliva simulants by solid phase microextraction (SPME) with amino-functionalized microporous organic network (MON-NH2) coated fiber. The MON-NH2 showed an excellent adsorption ability for phenolic compounds. The adsorption isotherm fitted the Langmuir isotherm model and the adsorption kinetics followed the pseudo second-order model. The developed SPME method exhibited wide linear ranges (0.005-500 µg/L), good linearity, low limits of quantitation (0.005 µg/L), great recoveries (87.0-112.5 %), and excellent precision (RSD < 8.3 % for intra-day and RSD < 13.7 % for inter-day). Mathematical models based on Fick's second law were applied to predict migration from pacifiers into saliva simulants and a good fit between theoretical and experimental migration results was found. The daily exposure assessment results indicated that these chemicals in pacifiers do not pose unacceptable health risks to infants. However, exposure risks still should be monitored and appropriate precautions are still needed to protect infants from exposure to these chemicals.
Collapse
Affiliation(s)
- Shihuan Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Linlin Bian
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chengxiong Yang
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven, University of Leuven, Leuven, Belgium
| | - Xu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
37
|
Huang Y, Zhang W, Zhang C, Cui N, Xiao Z, Wang R, Su X. Rapid and reagent-free bioassay using autobioluminescent yeasts to detect agonistic and antagonistic activities of bisphenols against rat androgen receptor and progesterone receptor. J Steroid Biochem Mol Biol 2022; 222:106151. [PMID: 35787454 DOI: 10.1016/j.jsbmb.2022.106151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
Bisphenol A (BPA) and its analogues have been classified as endocrine disruptors via binding to nuclear receptors. Two novel bioassays, BLYrARS and BLYrPRS, were developed for rapid detection of agonistic and antagonistic activities of BPA and five of its analogues binding rat androgen receptor (rAR) and rat progesterone receptor (rPR). The reporter bioassay was based on two autonomously bioluminescent strains of the yeast Saccharomyces cerevisiae, recombined with a bacterial luciferase reporter gene cassette (lux) that can produce autofluorescence, regulated by the corresponding hormone response element acting as the responsive promoter. The bioluminescent signal is autonomous and continuous without cell lysis or addition of exogenous reagents. The AR agonist R1881 could be detected at 4 h with a half-maximal effective concentration (EC50) of ~9.4 nM. The PR agonist progesterone could be determined at 4 h with an EC50 of ~2.74 nM. None of the sixteen bisphenols presented agonistic activities against rAR and rPR. However, thirteen BPs were rAR antagonists and eleven BPs acted as rPR antagonists with different potency. The BLYrARS and BLYrPRS bioassay characterized by automated signal acquisition without additional manipulations or cost can be applied for simple and rapid detection of agonistic and antagonistic activities of BPs and other compounds acting as agonists or antagonists of rAR and rPR. Based on data derived by use of this bioassay endocrine-disrupting activities of some BPA analogues are more potent than BPA.
Collapse
Affiliation(s)
- Yuan Huang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - Wei Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - Chengdong Zhang
- Beijing Biorise Biotechnology Co., Ltd, Beijing 102206, China.
| | - Na Cui
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - Zhiming Xiao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - Ruiguo Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| |
Collapse
|
38
|
Involvement of NLRP3/Caspase-1/GSDMD-Dependent Pyroptosis in BPA-Induced Apoptosis of Human Neuroblastoma Cells. Biochem Pharmacol 2022; 200:115042. [DOI: 10.1016/j.bcp.2022.115042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
|
39
|
Ao J, Huo X, Zhang J, Mao Y, Li G, Ye J, Shi Y, Jin F, Bao S, Zhang J. Environmental exposure to bisphenol analogues and unexplained recurrent miscarriage: A case-control study. ENVIRONMENTAL RESEARCH 2022; 204:112293. [PMID: 34728239 DOI: 10.1016/j.envres.2021.112293] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The use of bisphenol A (BPA) has been substantially limited since 2010 due to its toxicity to human health. A group of bisphenol analogues that are structurally similar to BPA have been developed as the alternatives and used widely. The reproductive toxicity of these emerging chemicals has caused substantial concerns in recent years. Whether bisphenol analogues affect miscarriage, especially unexplained recurrent miscarriage (URM), remains to be explored. We conducted a hospital-based, case-control study with 1180 URM cases and 571 controls in China from 2014 to 2016. Concentrations of six bisphenol analogues (BPA, BPAF, BPAP, BPB, BPP and BPS) were measured in the urine samples collected at median intervals of 7.6 months after last miscarriage (interquartile ranges: 4.8, 14.7 months). Multiple logistic regression, Bayesian kernel machine regression (BKMR) and quantile g-computation (q-gcomp) were used to assess the relationship of bisphenol analogues with URM risk. We observed significantly higher levels of all urinary bisphenols in the cases than the controls. After controlling for potential confounders, bisphenol analogues were significantly associated with increased odds of URM in varying degrees. A dose-response pattern was observed for the associations of BPAF, BPAP and BPB quartiles with URM. The mixed exposure of six bisphenol analogues was positively associated with the risk of URM (adjusted odds ratio (aOR) = 1.25; 1.11-1.42), which was mainly driven by BPAP (60.1%), BPAF (25.1%) and BPA (14.8%). After age stratification, the risks tended to be higher in women aged 30 years or older, compared to women <30 years. Our large case-control study indicates that environmental exposure to bisphenol analogues is associated with an increased risk of URM. Older women may be more vulnerable to the insult.
Collapse
Affiliation(s)
- Junjie Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaona Huo
- Obstetrics Department, International Peace Maternity and Child Health Hospital of China, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jiangtao Zhang
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, 250001, China
| | - Yuchan Mao
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Guohua Li
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Jiangfeng Ye
- Department of Clinical Epidemiology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, China
| | - Yuhua Shi
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, 250001, China
| | - Fan Jin
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| | - Shihua Bao
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
40
|
Durcik M, Hiti L, Tomašič T, Mašič LP. New bisphenol A and bisphenol S analogs: Evaluation of their hERα agonistic and antagonistic activities using the OECD 455 in-vitro assay and molecular modeling. Chem Biol Interact 2022; 354:109820. [PMID: 35077665 DOI: 10.1016/j.cbi.2022.109820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
Bisphenol A (BPA) and bisphenol S (BPS) are agonists of hERα receptors and due to BPA regulations in many countries, several substitutes that are close analogs to BPA and BPS were developed. In the presented study, we have determined human estrogen receptor (hER)α agonist and antagonist activities with the validated OECD assay with the hERα-Hela9903 cell line for five different chemical classes of BPA and BPS analogs. This study also defined clear structure-activity relationships for agonist and antagonist activities of the 12 bisphenols on hERα, which are supported by molecular docking studies. These data show that classical analogs of BPA (e.g., bisphenols B, C, AP, E) have comparable or superior estrogenic agonist potencies compared to BPA and BPS. The most potent of these hERα agonists were even more potent than BPA, as bisphenol B and C, with IC50 values of 0.31 μM and 0.48 μM, respectively. Among these selected bisphenols, 4-4'-methylenebis (oxyethylenethio)diphenol was the most potent hERα antagonist, with an IC50 of 0.39 μM. The estrogenic agonist and antagonist potencies of these different chemical classes of BPA and BPS analogs are mutually comparable and can be used as a basis for further structure-activity relationships studies and human risk assessment.
Collapse
Affiliation(s)
- Martina Durcik
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Luka Hiti
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
41
|
Kouznetsov VV, Vargas Méndez LY. Synthesis of eugenol‐based monomers for sustainable epoxy thermoplastic polymers. J Appl Polym Sci 2022. [DOI: 10.1002/app.52237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Vladimir V. Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguara, Universidad Industrial de Santander Bucaramanga Colombia
| | - Leonor Y. Vargas Méndez
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguara, Universidad Industrial de Santander Bucaramanga Colombia
| |
Collapse
|
42
|
Jain R, Jain A, Jain S, Thakur SS, Jain SK. Linking bisphenol potential with deleterious effect on immune system: a review. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
43
|
Sakuragi Y, Takada H, Sato H, Kubota A, Terasaki M, Takeuchi S, Ikeda-Araki A, Watanabe Y, Kitamura S, Kojima H. An analytical survey of benzotriazole UV stabilizers in plastic products and their endocrine-disrupting potential via human estrogen and androgen receptors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149374. [PMID: 34388645 DOI: 10.1016/j.scitotenv.2021.149374] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/30/2021] [Accepted: 07/27/2021] [Indexed: 05/06/2023]
Abstract
Benzotriazole UV stabilizers (BUVSs) are added to various materials to prevent damage from UV-irradiation. Recently, there has been great concern regarding the endocrine-disrupting effects of exposure to microplastic-derivative BUVSs in particular. In this study, we measured the concentrations of nine representative BUVSs in the plastic bottle caps of 10 beverages, 4 food packages, and 4 plastic shopping bags purchased from Japanese grocery stores by GC-MS analysis, and found that eight BUVSs, except for 2-(3,5-di-tert-butyl-2-hydroxyphenyl)-2H-benzotriazole (UV-320), were detected from these plastic products. In particular, 2-(2-hydroxy-5-methylphenyl) benzotriazole (UV-P) and 2-(2-hydroxy-3-tert-butyl-5-methylphenyl)-5-chlorobenzotriazole (UV-326) were detected from all the bottle caps at concentrations in the order of ng/g. In addition, we characterized the agonistic and/or antagonistic activities against human estrogen receptors (ERα/β) and androgen receptor (AR) of 13 BUVSs. Results revealed that, among the 13 BUVSs, UV-P, 2-(5-tert-butyl-2-hydroxyphenyl) benzotriazole (UV-PS), 2-[2-hydroxy-5-[2-(methacryloyloxy)ethyl]phenyl]-2H-benzotriazole (UV-090) and 2-(2-hydroxy-5-tert-octylphenyl)-benzotriazole (UV-329) showed ERα and/or ERβ agonistic activity, with UV-P being the most potent based on these assays. On the other hand, UV-320 and 2-(3-s-butyl-5-tert-butyl-2-hydroxyphenyl) benzotriazole (UV-350) showed both ERα and ERβ antagonistic activities, and 2-(3,5-di-tert-amyl-2-hydroxylphenyl) benzotriazole (UV-328) and UV-329 acted as ERβ antagonists. In the AR assay, UV-P and 2-(3-allyl-2-hydroxy-5-methylphenyl)-2H-benzotriazole (UV-9) showed AR antagonistic activity although none of the test compounds showed AR agonistic activity. Taken together, our findings suggest that a series of BUVSs are present in our environments via plastic materials and several of these compounds possess endocrine-disrupting potential, such as ERα/β agonistic and/or antagonistic activity and AR antagonistic activity. UV-P and its structurally similar compounds, in particular, appear to be a cause for concern.
Collapse
Affiliation(s)
- Yuuta Sakuragi
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Hideshige Takada
- Laboratory of Organic Geochemistry, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Hiroya Sato
- Laboratory of Organic Geochemistry, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Shinji Takeuchi
- Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819, Japan
| | - Atsuko Ikeda-Araki
- Hokkaido University Faculty of Health Sciences, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Yoko Watanabe
- Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Shigeyuki Kitamura
- Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| |
Collapse
|
44
|
Li CH, Zhang DH, Jiang LD, Qi Y, Guo LH. Binding and activity of bisphenol analogues to human peroxisome proliferator-activated receptor β/δ. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112849. [PMID: 34627044 DOI: 10.1016/j.ecoenv.2021.112849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Several studies have indicated metabolic function disruption effects of bisphenol analogues through peroxisome proliferator-activated receptor (PPAR) alpha and gamma pathways. In the present study, we found for the first time that PPARβ/δ might be a novel cellular target of bisphenol analogues. By using the fluorescence competitive binding assay, we found seven bisphenol analogues could bind to PPARβ/δ directly, among which tetrabromobisphenol A (TBBPA, 18.38-fold) and tetrachlorobisphenol A (TCBPA, 12.06-fold) exhibited stronger binding affinity than bisphenol A (BPA). In PPARβ/δ-mediated luciferase reporter gene assay, the seven bisphenol analogues showed transcriptional activity toward PPARβ/δ. Bisphenol AF (BPAF), bisphenol F (BPF) and bisphenol B (BPB) even showed higher transcriptional activity than BPA, while TBBPA and TCBPA showed comparable activity with BPA. Moreover, in human liver HL-7702 cells, the bisphenol analogues promoted the expression of two PPARβ/δ target genes PDK4 and ANGPTL4. Molecular docking simulation indicated the binding potency of bisphenol analogues to PPARβ/δ might depend on halogenation and hydrophobicity and the transcriptional activity might depend on their binding affinity and hydrogen bond interactions. Overall, the PPARβ/δ pathway may provide a new mechanism for the metabolic function disruption of bisphenol analogues, and TBBPA and TCBPA might exert higher metabolic disruption effects than BPA via PPARβ/δ pathway.
Collapse
Affiliation(s)
- Chuan-Hai Li
- School of Public Health, Qingdao University, 308 Ningxia Street, Qingdao, Shandong 266071, China
| | - Dong-Hui Zhang
- School of Public Health, Qingdao University, 308 Ningxia Street, Qingdao, Shandong 266071, China
| | - Li-Dan Jiang
- School of Public Health, Qingdao University, 308 Ningxia Street, Qingdao, Shandong 266071, China
| | - Yuan Qi
- School of Public Health, Qingdao University, 308 Ningxia Street, Qingdao, Shandong 266071, China
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
45
|
Teratogenicity and toxicity of the new BPA alternative TMBPF, and BPA, BPS, and BPAF in chick embryonic development. Curr Res Toxicol 2021; 2:399-410. [PMID: 34901887 PMCID: PMC8639335 DOI: 10.1016/j.crtox.2021.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022] Open
Abstract
Bisphenol A (BPA) is a widely known, yet controversial reproductive toxin, capable of inducing reproductive, developmental, and somatic growth defects across species. Due to scientific findings and public concern, companies have developed BPA alternatives remarkably similar to BPA. However, these alternatives have had much less testing and oversight, yet they are already being mass-produced and used across industries from plastics to food-contact coatings. The newest one, tetramethyl bisphenol F (TMBPF), is the least well-studied and has never been investigated in embryological models, however it continues to be mass produced and found in various products. Here, we used the chicken embryotoxicity screening test to compare the toxicities and potencies of several BPA analogs including TMBPF. We exposed developing chicken (Gallus gallus domesticus) embryos in ovo, from embryonic day 5 to 12 (E5-12), to increasing concentrations of BPA, bisphenol S (BPS), bisphenol AF (BPAF), and TMBPF, from 0.003 to 30 μM, and analyzed their developmental and toxic effects. The bisphenols significantly impaired development, growth, and survival in a dose-dependent manner, even at low, environmentally relevant concentrations of 3-30 nM. There was severely reduced growth and developmental delay, with exposed embryos averaging half the size and weight of control vehicle-treated embryos. The most common and severe dysmorphologies were craniofacial, eye, gastrointestinal, and body pigmentation abnormalities. The bisphenols caused dose-dependent toxicity with the lowest LC50s (lethal concentration with 50% survival) ever demonstrated in chick embryos, at 0.83-2.92 μM. Notably, TMBPF was the second-most toxic and teratogenic of all chemicals tested (rank order of BPAF > TMBPF > BPS > BPA). These results underscore the adverse effects of BPA replacements on early embryo development and may have implications for reproductive health and disease across species, including pregnancy exposures in humans.
Collapse
|
46
|
Kodama S, Yoshii N, Ota A, Takeshita JI, Yoshinari K, Ono A. Association between in vitro nuclear receptor-activating profiles of chemical compounds and their in vivo hepatotoxicity in rats. J Toxicol Sci 2021; 46:569-587. [PMID: 34853243 DOI: 10.2131/jts.46.569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The liver plays critical roles to maintain homeostasis of living organisms and is also a major target organ of chemical toxicity. Meanwhile, nuclear receptors (NRs) are known to regulate major liver functions and also as a critical target for hepatotoxic compounds. In this study, we established mammalian one-hybrid assay systems for five rat-derived NRs, namely PXR, PPARα, LXRα, FXR and RXRα, and evaluated a total of 326 compounds for their NR-activating profiles. Then, we assessed the association between their NR-activating profile and hepatotoxic endpoints in repeated-dose toxicity data of male rats from Hazard Evaluation Support System. In the in vitro cell-based assays, 68, 38, 20, 17 and 17 compounds were identified as positives for PXR, PPARα, LXRα, FXR and RXRα, respectively. The association analyses demonstrated that the PXR-positive compounds showed high frequency of endpoints related to liver hypertrophy, such as centrilobular hepatocellular hypertrophy, suggesting that PXR activation is involved in chemical-induced liver hypertrophy in rats. It is intriguing to note that the PXR-positive compounds also showed statistically significant associations with both prolonged activated partial thromboplastin time and prolonged prothrombin time, suggesting a possible involvement of PXR in the regulation of blood clotting factors. Collectively, our approach may be useful for discovering new functions of NRs as well as understanding the complex mechanism for hepatotoxicity caused by chemical compounds.
Collapse
Affiliation(s)
- Susumu Kodama
- Laboratory of Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Nao Yoshii
- Laboratory of Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Akihiro Ota
- Laboratory of Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Jun-Ichi Takeshita
- Reserach Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Atsushi Ono
- Laboratory of Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
47
|
Lv C, Wei Z, Yue B, Xia N, Huang W, Yue Y, Li Z, Li T, Zhang X, Wang Y. Characterization of diphenyl phthalate as an agonist for estrogen receptor: an in vitro and in silico study. Toxicol Mech Methods 2021; 32:280-287. [PMID: 34697989 DOI: 10.1080/15376516.2021.1998276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Phthalate esters (PAEs) are important pollutants in the environment, which can interfere with the endocrine system by mimicking estrogen. However, limited information is available on modulating the estrogen receptor (ER) of five PAEs including di (2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP), benzyl butyl phthalate (BBP), diphenyl phthalate (DPhP) and dicyclohexyl phthalate (DCHP). This study evaluated the agonistic effects of PAEs on human ER. The cytotoxicity assay showed that there were a significant inhibition of the cell proliferation with treatment of five PAEs. Moreover, DPhP does-dependently enhanced ER-mediated transcriptional activity in the reporter gene assay. The increased expression of estrogen-responsive genes (TFF1, CTSD, and GREB1) was also observed in MCF-7 cells treated with DPhP. The result of molecular docking showed that DPhP tended to bind to the agonist conformation of ER compared with the antagonist conformation of ER, demonstrating its agonist characteristic that has been confirmed in the reporter gene assay. Thus, we found that DPhP may be evaluated as an ER agonist in vitro and it can interfere with the normal function of human ER.
Collapse
Affiliation(s)
- Chengyu Lv
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhengyi Wei
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Benjie Yue
- College of Foreign Languages, Jilin Agricultural University, Changchun, China
| | - Ning Xia
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Wei Huang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yulan Yue
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhuolin Li
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Tiezhu Li
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xiuxia Zhang
- Office of Retirement Affairs, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yongjun Wang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
48
|
Iwamoto M, Masuya T, Hosose M, Tagawa K, Ishibashi T, Suyama K, Nose T, Yoshihara E, Downes M, Evans RM, Matsushima A. Bisphenol A derivatives act as novel coactivator-binding inhibitors for estrogen receptor β. J Biol Chem 2021; 297:101173. [PMID: 34499926 PMCID: PMC8551653 DOI: 10.1016/j.jbc.2021.101173] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/16/2023] Open
Abstract
Bisphenol A and its derivatives are recognized as endocrine disruptors based on their complex effects on estrogen receptor (ER) signaling. While the effects of bisphenol derivatives on ERα have been thoroughly evaluated, how these chemicals affect ERβ signaling is less well understood. Herein, we sought to identify novel ERβ ligands using a radioligand competitive binding assay to screen a chemical library of bisphenol derivatives. Many of the compounds identified showed intriguing dual activities as both ERα agonists and ERβ antagonists. Docking simulations of these compounds and ERβ suggested that they bound not only to the canonical binding site of ERβ but also to the coactivator binding site located on the surface of the receptor, suggesting that they act as coactivator-binding inhibitors (CBIs). Receptor-ligand binding experiments using WT and mutated ERβ support the presence of a second ligand-interaction position at the coactivator-binding site in ERβ, and direct binding experiments of ERβ and a coactivator peptide confirmed that these compounds act as CBIs. Our study is the first to propose that bisphenol derivatives act as CBIs, presenting critical insight for the future development of ER signaling-based drugs and their potential to function as endocrine disruptors.
Collapse
Affiliation(s)
- Masaki Iwamoto
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Takahiro Masuya
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Mari Hosose
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Koki Tagawa
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Tomoka Ishibashi
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Keitaro Suyama
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Takeru Nose
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Eiji Yoshihara
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA; David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Ayami Matsushima
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
49
|
Buoso E, Kenda M, Masi M, Linciano P, Galbiati V, Racchi M, Dolenc MS, Corsini E. Effects of Bisphenols on RACK1 Expression and Their Immunological Implications in THP-1 Cells. Front Pharmacol 2021; 12:743991. [PMID: 34621174 PMCID: PMC8490885 DOI: 10.3389/fphar.2021.743991] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/08/2021] [Indexed: 01/11/2023] Open
Abstract
Receptor for activated C kinase 1 (RACK1) has an important role in immune activation, and is regulated through a balance between glucocorticoid and androgen levels. We have previously demonstrated that RACK1 expression can serve as a marker for evaluation of immunotoxic profiles of hormone-active substances, such as endocrine-disrupting chemicals (EDCs). In this study, we investigated the effects of three bisphenols (BPA, BPAF, BPS) on RACK1 expression and on the innate immune responses in the THP-1 human promyelocytic cell line, a validated model for this investigation. BPA and BPAF reduced RACK1 promoter transcriptional activity, mRNA expression, and protein levels. However, BPS had the opposite effect. As expected, these results on RACK1 were paralleled by lipopolysaccharide (LPS)-induced interleukin-8 (IL-8) and tumor necrosis factor-α (TNFα) production. Since BPA and BPAF induced RACK1 expression in the presence of glucocorticoid receptor (GR) antagonist mifepristone, a role of G-protein-coupled estrogen receptor (GPER) has been considered due to their known estrogenic profile. Therefore, additional molecular effects of BPA and BPAF were unmasked after treatment with different inhibitors of well-known pivotal players of GPER-mediated signaling. BPA exerted its effects on RACK1 via NF-κB, as shown using the NF-κB inhibitor BAY11-7085 and NF-κB-specific luciferase reporter assay. Conversely, BPAF induced RACK1 up-regulation via androgen receptor (AR) activation, as confirmed by treatment with AR antagonist flutamide. Indeed, a biased agonism profile for BPA and BPAF for GPER was suggested based on their different binding modes revealed by our molecular docking. Altogether, our data suggest that RACK1 could represent an important target of EDCs and serves as a screening tool for their immunotoxic potential. Furthermore, RACK1 can be exploited to unmask multiple molecular interactions of hormone-active substances to better dissect out their mechanisms of action.
Collapse
Affiliation(s)
- Erica Buoso
- Università Degli Studi di Pavia, Dipartimento di Scienze del Farmaco, Pavia, Italy
| | - Maša Kenda
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Mirco Masi
- Università Degli Studi di Pavia, Dipartimento di Scienze del Farmaco, Pavia, Italy.,Scuola Universitaria Superiore IUSS, Pavia, Italy
| | - Pasquale Linciano
- Università Degli Studi di Pavia, Dipartimento di Scienze del Farmaco, Pavia, Italy
| | - Valentina Galbiati
- Università Degli Studi di Milano, Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Milan, Italy
| | - Marco Racchi
- Università Degli Studi di Pavia, Dipartimento di Scienze del Farmaco, Pavia, Italy
| | | | - Emanuela Corsini
- Università Degli Studi di Milano, Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Milan, Italy
| |
Collapse
|
50
|
Kim HM, Lee SM, Choi J, Soung NK, Heo JD. Effects of Bisphenol A and Its Alternatives, Bisphenol F and Tetramethyl Bisphenol F on Osteoclast Differentiation. Molecules 2021; 26:molecules26206100. [PMID: 34684681 PMCID: PMC8539477 DOI: 10.3390/molecules26206100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
Bisphenol A (BPA) is a typical environmental endocrine disruptor that exhibits estrogen-mimicking, hormone-like properties and can cause the collapse of bone homeostasis by an imbalance between osteoblasts and osteoclasts. Various BPA substitutes, structurally similar to BPA, have been used to manufacture ‘BPA-free’ products; however, the regulatory role of BPA alternatives in osteoclast differentiation still remains unelucidated. This study aimed to investigate the effects of these chemicals on osteoclast differentiation using the mouse osteoclast precursor cell line RAW 264.7. Results confirmed that both BPA and its alternatives, bisphenol F and tetramethyl bisphenol F (TMBPF), were nontoxic to RAW 264.7 cells. In particular, tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cell staining and activity calculation assays revealed that TMBPF enhanced osteoclast differentiation upon stimulation of the receptor activator of nuclear factor-kappa B ligand (RANKL). Additionally, TMBPF activated the mRNA expression of osteoclast-related target genes, such as the nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), tartrate-resistant acid phosphatase (TRAP), and cathepsin K (CtsK). Western blotting analysis indicated activation of the mitogen-activated protein kinase signaling pathway, including phosphorylation of c-Jun N-terminal kinase and p38. Together, the results suggest that TMBPF enhances osteoclast differentiation, and it is critical for bone homeostasis and skeletal health.
Collapse
Affiliation(s)
- Hye-Min Kim
- Biological Resources Research Group, Bioenvironmental Science and Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jegok-gil, Munsan-eup, Jinju-si 52834, Gyeongsangnam-do, Korea; (H.-M.K.); (S.-M.L.); (J.C.)
| | - Seon-Min Lee
- Biological Resources Research Group, Bioenvironmental Science and Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jegok-gil, Munsan-eup, Jinju-si 52834, Gyeongsangnam-do, Korea; (H.-M.K.); (S.-M.L.); (J.C.)
| | - Jungil Choi
- Biological Resources Research Group, Bioenvironmental Science and Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jegok-gil, Munsan-eup, Jinju-si 52834, Gyeongsangnam-do, Korea; (H.-M.K.); (S.-M.L.); (J.C.)
| | - Nak-Kyun Soung
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Korea;
| | - Jeong-Doo Heo
- Biological Resources Research Group, Bioenvironmental Science and Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jegok-gil, Munsan-eup, Jinju-si 52834, Gyeongsangnam-do, Korea; (H.-M.K.); (S.-M.L.); (J.C.)
- Correspondence:
| |
Collapse
|