1
|
Cornett JC, Cates RJ, Ledger KJ, Pinger CW, Hart CE, Laboda KR, Larson WA, Hollarsmith JA. Assessing methods for detecting Alexandrium catenella (Dinophyceae) and paralytic shellfish toxins in Southeast Alaska. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:2189-2202. [PMID: 38712820 DOI: 10.1002/ieam.4944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
Blooms of Alexandrium catenella threaten to disrupt subsistence, recreational, and commercial shellfish harvest in Alaska, as the paralytic shellfish toxins (PSTs) produced pose a serious public health risk and can lead to costly shutdowns for shellfish farmers. Current methods of PST detection in the region range from monitoring programs utilizing net tows to detect A. catenella to direct shellfish tissue testing via mouse bioassay (MBA) for commercial aquaculture harvest, as well as various optional testing methods for subsistence and recreational harvesters. The efficacy and feasibility of these methods vary, and they have not been directly compared in Southeast Alaska. In this study, we sought to assess and compare A. catenella and PST early detection methods to determine which can provide the most effective and accurate warning of A. catenella blooms or PST events. We found microscope counts to be variable and prone to missing lower numbers of A. catenella, which may be indicative of bloom formation. However, quantitative polymerase chain reaction (qPCR) significantly correlated with microscope counts and was able to effectively detect even low numbers of A. catenella on all sampling days. Paralytic shellfish toxin concentrations measured by enzyme-linked immunosorbent assay and MBA significantly correlated with each other, qPCR, and some microscope counts. These results show that qPCR is an effective tool for both monitoring A. catenella and serving as a proxy for PSTs. Further work is needed to refine qPCR protocols in this system to provide bloom warnings on an actionable timescale for the aquaculture industry and other shellfish harvesters. Integr Environ Assess Manag 2024;20:2189-2202. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Juliana C Cornett
- NOAA Fisheries Alaska Fisheries Science Center, Juneau, Alaska, USA
- Alaska Sea Grant, Fairbanks, Alaska, USA
| | - Rebecca J Cates
- NOAA Fisheries Alaska Fisheries Science Center, Juneau, Alaska, USA
- Cooperative Institute for Climate, Ocean, & Ecosystem Studies (CICOES), University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Kimberly J Ledger
- NOAA Fisheries Alaska Fisheries Science Center, Juneau, Alaska, USA
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA
| | - Cody W Pinger
- NOAA Fisheries Alaska Fisheries Science Center, Juneau, Alaska, USA
| | - Courtney E Hart
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA
| | | | - Wesley A Larson
- NOAA Fisheries Alaska Fisheries Science Center, Juneau, Alaska, USA
| | | |
Collapse
|
2
|
Niu Y, Wei H, Zhang Y, Su J. Transcriptome response of a marine copepod in response to environmentally-relevant concentrations of saxitoxin. MARINE POLLUTION BULLETIN 2024; 205:116546. [PMID: 38870575 DOI: 10.1016/j.marpolbul.2024.116546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/05/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Paralytic shellfish toxins (PSTs) can pose a serious threat to human health. Among them, saxitoxin (STX) is one of the most potent natural neurotoxins. Here, the copepod Tigriopus japonicus, was exposed to environmentally relevant concentrations (2.5 and 25 μg/L) STX for 48 h. Although no lethal effects were observed at both concentrations, the transcriptome was significantly altered, and displayed a concentration-dependent response. STX exposure decreased the copepod's metabolism and compromised immune defense and detoxification. Additionally, STX disturbed signal transduction, which might affect other cellular processes. STX exposure could inhibit the copepod's chitin metabolism, disrupting its molting process. Also, the processes related to damage repair and protection were up-regulated to fight against high concentration exposure. Collectively, this study has provided an early warning of PSTs for coastal ecosystem not only because of their potent toxicity effect but also their bioaccumulation that can transfer up the food chain after ingestion by copepods.
Collapse
Affiliation(s)
- Yaolu Niu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Hui Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yunlei Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Jie Su
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361013, China.
| |
Collapse
|
3
|
Ji Y, Wang R, Zhao H. Toward Sensitive and Reliable Immunoassays of Marine Biotoxins: From Rational Design to Food Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16076-16094. [PMID: 39010820 DOI: 10.1021/acs.jafc.4c01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Marine biotoxins are metabolites produced by algae that can accumulate in shellfish or fish and enter organisms through the food chain, posing a serious threat to biological health. Therefore, accurate and rapid detection is an urgent requirement for food safety. Although various detection methods, including the mouse bioassay, liquid chromatography-mass spectrometry, and cell detection methods, and protein phosphatase inhibition assays have been developed in the past decades, the current detection methods cannot fully meet these demands. Among these methods, the outstanding immunoassay virtues of high sensitivity, reliability, and low cost are highly advantageous for marine biotoxin detection in complex samples. In this work, we review the recent 5-year progress in marine biotoxin immunodetection technologies such as optical immunoassays, electrochemical immunoassays, and piezoelectric immunoassays. With the assistance of immunoassays, the detection of food-related marine biotoxins can be implemented for ensuring public health and preventing food poisoning. In addition, the immunodetection technique platforms including lateral flow chips and microfluidic chips are also discussed. We carefully investigate the advantages and disadvantages for each immunoassay, which are compared to demonstrate the guidance for selecting appropriate immunoassays and platforms for the detection of marine biotoxins. It is expected that this review will provide insights for the further development of immunoassays and promote the rapid progress and successful translation of advanced immunoassays with food safety detection.
Collapse
Affiliation(s)
- Yuxiang Ji
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Lee MJ, Hwang YJ, Choi YB, Yoo YD. Grazing impact of the calanoid copepods Acartia spp. on the toxic dinoflagellate Alexandrium pseudogonyaulax in the western coastal waters of Korea. Front Microbiol 2024; 15:1400343. [PMID: 38962130 PMCID: PMC11219570 DOI: 10.3389/fmicb.2024.1400343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Marine dinoflagellate species in the genus Alexandrium are well known to produce paralytic shellfish poison as well as common coastal species with cosmopolitan distribution. However, few studies on the feeding of copepods on Alexandrium species have been conducted. The toxic dinoflagellate Alexandrium pseudogonyaulax contains goniodomin A and causes red tides in many countries. To investigate the relationship between the toxic dinoflagellate A. pseudogonyaulax and the calanoid copepods Acartia spp., we quantified the ingestion rates of Acartia spp. feeding on A. pseudogonyaulax as a function of prey concentration. Additionally, we estimated grazing coefficients by integrating data from field observations of Acartia spp. and coexisting A. pseudogonyaulax with laboratory measurements of ingestion rates obtained during this investigation. Furthermore, we compared the ingestion rates of Acartia spp. and other predators feeding on Alexandrium species as previously reported. The ingestion rates of Acartia spp. on A. pseudogonyaulax increased continuously with increasing mean prey concentration. The highest values among the ingestion rate of Acartia spp. feeding on A. pseudogonyaulax was 3,407 cells predator-1 d-1 (4,872 ng C predator-1 d-1) at the given prey concentration. The calculated grazing coefficients for Acartia spp. on A. pseudogonyaulax in Shiwha Bay, Korea, were up to 0.073 d-1. The results of this study suggest that A. pseudogonyaulax may decrease or maintain the population of Acartia spp. in marine food webs.
Collapse
Affiliation(s)
- Moo Joon Lee
- Department of Marine Biotechnology, Anyang University, Incheon, Republic of Korea
| | - Yeong Jong Hwang
- School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yong Bum Choi
- Department of Ocenogaphy, College of Ocean Sciences, Kunsan National University, Kunsan, Republic of Korea
| | - Yeong Du Yoo
- Department of Ocenogaphy, College of Ocean Sciences, Kunsan National University, Kunsan, Republic of Korea
| |
Collapse
|
5
|
Blanco J, Lamas JP, Arévalo F, Correa J, Rodríguez-Cabo T, Moroño Á. Paralytic Shellfish Toxins in Mollusks from Galicia Analyzed by a Fast Refined AOAC 2005.06 Method: Toxicity, Toxin Profile, and Inter-Specific, Spatial, and Seasonal Variations. Toxins (Basel) 2024; 16:230. [PMID: 38787082 PMCID: PMC11125961 DOI: 10.3390/toxins16050230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Paralytic shellfish poisoning is an important concern for mollusk fisheries, aquaculture, and public health. In Galicia, NW Iberian Peninsula, such toxicity has been monitored for a long time using mouse bioassay. Therefore, little information exists about the precise toxin analogues and their possible transformations in diverse mollusk species and environments. After the change in the European PSP reference method, a refinement of the Lawrence method was developed, achieving a 75% reduction in chromatogram run time. Since the beginning of 2021, when this refinement Lawrence method was accredited under the norm UNE-EN ISO/IEC 17025, it has been used in the area to determine the toxin profiles and to estimate PSP toxicity in more than 4500 samples. In this study, we have summarized three years of monitoring results, including interspecific, seasonal, and geographical variability of PSP toxicity and toxin profile. PSP was detected in more than half of the samples analyzed (55%), but only 4.4% of the determinations were above the EU regulatory limit. GTX1,4 was the pair of STX analogs that produced the highest toxicities, but GTX2,3 was found in most samples, mainly due to the reduction of GTX1,4 but also by the higher sensitivity of the method for this pair of analogs. STX seems to be mainly a product of biotransformation from GTX2,3. The studied species (twelve bivalves and one gastropod) accumulated and transformed PSP toxins to a different extent, with most of them showing similar profiles except for Spisula solida and Haliotis tuberculata. Two seasonal peaks of toxicity were found: one in spring-early summer and another in autumn, with slightly different toxin profiles during outbreaks in relation to the toxicity during valleys. In general, both the total toxicity and toxin profiles of the southernmost locations were different from those in the northern part of the Atlantic coast and the Cantabrian Sea, but this general pattern is modified by the PSP history of some specific locations.
Collapse
Affiliation(s)
- Juan Blanco
- Centro de Investigacións Mariñas (CIMA), Xunta de Galicia, Vilanova de Arousa, 36620 Pontevedra, Spain
| | - Juan Pablo Lamas
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia (Intecmar), Vilagarcía de Arousa, 36611 Pontevedra, Spain; (J.P.L.); (F.A.); (J.C.); (T.R.-C.)
| | - Fabiola Arévalo
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia (Intecmar), Vilagarcía de Arousa, 36611 Pontevedra, Spain; (J.P.L.); (F.A.); (J.C.); (T.R.-C.)
| | - Jorge Correa
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia (Intecmar), Vilagarcía de Arousa, 36611 Pontevedra, Spain; (J.P.L.); (F.A.); (J.C.); (T.R.-C.)
| | - Tamara Rodríguez-Cabo
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia (Intecmar), Vilagarcía de Arousa, 36611 Pontevedra, Spain; (J.P.L.); (F.A.); (J.C.); (T.R.-C.)
| | - Ángeles Moroño
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia (Intecmar), Vilagarcía de Arousa, 36611 Pontevedra, Spain; (J.P.L.); (F.A.); (J.C.); (T.R.-C.)
| |
Collapse
|
6
|
Lin ZR, Geng HX, Yu RC. Potential roles of hydroxybenzoate paralytic shellfish toxins in modulating toxin biokinetics in scallops. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133896. [PMID: 38428300 DOI: 10.1016/j.jhazmat.2024.133896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/06/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Paralytic shellfish toxins (PSTs) produced by some marine dinoflagellates can cause severe human intoxication via vectors like bivalves. Toxic dinoflagellate Gymnodinium catenatum produce a novel group of hydroxybenzoate PSTs named GC toxins, but their biokinetics in bivalves haven't been well examined. In this experiment, we analyzed PSTs in bay scallops Argopecten irradians exposed to G. catenatum (strain MEL11) to determine their accumulation, elimination, anatomical distribution, and biotransformation. To our surprise, up to 30% of the PSTs were accumulated in the adductor muscle of scallops at the end of the experiment, and the toxicity of adductor muscle exceeded the regulatory limit of 800 μg STXeq/kg in only 6 days. High concentration of toxins in the adductor muscle are likely linked to the rapid transfer of GC toxins from viscera to other tissues. Moreover, most GC toxins in scallops were found rapidly transformed to decarbamoyl toxins through enzyme-mediated hydrolysis, which was further supported by the in vitro incubation experiments. Our study demonstrates that GC toxins actively participate in toxin distribution and transformation in scallops, which may increase the risks of food poisoning associated with the consumption of scallop adductor muscle. ENVIRONMENTAL IMPLICATION: The negative impacts of harmful algal blooms (HABs) have become a global environmental concern under the joint effects of cultural eutrophication and climate change. Our study, targeted on the biokinetics of paralytic shellfish toxins in scallops exposed to Gymnodinium catenatum producing unique GC toxins, aims to elucidate potential risks of seafood poisoning associated with GC toxins. The findings of this study will help us to understand the roles of GC toxins in seafood poisoning, and to develop effective management strategies against toxic algal blooms and phycotoxins.
Collapse
Affiliation(s)
- Zhuo-Ru Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hui-Xia Geng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ren-Cheng Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
7
|
Li J, Wang J, He X, Gu H, Xu X, Liang C, Wang Y, Xu X, Jia L, Chen J, Jiang M, Chen J. The ciliate Euplotes balteatus is resistant to Paralytic Shellfish Toxins from Alexandrium minutum (Dinophyceae). WATER RESEARCH X 2024; 23:100229. [PMID: 39099803 PMCID: PMC11294722 DOI: 10.1016/j.wroa.2024.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 08/06/2024]
Abstract
Research on interactions between grazers and toxigenic algae is fundamental for understanding toxin dynamics within aquatic ecosystems and developing biotic approaches to mitigate harmful algal blooms. The dinoflagellate Alexandrium minutum is a well-known microalga responsible for paralytic shellfish toxins (PSTs) contamination in many coastal regions worldwide. This study investigated the impact of the ciliate Euplotes balteatus on cell density and PSTs transfer in simulated A. minutum blooms under controlled conditions. E. balteatus exhibited resistance to the PSTs produced by A. minutum with a density of up to 10,000 cells/mL, sustaining growth and reproduction while eliminating algal cells within a few days. The cellular PSTs content of A. minutum increased in response to the grazing pressure from E. balteatus. However, due to the substantial reduction in density, the overall toxicity of the algal population decreased to a negligible level. Most PSTs contained within algal cells were temporarily accumulated in E. balteatus before being released into the water column, suggesting unclear mechanisms for PSTs excretion in unicellular grazers. In principle, the grazing of E. balteatus on A. minutum promotes the transfer of the majority of intracellular PSTs into extracellular portions, thereby mitigating the risk of their accumulation and contamination through marine trophic pathways. However, this process also introduces an increase in the potential environmental hazards posed by extracellular PSTs to some extent.
Collapse
Affiliation(s)
- Jing Li
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jinrong Wang
- The Second Geological Institute, China Metallurgical Geology Bureau, Fuzhou, 350108, China
| | - Xiuping He
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266071, China
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Xin Xu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Chen Liang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou, 350001, China
| | - Yongchao Wang
- The Second Geological Institute, China Metallurgical Geology Bureau, Fuzhou, 350108, China
| | - Xiao Xu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Linxuan Jia
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Junhui Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Miaohua Jiang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jianming Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| |
Collapse
|
8
|
Drobac Backović D, Tokodi N. Cyanotoxins in food: Exposure assessment and health impact. Food Res Int 2024; 184:114271. [PMID: 38609248 DOI: 10.1016/j.foodres.2024.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
The intricate nature of cyanotoxin exposure through food reveals a complex web of risks and uncertainties in our dietary choices. With the aim of starting to unravel this intricate nexus, a comprehensive review of 111 papers from the past two decades investigating cyanotoxin contamination in food was undertaken. It revealed a widespread occurrence of cyanotoxins in diverse food sources across 31 countries. Notably, 68% of the studies reported microcystin concentrations exceeding established Tolerable Daily Intake levels. Cyanotoxins were detected in muscles of many fish species, and while herbivorous fish exhibited the highest recorded concentration, omnivorous species displayed a higher propensity for cyanotoxin accumulation, exemplified by Oreochromis niloticus. Beyond fish, crustaceans and bivalves emerged as potent cyanotoxin accumulators. Gaps persist regarding contamination of terrestrial and exotic animals and their products, necessitating further exploration. Plant contamination under natural conditions remains underreported, yet evidence underscores irrigation-driven cyanotoxin accumulation, particularly affecting leafy vegetables. Finally, cyanobacterial-based food supplements often harbored cyanotoxins (57 % of samples were positive) warranting heightened scrutiny, especially for Aphanizomenon flos-aquae-based products. Uncertainties surround precise concentrations due to methodological variations (chemical and biochemical) and extraction limitations, along with the enigmatic fate of toxins during storage, processing, and digestion. Nonetheless, potential health consequences of cyanotoxin exposure via contaminated food include gastrointestinal and neurological disorders, organ damage (e.g. liver, kidneys, muscles), and even elevated cancer risks. While microcystins received significant attention, knowledge gaps persist regarding other cyanotoxins' accumulation, exposure, and effects, as well as combined exposure via multiple pathways. Intriguing and complex, cyanotoxin exposure through food beckons further research for our safer and healthier diets.
Collapse
Affiliation(s)
- Damjana Drobac Backović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| | - Nada Tokodi
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia; Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Laboratory of Metabolomics, Gronostajowa 7, Krakow 30387, Poland.
| |
Collapse
|
9
|
Bui QTN, Pradhan B, Kim HS, Ki JS. Environmental Factors Modulate Saxitoxins (STXs) Production in Toxic Dinoflagellate Alexandrium: An Updated Review of STXs and Synthesis Gene Aspects. Toxins (Basel) 2024; 16:210. [PMID: 38787062 PMCID: PMC11125744 DOI: 10.3390/toxins16050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
The marine dinoflagellate Alexandrium is known to form harmful algal blooms (HABs) and produces saxitoxin (STX) and its derivatives (STXs) that cause paralytic shellfish poisoning (PSP) in humans. Cell growth and cellular metabolism are affected by environmental conditions, including nutrients, temperature, light, and the salinity of aquatic systems. Abiotic factors not only engage in photosynthesis, but also modulate the production of toxic secondary metabolites, such as STXs, in dinoflagellates. STXs production is influenced by a variety of abiotic factors; however, the relationship between the regulation of these abiotic variables and STXs accumulation seems not to be consistent, and sometimes it is controversial. Few studies have suggested that abiotic factors may influence toxicity and STXs-biosynthesis gene (sxt) regulation in toxic Alexandrium, particularly in A. catenella, A. minutum, and A. pacificum. Hence, in this review, we focused on STXs production in toxic Alexandrium with respect to the major abiotic factors, such as temperature, salinity, nutrients, and light intensity. This review informs future research on more sxt genes involved in STXs production in relation to the abiotic factors in toxic dinoflagellates.
Collapse
Affiliation(s)
- Quynh Thi Nhu Bui
- Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea; (Q.T.N.B.); (H.-S.K.)
| | - Biswajita Pradhan
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea;
- Department of Botany, Model Degree College, Rayagada 765017, Odisha, India
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea; (Q.T.N.B.); (H.-S.K.)
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea; (Q.T.N.B.); (H.-S.K.)
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea;
| |
Collapse
|
10
|
Odehnalová K, Přibilová P, Maršálek B, Babica P. A fast and reliable LC-MS-MS method for the quantification of saxitoxin in blood plasma samples. J Anal Toxicol 2024; 48:119-125. [PMID: 38175940 DOI: 10.1093/jat/bkad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024] Open
Abstract
Saxitoxins (STXs) are potent neurotoxins produced by marine dinoflagellates or freshwater cyanobacteria known to cause acute and eventually fatal human intoxications, which are classified as paralytic shellfish poisonings (PSPs). Rapid analysis of STXs in blood plasma can be used for a timely diagnosis and confirmation of PSPs. We developed a fast and simple method of STX extraction based on plasma sample acidification and precipitation by acetonitrile, followed by quantification using liquid chromatography-tandem mass spectrometry (LC-MS-MS). Our approach provides the results ≤30 min, with a limit of detection of 2.8 ng/mL and a lower limit of quantification of 5.0 ng/mL. Within-run and between-run precision experiments showed good reproducibility with ≤15% values. Standard curves for calibration were linear with correlation coefficients ≥0.98 across the assay calibration range (5-200 ng/mL). In an interlaboratory analytical exercise, the method was found to be 100% accurate in determining the presence or absence of STX in human plasma specimens, with recovery values of 86-99%. This simple method for STX determination in animal or human plasma can quickly and reliably diagnose STX exposures and confirm suspected PSP cases to facilitate patient treatment or expedite necessary public health or security actions.
Collapse
Affiliation(s)
- Klára Odehnalová
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
| | - Petra Přibilová
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
| | - Blahoslav Maršálek
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
| | - Pavel Babica
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137, Czech Republic
| |
Collapse
|
11
|
Cai J, Li S, Wang Q, Deng D, Wang S, Ge L, Cui Y, Shen Y, Shen Q. Developing a detection strategy for ten paralytic shellfish poisonings in urine, combining high-throughput DESI-MS screening and accurate UPLC-QqQ/MS quantification. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1234:124036. [PMID: 38330520 DOI: 10.1016/j.jchromb.2024.124036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Paralytic shellfish poisoning (PSP) is the most widespread and harmful form of shellfish poisoning with high mortality rate. In this study, a combined desorption electrospray ionization mass spectrometry (DESI-MS) and ultra-performance liquid chromatography triple quadrupole mass spectrometry (UPLC-QqQ/MS) method was established for the detection of PSPs in urine. The method was optimized using a spray solution of methanol and water (1:1, v/v) containing 0.1 % FA, at a flow rate of 2.5 µL·min-1 and an applied voltage of 3 kV. The limit of detection (LOD) for PSPs detection by DESI-MS was in the range of 87-265 μg·L-1, which basically meets the requirements for the rapid screening of PSPs. The LOD for UPLC-QqQ/MS was in the range of 2.2-14.9 μg·L-1, with a limit of quantification (LOQ) of 7.3-49.7 μg·L-1, thus fulfilling the quantitative demand for PSPs in urine. Finally, after spiking the urine samples of six volunteers with PSPs to a concentration of 100 μg·L-1, DESI-MS successfully and efficiently detected the positive samples. Subsequently, UPLC-QqQ/MS was employed for precise quantification, yielding results in the range of 84.6-95.1 μg·L-1. The experimental findings demonstrated that the combination of DESI-MS and UPLC-QqQ/MS enables high-throughput, rapid screening of samples and accurate quantification of positive samples, providing assurance for food safety and human health.
Collapse
Affiliation(s)
- Jing Cai
- Department of Forensic Science, Zhejiang Police College, Hangzhou 310053, China
| | - Shiyan Li
- Aquatic Products Quality Inspection Center of Zhejiang Province, Hangzhou 310012, China
| | - Qingcheng Wang
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping 311106, Zhejiang, China
| | - Dan Deng
- Hangzhou Linping Hospital of Traditional Chinese and Western Medicine, Linping 311100, Zhejiang, China
| | - Shitong Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 330009, China
| | - Lijun Ge
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 330009, China
| | - Yiwei Cui
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 330009, China
| | - Yuejian Shen
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping 311106, Zhejiang, China.
| | - Qing Shen
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 330009, China.
| |
Collapse
|
12
|
Raposo-García S, Botana AM, Rey V, Costas C, Rodríguez-Santos L, Louzao MC, Vale C, Botana LM. Analytical and functional profiles of paralytic shellfish toxins extracted from Semele proficua and Senilia senilis from Angola. Heliyon 2024; 10:e25338. [PMID: 38356596 PMCID: PMC10864898 DOI: 10.1016/j.heliyon.2024.e25338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Paralytic shellfish poisoning is a foodborne illness that typically derive from the consumption of shellfish contaminated with saxitoxin-group of toxins produced by dinoflagellates of the genus Gymnodinium, Alexandrium and Pyrodinium. N-sulfocarbamoyl, carbamate and dicarbamoyl are the most abundant. In 2007 and 2008 some episodes of PSP occurred in Angola where there is not monitoring program for shellfish contamination with marine biotoxins. Therefore, ten samples extracted from Semele proficua from Luanda Bay and Senilia senilis from Mussulo Bay, were analyzed by HPLC finding saxitoxin, decarbamoylsaxitoxin and other three compounds that have an unusual profile different to the known hydrophilic PSP toxins were found in different amounts and combinations. These new compounds were not autofluorescent, and they presented much stronger response after peroxide oxidation than after periodate oxidation. The compounds appear as peaks eluted at 2.5 and 5.6 min after periodate oxidation and 8.2 min after peroxide oxidation. Electrophysiological studies revealed that none of the three unknown compounds had effect at cellular level by decreasing the maximum peak inward sodium currents by blocking voltage-gated sodium channels. Thus, not contributing to PSP intoxication. The presence in all samples of saxitoxin-group compounds poses a risk to human health and remarks the need to further explore the presence of new compounds that contaminate seafood, investigating their activity and developing monitoring programs.
Collapse
Affiliation(s)
- Sandra Raposo-García
- Departamento de Farmacologia, IDIS, Universidad de Santiago de Compostela, Campus Universitario, 27002, Lugo, Spain
| | - Ana M. Botana
- Departamento de Química Analítica, Universidad de Santiago de Compostela, Campus Universitario, 27002, Lugo, Spain
| | - Verónica Rey
- Departamento de Química Analítica, Universidad de Santiago de Compostela, Campus Universitario, 27002, Lugo, Spain
| | - Celia Costas
- Departamento de Farmacologia, IDIS, Universidad de Santiago de Compostela, Campus Universitario, 27002, Lugo, Spain
| | - Luis Rodríguez-Santos
- Departamento de Farmacologia, IDIS, Universidad de Santiago de Compostela, Campus Universitario, 27002, Lugo, Spain
| | - M. Carmen Louzao
- Departamento de Farmacologia, IDIS, Universidad de Santiago de Compostela, Campus Universitario, 27002, Lugo, Spain
| | - Carmen Vale
- Departamento de Farmacologia, IDIS, Universidad de Santiago de Compostela, Campus Universitario, 27002, Lugo, Spain
| | - Luis M. Botana
- Departamento de Farmacologia, IDIS, Universidad de Santiago de Compostela, Campus Universitario, 27002, Lugo, Spain
| |
Collapse
|
13
|
Zheng G, Xu X, Wu H, Fan L, Wang Q, Peng J, Guo M, Yang D, Tan Z. Contamination Status and Risk Assessment of Paralytic Shellfish Toxins in Shellfish along the Coastal Areas of China. Mar Drugs 2024; 22:64. [PMID: 38393035 PMCID: PMC10890588 DOI: 10.3390/md22020064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Paralytic shellfish toxins (PSTs) are widely distributed in shellfish along the coast of China, causing a serious threat to consumer health; however, there is still a lack of large-scale systematic investigations and risk assessments. Herein, 641 shellfish samples were collected from March to November 2020, and the PSTs' toxicity was detected via liquid chromatography-tandem mass spectrometry. Furthermore, the contamination status and potential dietary risks of PSTs were discussed. PSTs were detected in 241 shellfish samples with a detection rate of 37.60%. The average PST toxicities in mussels and ark shells were considerably higher than those in other shellfish. The PSTs mainly included N-sulfonylcarbamoyl toxins (class C) and carbamoyl toxins (class GTX), and the highest PST toxicity was 546.09 μg STX eq. kg-1. The PST toxicity in spring was significantly higher than those in summer and autumn (p < 0.05). Hebei Province had the highest average PST toxicity in spring. An acute exposure assessment showed that consumers in Hebei Province had a higher dietary risk, with mussels posing a significantly higher dietary risk to consumers. This research provides reference for the green and sustainable development of the shellfish industry and the establishment of a shellfish toxin prevention and control system.
Collapse
Affiliation(s)
- Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (G.Z.); (X.X.); (L.F.)
| | - Xizhen Xu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (G.Z.); (X.X.); (L.F.)
- Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (G.Z.); (X.X.); (L.F.)
| | - Liqiang Fan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (G.Z.); (X.X.); (L.F.)
| | - Qianrui Wang
- China National Center for Food Safety Risk Assessment, Beijing 100000, China; (Q.W.); (D.Y.)
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (G.Z.); (X.X.); (L.F.)
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (G.Z.); (X.X.); (L.F.)
| | - Dajin Yang
- China National Center for Food Safety Risk Assessment, Beijing 100000, China; (Q.W.); (D.Y.)
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (G.Z.); (X.X.); (L.F.)
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
14
|
Zhu H, Sakai T, Doi H, Yamaguchi K, Yamada A, Takatani T, Arakawa O. Tetrodotoxin/Saxitoxin Accumulation Profile in the Euryhaline Marine Pufferfish Chelonodontops patoca. Toxins (Basel) 2023; 16:18. [PMID: 38251235 PMCID: PMC10820246 DOI: 10.3390/toxins16010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Marine Takifugu pufferfish, which naturally possess tetrodotoxins (TTXs), selectively take up and accumulate TTXs, whereas freshwater Pao pufferfish, which naturally possess saxitoxins (STXs), selectively take up and accumulate STXs. To further clarify the TTXs/STXs selectivity in pufferfish, we conducted a TTX/STX administration experiment using Chelonodontops patoca, a euryhaline marine pufferfish possessing both TTXs and STXs. Forty nontoxic cultured individuals of C. patoca were divided into a seawater group (SW, acclimated/reared at 33‱ salinity; n = 20) and a brackish water group (BW, acclimated/reared at 8‱ salinity; n = 20). An aqueous TTX/STX mixture was intrarectally administered (both at 7.5 nmol/fish), and five individuals/group were analyzed after 1-48 h. Instrumental toxin analyses revealed that both TTX and STX were taken up, transferred, and retained, but more STX than TTX was retained in both groups. TTX gradually decreased and eventually became almost undetectable in the intestinal tissue, while STX was retained at ~5-10% of the dose level, and only STX showed transient transfer in the liver. The BW group showed a faster decrease/disappearance of TTX, greater STX retention in the intestine, and greater STX transient transfer to the liver. Thus, C. patoca appears to more easily accumulate STXs than TTXs, especially under hypoosmotic conditions.
Collapse
Affiliation(s)
- Hongchen Zhu
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (T.S.); (K.Y.); (A.Y.); (T.T.)
| | - Takashi Sakai
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (T.S.); (K.Y.); (A.Y.); (T.T.)
| | - Hiroyuki Doi
- Nifrel, Osaka Aquarium Kaiyukan, 2-1, Senribanpakukoen, Suita, Osaka 565-0826, Japan;
| | - Kenichi Yamaguchi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (T.S.); (K.Y.); (A.Y.); (T.T.)
| | - Akinori Yamada
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (T.S.); (K.Y.); (A.Y.); (T.T.)
| | - Tomohiro Takatani
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (T.S.); (K.Y.); (A.Y.); (T.T.)
| | - Osamu Arakawa
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (T.S.); (K.Y.); (A.Y.); (T.T.)
| |
Collapse
|
15
|
Wu H, Prithiviraj B, Tan Z. Physiological Effects of Oxidative Stress Caused by Saxitoxin in the Nematode Caenorhabditis elegans. Mar Drugs 2023; 21:544. [PMID: 37888479 PMCID: PMC10608204 DOI: 10.3390/md21100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Saxitoxin (STX) causes high toxicity by blocking voltage-gated sodium channels, and it poses a major threat to marine ecosystems and human health worldwide. Our work evaluated the neurotoxicity and chronic toxicology of STX to Caenorhabditis elegans by an analysis of lifespan, brood size, growth ability, reactive oxygen species (ROS) and adenosine triphosphate (ATP) levels, and the overexpression of green fluorescent protein (GFP). After exposure to a series of concentrations of STX for 24 h, worms showed paralysis symptoms and fully recovered within 6 h; less than 5% of worms died at the highest concentration of 1000 ng/mL for first larval stage (L1) worms and 10,000 ng/mL for fourth larval stage (L4) worms. Declines in lifespan, productivity, and body size of C. elegans were observed under the stress of 1, 10, and 100 ng/mL STX, and the lifespan was shorter than that in controls. With STX exposure, the productivity declined by 32-49%; the body size, including body length and body area, declined by 13-18% and 25-27%, respectively. The levels of ROS exhibited a gradual increase over time, accompanied by a positive concentration effect of STX resulting in 1.14-1.86 times higher levels compared to the control group in L4 worms. Conversely, no statistically significant differences were observed between L1 worms. Finally, after exposure to STX for 48 h, ATP levels and GFP expression in C. elegans showed a significant dose-dependent increase. Our study reports the first evidence that STX is not lethal but imposes substantial oxidative stress on C. elegans, with a dose-responsive relationship. Our results indicated that C. elegans is an ideal model to further study the mechanisms underlying the fitness of organisms under the stress caused by paralytic shellfish toxins including STX.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| | - Balakrishnan Prithiviraj
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Nova Scotia, NS B2N5E3, Canada;
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Nova Scotia, NS B2N5E3, Canada;
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
16
|
Ding Z, Sun X, Qiao Y, Liu Y, Liu J. Feeding Behavior Responses of the Small Copepod, Paracalanus parvus, to Toxic Algae at Different Concentrations. Animals (Basel) 2023; 13:3116. [PMID: 37835722 PMCID: PMC10571817 DOI: 10.3390/ani13193116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The feeding relationship between copepods and phytoplankton has immense ecological significance. This study investigated the feeding behavior of copepods by studying the feeding selectivity of Paracalanus parvus, a key small copepod species, using a high-speed camera. The feeding behavior of P. parvus separately fed on three algae, Prorocentrum minimum, Alexandrium minutum, and Thalassiosira weissflogii, was studied at five different concentrations. The factors characterizing feeding behavior, including the beating frequency (BF), beating time (BT), and rejection behavior, were analyzed. The average BT and BF of P. parvus fed on toxic algae were significantly lower than those of copepods fed on nontoxic algae, indicating that the toxic algae negatively affected their feeding behavior. There were no significant differences in feed rejection among the three algae during the short period of experimentation, indicating that the rejection behavior was insignificant in the early period (within 20 min) of feeding on toxic algae. The feeding behavior was inhibited when the concentration reached 250 cells/mL. The BT was initially affected at increasing concentrations followed by the BF, and P. minimum and A. minutum reduced the BF at concentrations of 250 and 1000 cells/mL, respectively. Analysis of the average BFs revealed that P. parvus was more significantly affected by P. minimum containing diarrheal shellfish poison than by A. minutum containing paralytic shellfish poison. The BF of copepods fed on P. minimum was significantly lower than that of copepods fed on A. minutum at 250-500 cells/mL but was not significantly different from that at 1000 cells/mL. This indicated that the inhibitory effect of P. minimum on the feeding behavior was more significant at concentrations observed at the onset of red tide blooms (0.25-0.5 × 102 cells/mL), but insignificant at concentrations reaching those in advanced red tides (>103 cells/mL). This study demonstrates that toxic dinoflagellates alter the feeding behavior of copepods and describes the variations in their feeding response to different algal species and concentrations. The findings provide crucial insights for further studies on the feeding relationship between copepods and phytoplankton and on functional assessment of plankton ecosystems.
Collapse
Affiliation(s)
- Zixuan Ding
- Marine College, Shandong University, Weihai 264209, China; (Z.D.); (Y.Q.)
| | - Xiaohong Sun
- Marine College, Shandong University, Weihai 264209, China; (Z.D.); (Y.Q.)
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China;
| | - Yiming Qiao
- Marine College, Shandong University, Weihai 264209, China; (Z.D.); (Y.Q.)
| | - Ying Liu
- Weihai Marine and Fishery Monitoring and Hazard Migration Centre, Weihai 264209, China;
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China;
| |
Collapse
|
17
|
Abassi S, Kim HS, Bui QTN, Ki JS. Effects of nitrate on the saxitoxins biosynthesis revealed by sxt genes in the toxic dinoflagellate Alexandrium pacificum (group IV). HARMFUL ALGAE 2023; 127:102473. [PMID: 37544673 DOI: 10.1016/j.hal.2023.102473] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 08/08/2023]
Abstract
The dinoflagellate Alexandrium pacificum (group IV) is of particular interest because of its involvement in harmful algal blooms and production of saxitoxin (STX), which causes paralytic shellfish poisoning. The toxicity from STX and its analogues (STXs) is suspected to be affected by nitrogen (N) availability. However, the toxicity-associated behavior and STX-biosynthesis gene responses of the toxic A. pacificum under N fluctuations have not been sufficiently investigated. In the present study, we identified the sxtI gene involved in sxt biosynthesis pathway and evaluated the effects of nitrate (NO3-) on STXs production and the expression of four sxt core genes (sxtA4, sxtG, sxtB, and sxtI). Quantification of total STXs levels in the cultures under different NO3- regimes showed that NO3- concentration influenced STXs production. In addition, the proportion and concentration of STXs varied depending on the NO3- concentration. Core sxt transcript abundance was also influenced by available NO3- in a time-dependent manner. Expressional levels and patterns of sxtI were correlated with those of sxtA and sxtB. The relationship between the toxins and sxt responses in A. pacificum under various NO3- regimes suggests the direct involvement of N in the STXs biosynthesis pathway. Understanding this link would provide a tool to understand the toxin dynamics of dinoflagellates following N shifts in marine environments.
Collapse
Affiliation(s)
- Sofia Abassi
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Han-Sol Kim
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Quynh Thi Nhu Bui
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul, 03016, Republic of Korea.
| |
Collapse
|
18
|
Zhang X, Xun X, Meng D, Li M, Chang L, Shi J, Ding W, Sun Y, Wang H, Bao Z, Hu X. Transcriptome Analysis Reveals the Genes Involved in Oxidative Stress Responses of Scallop to PST-Producing Algae and a Candidate Biomarker for PST Monitoring. Antioxidants (Basel) 2023; 12:1150. [PMID: 37371880 DOI: 10.3390/antiox12061150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/13/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Paralytic shellfish toxins (PST) could be accumulated in bivalves and cause safety problems. To protect public health, bivalves are examined for PST contamination before entering the market, usually by high-performance liquid chromatography (HPLC) or LC-tandem mass spectrometry (LC-MS/MS) in the lab, which needs PST standards not all available and is time-consuming for large sample sizes. To detect PST toxicity in bivalves rapidly and sensitively, a biomarker gene is highly demanded, but the related study is very limited. In this study, we fed a commercially important bivalve, Patinopecten yessoensis, with the PST-producing dinoflagellate Alexandrium catenella. After 1, 3, and 5 days of exposure, both PST concentrations and toxicity levels in the digestive gland continuously increased. Transcriptome analysis revealed that the differentially expressed genes were significantly enriched in oxidation-reduction process, which included the cytochrome P450 genes (CYPs), type I iodothyronine deiodinase (IOD1s), peroxidasin (PXDN), and acyl-Coenzyme A oxidase 1 (ACOX1) at day 1 and a superoxide dismutase (SOD) at day 5, highlighting the crucial roles of these genes in response to oxidative stress induced by PST. Among the 33 continuously upregulated genes, five showed a significant correlation between gene expression and PST concentration, with the highest correlation present in PyC1QL4-1, the gene encoding Complement C1Q-like protein 4, C1QL4. In addition, the correlation between PyC1QL4-1 expression and PST toxicity was also the highest. Further analysis in another aquaculture scallop (Chlamys farreri) indicated that the expression of CfC1QL4-1, the homolog of PyC1QL4-1, also exhibited significant correlations with both PST toxicity and concentration. Our results reveal the gene expression responses of scallop digestive glands to PST-producing algae and indicate that the C1QL4-1 gene might be a potential biomarker for PST monitoring in scallops, which may provide a convenient way for the early warning and sensitive detection of PST contamination in the bivalves.
Collapse
Affiliation(s)
- Xiangchao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaogang Xun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Deting Meng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lirong Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiaoxia Shi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yue Sun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Huizhen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
19
|
Mussai P, Larsen J, Alrefaei AF, Jeewon R. Ribosomal DNA Sequence-Based Taxonomy and Antimicrobial Activity of Prorocentrum spp. (Dinophyceae) from Mauritius Coastal Waters, South-West Indian Ocean. Mar Drugs 2023; 21:md21040216. [PMID: 37103354 PMCID: PMC10143094 DOI: 10.3390/md21040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Microalgae are unicellular organisms and commonly present in the euphotic zone of marine ecosystems. From the western coast of Mauritius, three strains of Prorocentrum species were isolated from macrophytes and cultured under standard laboratory conditions. Morphologies were examined by light, fluorescence, and scanning electron microscopy, and phylogenetic analyses were based on partial large subunit LSU rDNA (D1-D2) and ITS1-5.8S-ITS2 (ITS) regions. Three Prorocentrum species, including the P. fukuyoi complex, P. rhathymum, and P. lima complex, were identified. The antimicrobial activities were assayed against potential human pathogenic bacterial strains. The highest zone of inhibition was recorded for intracellular and extracellular protein extracts of Prorocentrum rhathymum against Vibrio parahaemolyticus. The polysaccharide extracts of the Prorocentrum fukuyoi complex had a higher zone of inhibition (24 ± 0.4 mm) against MRSA at a minimum concentration of 0.625 μg/mL. The extracts from the three Prorocentrum species had different levels of activity against the pathogens used, and this can be of scientific interest in the search for antibiotics from natural marine sources.
Collapse
Affiliation(s)
- Prakash Mussai
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius
| | - Jacob Larsen
- IOC Science and Communication Centre on Harmful Algae, Biological Institute, University of Copenhagen, Universitetsparken 4, DK-2100 Copenhagen, Denmark
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence:
| |
Collapse
|
20
|
Li S, Chen X, Sun Q, Ren X, Zhong J, Zhou L, Zhang H, Li G, Liu Y, Liu J, Huang H. Long term exposure of saxitoxin induced cognitive deficits and YAP1 cytoplasmic retention. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114645. [PMID: 36791486 DOI: 10.1016/j.ecoenv.2023.114645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
While most studies assessed the acute toxicity of saxitoxin (STX), fewer studies focus on the long-term degenerative effects of STX on the central nervous system. We investigated the cognitive impairment and hippocampal damages of 6 months' exposure of low-dose STX to C57BL/6NJ mice with behavioral tests, H&E staining, and Western blots, and the possible mechanism (Ppp1C, YAP1, tau-phosphorylation) underlies the pathological changes. Furthermore, we discussed the specific localization of YAP1 in N2a cells induced by STX and the effect of inactivated Ppp1C on its downstream protein YAP1 in the Hippo signal pathway. We found STX intoxicated mice showed declined cognitive performance in both NOR test and MWM test, degenerations in the CA1 area of hippocampi. STX induced up-regulation expression of Ppp1C and YAP1 in hippocampus and N2a cells. Meanwhile, STX treatment induced cell apoptosis and Tau protein hyperphosphorylation. In addition, STX treatment promoted YAP1 cytoplasmic retention that indicates the activation of Hippo pathway, while depletion of Ppp1C inactivate YAP1 during the treatment of STX. Our results highlight the role of Ppp1C and YAP1 cytoplasmic retention in chronic low-dose STX intoxication.
Collapse
Affiliation(s)
- Shenpan Li
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, China
| | - Xiao Chen
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Qian Sun
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523109, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jiacheng Zhong
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Li Zhou
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Hongyu Zhang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Guowei Li
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Haiyan Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| |
Collapse
|
21
|
Wei LN, Luo L, Wang BZ, Lei HT, Guan T, Shen YD, Wang H, Xu ZL. Biosensors for detection of paralytic shellfish toxins: Recognition elements and transduction technologies. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
22
|
Mohamed ZA, Mostafa Y, Alamri S, Hashem M, Alrumman S. Biotransformation and detoxification of saxitoxin by Bacillus flexus in batch experiments. Arch Microbiol 2023; 205:63. [PMID: 36629970 DOI: 10.1007/s00203-022-03397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/17/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023]
Abstract
Saxitoxins (STXs) are carbamate alkaloid neurotoxins produced by some species of cyanobacteria. They are water soluble and relatively stable in the natural environment, and thereby represent a risk to animal and human health through a long-time exposure. STXs cannot be sufficiently removed by conventional water treatment methods. Therefore, this study investigates the potential STX biodegradation and detoxification by bacteria as a promising method for toxin removal. STX biodegradation experiments were conducted using Bacillus flexus SSZ01 strain in batch cultures. The results revealed that SSZ01 strain grew well and rapidly detoxified STX, with no lag phase observed. STX detoxification by SSZ01 strain was initial-toxin-concentration-dependent. The highest biotransformation rate (10 µg STX L-1 day-1) the pseudo-first-order kinetic constant (0.58 d-1) were obtained at the highest initial toxin concentration (50 µg L-1) and the lowest ones (0.06 µg STX L-1 day-1 and 0.14 d-1, respectively) were recorded at the lowest initial concentration (0.5 µg L-1). STX biotransformation rate increased with temperature, with highest occurred at 30 ºC. This rate was also influenced by pH, with highest obtained at pH8 and lowest at higher and lower pH values. HPLC chromatograms showed that STX biotransformation peak is corresponding to the least toxic STX analog (disulfated sulfocarbamoyl-C1 variant). The Artemia-based toxicity assay revealed that this biotransformation byproduct was nontoxic. This suggests the potential application of this bacterial strain in slow sand filters for cyanotoxin removal in water treatment plants. Being nontoxic, this byproduct needs to be assayed for its therapeutic effects toward neurodegenerative diseases.
Collapse
Affiliation(s)
- Zakaria A Mohamed
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Yasser Mostafa
- College of Science, Department of Biology, King Khalid University, Abha, 61413, Saudi Arabia
| | - Saad Alamri
- College of Science, Department of Biology, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- College of Science, Department of Biology, King Khalid University, Abha, 61413, Saudi Arabia.,Faculty of Science, Botany and Microbiology Department, Assiut University, Assiut, 71516, Egypt
| | - Sulaiman Alrumman
- College of Science, Department of Biology, King Khalid University, Abha, 61413, Saudi Arabia
| |
Collapse
|
23
|
Weiss MB, Médice RV, Jacinavicius FR, Pinto E, Crnkovic CM. Metabolomics Applied to Cyanobacterial Toxins and Natural Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:21-49. [PMID: 37843804 DOI: 10.1007/978-3-031-41741-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The biological and chemical diversity of Cyanobacteria is remarkable. These ancient prokaryotes are widespread in nature and can be found in virtually every habitat on Earth where there is light and water. They are producers of an array of secondary metabolites with important ecological roles, toxic effects, and biotechnological applications. The investigation of cyanobacterial metabolites has benefited from advances in analytical tools and bioinformatics that are employed in metabolomic analyses. In this chapter, we review selected articles highlighting the use of targeted and untargeted metabolomics in the analyses of secondary metabolites produced by cyanobacteria. Here, cyanobacterial secondary metabolites have been didactically divided into toxins and natural products according to their relevance to toxicological studies and drug discovery, respectively. This review illustrates how metabolomics has improved the chemical analysis of cyanobacteria in terms of speed, sensitivity, selectivity, and/or coverage, allowing for broader and more complex scientific questions.
Collapse
Affiliation(s)
- Márcio Barczyszyn Weiss
- School of Pharmaceutical Sciences, Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil
| | - Rhuana Valdetário Médice
- School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Fernanda Rios Jacinavicius
- School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, Division of Tropical Ecosystem Functioning, University of São Paulo, Piracicaba, Brazil
| | - Camila Manoel Crnkovic
- School of Pharmaceutical Sciences, Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
24
|
Zahraee H, Mehrzad A, Abnous K, Chen CH, Khoshbin Z, Verdian A. Recent Advances in Aptasensing Strategies for Monitoring Phycotoxins: Promising for Food Safety. BIOSENSORS 2022; 13:56. [PMID: 36671891 PMCID: PMC9856083 DOI: 10.3390/bios13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Phycotoxins or marine toxins cause massive harm to humans, livestock, and pets. Current strategies based on ordinary methods are long time-wise and require expert operators, and are not reliable for on-site and real-time use. Therefore, it is urgent to exploit new detection methods for marine toxins with high sensitivity and specificity, low detection limits, convenience, and high efficiency. Conversely, biosensors can distinguish poisons with less response time and higher selectivity than the common strategies. Aptamer-based biosensors (aptasensors) are potent for environmental monitoring, especially for on-site and real-time determination of marine toxins and freshwater microorganisms, and with a degree of superiority over other biosensors, making them worth considering. This article reviews the designed aptasensors based on the different strategies for detecting the various phycotoxins.
Collapse
Affiliation(s)
- Hamed Zahraee
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Atiyeh Mehrzad
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad 1314983651, Iran
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad 1314983651, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Chih-Hsin Chen
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Zahra Khoshbin
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad 1314983651, Iran
| |
Collapse
|
25
|
Bushell SM, Wright BA, Knue J, Tomco PL. 1H NMR-based metabolomics investigation on the biological effects of paralytic shellfish toxin in mussel Mytilus trossulus. MARINE POLLUTION BULLETIN 2022; 185:114326. [PMID: 36395714 DOI: 10.1016/j.marpolbul.2022.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Paralytic shellfish poisoning is a global issue that would benefit from additional screening methods and rapid testing capacities. In this study, we applied 1H NMR spectroscopy-based metabolomics to identify biomarkers of Paralytic Shellfish Toxin (PST) exposure. We characterized the metabolic phenotypes of field-collected Alaskan mussels Mytilus trossulus across a wide range of bioaccumulated PST levels, from 0 to 1590 μg/100 g. A between-level grouping emerged for high (740-1590 μg/100 g) compared to low/non-detect (0-3.91 μg/100 g) PST levels. High levels of PST contamination in mussels were consistent with alterations to energy and amino acid metabolism, and disturbances in osmoregulation. This research demonstrates the effectiveness of 1H NMR-based metabolomics in elucidating the biological effects of paralytic shellfish toxin on the health of wild mussel populations, spatial variation, and identifies a metabolic signature indicative of PST contamination in Mytilus trossulus for potential use in a PSP biomarker panel.
Collapse
Affiliation(s)
- Solomia M Bushell
- Department of Biology, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, United States of America.
| | - Bruce A Wright
- Knik Tribe of Alaska, 1744 Prospect Dr., Palmer, AK 99645, United States of America
| | - Jacqueline Knue
- Department of Environmental Conservation, Alaska State Environmental Health Laboratory, Department of Environmental Conservation, 5251 Dr. MLK Jr. Ave, Anchorage, AK 99507, United States of America
| | - Patrick L Tomco
- Department of Biology, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, United States of America
| |
Collapse
|
26
|
Confirmation Using Triple Quadrupole and High-Resolution Mass Spectrometry of a Fatal Canine Neurotoxicosis following Exposure to Anatoxins at an Inland Reservoir. Toxins (Basel) 2022; 14:toxins14110804. [PMID: 36422978 PMCID: PMC9696769 DOI: 10.3390/toxins14110804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Cyanobacterial blooms are often associated with the presence of harmful natural compounds which can cause adverse health effects in both humans and animals. One family of these compounds, known as anatoxins, have been linked to the rapid deaths of cattle and dogs through neurotoxicological action. Here, we report the findings resulting from the death of a dog at a freshwater reservoir in SW England. Poisoning was rapid following exposure to material at the side of the lake. Clinical signs included neurological distress, diaphragmatic paralysis and asphyxia prior to death after 45 min of exposure. Analysis by HILIC-MS/MS of urine and stomach content samples from the dog revealed the detection of anatoxin-a and dihydroanatoxin-a in both samples with higher concentrations of the latter quantified in both matrices. Detection and quantitative accuracy was further confirmed with use of accurate mass LC-HRMS. Additional anatoxin analogues were also detected by LC-HRMS, including 4-keto anatoxin-a, 4-keto-homo anatoxin-a, expoxy anatoxin-a and epoxy homo anatoxin-a. The conclusion of neurotoxicosis was confirmed with the use of two independent analytical methods showing positive detection and significantly high quantified concentrations of these neurotoxins in clinical samples. Together with the clinical signs observed, we have confirmed that anatoxins were responsible for the rapid death of the dog in this case.
Collapse
|
27
|
Lage S, Costa PR, Canário AVM, Da Silva JP. LC-HRMS Profiling of Paralytic Shellfish Toxins in Mytilus galloprovincialis after a Gymnodinium catenatum Bloom. Mar Drugs 2022; 20:680. [PMID: 36355003 PMCID: PMC9694030 DOI: 10.3390/md20110680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 05/31/2024] Open
Abstract
Saxitoxin and its more than 50 analogues are a group of naturally occurring neurotoxins collectively designated as paralytic shellfish toxins (PSTs). PSTs are toxic to humans and maximum legal limits in seafood have been implemented by regulatory authorities worldwide. In the European Union, monitoring of PSTs is performed using the AOAC Official Method 2005.06, based on liquid chromatography coupled with fluorescence detection (LC- FLD). However, this method has been suggested to not effectively detect the emerging C-11 hydroxyl (M-toxins) and benzoate (GC-toxins) analogues, with these analogues currently not being surveyed in monitoring programs. In this study, a liquid chromatography-high resolution mass spectrometry (LC-HRMS) method was used to search for these emerging PSTs in mussels, Mytilus galloprovincialis, contaminated following an intense Gymnodinium catenatum bloom in the Tagus estuary (Lisbon, Portugal). Five M-toxins (M1, M2, M6, dcM6, and dcM10), but no GC-toxins, were detected in the mussels' whole-soft body tissue. Moreover, the classical PSTs (C1 to C4, GTX 4 to GTX6, dcGTX1 to dcGTX4, dcSTX, dcNEO, and STX) were also found and comprised the largest fraction of the PSTs' profile. The presence of unregulated PSTs in edible mussel samples suggests potential seafood safety risks and urges further research to determine the frequency of these analogues in seafood and their contribution to toxicity.
Collapse
Affiliation(s)
- Sandra Lage
- Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Pedro Reis Costa
- Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Portuguese Institute for the Sea and Atmosphere (IPMA), Av. Brasília, 1449-006 Lisbon, Portugal
| | - Adelino V. M. Canário
- Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - José P. Da Silva
- Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
28
|
Ali A, Kreitlow A, Plötz M, Normanno G, Abdulmawjood A. Development of loop-mediated isothermal amplification (LAMP) assay for rapid and direct screening of yellowfin tuna (Thunnus albacares) in commercial fish products. PLoS One 2022; 17:e0275452. [PMID: 36223376 PMCID: PMC9555631 DOI: 10.1371/journal.pone.0275452] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Tuna is one of the most widely consumed fish on the European market, being available in various consumable options. Among them, Thunnus albacares, also called yellowfin tuna, is a delicacy and is consumed by millions of people around the world. Due to its comparatively high cost and demand, it is more vulnerable to fraud, where low-cost tuna or other fish varieties might be replaced for economic gain. In this study, a loop-mediated isothermal amplification (LAMP) assay was developed and validated for targeting the mitochondrial cytochrome b gene for fast and direct detection of Thunnus albacares, which is a valuable tuna species. The analytical specificity was confirmed using 18 target samples (Thunnus albacares) and 18 samples of non-target fish species. The analytical sensitivity of the LAMP assay was 540 fg DNA per reaction. In addition, a simple and direct swab method without time-consuming nucleic acid extraction procedures and the necessity for cost-intensive laboratory equipment was performed that allowed LAMP detection of Thunnus albacares samples within 13 minutes. Due to its high specificity and sensitivity, the LAMP assay can be used as a rapid and on-site screening method for identifying Thunnus albacares, potentially providing a valuable monitoring tool for food authenticity control by the authorities.
Collapse
Affiliation(s)
- Ashraf Ali
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE) University of Foggia, Foggia, Italy
| | - Antonia Kreitlow
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Madeleine Plötz
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Giovanni Normanno
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE) University of Foggia, Foggia, Italy
| | - Amir Abdulmawjood
- Institute of Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
29
|
Goya AB, Baqer D, Alexander RP, Stubbs P, Dean K, Lewis AM, Coates L, Maskrey BH, Turner AD. Marine Biotoxins in Whole and Processed Scallops from the Argentine Sea. Mar Drugs 2022; 20:634. [PMID: 36286458 PMCID: PMC9604692 DOI: 10.3390/md20100634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Harmful algal blooms are an increasing worldwide threat to the seafood industry and human health as a consequence of the natural production of biotoxins that can accumulate in shellfish. In the Argentine Sea, this has been identified as an issue for the offshore fisheries of Patagonian scallops (Zygochlamys patagonica), leading to potentially harmful effects on consumers. Here we assess spatial and temporal patterns in marine biotoxin concentrations in Patagonian scallops harvested in Argentinian waters between 2012-2017, based on analyses for paralytic shellfish toxins, lipophilic toxins, and amnesic shellfish toxins. There was no evidence for concentrations of lipophilic or amnesic toxins above regulatory acceptance thresholds, with trace concentrations of pectenotoxin 2, azaspiracid 2 and okadaic acid group toxins confirmed. Conversely, paralytic shellfish toxins were quantified in some scallops. Gonyautoxins 1 and 2 dominated the unusual toxin profiles (91%) in terms of saxitoxin equivalents with maximum concentrations reaching 3985 µg STX eq/kg and with changes in profiles linked in part to seasonal changes. Total toxin concentrations were compared between samples of the adductor muscle and whole tissue, with results showing the absence of toxins in the adductor muscle confirming toxin accumulation in the digestive tracts of the scallops and the absence of a human health threat following the processing of scallop adductor meat. These findings highlight that paralytic shellfish toxins with an unusual toxin profile can occur in relatively high concentrations in whole Patagonian scallops in specific regions and during particular time periods, also showing that the processing of scallops on board factory ships to obtain frozen adductor muscle is an effective management process that minimizes the risk of poisonings from final products destined for human consumption.
Collapse
Affiliation(s)
- Alejandra B. Goya
- Marine Biotoxin Department, Mar del Plata Regional Laboratory, National Service for Agri-food Health and Quality (Senasa), AvisoDorrego y Víctimas del ‘46, Puerto, Mar del Plata B7600, Buenos Aires Province, Argentina
| | - Danial Baqer
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
- Department of Biological Sciences, University of Surrey, Stag Hill, Guildford GU2 7XH, UK
| | - Ryan P. Alexander
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Patrycja Stubbs
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Karl Dean
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Adam M. Lewis
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Lewis Coates
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Benjamin H. Maskrey
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Andrew D. Turner
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| |
Collapse
|
30
|
Bowers EK, Stimmelmayr R, Hendrix A, Lefebvre KA. Stability of Saxitoxin in 50% Methanol Fecal Extracts and Raw Feces from Bowhead Whales (Balaena mysticetus). Mar Drugs 2022; 20:md20090547. [PMID: 36135736 PMCID: PMC9505082 DOI: 10.3390/md20090547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
In recent decades, harmful algal blooms (HABs) producing paralytic shellfish toxins (including saxitoxin, STX) have become increasingly frequent in the marine waters of Alaska, USA, subjecting Pacific Arctic and subarctic communities and wildlife to increased toxin exposure risks. Research on the risks of HAB toxin exposures to marine mammal health commonly relies on the sampling of marine mammal gastrointestinal (GI) contents to quantify HAB toxins, yet no studies have been published testing the stability of STX in marine mammal GI matrices. An understanding of STX stability in test matrices under storage and handling conditions is imperative to the integrity of toxin quantifications and conclusions drawn thereby. Here, STX stability is characterized in field-collected bowhead whale feces (stored raw in several treatments) and in fecal extracts (50% methanol, MeOH) over multiple time points. Toxin stability, as the percent of initial concentration (T0), was reported for each storage treatment and time point. STX was stable (mean 99% T0) in 50% MeOH extracts over the 8-week study period, and there was no significant difference in STX concentrations quantified in split fecal samples extracted in 80% ethanol (EtOH) and 50% MeOH. STX was also relatively stable in raw fecal material stored in the freezer (mean 94% T0) and the refrigerator (mean 93% T0) up to 8 weeks. STX degraded over time in the room-temperature dark, room-temperature light, and warm treatments to means of 48 ± 1.9, 38 ± 2.8, and 20 ± 0.7% T0, respectively, after 8 weeks (mean ± standard error; SE). Additional opportunistically analyzed samples frozen for ≤4.5 years also showed STX to be relatively stable (mean 97% T0). Mean percent of T0 was measured slightly above 100% in some extracts following some treatments, and (most notably) at some long-term frozen time points, likely due to evaporation from samples causing STX to concentrate, or variability between ELISA plates. Overall, these results suggest that long-term frozen storage of raw fecal samples and the analysis of extracts within 8 weeks of extraction in 50% MeOH is sufficient for obtaining accurate STX quantifications in marine mammal fecal material without concerns about significant degradation.
Collapse
Affiliation(s)
- Emily K. Bowers
- Northwest Fisheries Science Center, Environmental and Fisheries Sciences Division, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - Raphaela Stimmelmayr
- The North Slope Borough Department of Wildlife Management, P.O. Box 69, Utqiagvik, AK 99723, USA
| | - Alicia Hendrix
- Department of Environmental and Occupational Health Sciences, University of Washington, Box 351618, Seattle, WA 98195, USA
| | - Kathi A. Lefebvre
- Northwest Fisheries Science Center, Environmental and Fisheries Sciences Division, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd E, Seattle, WA 98112, USA
- Correspondence:
| |
Collapse
|
31
|
Chairopoulou MA, Garcia-Triñanes P, Teipel U. Oyster shell reuse: A particle engineering perspective for the use as emulsion stabilizers. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Pradhan B, Kim H, Abassi S, Ki JS. Toxic Effects and Tumor Promotion Activity of Marine Phytoplankton Toxins: A Review. Toxins (Basel) 2022; 14:397. [PMID: 35737058 PMCID: PMC9229940 DOI: 10.3390/toxins14060397] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 12/25/2022] Open
Abstract
Phytoplankton are photosynthetic microorganisms in aquatic environments that produce many bioactive substances. However, some of them are toxic to aquatic organisms via filter-feeding and are even poisonous to humans through the food chain. Human poisoning from these substances and their serious long-term consequences have resulted in several health threats, including cancer, skin disorders, and other diseases, which have been frequently documented. Seafood poisoning disorders triggered by phytoplankton toxins include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP), ciguatera fish poisoning (CFP), and azaspiracid shellfish poisoning (AZP). Accordingly, identifying harmful shellfish poisoning and toxin-producing species and their detrimental effects is urgently required. Although the harmful effects of these toxins are well documented, their possible modes of action are insufficiently understood in terms of clinical symptoms. In this review, we summarize the current state of knowledge regarding phytoplankton toxins and their detrimental consequences, including tumor-promoting activity. The structure, source, and clinical symptoms caused by these toxins, as well as their molecular mechanisms of action on voltage-gated ion channels, are briefly discussed. Moreover, the possible stress-associated reactive oxygen species (ROS)-related modes of action are summarized. Finally, we describe the toxic effects of phytoplankton toxins and discuss future research in the field of stress-associated ROS-related toxicity. Moreover, these toxins can also be used in different pharmacological prospects and can be established as a potent pharmacophore in the near future.
Collapse
Affiliation(s)
| | | | | | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea; (B.P.); (H.K.); (S.A.)
| |
Collapse
|
33
|
Identification of novel paralytic shellfish toxin binding protein via homology modeling and molecular docking. Toxicon 2022; 211:61-69. [DOI: 10.1016/j.toxicon.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022]
|
34
|
Jiang X, Zhao Y, Tang C, Appelbaum M, Rao Q. Aquatic food animals in the United States: Status quo and challenges. Compr Rev Food Sci Food Saf 2022; 21:1336-1382. [PMID: 35150203 DOI: 10.1111/1541-4337.12923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/29/2022]
Abstract
This review summarizes (1) the U.S. status quo for aquatic food animal production and marketing; (2) major food safety and quality issues/concerns for aquatic food animals in the United States, including fish misbranding, finfish/shellfish allergies, pathogens, toxins and harmful residues, microplastics, and genetically engineered salmon; and (3) various U.S. regulations, guidances, and detection methods for the surveillance of fishery products. Overall, fish misbranding is the biggest challenge in the United States due to the relatively low inspection rate. In addition, due to the regulatory differences among countries, illegal animal drugs and/or pesticide residues might also be identified in imported aquatic food animals. Future regulatory and research directions could focus on further strengthening international cooperation, enhancing aquatic food animal inspection, and developing reliable, sensitive, and highly efficient detection methods.
Collapse
Affiliation(s)
- Xingyi Jiang
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Yaqi Zhao
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Chunya Tang
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Megan Appelbaum
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Qinchun Rao
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
35
|
Sinno-Tellier S, Abadie E, de Haro L, Paret N, Langrand J, Le Roux G, Labadie M, Boels D, Bloch J, Delcourt N. Human poisonings by neurotoxic phycotoxins related to the consumption of shellfish: study of cases registered by the French Poison Control Centres from 2012 to 2019. Clin Toxicol (Phila) 2022; 60:759-767. [PMID: 35130811 DOI: 10.1080/15563650.2022.2034840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
CONTEXT In June 2019, a paralytic shellfish poisoning (PSP) case related to the consumption of mussels contaminated by saxitoxins at a concentration below the regulatory threshold came to the attention of the French Agency for Food, Environmental and Occupational Health and Safety (ANSES). This pointed to probable undetected human cases of poisoning by neurotoxic phycotoxins. METHODS We conducted a retrospective study of poisoning cases by bivalve shellfish (oysters, mussels and scallops) recorded by the French Poison Control Centres (PCC) from 2012 to 2019. All medical records were reviewed by a toxicologist.Cases that could be related to neurotoxic phycotoxins were selected and described. Diagnosis was based on symptoms compatible with ingestion of contaminated shellfish and on contamination data for the shellfish production area (analysed by the French Research Institute for Exploitation of the Sea, Ifremer), or notifications to the European Rapid Alert System for Food and Feed when the origin of the shellfish was known. RESULTS Among the 619 shellfish poisoning cases recorded by the PCCs from 2012 to 2019, 22% (n = 134) had reported at least one neurological symptom (headache, dizziness or paraesthesia). Review of medical records for the 134 patients led to suspicion of 14 cases of PSP and one case of amnesic shellfish poisoning. Five patients experienced persistent neurological symptoms. Marine toxins were not tested for in the blood or urine of these patients. CONCLUSION This retrospective identification of cases strongly suspected of being related to neurotoxic phycotoxins led ANSES, PCCs and Ifremer to develop a specific questionnaire and to recommend actions to take when neurological symptoms related to shellfish consumption are reported to a PCC. Daily monitoring of shellfish poisoning cases registered in the national PCCs database was also implemented in order to rapidly detect any suspicious cases, alert the competent authorities, and warn the general population.
Collapse
Affiliation(s)
- Sandra Sinno-Tellier
- French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France
| | - Eric Abadie
- French Research Institute for Exploitation of the Sea, Sète, France
| | - Luc de Haro
- Poison Control Centre, Marseille University Hospital, Marseille, France
| | - Nathalie Paret
- Poison Control Centre, Lyon University Hospital, Lyon, France
| | - Jérôme Langrand
- Poison Control Centre, Paris University Hospital, Paris, France
| | - Gaël Le Roux
- Poison Control Centre, Angers University Hospital, Angers, France
| | - Magali Labadie
- Poison Control Centre, Bordeaux University Hospital, Bordeaux, France
| | - David Boels
- Pharmacology and Toxicology Department, Nantes University Hospital, Nantes, France
| | | | - Juliette Bloch
- French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France
| | - Nicolas Delcourt
- Poison Control Centre, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
36
|
Caglayan MO, Üstündağ Z, Şahin S. Spectroscopic ellipsometry methods for brevetoxin detection. Talanta 2022; 237:122897. [PMID: 34736713 DOI: 10.1016/j.talanta.2021.122897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/10/2021] [Accepted: 09/19/2021] [Indexed: 11/28/2022]
Abstract
The spectroscopic ellipsometry (SE), and attenuated internal reflection spectroscopic ellipsometry (TIRE) are promising methods in label-free biosensing applications. An ellipsometer running under surface plasmon resonance (SPR) conditions has unique advantages over other SPR-based methods in terms of sensitivity and real-time/label-free measurement capability. In this study, both SE and TIRE-based brevetoxin B (BTX) sensors were developed using two anti-BTX aptamers reported before. A new aptamer sequence was also derived from these two antiBTX aptamers using predictive modeling tools and an exclusion method. All three antiBTX aptamers' analytical performances were quite competitive in terms of both detecting range and detection limits. However, the selectivity of the previously reported aptamers against analogs of BTX was poor at low detection ranges, especially for okadaic acid. Furthermore, the selectivity of the derived aptamer was lower than its predecessors. The sensors were capable of detecting BTX in the range of 0.05 nM-1600 nM in the TIRE and 0.5 nM-2000 nM in the SE configuration. The detection limits of the sensors were 1.48 nM (1.32 ng/mL) and 0.80 nM (0.72 ng/mL) for SE and TIRE configurations, respectively. Both configurations have been used successfully to detect BTX standards spiked into real fish and shrimp samples.
Collapse
Affiliation(s)
| | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, 43100, Kütahya, Turkey
| | - Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| |
Collapse
|
37
|
Lewis AM, Dean KJ, Hartnell DM, Percy L, Turner AD, Lewis JM. The value of toxin profiles in the chemotaxonomic analysis of paralytic shellfish toxins in determining the relationship between British Alexandrium spp. and experimentally contaminated Mytilus sp. HARMFUL ALGAE 2022; 111:102131. [PMID: 35016773 DOI: 10.1016/j.hal.2021.102131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Although phytoplankton is ubiquitous in the world's oceans some species can produce compounds that cause damaging effects in other organisms. These include the toxins responsible for paralytic shellfish poisoning, which, in UK waters, are produced by dinoflagellates from the Alexandrium genus. Within Great Britain (GB) a monitoring programme exists to detect this harmful genus as well as the Paralytic Shellfish Poisoning (PSP) toxins in the flesh of shellfish from classified production areas. The techniques used for toxin analysis allow for detailed analysis of the toxin profiles present in contaminated shellfish. It is possible to compare the toxin profiles of contaminated shellfish with the profiles from toxin producing algae and use this information to infer the causative microalgal species responsible for the contamination. This study sought to evaluate the potential for this process within the GB monitoring framework. Two species of toxic Alexandrium, A. catenella from Scotland and A. minutum from Southern England, were fed to mussels (Mytilus sp.) under controlled conditions. The toxin profile in mussels derived from feeding on each species independently, when mixed and when introduced sequentially was analysed and compared to the source algal cultures using K means cluster analysis. Toxin profiles in contaminated shellfish clustered with those of the causative algae and separately from one another during toxin accumulation and, where A. catenella was the sole toxin source, during depuration. During depuration after feeding with A. minutum and where mixed or sequential feeding was undertaken deviant toxin profiles were observed. Finally, data generated within this experimental study were compared to monitoring data from the GB official control programme. These data indicated that the causative algal species in sole source contaminations could be inferred from toxin profile analysis. This technique will be of benefit within monitoring programmes to enhance the value of data with minimal additional expense, where the toxin profiles of causative microalgae have been well described.
Collapse
Affiliation(s)
- Adam M Lewis
- Cefas, The Nothe, Barrack Road, Weymouth, Dorset, UK, DT48UB; School of Life Sciences, The University of Westminster, 115 New Cavendish Street, London W1W6UW UK.
| | - Karl J Dean
- Cefas, The Nothe, Barrack Road, Weymouth, Dorset, UK, DT48UB
| | | | - Linda Percy
- School of Life Sciences, The University of Westminster, 115 New Cavendish Street, London W1W6UW UK
| | - Andrew D Turner
- Cefas, The Nothe, Barrack Road, Weymouth, Dorset, UK, DT48UB
| | - Jane M Lewis
- Principal Shetland College, Shetland College, University of Highlands and Islands, Gremista, Lerwick, Shetland ZE1 0PX UK
| |
Collapse
|
38
|
Kibler SR, Litaker RW, Matweyou JA, Hardison DR, Wright BA, Tester PA. Paralytic shellfish poisoning toxins in butter clams (Saxidomus gigantea) from the Kodiak Archipelago, Alaska. HARMFUL ALGAE 2022; 111:102165. [PMID: 35016769 DOI: 10.1016/j.hal.2021.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Consumption of toxic butter clams (Saxidomus gigantea) is the most frequent cause of paralytic shellfish poisoning (PSP) in Alaskan coastal communities. This study examines seasonal variation in total paralytic shellfish toxin concentrations and congener distribution in tissues of butter clams collected in three communities in the Kodiak Islands, Alaska: the City of Kodiak, Ouzinkie and Old Harbor. In response to questions from local harvesters, the efficacy of removing particular clam tissues on total toxin levels was also assessed. Butter clam samples were collected ∼monthly during 2015-2020 in each community to monitor shellfish toxin levels. Results were combined with clam monitoring data collected previously (2013-2015) to document the seasonal distribution of saxitoxin (STX) and its congeners (neosaxitoxin, gonyautoxin) in clam tissues. Seasonally, paralytic shellfish toxin levels in butter clams were highest in summer, declined in winter, but often remained above regulatory limits throughout the year in the three Kodiak communities. Butter clams collected from Ouzinkie (2013-2020) averaged 165 ± 87 µg STX equivalents (Eq.) 100 g - 1, compared to Kodiak 73 ± 54 µg STX Eq. 100 g - 1 and Old Harbor 143 ± 103 µg STX Eq. 100 g - 1. STX accounted for 59-71% of the total toxin concentration in clams at Ouzinkie, Kodiak, and Old Harbor, while neosaxitoxin (neoSTX) accounted for 12-18%. Gonyautoxins (GTXs) represented 31-60% of the total toxin concentration during the seasonal Alexandrium catenella bloom in June-July, with lower percentages in other months. The fraction of total toxin varied among clam tissues: the siphon tip (2-29%), the neck (3-56%), the gut (3-65%) and the body (6-85%). Removal of the siphon tip reduced total toxin content substantially in some samples but had little effect in others. Saxitoxin congeners varied greatly and somewhat unpredictably among clam tissues, and the results indicate removal of specific tissues was not an effective strategy for reducing paralytic shellfish toxin levels in butter clams for safe consumption.
Collapse
Affiliation(s)
- Steven R Kibler
- National Oceanic and Atmospheric Administration, National Ocean Service, Beaufort Laboratory, 101 Pivers Island Road, Beaufort, North Carolina, United States of America.
| | - R Wayne Litaker
- CSS Inc. (Under Contract to National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, 1305 East-West Highway, Silver Spring, MD 20910, United States of America)
| | - Julie A Matweyou
- Alaska Sea Grant Marine Advisory Program, Kodiak Seafood and Marine Science Center, 118 Trident Way, Kodiak, Alaska, 99615, United States of America
| | - D Ransom Hardison
- National Oceanic and Atmospheric Administration, National Ocean Service, Beaufort Laboratory, 101 Pivers Island Road, Beaufort, North Carolina, United States of America
| | - Bruce A Wright
- Knik Tribe of Alaska, 1744 Prospect Drive, Palmer, Alaska, 99645, United States of America
| | - Patricia A Tester
- Ocean Tester, LLC, 295 Dills Point Road, Beaufort, North Carolina, 28516, United States of America
| |
Collapse
|
39
|
Latitudinal Variation in the Toxicity and Sexual Compatibility of Alexandrium catenella Strains from Southern Chile. Toxins (Basel) 2021; 13:toxins13120900. [PMID: 34941737 PMCID: PMC8706904 DOI: 10.3390/toxins13120900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
The bloom-forming toxic dinoflagellate Alexandrium catenella was first detected in southern Chile (39.5–55° S) 50 years ago and is responsible for most of the area’s cases of paralytic shellfish poisoning (PSP). Given the complex life history of A. catenella, which includes benthic sexual cysts, in this study, we examined the potential link between latitude, toxicity, and sexual compatibility. Nine clones isolated from Chilean Patagonia were used in self- and out-crosses in all possible combinations (n = 45). The effect of latitude on toxicity, reproductive success indexes, and cyst production was also determined. Using the toxin profiles for all strains, consisting of C1, C2, GTX4, GTX1, GTX3, and NeoSTX, a latitudinal gradient was determined for their proportions (%) and content per cell (pg cell−1), with the more toxic strains occurring in the north (−40.6° S). Reproductive success also showed a latitudinal tendency and was lower in the north. None of the self-crosses yielded resting cysts. Rather, the production of resting cysts was highest in pairings of clones separated by distances of 1000–1650 km. Our results contribute to a better understanding of PSP outbreaks in the region and demonstrate the importance of resting cysts in fueling new toxic events. They also provide additional evidence that the introduction of strains from neighboring regions is a cause for concern.
Collapse
|
40
|
Dean KJ, Alexander RP, Hatfield RG, Lewis AM, Coates LN, Collin T, Teixeira Alves M, Lee V, Daumich C, Hicks R, White P, Thomas KM, Ellis JR, Turner AD. The Common Sunstar Crossaster papposus-A Neurotoxic Starfish. Mar Drugs 2021; 19:695. [PMID: 34940694 PMCID: PMC8704474 DOI: 10.3390/md19120695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
Saxitoxins (STXs) are a family of potent neurotoxins produced naturally by certain species of phytoplankton and cyanobacteria which are extremely toxic to mammalian nervous systems. The accumulation of STXs in bivalve molluscs can significantly impact animal and human health. Recent work conducted in the North Sea highlighted the widespread presence of various saxitoxins in a range of benthic organisms, with the common sunstar (Crossaster papposus) demonstrating high concentrations of saxitoxins. In this study, an extensive sampling program was undertaken across multiple seas surrounding the UK, with 146 starfish and 5 brittlestars of multiple species analysed for STXs. All the common sunstars analysed (n > 70) contained quantifiable levels of STXs, with the total concentrations ranging from 99 to 11,245 µg STX eq/kg. The common sunstars were statistically different in terms of toxin loading to all the other starfish species tested. Two distinct toxic profiles were observed in sunstars, a decarbomylsaxitoxin (dcSTX)-dominant profile which encompassed samples from most of the UK coast and an STX and gonyautoxin2 (GTX2) profile from the North Yorkshire coast of England. Compartmentalisation studies demonstrated that the female gonads exhibited the highest toxin concentrations of all the individual organs tested, with concentrations >40,000 µg STX eq/kg in one sample. All the sunstars, male or female, exhibited the presence of STXs in the skin, digestive glands and gonads. This study highlights that the common sunstar ubiquitously contains STXs, independent of the geographical location around the UK and often at concentrations many times higher than the current regulatory limits for STXs in molluscs; therefore, the common sunstar should be considered toxic hereafter.
Collapse
Affiliation(s)
- Karl J. Dean
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Ryan P. Alexander
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Robert G. Hatfield
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Adam M. Lewis
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Lewis N. Coates
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Tom Collin
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, UK
| | - Mickael Teixeira Alves
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Vanessa Lee
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, UK
| | - Caroline Daumich
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Ruth Hicks
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Peter White
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| | - Krista M. Thomas
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3Z 3H1, Canada;
| | - Jim R. Ellis
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Pakefield Road, Lowestoft NR33 0HT, UK;
| | - Andrew D. Turner
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth DT4 8UB, UK; (R.P.A.); (R.G.H.); (A.M.L.); (L.N.C.); (T.C.); (M.T.A.); (V.L.); (C.D.); (R.H.); (P.W.); (A.D.T.)
| |
Collapse
|
41
|
Cuellar-Martinez T, Huanca Ochoa ADR, Sánchez S, Aguirre Velarde A, Correa D, Egoavil Gallardo KA, Luján Monja HF, Ipanaqué Zapata JM, Colas F, Tam J, Gutiérrez D. Paralytic shellfish toxins in Peruvian scallops associated with blooms of Alexandrium ostenfeldii (Paulsen) Balech & Tangen in Paracas Bay, Peru. MARINE POLLUTION BULLETIN 2021; 173:112988. [PMID: 34583250 DOI: 10.1016/j.marpolbul.2021.112988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
In recent years, dense Alexandrium ostenfeldii blooms have been reported in different coastal areas. In this study, we report for the first time the occurrence of A. ostenfeldii blooms associated with the detection of paralytic shellfish toxins (PSTs) in the Peruvian scallop (Argopecten purpuratus) from Paracas Bay. Alexandrium ostenfeldii blooms occurred at the end of summer and early fall, after the increase of riverine input and under stratified conditions following a decrease in wind velocity. The highest abundances occurred during warm sea surface temperatures (18-27 °C). High PST concentrations that exceed the maximum permissible level (800 μg STX eq. kg-1) occurred even under low A. ostenfeldii abundances (20 × 103 cells l-1). Our results contribute to a better understanding of the dynamics of A. ostenfeldii in coastal systems influenced by riverine inputs and upwelling and can be used to improve monitoring programs and allow the implementation of mitigation measures along the Peruvian coast.
Collapse
Affiliation(s)
| | | | - Sonia Sánchez
- Instituto del Mar del Peru, Esquina Gamarra y General Valle S/N Chucuito Callao, Peru
| | | | - David Correa
- Instituto del Mar del Peru, Esquina Gamarra y General Valle S/N Chucuito Callao, Peru
| | | | | | | | - François Colas
- Laboratoire LOCEAN (IRD/CNRS/SU/MNHN), Sorbonne Université, Campus Pierre et Marie Curie, Paris, France
| | - Jorge Tam
- Instituto del Mar del Peru, Esquina Gamarra y General Valle S/N Chucuito Callao, Peru
| | - Dimitri Gutiérrez
- Instituto del Mar del Peru, Esquina Gamarra y General Valle S/N Chucuito Callao, Peru; Laboratorio de Ciencias del Mar, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
42
|
Boundy MJ, Harwood DT, Tommasi E, Burger E, van Ginkel R, Waugh C, Selwood AI, Finch S. Acute toxicity of decarbamoyl gonyautoxin 1&4 to mice by various routes of administration. Toxicon 2021; 204:56-63. [PMID: 34742781 DOI: 10.1016/j.toxicon.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022]
Abstract
Saxitoxin and its derivatives, the paralytic shellfish toxins (PSTs), are well known to be toxic to humans, and maximum permitted levels in seafood have been established by regulatory authorities in many countries. Monitoring of PSTs is typically performed using chemical methods which quantify the concentration of the individual PST analogues, of which there are many. However, since the toxicities of analogues are different, they do not equally contribute to the overall toxicity of the sample. To account for these differences, toxicity equivalency factors (TEFs) need to be determined for each analogue and applied. Currently there are no established TEFs for decarbamoyl gonyautoxin 1&4 (dcGTX1&4), which occurs in some clam species such as Mactra chinensis contaminated with PSTs due to metabolism within the shellfish. In this study the median lethal dose of purified, equilibrated epimeric mixture of dcGTX1&4 has been determined by intraperitoneal injection (i.p.) (4.75 μmol/kg) and by feeding (34.9 μmol/kg). The most relevant route of exposure is orally with feeding being more representative of human consumption and more reliable than gavage. Based on the median lethal dose by feeding, a TEF of 0.1 is recommended for dcGTX1&4. Receptor binding activity and i.p. toxicity results showed dcGTX1&4 to be much less toxic than STX (140-170-fold). However, by feeding a much smaller difference in toxicity was observed with dcGTX1&4 being only 11-fold less toxic than STX. Analysis of the gut contents of mice dosed with dcGTX1&4 showed the presence of decarbamoyl gonyautoxin 2&3, decarbamoyl saxitoxin and decarbamoyl neosaxitoxin, all of which are of greater toxicity. This conversion of dcGTX1&4 within the digestive track to more toxic congeners may explain the high relative toxicity of dcGTX1&4 by feeding compared to that determined by i.p. and by sodium channel activity.
Collapse
Affiliation(s)
| | - D Tim Harwood
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - Elena Tommasi
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - Emillie Burger
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - Roel van Ginkel
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - Craig Waugh
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | | | - Sarah Finch
- AgResearch Limited, Ruakura Research Centre, Private Bag 3123, Hamilton, 3240, New Zealand
| |
Collapse
|
43
|
Abdallah MF, Van Hassel WHR, Andjelkovic M, Wilmotte A, Rajkovic A. Cyanotoxins and Food Contamination in Developing Countries: Review of Their Types, Toxicity, Analysis, Occurrence and Mitigation Strategies. Toxins (Basel) 2021; 13:786. [PMID: 34822570 PMCID: PMC8619289 DOI: 10.3390/toxins13110786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Cyanotoxins have gained global public interest due to their potential to bioaccumulate in food, which threatens human health. Bloom formation is usually enhanced under Mediterranean, subtropical and tropical climates which are the dominant climate types in developing countries. In this context, we present an up-to-date overview of cyanotoxins (types, toxic effects, analysis, occurrence, and mitigation) with a special focus on their contamination in (sea)food from all the developing countries in Africa, Asia, and Latin America as this has received less attention. A total of 65 publications have been found (from 2000 until October 2021) reporting the contamination by one or more cyanotoxins in seafood and edible plants (five papers). Only Brazil and China conducted more research on cyanotoxin contamination in food in comparison to other countries. The majority of research focused on the detection of microcystins using different analytical methods. The detected levels mostly surpassed the provisional tolerable daily intake limit set by the World Health Organization, indicating a real risk to the exposed population. Assessment of cyanotoxin contamination in foods from developing countries still requires further investigations by conducting more survey studies, especially the simultaneous detection of multiple categories of cyanotoxins in food.
Collapse
Affiliation(s)
- Mohamed F. Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Wannes H. R. Van Hassel
- Sciensano, Chemical and Physical Health Risks, Organic Contaminants and Additives, Leuvensesteenweg 17, 3080 Tervuren, Belgium;
| | - Mirjana Andjelkovic
- Sciensano Research Institute, Chemical and Physical Health Risks, Risk and Health Impact Assessment, Ju-liette Wytsmanstreet 14, 1050 Brussels, Belgium;
| | - Annick Wilmotte
- BCCM/ULC Cyanobacteria Collection, InBios-Centre for Protein Engineering, Université de Liège, 4000 Liège, Belgium;
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
44
|
Abstract
Cyanobacteria constitute an interesting group of photosynthetic microorganisms due to their morphological and genetic diversity that is related to their extremely long evolution process, which created the need for them to adapt to immensely heterogeneous environmental conditions. Cyanobacteria grow in salt and fresh waters as well as on the surface of soils and rocks. The diverse cell structure is characterized by the fact that they occur in many morphological forms, from small single cells through to larger ones as well as branches, threads, or spirals. Taking into account the presence of cyanobacteria in virtually all possible conditions and places on Earth, cyanobacteria represent an unexplored potential that is worth investigating. This review presents the possibilities of using algae in chosen areas of biotechnology: e.g., as biocatalysts or in industries such as the pharmaceutical industry. It covers the characteristics of secondary metabolites along with their division and the potential of using them as sources of effective drugs for many diseases. It presents an overview of the possibilities of using cyanobacteria in biotransformation processes. These processes are of great importance in the case of, for example, the neutralization of municipal, industrial, or chemical waste, the amount of which is constantly growing every year, and they are also an easier and cheaper path to obtain chemical compounds.
Collapse
|
45
|
Changing Trends in Paralytic Shellfish Poisonings Reflect Increasing Sea Surface Temperatures and Practices of Indigenous and Recreational Harvesters in British Columbia, Canada. Mar Drugs 2021; 19:md19100568. [PMID: 34677468 PMCID: PMC8538720 DOI: 10.3390/md19100568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Paralytic shellfish poisoning (PSP) occurs when shellfish contaminated with saxitoxin or equivalent paralytic shellfish toxins (PSTs) are ingested. In British Columbia, Canada, documented poisonings are increasing in frequency based on 62 investigations identified from 1941–2020. Two PSP investigations were reported between 1941 and 1960 compared to 31 since 2001 (p < 0.0001) coincident with rising global temperatures (r2 = 0.76, p < 0.006). The majority of PSP investigations (71%) and cases (69%) were linked to self-harvested shellfish. Far more investigations involved harvests by indigenous communities (24%) than by commercial and recreational groups. Single-case-exposure investigations increased by more than 3.5 times in the decade 2011–2020 compared to previous periods. Clams (47%); mussels (26%); oysters (14%); scallops (6%); and, in more recent years, crabs (4%) were linked to illnesses. To guide understanding of self-harvesting consumption risks, we recommend collecting data to determine when PST-producing algae are present in high concentrations, improving the quality of data in online shellfish harvest maps to include dates of last testing; biotoxin testing results; and a description of bivalve species tested. Over reliance on toxin results in biomonitored species may not address actual consumption risks for unmonitored species harvested from the same area. We further recommend introducing phytoplankton monitoring in remote indigenous communities where self-harvesting is common and toxin testing is unavailable, as well as continuing participatory education about biotoxin risks in seafoods.
Collapse
|
46
|
Hendrix AM, Lefebvre KA, Quakenbush L, Bryan A, Stimmelmayr R, Sheffield G, Wisswaesser G, Willis ML, Bowers EK, Kendrick P, Frame E, Burbacher T, Marcinek DJ. Ice seals as sentinels for algal toxin presence in the Pacific Arctic and subarctic marine ecosystems. MARINE MAMMAL SCIENCE 2021; 37:1292-1308. [PMID: 34690417 PMCID: PMC8518847 DOI: 10.1111/mms.12822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/04/2023]
Abstract
Domoic acid (DA) and saxitoxin (STX)-producing algae are present in Alaskan seas, presenting exposure risks to marine mammals that may be increasing due to climate change. To investigate potential increases in exposure risks to four pagophilic ice seal species (Erignathus barbatus, bearded seals; Pusa hispida, ringed seals; Phoca largha, spotted seals; and Histriophoca fasciata, ribbon seals), this study analyzed samples from 998 seals harvested for subsistence purposes in western and northern Alaska during 2005-2019 for DA and STX. Both toxins were detected in bearded, ringed, and spotted seals, though no clinical signs of acute neurotoxicity were reported in harvested seals. Bearded seals had the highest prevalence of each toxin, followed by ringed seals. Bearded seal stomach content samples from the Bering Sea showed a significant increase in DA prevalence with time (logistic regression, p = .004). These findings are consistent with predicted northward expansion of DA-producing algae. A comparison of paired samples taken from the stomachs and colons of 15 seals found that colon content consistently had higher concentrations of both toxins. Collectively, these results suggest that ice seals, particularly bearded seals (benthic foraging specialists), are suitable sentinels for monitoring HAB prevalence in the Pacific Arctic and subarctic.
Collapse
Affiliation(s)
- Alicia M. Hendrix
- Department of Environmental and Occupational Health SciencesUniversity of Washington, SeattleWashington
| | - Kathi A. Lefebvre
- Environmental and Fisheries Science DivisionNorthwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, SeattleWashington
| | - Lori Quakenbush
- Arctic Marine Mammal ProgramAlaska Department of Fish and Game, FairbanksAlaska
| | - Anna Bryan
- Arctic Marine Mammal ProgramAlaska Department of Fish and Game, FairbanksAlaska
| | - Raphaela Stimmelmayr
- North Slope Borough Department of Wildlife Management, Utqiaġvik, Alaska
- Institute of Arctic BiologyUniversity of Alaska Fairbanks, FairbanksAlaska
| | - Gay Sheffield
- Alaska Sea Grant Marine Advisory ProgramUniversity of Alaska Fairbanks, NomeAlaska
| | - Gabriel Wisswaesser
- Environmental and Fisheries Science DivisionNorthwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, SeattleWashington
| | - Maryjean L. Willis
- Environmental and Fisheries Science DivisionNorthwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, SeattleWashington
| | - Emily K. Bowers
- Environmental and Fisheries Science DivisionNorthwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, SeattleWashington
| | - Preston Kendrick
- Departments of Radiology and Pathology and BioengineeringUniversity of Washington Medical School, SeattleWashington
| | - Elizabeth Frame
- Aquatic Toxicology UnitKing County Environmental Laboratory, SeattleWashington
| | - Thomas Burbacher
- Department of Environmental and Occupational Health SciencesUniversity of Washington, SeattleWashington
| | - David J. Marcinek
- Departments of Radiology and Pathology and BioengineeringUniversity of Washington Medical School, SeattleWashington
| |
Collapse
|
47
|
Proteome Response of Meretrix Bivalves Hepatopancreas Exposed to Paralytic Shellfish Toxins Producing Dinoflagellate Gymnodinium catenatum. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9091039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Paralytic shellfish toxins (PSTs) contamination of seafood has become a growing global problem. However, the molecular response of bivalves, some of the most popular seafoods, to PSP toxins has seldom been reported and the underlying molecular mechanisms of the interactions between Meretrix meretrix bivalves and PSTs-producing dinoflagellates are scarcely known. This study compared the protein expression profiles between PSP toxin-contaminated and non-PSP toxin contaminated M. meretrix, determined proteome responses and identified potential biomarkers based on feeding experiments. Results showed that the content of total PSP toxins in contaminated bivalves was 40.63 ± 4.08 μg saxitoxin (STX) equivalents per gram, with 95.3% in hepatopancreas, followed by gill (1.82%) and foot (1.79%). According to two-dimensional gel electrophoresis (2-DE), 15 differentially expressed proteins (at least 2-fold difference) between the hepatopancreas of bivalves with and without PSP toxins were detected. Eight of them were successfully identified by MALDI-TOF MS. These were catalase, protein ultraspiracle homolog, G2 and S phase-expression protein, paramyosin, Mn-superoxide dismutase, response regulator receiver domain-containing protein, sarcoplasmic calcium-binding protein and major facilitator superfamily transporters. The differences in the expression levels of the last three proteins involving in cell signaling, structure and membrane transport were 4.2, 5.3 and 4.9-fold, respectively. These proteins could be further developed as potential biomarkers. The other two up-regulated proteins, Mn-superoxide dismutase and catalase, were involved in cell defence mechanisms against oxidative stress, suggesting PSP toxin acts as xenobiotics and poses oxidative stress in bivalves. This study gives insights into the response of bivalves to PSP toxin-producing dinoflagellate at the proteomic level and the potential of using 2-DE to develop specific protein markers in bivalves.
Collapse
|
48
|
Turnbull A, Dorantes-Aranda JJ, Madigan T, Jolley J, Revill H, Harwood T, Hallegraeff G. Field Validation of the Southern Rock Lobster Paralytic Shellfish Toxin Monitoring Program in Tasmania, Australia. Mar Drugs 2021; 19:md19090510. [PMID: 34564172 PMCID: PMC8468395 DOI: 10.3390/md19090510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022] Open
Abstract
Paralytic shellfish toxins (PST) are found in the hepatopancreas of Southern Rock Lobster Jasus edwardsii from the east coast of Tasmania in association with blooms of the toxic dinoflagellate Alexandrium catenella. Tasmania’s rock lobster fishery is one of the state’s most important wild capture fisheries, supporting a significant commercial industry (AUD 97M) and recreational fishing sector. A comprehensive 8 years of field data collected across multiple sites has allowed continued improvements to the risk management program protecting public health and market access for the Tasmanian lobster fishery. High variability was seen in toxin levels between individuals, sites, months, and years. The highest risk sites were those on the central east coast, with July to January identified as the most at-risk months. Relatively high uptake rates were observed (exponential rate of 2% per day), similar to filter-feeding mussels, and meant that lobster accumulated toxins quickly. Similarly, lobsters were relatively fast detoxifiers, losing up to 3% PST per day, following bloom demise. Mussel sentinel lines were effective in indicating a risk of elevated PST in lobster hepatopancreas, with annual baseline monitoring costing approximately 0.06% of the industry value. In addition, it was determined that if the mean hepatopancreas PST levels in five individual lobsters from a site were <0.22 mg STX equiv. kg−1, there is a 97.5% probability that any lobster from that site would be below the bivalve maximum level of 0.8 mg STX equiv. kg−1. The combination of using a sentinel species to identify risk areas and sampling five individual lobsters at a particular site, provides a cost-effective strategy for managing PST risk in the Tasmanian commercial lobster fishery.
Collapse
Affiliation(s)
- Alison Turnbull
- Institute of Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia; (J.J.D.-A.); (G.H.)
- Correspondence:
| | - Juan José Dorantes-Aranda
- Institute of Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia; (J.J.D.-A.); (G.H.)
| | - Tom Madigan
- South Australia Research and Development Institute, Urrbrae, SA 5064, Australia; (T.M.); (J.J.)
| | - Jessica Jolley
- South Australia Research and Development Institute, Urrbrae, SA 5064, Australia; (T.M.); (J.J.)
| | - Hilary Revill
- Department of Primary Industry, Parks, Water and Environment, Hobart, TAS 7001, Australia;
| | - Tim Harwood
- Cawthron Institute, Nelson 7010, New Zealand;
| | - Gustaaf Hallegraeff
- Institute of Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia; (J.J.D.-A.); (G.H.)
| |
Collapse
|
49
|
Dean KJ, Hatfield RG, Turner AD. Performance Characteristics of Refined LC-FLD and HILIC-MS/MS Methods for the Determination of Paralytic Shellfish Toxins in Shrimp, Whelk, and Crab. J AOAC Int 2021; 104:1022-1035. [PMID: 33681973 DOI: 10.1093/jaoacint/qsab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/08/2021] [Accepted: 02/22/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Paralytic Shellfish Poison (PSP) toxins have been reported in non-bivalve shellfish species, including crustaceans and gastropods. Routine surveillance of these species is currently conducted in parts of England. To date, detection methods have not been validated for these matrices. Validation is required to ensure the test is fit for purpose, to give greater confidence in any results generated and ultimately facilitates accreditation. OBJECTIVE The aim was to test and validate two independent PSP toxin detection methods previously validated for bivalve shellfish matrices, for applicability to commercial non-bivalve species of interest. METHODS Matrices were shrimp (Crangon crangon), common whelk (Buccinum undatum), and edible crab (Cancer pagurus). The two methods assessed were the pre-column oxidation high-performance liquid chromatography-fluorescence detection AOAC 2005.06 Official Method of analysis and an internationally validated hydrophilic interaction chromatography-tandem mass spectrometry method. Brown and white crab meat were assessed separately. RESULTS A refined extraction protocol was implemented with an increased solvent to sample ratio. The same extraction protocol was utilized for both methods, allowing both methods to be run simultaneously. Method sensitivity, recovery, repeatability, and method uncertainty were characterized in all matrix/toxin combinations. Overall, both methods performed similarly to that previously reported in bivalve mollusks. Acceptability of the majority of toxin/matrix combinations was evidenced through comparison of method performance characteristics against specific performance criteria, including Horwitz ratio values. CONCLUSIONS Both PSP toxin detection methods were found to provide acceptable performance for the monitoring of shrimp, whelk, and crab species. HIGHLIGHTS Two PSP toxin detection methods have been single-laboratory validated successfully for three non-bivalve shellfish species.
Collapse
Affiliation(s)
- Karl J Dean
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Weymouth, Dorset, UK
| | - Robert G Hatfield
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Weymouth, Dorset, UK
| | - Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Weymouth, Dorset, UK
| |
Collapse
|
50
|
Temple C, Hughes A. A case of fatal paralytic shellfish poisoning in Alaska. Clin Toxicol (Phila) 2021; 60:414-415. [PMID: 34410204 DOI: 10.1080/15563650.2021.1967373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Courtney Temple
- Department of Emergency Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Adrienne Hughes
- Department of Emergency Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|