1
|
Guo XC, Lu SY, Zhang SN, Xie P, Li GY, Shi ZQ, Zhou YT, Wang YM. Combined inhibitory effects of microcystin-LR and microcystin-RR on growth and development in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109824. [PMID: 38154657 DOI: 10.1016/j.cbpc.2023.109824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/28/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Microcystins (MCs) are the most widespread, frequently found, and seriously toxic cyanobacterial toxins in aquatic environments. Microcystin-leucine-arginine (MCLR) and microcystin-arginine-arginine (MCRR) are the most studied MCs. Normally, their levels are low and they coexist in the environment; however, they may also interact with each other. The developmental toxicity of MCLR in the presence of MCRR in the early life stage of zebrafish (from 2 to 120 h post fertilization) was investigated for the first time in this study. Our findings revealed that MCRR treatment marginally elevated thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels, whereas MCLR treatment alone resulted in a significant increase in T3 and T4 levels, indicating a cooperative effect. Furthermore, clear changes in the expression levels of genes involved in growth and development, accompanied by growth inhibition, were observed after co-treatment with MCRR and MCLR. In addition, zebrafish larvae subjected to MCRR and/or MCLR treatment showed increased levels of superoxide dismutase, glutathione, and malondialdehyde, and decreased levels of catalase in the MCRR + MCLR group, indicating oxidative stress and lipid peroxidation. Thus, we investigated the synergistic developmental toxicity of MCRR and MCLR during the early life stages of zebrafish development.
Collapse
Affiliation(s)
- Xiao-Chun Guo
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shao-Yong Lu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sheng-Nan Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guang-Yu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zu-Qin Shi
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yi-Tong Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu-Meng Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
2
|
Aguilera A, Almanza V, Haakonsson S, Palacio H, Benitez Rodas GA, Barros MUG, Capelo-Neto J, Urrutia R, Aubriot L, Bonilla S. Cyanobacterial bloom monitoring and assessment in Latin America. HARMFUL ALGAE 2023; 125:102429. [PMID: 37220982 DOI: 10.1016/j.hal.2023.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/26/2023] [Accepted: 03/20/2023] [Indexed: 05/25/2023]
Abstract
Cyanobacterial blooms have serious adverse effects on human and environmental health. In Latin America, one of the main world's freshwater reserves, information on this phenomenon remains sparse. To assess the current situation, we gathered reports of cyanobacterial blooms and associated cyanotoxins in freshwater bodies from South America and the Caribbean (Latitude 22° N to 45° S) and compiled the regulation and monitoring procedures implemented in each country. As the operational definition of what is a cyanobacterial bloom remains controversial, we also analyzed the criteria used to determine the phenomena in the region. From 2000 to 2019, blooms were reported in 295 water bodies distributed in 14 countries, including shallow and deep lakes, reservoirs, and rivers. Cyanotoxins were found in nine countries and high concentrations of microcystins were reported in all types of water bodies. Blooms were defined according to different, and sometimes arbitrary criteria including qualitative (changes in water color, scum presence), quantitative (abundance), or both. We found 13 different cell abundance thresholds defining bloom events, from 2 × 103 to 1 × 107 cells mL-1. The use of different criteria hampers the estimation of bloom occurrence, and consequently the associated risks and economic impacts. The large differences between countries in terms of number of studies, monitoring efforts, public access to the data and regulations regarding cyanobacteria and cyanotoxins highlights the need to rethink cyanobacterial bloom monitoring, seeking common criteria. General policies leading to solid frameworks based on defined criteria are needed to improve the assessment of cyanobacterial blooms in Latin America. This review represents a starting point toward common approaches for cyanobacterial monitoring and risk assessment, needed to improve regional environmental policies.
Collapse
Affiliation(s)
- Anabella Aguilera
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden.
| | - Viviana Almanza
- University of Concepcion, EULA Center, CRHIAM Center (ANID/FONDAP/15130015), Concepcion, Chile
| | - Signe Haakonsson
- Phytoplankton physiology and ecology group. Limnology Division, Facultad de Ciencias, Universidad de la República, Uruguay
| | | | - Gilberto A Benitez Rodas
- Laboratorio de Hidrobiología. Centro Multidisciplinario de Investigaciones Tecnológicas. Universidad Nacional de Asunción, Paraguay
| | - Mário U G Barros
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Brazil; Water Resources Management Company of Ceará, Brazil
| | - José Capelo-Neto
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Brazil
| | - Roberto Urrutia
- University of Concepcion, EULA Center, CRHIAM Center (ANID/FONDAP/15130015), Concepcion, Chile
| | - Luis Aubriot
- Phytoplankton physiology and ecology group. Limnology Division, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Sylvia Bonilla
- Phytoplankton physiology and ecology group. Limnology Division, Facultad de Ciencias, Universidad de la República, Uruguay
| |
Collapse
|
3
|
Falfushynska H, Kasianchuk N, Siemens E, Henao E, Rzymski P. A Review of Common Cyanotoxins and Their Effects on Fish. TOXICS 2023; 11:toxics11020118. [PMID: 36850993 PMCID: PMC9961407 DOI: 10.3390/toxics11020118] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 05/31/2023]
Abstract
Global warming and human-induced eutrophication drive the occurrence of various cyanotoxins in aquatic environments. These metabolites reveal diversified mechanisms of action, encompassing cyto-, neuro-, hepato-, nephro-, and neurotoxicity, and pose a threat to aquatic biota and human health. In the present paper, we review data on the occurrence of the most studied cyanotoxins, microcystins, nodularins, cylindrospermopsin, anatoxins, and saxitoxins, in the aquatic environment, as well as their potential bioaccumulation and toxicity in fish. Microcystins are the most studied among all known cyanotoxins, although other toxic cyanobacterial metabolites are also commonly identified in aquatic environments and can reveal high toxicity in fish. Except for primary toxicity signs, cyanotoxins adversely affect the antioxidant system and anti-/pro-oxidant balance. Cyanotoxins also negatively impact the mitochondrial and endoplasmic reticulum by increasing intracellular reactive oxygen species. Furthermore, fish exposed to microcystins and cylindrospermopsin exhibit various immunomodulatory, inflammatory, and endocrine responses. Even though cyanotoxins exert a complex pressure on fish, numerous aspects are yet to be the subject of in-depth investigation. Metabolites other than microcystins should be studied more thoroughly to understand the long-term effects in fish and provide a robust background for monitoring and management actions.
Collapse
Affiliation(s)
- Halina Falfushynska
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, 18059 Rostock, Germany
- Faculty of Electrical, Mechanical and Industrial Engineering, Anhalt University for Applied Sciences, 06366 Köthen, Germany
| | - Nadiia Kasianchuk
- Faculty of Biology, Adam Mickiewicz University, 61712 Poznan, Poland
| | - Eduard Siemens
- Faculty of Electrical, Mechanical and Industrial Engineering, Anhalt University for Applied Sciences, 06366 Köthen, Germany
| | - Eliana Henao
- Research Group Integrated Management of Ecosystems and Biodiversity XIUÂ, School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 61701 Poznan, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 61701 Poznań, Poland
| |
Collapse
|
4
|
Caly LF, Rodríguez DC, Peñuela GA. Monitoring of cyanobacteria and cyanotoxins in a Colombian tropical reservoir. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52775-52787. [PMID: 35267163 DOI: 10.1007/s11356-022-19216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Anthropogenic pollution and global climate change have resulted in favorable environmental conditions for increased frequency and duration of cyanobacterial blooms in aquatic systems. Cyanobacteria can produce toxic metabolites called cyanotoxins, which have become a worldwide concern as they threaten human and animal health. The presence of cyanobacteria and four cyanotoxins were evaluated in a Colombian reservoir. The reservoir was monitored for a year, with sampling campaigns every 3 months in seven stations. To identify and quantify cyanotoxins, the ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS) technique was used, and the quantification of cyanobacteria was done by quantitative real-time PCR (qPCR) assay using a cyanobacterial-specific 16S rRNA gene fragment as a target. Cyanobacteria concentration was between 4.02 (± 0.11) × 104 and 2.72 (± 0.28) × 107 copies of Cyan 16S/μL, the minimum value corresponds to the station located in the central zone and the maximum to the station at the entrance of one of the tributary rivers. The presence of MC-RR, MC-LR, MC-YR, and NOD was detected in at least six of the seven sampling stations at different times of the year. In all cases, the concentration of the toxins detected was below 0.05 μg/L, so the guideline value established by the WHO for MC-LR was not exceeded.
Collapse
Affiliation(s)
- Luisa F Caly
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia.
| | - Diana C Rodríguez
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia
| | - Gustavo A Peñuela
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
5
|
Moretto JAS, de Freitas PNN, de Almeida ÉC, Altarugio LM, da Silva SV, de Fátima Fiore M, Pinto E. Effects of different cultivation conditions on the production of β-cyclocitral and β-ionone in Microcystis aeruginosa. BMC Microbiol 2022; 22:78. [PMID: 35321650 PMCID: PMC8944028 DOI: 10.1186/s12866-022-02473-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 02/12/2022] [Indexed: 12/20/2022] Open
Abstract
Background Cyanobacteria blooms have become a major environmental problem and concern because of secondary metabolites produced by cyanobacteria released into the water. Cyanobacteria produce volatile organic compounds (VOCs), such as the compounds β-cyclocitral and β-ionone, which comprise odors, off-flavors, defense compounds, as well as growth regulators. Therefore, the general objective of this work was to evaluate the VOCs produced by two strains of Microcystis aeruginosa, differing in their ability to produce microcystins (LTPNA 01—non-producing and LTPNA 08—toxin-producing). The analysis of VOC production was carried out in (1) normal culture conditions, (2) under different light intensities (LI), and (3) after the external application of β-ionone in both cultures. Results The results showed that β-cyclocitral and β-ionone are produced in all growth phases of LTPNA 01 and LTPNA 08. Both strains were producers of β-cyclocitral and β-ionone in normal culture conditions. It was observed that the β-cyclocitral concentration was higher than β-ionone in all light intensities investigated in this study. Additionally, the strain LTPNA 01 produced more β-cyclocitral than LTPNA 08 at almost all times and LIs analyzed. However, the strain LTPNA 08 produced more β-ionone, mainly at the initial times. In addition, the experiment results with the external addition of β-ionone in the cultures showed that the strain LTPNA 01 produced more β-cyclocitral in control conditions than in treatment. Nonetheless, β-ionone production was higher in treatment conditions in LTPNA 08, indicating that the addition of β-ionone may favor the production of these compounds and inhibit the production of β-cyclocitral. Conclusion Our results showed that some abiotic factors, such as different light intensities and external application of β-ionone, can be triggers that lead to the production of VOCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02473-6.
Collapse
Affiliation(s)
| | - Paloma Nathane Nunes de Freitas
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil.,Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | | | | | | | - Marli de Fátima Fiore
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil. .,Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil. .,Food Research Center (FoRC - CEPID), University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Malta JF, Nardocci AC, Razzolini MTP, Diniz V, Cunha DGF. Exposure to microcystin-LR in tropical reservoirs for water supply poses high risks for children and adults. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:253. [PMID: 35254523 DOI: 10.1007/s10661-022-09875-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
While the presence of microcystin-LR (MC-LR) in raw water from eutrophic reservoirs poses human health concerns, the risks associated with the ingestion of MC-LR in drinking water are not fully elucidated. We used a time series of MC-LR in raw water from tropical urban reservoirs in Brazil to estimate the hazard quotients (HQs) for non-carcinogenic health effects and the potential ingestion of MC-LR through drinking water. We considered scenarios of MC-LR removal in the drinking water treatment plants (DWTPs) of two supply systems (Cascata and Guarapiranga). The former uses coagulation/flocculation/sedimentation/filtration/disinfection, while the latter has an additional step of membrane ultrafiltration, with contrasting expected MC-LR removal efficiencies. We considered reference values for infants (0.30 μg L-1), children/adults (1.60 μg L-1), or the population in general (1.0 μg L-1). For most scenarios for Cascata, the 95% upper confidence level of the HQ indicated high risks of exposure for the population (HQ > 1), particularly for infants (HQ = 30.910). The water treatment in Cascata was associated to the potential exposure to MC-LR due to its limited removal capacity, with up to 263 days/year with MC-LR above threshold values. The Guarapiranga system had the lowest MC-LR in the raw water as well as higher expected removal efficiencies in the DWTP, resulting in negligible risks. We reinforce the importance of integrating raw water quality characteristics and treatment technologies to reduce the risks of exposure to MC-LR, especially for vulnerable population groups. Our results can serve as a starting point for risk management strategies to minimize cases of MC-LR intoxication in Brazil and other developing countries.
Collapse
Affiliation(s)
- Janaína Fagundes Malta
- Department of Hydraulic and Sanitary Engineering, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense, 400, Sao Carlos, SP, 13566-590, Brazil
| | - Adelaide Cassia Nardocci
- Department of Environmental Health, School of Public Health, University of São Paulo, Av. Dr Arnaldo 715, 1º andar, Sao Paulo, SP, 01246-904, Brazil
- Center for Research, Environmental Risk Assessment (NARA), Av. Dr Arnaldo 715, 1° andar, Sao Paulo, SP, 01246-904, Brazil
| | - Maria Tereza Pepe Razzolini
- Department of Environmental Health, School of Public Health, University of São Paulo, Av. Dr Arnaldo 715, 1º andar, Sao Paulo, SP, 01246-904, Brazil
- Center for Research, Environmental Risk Assessment (NARA), Av. Dr Arnaldo 715, 1° andar, Sao Paulo, SP, 01246-904, Brazil
| | - Vinicíus Diniz
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, PO Box 6154, Campinas, SP, 13084-971, Brazil
| | - Davi Gasparini Fernandes Cunha
- Department of Hydraulic and Sanitary Engineering, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense, 400, Sao Carlos, SP, 13566-590, Brazil.
| |
Collapse
|
7
|
Kruk C, Martínez A, Martínez de la Escalera G, Trinchin R, Manta G, Segura AM, Piccini C, Brena B, Yannicelli B, Fabiano G, Calliari D. Rapid freshwater discharge on the coastal ocean as a mean of long distance spreading of an unprecedented toxic cyanobacteria bloom. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142362. [PMID: 33254935 DOI: 10.1016/j.scitotenv.2020.142362] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/21/2020] [Accepted: 09/12/2020] [Indexed: 06/12/2023]
Abstract
Cyanobacterial toxic blooms are a worldwide problem. The Río de la Plata (RdlP) basin makes up about one fourth of South America areal surface, second only to the Amazonian. Intensive agro-industrial land use and the construction of dams have led to generalized eutrophication of main tributaries and increased the intensity and duration of cyanobacteria blooms. Here we analyse the evolution of an exceptional bloom at the low RdlP basin and Atlantic coast during the summer of 2019. A large array of biological, genetic, meteorological, oceanographic and satellite data is combined to discuss the driving mechanisms. The bloom covered the whole stripe of the RdlP estuary and the Uruguayan Atlantic coasts (around 500 km) for approximately 4 months. It was caused by the Microcystis aeruginosa complex (MAC), which produces hepatotoxins (microcystin). Extreme precipitation in the upstream regions of Uruguay and Negro rivers' basins caused high water flows and discharges. The evolution of meteorological and oceanographic conditions as well as the similarity of organisms' traits in the affected area suggest that the bloom originated in eutrophic reservoirs at the lower RdlP basin, Salto Grande in the Uruguay river, and Negro river reservoirs. High temperatures and weak Eastern winds prompted the rapid dispersion of the bloom over the freshwater plume along the RdlP northern and Atlantic coasts. The long-distance rapid drift allowed active MAC organisms to inoculate freshwater bodies from the Atlantic basin, impacting environments relevant for biodiversity conservation. Climate projections for the RdlP basin suggest an increase in precipitation and river water flux, which, in conjunction with agriculture intensification and dams' construction, might turn this extraordinary event into an ordinary situation.
Collapse
Affiliation(s)
- Carla Kruk
- Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, UDELAR, Iguá 4225, 11400 Montevideo, Uruguay; Ecología Funcional de Sistemas Acuáticos, Centro Universitario Regional del Este (CURE), UdelaR, Ruta nacional 9 intersección con ruta 15, 27000 Rocha, Uruguay.
| | - Ana Martínez
- Dirección Nacional de Recursos Acuáticos, La Paloma, MGAP, Avenida del Puerto s/n, Puerto la Paloma, La Paloma, CP 27001, Rocha, Uruguay
| | - Gabriela Martínez de la Escalera
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av Italia 3318, 11600 Montevideo, Uruguay
| | - Romina Trinchin
- Departamento de Ciencias de la Atmósfera, Facultad de Ciencias, UDELAR, Iguá 4225, 11400 Montevideo, Uruguay; Instituto Uruguayo de meteorología, Dr Javier Barrios Amorín 1488, 11200 Montevideo, Uruguay
| | - Gastón Manta
- Departamento de Ciencias de la Atmósfera, Facultad de Ciencias, UDELAR, Iguá 4225, 11400 Montevideo, Uruguay
| | - Angel M Segura
- Modelación y Análisis de Recursos Naturales, CURE, UDELAR, Ruta nacional 9 intersección con ruta 15, 27000 Rocha, Uruguay
| | - Claudia Piccini
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av Italia 3318, 11600 Montevideo, Uruguay
| | - Beatriz Brena
- Bioquímica-DEPBIO, Facultad de Química, UDELAR, Av. Gral. Flores 2124, 11800 Montevideo, Uruguay
| | - Beatriz Yannicelli
- Ecología Funcional de Sistemas Acuáticos, Centro Universitario Regional del Este (CURE), UdelaR, Ruta nacional 9 intersección con ruta 15, 27000 Rocha, Uruguay
| | - Graciela Fabiano
- Instituto de Investigaciones Pesqueras, Facultad de Veterinaria, UDELAR, Tomás Basáñez 1160, Montevideo 11400, Uruguay
| | - Danilo Calliari
- Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, UDELAR, Iguá 4225, 11400 Montevideo, Uruguay; Ecología Funcional de Sistemas Acuáticos, Centro Universitario Regional del Este (CURE), UdelaR, Ruta nacional 9 intersección con ruta 15, 27000 Rocha, Uruguay
| |
Collapse
|
8
|
Presence of Cyanotoxins in a Mexican Subtropical Monomictic Crater Lake. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Microcystins (MCs) produced by cyanobacteria are a ubiquitous worldwide problem because some MCs can cause tumor formation and are hepatotoxic. In the Santa María del Oro crater lake, Mexico, plankton scums are recurrent during most of the year and are associated with cyanobacteria of the genera Microcystis spp. and Lyngbya spp. As some of these species are associated with the production of MCs and paralytic shellfish toxins (PSTs), samples from these scums and particulate matter were collected and analyzed for the main bloom species and toxins by a ultrahigh performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) and high performance liquid chromatography with fluorescence detection (HPLC-FLD). Results showed that the main bloom-forming species were Limnoraphis robusta and Microcystis aeruginosa, the presence of at least seven MC congeners and the absence of PSTs in the algae scums. The MCs identified were MC-WR, MC-LR, MC-LA, MC-HilR, MC-LF, MC-YR, and MC-LY. On a dry mass weight basis, MC concentrations were low and ranged between 0.15 and 6.84 μg/kg. Toxin profiles were dominated by MC-WR, MC-LR, and MC-LA, representing 94.5% of the total sample, with each analog contributing 39.8%, 38.1% and 16.5% by relative concentration, respectively. Two of the more hazardous congeners, MC-LR and MC-LA, represented 54.6% of the total MC concentration. MCs in particulate matter along the depth profile were not detected. The MC profile is linked to M. aeruginosa, and it represents the first quantitative MC congener description for this species from a Mexican water ecosystem. Since these mats are recurrent yearly, their effects on humans and wild fauna, and the possible role of anthropogenic activities that favor their presence and proliferation, need to be evaluated.
Collapse
|
9
|
González-Blanco C, Dörr FA, Albuquerque R, Onuki J, Pinto E. Alternative Isolation Protocol for Desulfo and Zwitterionic Cylindrospermopsin Alkaloids and Comparison of Their Toxicity in HepG2 Cells. Molecules 2020; 25:molecules25133027. [PMID: 32630766 PMCID: PMC7412431 DOI: 10.3390/molecules25133027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/26/2022] Open
Abstract
The term cylindrospermopsins (CYNs) refers to a structurally related class of cyanobacterial metabolites comprised of a tricyclic guanidine group and a hydroxymethyluracil moiety. Most reports in environmental aquatic samples refer to cylindrospermopsin (CYN), and reports on other CYN alkaloids are scarce, due, in part, to a lack of versatile isolation protocols. Thus, using commercially available solid phase extraction (SPE) cartridges, we optimized an isolation protocol for the complete recovery of CYN, 7-deoxy-cylindrospermopsin (7D-CYN) and 7-deoxy-desulfo-cylindrospermopsin (7D-desulfo-CYN) from the same aliquot. The isolation protocol was adaptable depending on the nature of the sample (solid biomass, culture broth or environmental water sample) and tolerates up to 4 L of dense culture broth or 400 mg of lyophilized biomass. To quantitate the CYN alkaloids, we validated an LC-DAD-MS2 method, which takes advantage of the UV absorption of the uracil group (λ 262 nm). Using electrospray ionization (ESI) in a positive ion mode, the high-resolution MS1 data confirms the presence of the protonated alkaloids, and the MS2 fragment assignment is reported as complementary proof of the molecular structure of the CYNs. We isolated three CYN alkaloids with different water solubility using the same lyophilized sample, with a purity that ranged from 95% to 99%. The biological activity of the purified CYNs, along with a synthetic degradation product of CYN (desulfo-cylindrospermopsin), was evaluated by assessing necrosis and apoptosis in vitro using flow cytometry. CYN’s lethal potency in HepG2 cells was greater than the other analogs, due to the presence of all four functional groups: guanidine, uracil, C-7 hydroxyl and the sulfate residue.
Collapse
Affiliation(s)
- Carlos González-Blanco
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (C.G.-B.); (F.A.D.); (R.A.)
- Laboratory of Development and Innovation, Butantan Institute, Av. Vital Brasil, 1500, São Paulo 05503-900, SP, Brazil;
- Sección de Toxicología, Departamento de Ciencias Forenses, Organismo de Investigación Judicial, Heredia 40801, Costa Rica
| | - Felipe Augusto Dörr
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (C.G.-B.); (F.A.D.); (R.A.)
| | - Renata Albuquerque
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (C.G.-B.); (F.A.D.); (R.A.)
| | - Janice Onuki
- Laboratory of Development and Innovation, Butantan Institute, Av. Vital Brasil, 1500, São Paulo 05503-900, SP, Brazil;
| | - Ernani Pinto
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (C.G.-B.); (F.A.D.); (R.A.)
- Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba 13416-000, SP, Brazil
- Correspondence: ; Tel.: +55-193429-4779
| |
Collapse
|
10
|
Henao E, Cantera JR, Rzymski P. Conserving the Amazon River Basin: The case study of the Yahuarcaca Lakes System in Colombia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138186. [PMID: 32268285 DOI: 10.1016/j.scitotenv.2020.138186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Colombia is the fourth contributor to the Amazon River Basin (ARB) by surface, and the third by mean annual runoff. The Yahuarcaca Lakes System (YLS), consisting of four large interconnected water bodies situated on the floodplain of Amazon River, was identified as one of the key areas for the conservation of freshwater biodiversity in the Colombian ARB. This review aimed to provide a general overview of YLS, present its environmental and biological features, identify main ecological and health threats, and propose mitigation strategies and future research prospects. A systematic search was performed using various databases. In summary, YLS harbors significant biodiversity and provides a number of ecological services for local communities, encompassing fish and drinking water supply and utilization of the floodplain for agriculture. Ensuring its sustainability requires attention from local and international authorities, collaboration with indigenous communities and future interdisciplinary research.
Collapse
Affiliation(s)
- Eliana Henao
- Department of Biology, Universidad del Valle, Cali, Colombia.
| | - Jaime R Cantera
- Department of Biology, Universidad del Valle, Cali, Colombia; Ecology of Estuaries and Mangrove Research Group (ECOMANGLARES), Universidad del Valle, Cali, Colombia
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
11
|
Inhibition of Porcine Aminopeptidase M (pAMP) by the Pentapeptide Microginins. Molecules 2019; 24:molecules24234369. [PMID: 31795383 PMCID: PMC6930480 DOI: 10.3390/molecules24234369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/23/2023] Open
Abstract
Aminopeptidase M (AMP) inhibition is of interest for several diseases, such as highly vascularized cancer types. AMP can be inhibited by linear pentapeptides isolated from Microcystis aeruginosa LTPNA08 (MG7XX). Porcine AMP inhibition—a model for human AMP—activity was spectrophotometrically measured by the formation of p-nitroanilide from L-leucine-p-nitroanilide substrate by AMP. AMP inhibition by MG770 exhibited comparable inhibition levels to amastatin (IC50 values: 1.20 ± 0.1 μM and 0.98 ± 0.1 μM, respectively), while MG756 was slightly less potent (with IC50 values of 3.26 ± 0.5 μM). Molecular modelling suggests a potential binding mode, based on the interaction with the Zn2+ cofactor, where MG770′s extra methyl group contributes to the disturbance of the Zn2+ cofactor complex and highlights the importance of hydrophobicity for the site.
Collapse
|
12
|
Bormans M, Amzil Z, Mineaud E, Brient L, Savar V, Robert E, Lance E. Demonstrated transfer of cyanobacteria and cyanotoxins along a freshwater-marine continuum in France. HARMFUL ALGAE 2019; 87:101639. [PMID: 31349891 DOI: 10.1016/j.hal.2019.101639] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
The frequency of cyanobacterial proliferations in fresh waters is increasing worldwide and the presence of associated cyanotoxins represent a threat for ecosystems and human health. While the occurrence of microcystin (MC), the most widespread cyanotoxin, is well documented in freshwaters, only few studies have examined its occurrence in estuarine waters. In this study we evaluated the transfer of cyanobacteria and cyanotoxins along a river continuum from a freshwater reservoir through an interconnecting estuary to the coastal area in Brittany, France. We sampled regularly over 2 years at 5 stations along the river continuum and analysed for phytoplankton and cyanotoxins, together with physico-chemical parameters. Results show that cyanobacteria dominated the phytoplanktonic community with high densities (up to 2 × 106 cells mL-1) at the freshwater sites during the summer and autumn periods of both years, with a cell transfer to estuarine (up to 105 cells mL-1) and marine (2 × 103 cells mL-1) sites. While the temporal variation in cyanobacterial densities was mainly associated with temperature, spatial variation was due to salinity while nutrients were non-limiting for cyanobacterial growth. Cyanobacterial biomass was dominated by several species of Microcystis that survived intermediate salinities. Intracellular MCs were detected in all the freshwater samples with concentrations up to 60 μg L-1, and more intermittently with concentrations up to 1.15 μg L-1, at the most upstream estuarine site. Intracellular MC was only sporadically detected and in low concentration at the most downstream estuarine site and at the marine outlet (respectively <0.14 μg L-1 and <0.03 μg L-1). Different MC variants were detected with dominance of MC-LR, RR and YR and that dominance was conserved along the salinity gradient. Extracellular MC contribution to total MC was higher at the downstream sites in accordance with the lysing of the cells at elevated salinities. No nodularin (NOD) was detected in the particulate samples or in the filtrates.
Collapse
Affiliation(s)
- Myriam Bormans
- Univ Rennes, CNRS, ECOBIO - UMR 6553, F-35000 Rennes, France.
| | - Zouher Amzil
- IFREMER/Phycotoxins Laboratory (PHYC), F44311 Nantes, France
| | - Emilien Mineaud
- Univ Rennes, CNRS, ECOBIO - UMR 6553, F-35000 Rennes, France
| | - Luc Brient
- Univ Rennes, CNRS, ECOBIO - UMR 6553, F-35000 Rennes, France
| | - Véronique Savar
- IFREMER/Phycotoxins Laboratory (PHYC), F44311 Nantes, France
| | - Elise Robert
- IFREMER/Phycotoxins Laboratory (PHYC), F44311 Nantes, France
| | - Emilie Lance
- UMR-I 02 SEBIO, Campus du Moulin de la Housse, BP 1039, 51687 REIMS Cedex 2, France; UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Microorganismes, 12 rue Buffon, F-75231, Paris, France
| |
Collapse
|
13
|
Fernandes K, Gomes A, Calado L, Yasui G, Assis D, Henry T, Fonseca A, Pinto E. Toxicity of Cyanopeptides from Two Microcystis Strains on Larval Development of Astyanax altiparanae. Toxins (Basel) 2019; 11:E220. [PMID: 31013880 PMCID: PMC6520764 DOI: 10.3390/toxins11040220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 03/31/2019] [Accepted: 04/04/2019] [Indexed: 12/27/2022] Open
Abstract
Absorption and accumulation of bioavailable cyanobacterial metabolites (including cyanotoxins) are likely in fish after senescence and the rupturing of cells during bloom episodes. We determined the toxicity of cyanopeptides identified from two strains of Microcystis (M. panniformis MIRS-04 and M. aeruginosa NPDC-01) in a freshwater tropical fish, Astyanax altiparanae (yellowtail tetra, lambari). Aqueous extracts of both Microcystis strains were prepared in order to simulate realistic fish exposure to these substances in a freshwater environment. Both strains were selected because previous assays evidenced the presence of microcystins (MCs) in MIRS-04 and lack of cyanotoxins in NPDC-01. Identification of cyanobacterial secondary metabolites was performed by LC-HR-QTOF-MS and quantification of the MC-LR was carried out by LC-QqQ-MS/MS. MIRS-04 produces the MCs MC-LR, MC-LY and MC-HilR as well as micropeptins B, 973, 959 and k139. NPCD-01 biosynthetizes microginins FR1, FR2/FR4 and SD-755, but does not produce MCs. Larval fish survival and changes in morphology were assessed for 96 h exposure to aqueous extracts of both strains at environmentally relevant concentrations from 0.1 to 0.5 mg (dry weight)/mL, corresponding to 0.15 to 0.74 μg/mL of MC-LR (considering dried amounts of MIRS-04 for comparison). Fish mortality increased with concentration and time of exposure for both strains of Microcystis. The frequencies of morphological abnormalities increased with concentration in both strains, and included abdominal and pericardial oedema, and spinal curvature. Results demonstrate that toxicity was not solely caused by MCs, other classes of cyanobacterial secondary metabolites contributed to the observed toxicity.
Collapse
Affiliation(s)
- Kelly Fernandes
- Natural Resources Institute, Federal University of Itajubá, 1303 BPS Avenue, Itajubá, MG 37500-903, Brazil.
- School of Pharmaceutical Sciences, University of Sao Paulo, 580 Professor Lineu Prestes Avenue, São Paulo, SP 05508-000, Brazil.
| | - Andreia Gomes
- Natural Resources Institute, Federal University of Itajubá, 1303 BPS Avenue, Itajubá, MG 37500-903, Brazil.
- Federal Institute of Education Science and Technology of Rio de Janeiro, Washington Luis Highway, Niteroi, RJ 24310-000, Brazil.
| | - Leonardo Calado
- National Center for Research and Conservation of Continentals' Fish-CEPTA, SP-201 (Pref. Euberto Nemésio Pereira de Godoy-Motorway), Km 6.5, Pirassununga, SP 13630-970, Brazil.
- Faculty of Technology, State University of Campinas, 1888 Paschoal Marmo Street, Limeira, SP 13484-332, Brazil.
| | - George Yasui
- National Center for Research and Conservation of Continentals' Fish-CEPTA, SP-201 (Pref. Euberto Nemésio Pereira de Godoy-Motorway), Km 6.5, Pirassununga, SP 13630-970, Brazil.
| | - Diego Assis
- Bruker Daltonics Corporation, Condomínio BBP-Barão de Mauá, Atibaia, SP 12954-260, Brazil.
| | - Theodore Henry
- Institute of Life and Earth Sciences (ILES), Center for Marine Biodiversity & Biotechnology (CMBB), The School of Energy, Geoscience, Infrastructure and Society (EGIS), Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Ana Fonseca
- Natural Resources Institute, Federal University of Itajubá, 1303 BPS Avenue, Itajubá, MG 37500-903, Brazil.
| | - Ernani Pinto
- School of Pharmaceutical Sciences, University of Sao Paulo, 580 Professor Lineu Prestes Avenue, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
14
|
Rietzler AC, Botta CR, Ribeiro MM, Rocha O, Fonseca AL. Accelerated eutrophication and toxicity in tropical reservoir water and sediments: an ecotoxicological approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13292-13311. [PMID: 27761862 DOI: 10.1007/s11356-016-7719-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to jointly show the results of three independent ecotoxicological studies performed to investigate pollutants in three Brazilian tropical reservoirs undergoing accelerated eutrophication. In order to accomplish this goal, the full toxicity identification and evaluation procedure (TIE approach) was performed, at Pampulha (Minas Gerais State) and Salto Grande and Barra Bonita reservoirs (São Paulo State). Acute and chronic toxicity tests were performed using the cladocerans Daphnia similis and Ceriodaphnia dubia (exotic) and Daphnia laevis and Ceriodaphnia silvestrii (native) as test organisms. Results from TIE procedure stage I indicated the existence of nonpolar organic and filterable compounds in the water from Pampulha, probably cyanotoxins, and oxidants as part of the toxic agents. TIE results for sediments identified ammonia (Pampulha and Salto Grande), organic compounds (Pampulha), metals (Pampulha, Barra Bonita, and Salto Grande), and acidity (Salto Grande) as responsible for toxicity. Whole-sediment remediation experiments for Pampulha reservoir confirmed, through reproduction decrease, ammonia and organic compounds as contaminants. Such pollutants represent threats to aquatic biota and must be prevented. Higher temperatures as predicted from global climate change will severely affect tropical shallow reservoirs, accelerating eutrophication, the release of contaminants from sediments, and increasing toxicity.
Collapse
Affiliation(s)
- A C Rietzler
- General Biology Department, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - C R Botta
- Centre of Water Resources and Environmental Studies, State University of São Paulo, São Carlos, Brazil
| | - M M Ribeiro
- General Biology Department, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - O Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, São Carlos, Brazil
| | - A L Fonseca
- Natural Resources Institute, Federal University of Itajubá, Itajubá, Brazil
| |
Collapse
|
15
|
Xiao M, Li M, Reynolds CS. Colony formation in the cyanobacterium
Microcystis. Biol Rev Camb Philos Soc 2018; 93:1399-1420. [DOI: 10.1111/brv.12401] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/16/2018] [Accepted: 01/24/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Man Xiao
- College of Natural Resources and Environment Northwest A & F University Yangling 712100 China
- Australian Rivers Institute, School of Environment and Science Griffith University Nathan Queensland 4111 Australia
| | - Ming Li
- College of Natural Resources and Environment Northwest A & F University Yangling 712100 China
| | | |
Collapse
|
16
|
Haakonsson S, Rodríguez-Gallego L, Somma A, Bonilla S. Temperature and precipitation shape the distribution of harmful cyanobacteria in subtropical lotic and lentic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:1132-1139. [PMID: 28787786 DOI: 10.1016/j.scitotenv.2017.07.067] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/17/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Cyanobacterial blooms are expected to become more frequent in freshwaters globally due to eutrophication and climate change effects. However, our knowledge about cyanobacterial biogeography in the subtropics, particularly in lotic ecosystems, is still very limited and the relationship of blooms to temperature and precipitation remains unclear. We took advantage of a comprehensive database of field data compiled over several years (1997 to 2015) to compare cyanobacteria biomass and distribution between lentic and lotic subtropical freshwaters (36 ecosystems, 30°-35°S) and to investigate the role of water temperature and precipitation as significant predictors in eutrophic ecosystems. A filamentous Nostocales, Dolichospermum (Anabaena), was the most widely distributed and frequent genus in the region of the study, followed by the colonial Microcystis, supporting observations of a global latitudinal pattern. Similar total cyanobacteria biovolumes (TCB) were found in lentic and lotic ecosystems, but the proportion of Dolichospermum was higher in lotic ecosystems. Using generalized linear models (GLMs), we found that temperature and rainfall explained 27% of the variation in TCB in lotic ecosystems, while temperature explained 19 and 28% of Dolichospermum and Microcystis biovolume, respectively. In lentic ecosystems, accumulated rainfall explained 34% of the variation of Microcystis biovolume while temperature explained 64%. Our results imply that the increase in extreme meteorological events and temperature predicted by climate models will promote increasingly severe cyanobacterial blooms in eutrophic subtropical freshwaters. Our analysis provides new information about the occurrence of bloom-forming cyanobacteria for southeastern South America and thus fills an important knowledge gap for subtropical freshwaters.
Collapse
Affiliation(s)
- Signe Haakonsson
- Grupo de Ecología y Fisiología de Fitoplancton, Sección Limnología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| | - Lorena Rodríguez-Gallego
- Polo de Desarrollo Universitario, Ecología Funcional de Sistemas Acuáticos, Centro Universitario Regional del Este, Universidad de la República, Ruta 9 y Ruta 15, Rocha, Uruguay
| | - Andrea Somma
- Grupo de Ecología y Fisiología de Fitoplancton, Sección Limnología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Sylvia Bonilla
- Grupo de Ecología y Fisiología de Fitoplancton, Sección Limnología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| |
Collapse
|
17
|
Clark JM, Schaeffer BA, Darling JA, Urquhart EA, Johnston JM, Ignatius A, Myer MH, Loftin KA, Werdell PJ, Stumpf RP. Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational waters and drinking source waters. ECOLOGICAL INDICATORS 2017; 80:84-95. [PMID: 30245589 PMCID: PMC6145495 DOI: 10.1016/j.ecolind.2017.04.046] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cyanobacterial harmful algal blooms (cyanoHAB) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and fish kills, and taste and odor problems. CyanoHABs are a particular concern in both recreational waters and drinking source waters because of their dense biomass and the risk of exposure to toxins. Successful cyanoHAB assessment using satellites may provide an indicator for human and ecological health protection, In this study, methods were developed to assess the utility of satellite technology for detecting cyanoHAB frequency of occurrence at locations of potential management interest. The European Space Agency's MEdium Resolution Imaging Spectrometer (MERIS) was evaluated to prepare for the equivalent series of Sentine1-3 Ocean and Land Colour Imagers (OLCI) launched in 2016 as part of the Copernicus program. Based on the 2012 National Lakes Assessment site evaluation guidelines and National Hydrography Dataset, the continental United States contains 275,897 lakes and reservoirs >1 hectare in area. Results from this study show that 5.6 % of waterbodies were resolvable by satellites with 300 m single-pixel resolution and 0.7 % of waterbodies were resolvable when a three by three pixel (3×3-pixel) array was applied based on minimum Euclidian distance from shore. Satellite data were spatially joined to U.S. public water surface intake (PWSI) locations, where single-pixel resolution resolved 57% of the PWSI locations and a 3×3-pixel array resolved 33% of the PWSI locations. Recreational and drinking water sources in Florida and Ohio were ranked from 2008 through 2011 by cyanoHAB frequency above the World Health Organization's (WHO) high threshold for risk of 100,000 cells mL-1. The ranking identified waterbodies with values above the WHO high threshold, where Lake Apopka, FL (99.1 %) and Grand Lake St. Marys, OH (83 %) had the highest observed bloom frequencies per region. The method presented here may indicate locations with high exposure to cyanoHABs and therefore can be used to assist in prioritizing management resources and actions for recreational and drinking water sources.
Collapse
Affiliation(s)
- John M Clark
- ORISE Fellow, U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory
| | - Blake A Schaeffer
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory
| | - John A Darling
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory
| | - Erin A Urquhart
- ORISE Fellow, U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory
| | - John M Johnston
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory
| | - Amber Ignatius
- ORISE Fellow, U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory
| | - Mark H Myer
- ORISE Fellow, U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory
| | - Keith A Loftin
- United States Geological Survey, Kansas Water Science Center, Lawrence, KS, USA
| | - P Jeremy Werdell
- Ocean Ecology Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Richard P Stumpf
- National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, Silver Spring, MD, USA
| |
Collapse
|
18
|
Pírez-Schirmer M, Rossotti M, Badagian N, Leizagoyen C, Brena BM, González-Sapienza G. Comparison of Three Antihapten VHH Selection Strategies for the Development of Highly Sensitive Immunoassays for Microcystins. Anal Chem 2017; 89:6800-6806. [PMID: 28494149 DOI: 10.1021/acs.analchem.7b01221] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Owing to their reproducibility, stability, and cost-effective production, the recombinant variable domains of heavy-chain-only antibodies (VHHs) are becoming a salient option as immunoassay reagents. Recently, there have been several reports describing their application to the detection of small molecules (haptens). However, lacking the heavy-light chain interface of conventional antibodies, VHHs are not particularly apt to bind small analytes and failures are not uncommon. Here we describe the construction of a VHH phage display library against the cyanobacterial hepatotoxin microcystin LR and its selection using competitive panning and two novel panning strategies. The outcome of each strategy was evaluated by a large-scale screening using in vivo biotinylated nanobodies. The three methods selected for different nonoverlapping subsets of VHHs, allowing one to optimize the immunodetection of the toxin. The best results were obtained by promoting the isolation of VHHs with the slowest koff (off-rate selection). Among these, the biotinylated nanobody A2.3 performed in ELISA with excellent recovery and high sensitivity, IC50 = 0.28 μg/L, with a limit of detection that is well below the most rigorous guidelines for the toxin. While it may be case-specific, these results highlight the importance of exploring different panning strategies to optimize the selection of antihapten nanobodies.
Collapse
Affiliation(s)
| | | | | | - Carmen Leizagoyen
- Parque Lecocq, Intendencia de Montevideo , Montevideo, Uruguay , 12600
| | | | | |
Collapse
|
19
|
Bieczynski F, Torres WDC, Painefilu JC, Castro JM, Bianchi VA, Frontera JL, Paz DA, González C, Martín A, Villanueva SSM, Luquet CM. Alterations in the intestine of Patagonian silverside (Odontesthes hatcheri) exposed to microcystin-LR: Changes in the glycosylation pattern of the intestinal wall and inhibition of multidrug resistance proteins efflux activity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 178:106-117. [PMID: 27474942 DOI: 10.1016/j.aquatox.2016.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/15/2016] [Accepted: 07/22/2016] [Indexed: 06/06/2023]
Abstract
Accumulation and toxicity of cyanobacterial toxins, particularly microcystin-LR (MCLR) have been extensively studied in fish and aquatic invertebrates. However, MCLR excretion mechanisms, which could reduce this toxin's effects, have received little attention. The Patagonian silverside, Odontesthes hatcheri, is an omnivorous-planktivorous edible fish, which has been shown to digest cyanobacterial cells absorbing MCLR and eliminating the toxin within 48h without suffering significant toxic effects. We studied the effects of MCLR on glycoconjugate composition and the possible role of multidrug resistance associated proteins (Abcc) in MCLR export from the cells in O. hatcheri intestine. We treated O. hatcheri with 5μg MCLRg(-1) body mass administered with the food. Twenty four hours later, the intestines of treated and control fish were processed for lectin-histochemistry using concanavalin A (ConA), Triticum vulgaris agglutinin (WGA), and Dolichos biflorus agglutinin (DBA). MCLR affected the distribution of glycoconjugates by augmenting the proportion of ConA-positive at the expense of WGA-positive cells. We studied MCLR effects on the transport of the Abcc-like substrates 2,4-dinitrophenyl-S-glutathione (DNP-SG) and calcein in ex vivo intestine preparations (everted and no-everted sacs and strips). In treated preparations, CDNB together with MCLR (113μg MCLRg(-1) intestine, equivalent to 1.14μmolL(-1) when applied in the bath) or the Abcc inhibitor, MK571 was applied for one hour, during which DNP-SG was measured in the bath every 10min in order to calculate mass-specific DNP-SG transport rate. MCLR significantly inhibited DNP-SG transport (p<0.05), especially in middle intestine (47 and 24%, for luminal and serosal transport, respectively). In middle intestine strips, MCLR and MK571inhibited DNP-SG transport in a concentration dependent fashion (IC50 3.3 and 0.6μmolL(-1), respectively). In middle intestine strips incubated with calcein-AM (0.25μmolL(-1)), calcein efflux was inhibited by MCLR (2.3μmolL(-1)) and MK571 (3μmolL(-1)) by 38 and 27%, respectively (p<0.05). Finally, middle intestine segments were incubated with different concentrations of MCLR applied alone or together with 3μM MK571. After one hour, protein phosphatase 1 (PP1) activity, the main target of MCLR, was measured. 2.5μM MCLR did not produce any significant effect, while the same amount plus MK571 inhibited PP1 activity (p<0.05). This effect was similar to that of 5μM MCLR. Our results suggest that in O. hatcheri enterocytes MCLR is conjugated with GSH via GST and then exported to the intestinal lumen through Abcc-like transporters. This mechanism would protect the cell from MCLR toxicity, limiting toxin transport into the blood, which is probably mediated by basolateral Abccs. From an ecotoxicological point of view, elimination of MCLR through this mechanism would reduce the amount of toxin available for trophic transference.
Collapse
Affiliation(s)
- Flavia Bieczynski
- Laboratorio de Ecotoxicología Acuática, INIBIOMA - (CONICET-UNCo), CEAN- Ruta 61 km 3, Paraje San Cabao, 8371, Junín de los Andes, Neuquén, Argentina.
| | - Walter D C Torres
- CEAN- Ruta 61 km 3, Paraje San Cabao, 8371, Junín de los Andes, Neuquén, Argentina
| | - Julio C Painefilu
- Laboratorio de Ecotoxicología Acuática, INIBIOMA - (CONICET-UNCo), CEAN- Ruta 61 km 3, Paraje San Cabao, 8371, Junín de los Andes, Neuquén, Argentina
| | - Juan M Castro
- Laboratorio de Ecotoxicología Acuática, INIBIOMA - (CONICET-UNCo), CEAN- Ruta 61 km 3, Paraje San Cabao, 8371, Junín de los Andes, Neuquén, Argentina
| | - Virginia A Bianchi
- Laboratorio de Ecotoxicología Acuática, INIBIOMA - (CONICET-UNCo), CEAN- Ruta 61 km 3, Paraje San Cabao, 8371, Junín de los Andes, Neuquén, Argentina
| | - Jimena L Frontera
- Laboratorio de Biología del Desarrollo, IFIBYNE-CONICET, Universidad Nacional de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Dante A Paz
- Laboratorio de Biología del Desarrollo, IFIBYNE-CONICET, Universidad Nacional de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carolina González
- Dirección Técnica y de Desarrollo Tecnológico, Agua y Saneamientos Argentinos, Av. Figueroa Alcorta 6081, 1425, Ciudad de Buenos Aires, Argentina
| | - Alejandro Martín
- Dirección Técnica y de Desarrollo Tecnológico, Agua y Saneamientos Argentinos, Av. Figueroa Alcorta 6081, 1425, Ciudad de Buenos Aires, Argentina
| | - Silvina S M Villanueva
- Instituto de Fisiología Experimental, IFISE-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 2000, Rosario, Santa Fe, Argentina
| | - Carlos M Luquet
- Laboratorio de Ecotoxicología Acuática, INIBIOMA - (CONICET-UNCo), CEAN- Ruta 61 km 3, Paraje San Cabao, 8371, Junín de los Andes, Neuquén, Argentina
| |
Collapse
|
20
|
Mashile GP, Nomngongo PN. Recent Application of Solid Phase Based Techniques for Extraction and Preconcentration of Cyanotoxins in Environmental Matrices. Crit Rev Anal Chem 2016; 47:119-126. [DOI: 10.1080/10408347.2016.1225255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Almanza V, Parra O, De M. Bicudo CE, Baeza C, Beltran J, Figueroa R, Urrutia R. Occurrence of toxic blooms of Microcystis aeruginosa in a central Chilean (36° Lat. S) urban lake. REVISTA CHILENA DE HISTORIA NATURAL 2016. [DOI: 10.1186/s40693-016-0057-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
López-Doval JC, Meirelles ST, Cardoso-Silva S, Moschini-Carlos V, Pompêo M. Ecological and toxicological responses in a multistressor scenario: Are monitoring programs showing the stressors or just showing stress? A case study in Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 540:466-476. [PMID: 26094799 DOI: 10.1016/j.scitotenv.2015.05.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
The Metropolitan Region of São Paulo (MRSP) is located in the Brazilian State of São Paulo and reservoirs in this region are vital for water supply and energy production. Changes in economic, social, and demographic trends produced pollution of water bodies, decreasing water quality for human uses and affecting freshwater populations. The presence of emerging pollutants, classical priority substances, nutrient excess and the interaction with tropical-climate conditions require periodic reviews of water policies and monitoring programs in order to detect and manage these threats in a global change scenario. The objective of this work is to determine whether the monitoring program of the São Paulo's Environmental Agency, is sufficient to explain the toxicological and biological responses observed in organisms in reservoirs of the MRSP, and whether it can identify the possible agents causing these responses. For that, we used publicly available data on water quality compiled by this agency in their routine monitoring program. A general overview of these data and a chemometric approach to analyze the responses of biotic indexes and toxicological bioassays, as a function of the physical and chemical parameters monitored, were performed. Data compiled showed temporal and geographical information gaps on variables measured. Toxicological responses have been observed in the reservoirs of the MRSP, together with a high incidence of impairments of the zooplankton community. This demonstrates the presence of stressors that affect the viability of organisms and populations. The statistical approach showed that the data compiled by the environmental agency are insufficient to identify and explain the factors causing the observed ecotoxicological responses and impairments in the zooplankton community, and are therefore insufficient to identify clear cause-effect relationships. Stressors different from those analyzed could be responsible for the observed responses.
Collapse
Affiliation(s)
- Julio C López-Doval
- Institute of Biosciences, Department of Ecology, University of São Paulo, do Matão Str., Travessa 14, 321, Butantã, 05508-090 São Paulo, SP, Brazil.
| | - Sergio Tadeu Meirelles
- Institute of Biosciences, Department of Ecology, University of São Paulo, do Matão Str., Travessa 14, 321, Butantã, 05508-090 São Paulo, SP, Brazil
| | - Sheila Cardoso-Silva
- São Paulo State University - UNESP "Júlio de Mesquita Filho", Environmental Sciences Program, 3 de Março Avenue n. 511, PO Box: 18087-180, Sorocaba, SP, Brazil
| | - Viviane Moschini-Carlos
- São Paulo State University - UNESP "Júlio de Mesquita Filho", Environmental Sciences Program, 3 de Março Avenue n. 511, PO Box: 18087-180, Sorocaba, SP, Brazil
| | - Marcelo Pompêo
- Institute of Biosciences, Department of Ecology, University of São Paulo, do Matão Str., Travessa 14, 321, Butantã, 05508-090 São Paulo, SP, Brazil
| |
Collapse
|
23
|
Sabatini SE, Brena BM, Pirez M, de Molina MDCR, Luquet CM. Oxidative effects and toxin bioaccumulation after dietary microcystin intoxication in the hepatopancreas of the crab Neohelice (Chasmagnathus) granulata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:136-141. [PMID: 26070043 DOI: 10.1016/j.ecoenv.2015.05.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
We studied the accumulation and depuration of microcystin-LR (MCLR) in the hepatopancreas of the crab Neohelice granulata fed twice weekly with either non toxic or MCLR-producing Microcystis aeruginosa (strain NPDC1 or NPJB, respectively) during seven weeks. We also analyzed MCLR effects on the oxidative stress- and detoxification-related variables, superoxide dismutase and glutathione-S-transferase activities, and the levels of reduced glutathione and lipid peroxidation (as thiobarbituric acid reactive substances, TBARS). Hepatopancreas MCLR content slightly increased during the first three weeks, up to 8.81±1.84ngg(-1) wet tissue mass (WTM) and then started to decrease to a minimum of 1.57±0.74ngg(-1) WTM at the seventh week (p<0.05 with respect to that in the first week). TBARS levels were about 55% higher in treated than in control N. granulata (p<0.001 and p<0.05) during the first three weeks of the experimental period. GSH content became 50% lower than in control individuals (p<0.01) during weeks 6 and 7. SOD activity was increased by about 2-fold (p<0.05 or p<0.001) from week 3 to 7 in treated crabs with respect to control ones, while GST activity was about 70% higher in treated than in control crabs from week 4 to week 7 (p<0.05). Our data suggest that in the hepatopancreas of N. granulata MCLR accumulation and oxidative damage are limited and reversed by detoxification-excretion and antioxidant mechanisms. The activation of these defensive mechanisms becomes evident at 3-4 weeks after the start of the intoxication.
Collapse
Affiliation(s)
- Sebastián E Sabatini
- IQUIBICEN-Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2° Pabellón, 4° piso, Ciudad Universitaria, (CP 1428) Buenos Aires, Argentina; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2° Pabellón, 4° piso, Ciudad Universitaria, (1428) Buenos Aires, Argentina.
| | - Beatríz M Brena
- Departamento de Biociencias, Cátedras de Bioquímica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
| | - Macarena Pirez
- Departamento de Biociencias, Cátedras de Bioquímica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
| | - María Del Carmen Ríos de Molina
- IQUIBICEN-Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2° Pabellón, 4° piso, Ciudad Universitaria, (CP 1428) Buenos Aires, Argentina.
| | - Carlos M Luquet
- LEA, INIBIOMA-CONICET-Universidad Nacional del Comahue, CEAN, Junín de los Andes, Argentina.
| |
Collapse
|
24
|
de Oliveira VE, Neves Miranda MAC, Soares MCS, Edwards HGM, de Oliveira LFC. Study of carotenoids in cyanobacteria by Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 150:373-380. [PMID: 26057091 DOI: 10.1016/j.saa.2015.05.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
Cyanobacteria have established dominant aquatic populations around the world, generally in aggressive environments and under severe stress conditions, e.g., intense solar radiation. Several marine strains make use of compounds such as the polyenic molecules for their damage protection justifying the range of colours observed for these species. The peridinin/chlorophyll-a/protein complex is an excellent example of essential structures used for self-prevention; their systems allow to them surviving under aggressive environments. In our simulations, few protective dyes are required to the initial specimen defense; this is an important data concern the synthetic priority in order to supply adequate damage protection. Raman measurements obtained with 1064 and 514.5 nm excitations for Cylindrospermopsis raciborskii and Microcystis aeruginosa strains shows bands assignable to the carotenoid peridinin. It was characterized by bands at 1940, 1650, 1515, 1449, 1185, 1155 and 1000 cm(-1) assigned to ν(C=C=C) (allenic vibration), ν(C=C/CO), ν(C=C), δ(C-H, C-18/19), δ(C-H), ν(C-C), and ρ(C-CH3), respectively. Recognition by Raman spectroscopy proved to be an important tool for preliminaries detections and characterization of polyene molecules in several algae, besides initiate an interesting discussion about their synthetic priority.
Collapse
Affiliation(s)
- Vanessa End de Oliveira
- Departamento de Ciências da Natureza, Universidade Federal Fluminense, Campus de Rio das Ostras, RJ 28890-000, Brazil.
| | | | - Maria Carolina Silva Soares
- Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Howell G M Edwards
- School of Life Sciences, University of Bradford, Bradford BD7 1DP, West Yorkshire, England, United Kingdom
| | - Luiz Fernando Cappa de Oliveira
- NEEM - Núcleo de Espectroscopia e Estrutura Molecular, Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| |
Collapse
|
25
|
Preece EP, Moore BC, Swanson ME, Hardy FJ. Identifying best methods for routine ELISA detection of microcystin in seafood. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:12. [PMID: 25619698 DOI: 10.1007/s10661-014-4255-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
Abstract
Ingestion of water contaminated with the cyanotoxin, microcystin (MC), can pose serious health risks to humans. MC is also known to accumulate in seafood; however, this exposure pathway is much less understood. A fundamental element of this uncertainty is related to analytical difficulties. Commercially available enzyme-linked immunosorbent assays (ELISAs) offer one of the best options for routine MC detection, but methods of detecting MC in tissue are far from standardized. We spiked freshwater finfish and marine mussel tissues with MC, then compared recovery rates using four different preparation protocols and two ELISA types (polyclonal anti-MC-ADDA/direct monoclonal (DM)). Preparation protocol, type of ELISA, and seafood tissue variety significantly affected MC detection. This is the first known study to use DM ELISA for tissue analyses, and our findings demonstrate that DM ELISA combined with a short solvent extraction results in fewer false positives than other commonly used methods. This method can be used for rapid and reliable MC detection in seafood.
Collapse
Affiliation(s)
- Ellen P Preece
- School of the Environment, Washington State University, PO Box 646410, Pullman, WA, 99164, USA,
| | | | | | | |
Collapse
|
26
|
Santiago AN, Bonansea RI, Valdés ME. Organic Pollutants in the Suquía River Basin. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2015. [DOI: 10.1007/698_2015_431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Herrera NA, Echeverri LF, Ferrão-Filho AS. Effects of phytoplankton extracts containing the toxin microcystin-LR on the survival and reproduction of cladocerans. Toxicon 2014; 95:38-45. [PMID: 25553593 DOI: 10.1016/j.toxicon.2014.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/27/2014] [Accepted: 12/29/2014] [Indexed: 11/19/2022]
Abstract
The use of ecotoxicological techniques for the evaluation of the quality of limnetic waters allows the early detection of toxic agents that pose risks to human health. In this study Moina micrura (two clones), Daphnia laevis (two clones) and Daphnia similis, a temperate species, were used to evaluate the toxicity of six Microcystis extracts from two Colombian reservoirs. Toxin was detected and quantified by HPLC. Microcystin-LR was found in all extracts with the highest concentrations in one sample from each reservoir (434 μg g(-1) and 538 μg g(-1)). The extracts that had the highest toxin concentration also had the highest toxicities to cladocerans. Measurement of 48-h LC50 showed consistent differences between cladoceran species but not clones, Also, reproduction data in two species were consistent with the MC-LR content of one sample tested, with decreased reproduction and disruption of egg production. However, only some growth results of neonates exposed to extracts were consistent with the acute response. In conclusion, Daphnia species are a good model for monitoring cyanotoxins as they respond in a sensitive way to natural phytoplankton samples containing microcystin-LR.
Collapse
Affiliation(s)
- Natalia A Herrera
- Grupo de Química Orgánica de Productos Naturales (QOPN), Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia.
| | - Luis Fernando Echeverri
- Grupo de Química Orgánica de Productos Naturales (QOPN), Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia.
| | | |
Collapse
|
28
|
Bieczynski F, De Anna JS, Pirez M, Brena BM, Villanueva SSM, Luquet CM. Cellular transport of microcystin-LR in rainbow trout (Oncorhynchus mykiss) across the intestinal wall: possible involvement of multidrug resistance-associated proteins. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 154:97-106. [PMID: 24865614 DOI: 10.1016/j.aquatox.2014.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/12/2014] [Accepted: 05/03/2014] [Indexed: 06/03/2023]
Abstract
We studied Abcc mediated-transport in middle and posterior intestine of the rainbow trout, Oncorhynchus mykiss. Luminal and serosal transport were evaluated in everted and non-everted intestinal sacs, respectively, incubated with 1-chloro-2,4-dinitrobenzene (CDNB; 200 μM). CDNB enters the cells and is conjugated with glutathione via glutathione S-transferase (GST) to form 2,4-dinitrophenyl-S-glutathione (DNP-SG), a known Abcc substrate. DNP-SG concentration in the bath was recorded every 10 min, in order to calculate the mass-specific transport rate. For evaluating the possible involvement of Abcc proteins in microcystin-LR (MCLR) transport, 1.135 μM MCLR was added to the bath or inside the sacs, in everted or non-everted preparations, respectively. Both luminal and serosal DNP-SG efflux were significantly inhibited by MCLR. A concentration-response curve obtained using strips from middle intestine yielded an IC50 value of 1.33 μM MCLR. The Abcc inhibitor, MK571 produced concentration-dependent inhibition of DNP-SG similar to that produced by MCLR. Since competition of MCLR and CDNB as GST substrates could bias the DNP-SG transport results, we evaluated the effects of MCLR on calcein efflux, which does not depend on GST activity. We applied the non-fluorescent, cell-permeant compound calcein-AM (0.25 μM) to middle intestinal strips and recorded the efflux of its hydrolysis product, the fluorescent Abcc substrate calcein. 2.27 μM MCLR and 3 μM MK571 inhibited calcein efflux (17.39 and 20.2%, respectively). Finally, MCLR interaction with Abcc transporters was evaluated by measuring its toxic intracellular effects. Middle intestinal segments were incubated in saline solution with 1.135 μM MCLR (MC1), 2.27 μM MCLR (MC2), 3 μM MK571 (MK) or 1.135 μM MCLR+3 μM MK571 (MC1/MK). After 1h, GSH concentration, protein phosphatase 1 and 2A (PP1, PP2A) and GST activities were measured in each segment. MC1did not produce significant effect while MC1/MK and MC2 significantly inhibited PP1and PP2A in similar proportions (34-49%). MK alone significantly increased PP2A activity (40%) with no effect in any other variable. GST activity and GSH concentration were not affected by any treatment. Concentration-response curves for MCLR (1.135 to 13.62 μM) alone or plus 3 or 6 μM MK571 were obtained using PP1 activity as response variable. The IC50 values were 1.0, 0.52, and 0.37 μM, respectively. Our results suggest that O. mykiss enterocytes are capable of eliminating MCLR by GST-mediated conjugation and luminal excretion through an Abcc-like apical transporter. This mechanism would prevent toxic effects and reduce the toxin uptake into the blood, which is likely mediated by basolateral Abccs.
Collapse
Affiliation(s)
- Flavia Bieczynski
- Laboratorio de Ecotoxicología Acuática, INIBIOMA-(CONICET-UNCo), CEAN-Ruta 61 km 3, Paraje San Cabao, 8371 Junín de los Andes, Neuquén, Argentina.
| | - Julieta S De Anna
- Laboratorio de Ecotoxicología Acuática, INIBIOMA-(CONICET-UNCo), CEAN-Ruta 61 km 3, Paraje San Cabao, 8371 Junín de los Andes, Neuquén, Argentina
| | - Macarena Pirez
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Av. A. Navarro 3051, piso 2, 11600 Montevideo, Uruguay
| | - Beatríz M Brena
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Av. A. Navarro 3051, piso 2, 11600 Montevideo, Uruguay
| | - Silvina S M Villanueva
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 2000 Rosario, Santa Fe, Argentina
| | - Carlos M Luquet
- Laboratorio de Ecotoxicología Acuática, INIBIOMA-(CONICET-UNCo), CEAN-Ruta 61 km 3, Paraje San Cabao, 8371 Junín de los Andes, Neuquén, Argentina
| |
Collapse
|
29
|
Huang W, Li D, Liu Y. Mitochondrial electron transport chain is involved in microcystin-RR induced tobacco BY-2 cells apoptosis. J Environ Sci (China) 2014; 26:1930-5. [PMID: 25193844 DOI: 10.1016/j.jes.2014.06.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/02/2013] [Accepted: 12/19/2013] [Indexed: 06/03/2023]
Abstract
Microcystin-RR (MC-RR) has been suggested to induce apoptosis in tobacco BY-2 cells through mitochondrial dysfunction including the loss of mitochondrial membrane potential (ΔΨm). To further elucidate the mechanisms involved in MC-RR induced apoptosis in tobacco BY-2 cells, we have investigated the role of mitochondrial electron transport chain (ETC) as a potential source for reactive oxygen species (ROS). Tobacco BY-2 cells after exposure to MC-RR (60mg/L) displayed apoptotic changes in association with an increased production of ROS and loss of ΔΨm. All of these adverse effects were significantly attenuated by ETC inhibitors including Rotenone (2μmol/L, complex I inhibitor) and antimycin A (0.01μmol/L, complex III inhibitor), but not by thenoyltrifluoroacetone (5μmol/L, complex II inhibitor). These results suggest that mitochondrial ETC plays a key role in mediating MC-RR induced apoptosis in tobacco BY-2 cells through an increased mitochondrial production of ROS.
Collapse
Affiliation(s)
- Wenmin Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, China.
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yongding Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
30
|
Growth and microcystin production of a Brazilian Microcystis aeruginosa strain (LTPNA 02) under different nutrient conditions. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2014. [DOI: 10.1016/j.bjp.2014.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
31
|
Koreivienė J, Anne O, Kasperovičienė J, Burškytė V. Cyanotoxin management and human health risk mitigation in recreational waters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:4443-4459. [PMID: 24664523 DOI: 10.1007/s10661-014-3710-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
The occurrence and severity of harmful cyanobacterial or blue-green algal blooms (HABs) have increased in recent decades, posing a serious threat of illness to humans. In some countries, water contaminated with cyanotoxins that is used for drinking or haemodialysis has posed a particularly serious risk. However, it is now recognized that recreational exposure to natural toxins by skin contact, accidental swallowing of water or inhalation can also cause a wide range of acute or chronic illnesses. In this review, we focus on the importance of cyanotoxin management in recreational waters. The symptoms related with HAB poisonings, the recommended safety concentrations limit for cyanobacteria and cyanotoxins in such waters, as well as early health hazard indicators of their presence and their monitoring are all discussed. We also present in this review an overview of the methods developed in recent decades for eliminating cyanobacteria and the toxic compounds that they produce.
Collapse
Affiliation(s)
- Judita Koreivienė
- Institute of Botany of Nature Research Centre, Žaliųjų Ežerų Str. 49, 08406, Vilnius, Lithuania,
| | | | | | | |
Collapse
|
32
|
Fates of Microcystis aeruginosa cells and associated microcystins in sediment and the effect of coagulation process on them. Toxins (Basel) 2013; 6:152-67. [PMID: 24380974 PMCID: PMC3920254 DOI: 10.3390/toxins6010152] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/21/2013] [Accepted: 12/23/2013] [Indexed: 11/22/2022] Open
Abstract
During toxic Microcystis aeruginosa blooms, large amounts of cells can enter sediment through natural settlement, and coagulation treatment used to control water blooms can enhance the accumulation of cells. However, the current understanding of the fates of these cells and associated microcystins (MCs), as well as the effect of coagulation treatment on these factors, is limited. The results of the present study show that Microcystis aeruginosa cells in sediment were steadily decomposed under experimental conditions, and that they completely disappeared within 28 days. The major MCs released from settled cells were immediately degraded in sediment, and microbial degradation may be the main mechanism involved in this process. Coagulation treatment with PAC (polyaluminium chloride) + sepiolite can efficiently remove Microcystis aeruginosa cells from the water column and prevent their re-invasion. Furthermore, coagulation treatment with PAC + sepiolite had no significant effect on the release and decomposition of MCs and, thus, will not enhance the MCs pollution. However, coagulation treatment can accelerate the nutrient cycle by enhancing the settlement of cells. More attention should be paid to the effect on nutrient cycle when coagulation treatment is used for restoration of aquatic ecosystems.
Collapse
|
33
|
Pavagadhi S, Natera S, Roessner U, Balasubramanian R. Insights into lipidomic perturbations in zebrafish tissues upon exposure to microcystin-LR and microcystin-RR. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:14376-14384. [PMID: 24152164 DOI: 10.1021/es4004125] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This work represents the first study of its kind that was conducted to evaluate changes in lipid metabolic networks following a balneation exposure of adult zebrafish to MCLR (microcystin-leucine-arginine) and MCRR (microcystin-arginine-arginine) at a sublethal dose (10 μg L(-1)) for a period of 30 days. Following the exposure to MCLR and MCRR, gills, liver, intestine, and brain tissues were harvested for metabolite extraction. Extracted metabolites were detected using qTOF-LC-MS (time-of-flight-liquid chromatography-mass spectrometry). Metabolites were identified using Kegg pathways. The identified metabolites are shown on lipid biochemical maps to demonstrate major perturbations in the metabolic machinery. Results showed that most of the metabolic pathways under the lipid class were affected in different tissues of zebrafish following the exposure to MCLR and MCRR (10 μg L(-1) for 30 days). The kind and flux of metabolic perturbations varied among different tissues of the organs after the exposure to MCLR and MCRR with the tissues of gills being the most affected. Among the various lipid pathways, cholesterol synthesis was affected significantly as observed from the highest number of perturbed metabolites in that pathway. Cholesterol is responsible for synthesis of steroid hormones and bile acids, which have been recognized as endocrine signaling molecules. Disruption in the synthesis of these compounds following MCLR/MCRR exposure suggests that MCs are capable of causing endocrine disruption among aquatic organisms even under sublethal conditions. Apart from cholesterol synthesis, various other metabolic pathways belonging to the class of essential fatty acids and lipid oxidation were also observed to be perturbed following a balneation exposure of zebrafish to MCLR/MCRR.
Collapse
Affiliation(s)
- Shruti Pavagadhi
- Singapore-Delft Water Alliance and ‡Department of Civil and Environmental Engineering National University of Singapore , Block E1A, #07-03 No.1 Engineering Drive 2, Singapore 117576
| | | | | | | |
Collapse
|
34
|
Rodrigues M, Reis M, Mateus M. Liquid chromatography/negative electrospray ionization ion trap MS2 mass spectrometry application for the determination of microcystins occurrence in Southern Portugal water reservoirs. Toxicon 2013; 74:8-18. [DOI: 10.1016/j.toxicon.2013.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 11/29/2022]
|
35
|
Zhou W, Zhang X, Xie P, Liang H, Zhang X. The suppression of hematopoiesis function in Balb/c mice induced by prolonged exposure of microcystin-LR. Toxicol Lett 2013; 219:194-201. [PMID: 23454832 DOI: 10.1016/j.toxlet.2013.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 02/08/2023]
Abstract
Microcystins (MCs) cause normocytic anemia in patients in a hemodialysis unit in Caruaru, Brazil in 1996, but the underlying mechanisms are still unclear. In the present study, Balb/c mice were intraperitoneally injected with microcystin-LR (MC-LR) at the doses of 0.5, 2 and 8 μg/kg body weight (bw) every 48 h for 30 d. After the prolonged exposure of MC-LR, significant decreases of red blood cell count (RBC), hemoglobin (Hb) and hematocrit (Ht) were observed in 2 and 8 μg/kg bw groups, but erythrocyte mean corpuscular volume (MCV) showed no significant changes. Significantly elevated micronucleus frequency was observed in bone marrow cells (BMCs) in all MC-LR treatments. The proliferation of BMCs significantly declined in both 2 and 8 μg/kg bw groups. Serum levels of some hematopoietic growth factors significantly changed in 8 μg/kg bw group, mainly including granulocyte-macrophage (GM-CSF), erythropoietin (EPO), interleukin-3 (IL-3) and TNF-α. The transcriptional levels of these 4 genes in BMCs were also significantly changed in 8 μg/kg bw group. MC-LR exposure significantly increased the apoptosis rates in all MC-LR treatments. The present study indicates prolonged exposure of MC-LR induces normocytic anemia, and the disturbed hematopoietic growth factors and BMCs apoptosis are responsible for this normocytic anemia.
Collapse
Affiliation(s)
- Wenshan Zhou
- Fisheries College of Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | | | | | | | | |
Collapse
|
36
|
Pírez M, Gonzalez-Sapienza G, Sienra D, Ferrari G, Last M, Last JA, Brena BM. Limited analytical capacity for cyanotoxins in developing countries may hide serious environmental health problems: simple and affordable methods may be the answer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 114:63-71. [PMID: 23220602 DOI: 10.1016/j.jenvman.2012.10.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 08/21/2012] [Accepted: 10/08/2012] [Indexed: 06/01/2023]
Abstract
In recent years, the international demand for commodities has prompted enormous growth in agriculture in most South American countries. Due to intensive use of fertilizers, cyanobacterial blooms have become a recurrent phenomenon throughout the continent, but their potential health risk remains largely unknown due to the lack of analytical capacity. In this paper we report the main results and conclusions of more than five years of systematic monitoring of cyanobacterial blooms in 20 beaches of Montevideo, Uruguay, on the Rio de la Plata, the fifth largest basin in the world. A locally developed microcystin ELISA was used to establish a sustainable monitoring program that revealed seasonal peaks of extremely high toxicity, more than one-thousand-fold greater than the WHO limit for recreational water. Comparison with cyanobacterial cell counts and chlorophyll-a determination, two commonly used parameters for indirect estimation of toxicity, showed that such indicators can be highly misleading. On the other hand, the accumulated experience led to the definition of a simple criterion for visual classification of blooms, that can be used by trained lifeguards and technicians to take rapid on-site decisions on beach management. The simple and low cost approach is broadly applicable to risk assessment and risk management in developing countries.
Collapse
Affiliation(s)
- Macarena Pírez
- Cátedra de Bioquímica, Departamento de Biociencias, Facultad de Quimíca, Universidad de la Republica, Montevideo, Uruguay
| | | | | | | | | | | | | |
Collapse
|
37
|
Chen DN, Zeng J, Wang F, Zheng W, Tu WW, Zhao JS, Xu J. Hyperphosphorylation of intermediate filament proteins is involved in microcystin-LR-induced toxicity in HL7702 cells. Toxicol Lett 2012; 214:192-9. [DOI: 10.1016/j.toxlet.2012.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/24/2012] [Accepted: 08/25/2012] [Indexed: 12/11/2022]
|
38
|
Carneiro RL, Dörr FA, Dörr F, Bortoli S, Delherbe N, Vásquez M, Pinto E. Co-occurrence of microcystin and microginin congeners in Brazilian strains ofMicrocystissp. FEMS Microbiol Ecol 2012; 82:692-702. [DOI: 10.1111/j.1574-6941.2012.01439.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 06/07/2012] [Accepted: 06/25/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ronaldo Leal Carneiro
- Departamento de Análises Clínicas e Toxicológicas; Faculdade de Ciências Farmacêuticas; Universidade de São Paulo; São Paulo; SP; Brazil
| | - Felipe Augusto Dörr
- Departamento de Análises Clínicas e Toxicológicas; Faculdade de Ciências Farmacêuticas; Universidade de São Paulo; São Paulo; SP; Brazil
| | - Fabiane Dörr
- Departamento de Análises Clínicas e Toxicológicas; Faculdade de Ciências Farmacêuticas; Universidade de São Paulo; São Paulo; SP; Brazil
| | - Stella Bortoli
- Departamento de Análises Clínicas e Toxicológicas; Faculdade de Ciências Farmacêuticas; Universidade de São Paulo; São Paulo; SP; Brazil
| | | | - Mónica Vásquez
- Pontificia Universidad Católica de Chile; Santiago; Chile
| | - Ernani Pinto
- Departamento de Análises Clínicas e Toxicológicas; Faculdade de Ciências Farmacêuticas; Universidade de São Paulo; São Paulo; SP; Brazil
| |
Collapse
|
39
|
Richardson SD. Environmental Mass Spectrometry: Emerging Contaminants and Current Issues. Anal Chem 2011; 84:747-78. [DOI: 10.1021/ac202903d] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Susan D. Richardson
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Athens, Georgia 30605, United States
| |
Collapse
|
40
|
Regulation of heat shock protein 27 phosphorylation during microcystin-LR-induced cytoskeletal reorganization in a human liver cell line. Toxicol Lett 2011; 207:270-7. [DOI: 10.1016/j.toxlet.2011.09.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 11/24/2022]
|
41
|
Kuniyoshi TM, Gonzalez A, Lopez-Gomollon S, Valladares A, Bes MT, Fillat MF, Peleato ML. 2-oxoglutarate enhances NtcA binding activity to promoter regions of the microcystin synthesis gene cluster. FEBS Lett 2011; 585:3921-6. [PMID: 22062155 DOI: 10.1016/j.febslet.2011.10.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 10/15/2022]
Abstract
The binding affinity of NtcA towards promoter regions of the microcystin gene cluster from Microcystis aeruginosa PCC 7806 has been analyzed by band-shift assay (EMSA). The key nitrogen transcriptional regulator exhibits affinity for two fragments of the bidirectional mcyDA promoter, as well as for promoter regions of mcyE and mcyH. The presence of 2-oxoglutarate increased by 2.5 fold the affinity of NtcA for the mcyA promoter region. The 2-oxoglutarate effect peaked at 0.8 mM, a physiological concentration for this compound under nitrogen-limiting conditions. The results suggest that the 2-oxoglutarate level, as a signal of the C to N balance of the cells, regulates the microcystin gene cluster.
Collapse
Affiliation(s)
- Taís M Kuniyoshi
- Departamento de Bioquimica y Biologia Molecular y Celular, Facultad de Ciencias and BIFI, Unidad Asociada Rocasolano (CSIC), Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
da Silva RRP, Pires OR, Grisolia CK. Genotoxicity in Oreochromis niloticus (Cichlidae) induced by Microcystis spp bloom extract containing microcystins. Toxicon 2011; 58:259-64. [PMID: 21704053 DOI: 10.1016/j.toxicon.2011.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 01/01/2023]
Abstract
Studies of genotoxicity in fish caused by cyanobacterial extracts containing microcystins (MCs) can be useful in determining their carcinogenic risk due to a genotoxic mechanism. An extract of cyanobacterial Microcystis ssp, containing MC-LR and -LA from a bloom collected in a eutrophic lake, showed genotoxicity to Oreochromis niloticus. DNA damage (comet assay) was significantly induced in peripheral erythrocytes with both tested concentrations of 6.90 μg kg(-1) bw and 13.80 μg kg(-1) bw through intraperitoneal injection (ip). There was no micronucleus induction after ip injection at concentrations of 6.90 μg kg(-1) bw and 13.80 μg kg(-1) bw. Body exposure resulted in micronucleus induction and DNA damage only at the highest tested concentrations of 103.72 μg L(-1). Thus, comet assay and ip injection revealed the highest levels of the genotoxicity of MCs. Apoptosis-necrosis test carried out at concentrations of 6.90 μg kg(-1) bw and 13.80 μg kg(-1) bw revealed that at low concentrations more apoptosis than necrosis occurred. At higher concentrations more necrosis than apoptosis occurred.
Collapse
Affiliation(s)
- R R Pavan da Silva
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília - DF, Brazil
| | | | | |
Collapse
|
43
|
Morais S, Tamarit-López J, Puchades R, Maquieira A. Determination of microcystins in river waters using microsensor arrays on disk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:9024-9029. [PMID: 21047094 DOI: 10.1021/es101653r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The development of simple, accurate, and rapid multisample analytical methodologies to find out critical targets in waters is highly demanded. Optical microsensor arrays to determine microcystins in river waters are developed on the polycarbonate side of compact discs. The working principle of the sensors relied on an indirect competitive microimmunoassay, where free microcystin LR (MC-LR) competes with immobilized conjugate for specific monoclonal antibody. The results of the immunoreaction are detected with a DVD drive, showing the readouts in minutes. The method reached a sensitivity (IC(50)) for MC-LR of 1.04 μg/L and a linear response in the range 0.12-2.00 μg/L, allowing its determination below the upper limit proposed by the World Health Organization in drinking water. The developed analytical approach shows simplicity, good sensitivity, high throughput capability, and rapidity (37 min) in field use. The optimized assay showed also high congener reactivity to MC-LY (144%), MC-LA (125%), MC-LF (119%), MC-LW (102%), MC-YR (83%), and nodularin (94%). Furthermore, the suitability of the disk biosensor to quantify MC-LR was successfully evaluated analyzing river water samples, obtaining excellent recoveries (78-113%). Precoated discs are stable for at least seven weeks without loosing their analytical performances. Also, the portability of the analytical system permits on-site analysis and quantification, saving time and other resources. To our knowledge, this is the only work where a portable, easy-to-use, array based system has been developed for on-site microcystin quantification and applied to simultaneously analyze 42 samples plus the calibration curve, reaching microgram per liter sensitivity.
Collapse
Affiliation(s)
- Sergi Morais
- Instituto Universitario de Reconocimiento Molecular y Desarrollo Tecnológico, Departamento de Química, Universidad Politécnica de Valencia, camino de vera s/n E46022, Valencia, Spain
| | | | | | | |
Collapse
|