1
|
Ahuja V, Singh A, Paul D, Dasgupta D, Urajová P, Ghosh S, Singh R, Sahoo G, Ewe D, Saurav K. Recent Advances in the Detection of Food Toxins Using Mass Spectrometry. Chem Res Toxicol 2023; 36:1834-1863. [PMID: 38059476 PMCID: PMC10731662 DOI: 10.1021/acs.chemrestox.3c00241] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Edibles are the only source of nutrients and energy for humans. However, ingredients of edibles have undergone many physicochemical changes during preparation and storage. Aging, hydrolysis, oxidation, and rancidity are some of the major changes that not only change the native flavor, texture, and taste of food but also destroy the nutritive value and jeopardize public health. The major reasons for the production of harmful metabolites, chemicals, and toxins are poor processing, inappropriate storage, and microbial spoilage, which are lethal to consumers. In addition, the emergence of new pollutants has intensified the need for advanced and rapid food analysis techniques to detect such toxins. The issue with the detection of toxins in food samples is the nonvolatile nature and absence of detectable chromophores; hence, normal conventional techniques need additional derivatization. Mass spectrometry (MS) offers high sensitivity, selectivity, and capability to handle complex mixtures, making it an ideal analytical technique for the identification and quantification of food toxins. Recent technological advancements, such as high-resolution MS and tandem mass spectrometry (MS/MS), have significantly improved sensitivity, enabling the detection of food toxins at ultralow levels. Moreover, the emergence of ambient ionization techniques has facilitated rapid in situ analysis of samples with lower time and resources. Despite numerous advantages, the widespread adoption of MS in routine food safety monitoring faces certain challenges such as instrument cost, complexity, data analysis, and standardization of methods. Nevertheless, the continuous advancements in MS-technology and its integration with complementary techniques hold promising prospects for revolutionizing food safety monitoring. This review discusses the application of MS in detecting various food toxins including mycotoxins, marine biotoxins, and plant-derived toxins. It also explores the implementation of untargeted approaches, such as metabolomics and proteomics, for the discovery of novel and emerging food toxins, enhancing our understanding of potential hazards in the food supply chain.
Collapse
Affiliation(s)
- Vishal Ahuja
- University
Institute of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
- University
Centre for Research & Development, Chandigarh
University, Mohali, Punjab 140413, India
| | - Amanpreet Singh
- Department
of Chemistry, University Institute of Science, Chandigarh University, Mohali, Punjab 140413, India
| | - Debarati Paul
- Amity
Institute of Biotechnology, AUUP, Noida, Uttar Pradesh 201313, India
| | - Diptarka Dasgupta
- Material
Resource Efficiency Division, CSIR-Indian
Institute of Petroleum, Dehradun 248005, India
| | - Petra Urajová
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Sounak Ghosh
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Roshani Singh
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Gobardhan Sahoo
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Daniela Ewe
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Kumar Saurav
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| |
Collapse
|
2
|
Zhang H, Wu H, Zheng G, Zhong Y, Tan Z. Variation profile of diarrhetic shellfish toxins and diol esters derivatives of Prorocentrum lima during growth by high-resolution mass spectrometry. Toxicon 2023:107224. [PMID: 37437785 DOI: 10.1016/j.toxicon.2023.107224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Prorocentrum lima is a widely distributed toxigenic benthic dinoflagellate whose production of diarrhetic shellfish toxins threatens the shellfish industry and seafood safety. Current research primarily assesses the difference between free and post-hydrolysis total toxin methods, ignoring the impact of different detection methods on technical accuracy. After removing matrix interference with SPE extraction, a thorough HRMS strategy was created in this study. Alkaline hydrolysis could release the diol esters and played a crucial role in obtaining an accurate assessment of toxin levels, achieving satisfactory recoveries (74.0-147.0%) and repeatability (relative deviation <12.3%). The HRMS approach evaluated toxin profile variation during the growth of three P. lima strains from China. A total of 24 toxin contents varying in composition, content, and a high proportion were detected. The SHG, HN, and 3XS strains had total toxin contents of 23.3 ± 1.74, 19.8 ± 1.25, and 19.5 ± 1.58 pg cell-1, respectively. The diol esters proportion varied among the strains, with SHG having 58.9-69.9, HN having 75.4-86.5, and 3XS having 91.0-91.7%. The variety of toxins produced by distinct P. lima strains highlighted the significance of this method for appropriately measuring the risks connected with DSTs manufacturing. The proposed approach provides a technical basis for gathering comprehensive and accurate data on the potential risks of P. lima DSTs production, with significant implications for ensuring food safety and preventing harmful toxins from spreading in the marine ecosystem.
Collapse
Affiliation(s)
- Haoyu Zhang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| | - Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yun Zhong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| |
Collapse
|
3
|
Wang J, Li R, Liu B, Zhang Q, Wang X, Zhu Y, Zhang Y. Occurrence and distribution of lipophilic marine algal toxins in the coastal seawater of Southeast China and the South China Sea. MARINE POLLUTION BULLETIN 2023; 187:114584. [PMID: 36642003 DOI: 10.1016/j.marpolbul.2023.114584] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The composition, levels, and spatial distribution of dissolved lipophilic marine algal toxins (LMATs) including cyclic imines (CIs), yessotoxins (YTXs), okadaic acid (OA) and its derivatives, pectenotoxins (PTXs), azaspiracids (AZAs), and brevetoxins (BTXs) in the coastal waters of Southeast China (Xiamen) and the South China Sea (Hainan Island and Beibu Gulf) were investigated and compared for the first time. Dissolved AZA3 was firstly detected in the coastal seawater of China. OA and PTX2 were widely distributed in the three areas studied. Gymnodimine (GYM), 13-desmethyl spirolide C (SPX1), YTX, and homo-yessotoxins (h-YTX) were found mainly in the South China Sea. The average ∑LMAT concentrations in the coastal waters of Xiamen, Hainan Island, and Beibu Gulf were 10.02 ng/L, 4.21 ng/L, and 44.27 ng/L, respectively. More groups and much higher concentrations of LMATs occurred in the South China Sea than that in the other sea areas of China.
Collapse
Affiliation(s)
- Jiuming Wang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Ruilong Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Beibei Liu
- Institute of Environmental and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 570100, China
| | - Qinzhou Zhang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xiang Wang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yaxian Zhu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Lee TCH, Lai KKY, Xu SJL, Lee FWF. Upregulation of Peridinin-Chlorophyll A-Binding Protein in a Toxic Strain of Prorocentrum hoffmannianum under Normal and Phosphate-Depleted Conditions. Int J Mol Sci 2023; 24:ijms24021735. [PMID: 36675250 PMCID: PMC9864435 DOI: 10.3390/ijms24021735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Some strains of the dinoflagellate species Prorocentrum hoffmannianum show contrasting ability to produce diarrhetic shellfish poisoning (DSP) toxins. We previously compared the okadaic acid (OA) production level between a highly toxic strain (CCMP2804) and a non-toxic strain (CCMP683) of P. hoffmannianum and revealed that the cellular concentration of OA in CCMP2804 would increase significantly under the depletion of phosphate. To understand the molecular mechanisms, here, we compared and analyzed the proteome changes of both strains growing under normal condition and at phosphate depletion using two-dimensional gel electrophoresis (2-DE). There were 41 and 33 differential protein spots observed under normal condition and phosphate depletion, respectively, of which most were upregulated in CCMP2804 and 22 were common to both conditions. Due to the lack of matched peptide mass fingerprints in the database, de novo peptide sequencing was applied to identify the differentially expressed proteins. Of those upregulated spots in CCMP2804, nearly 60% were identified as peridinin-chlorophyll a-binding protein (PCP), an important light-harvesting protein for photosynthesis in dinoflagellates. We postulated that the high expression of PCP encourages the production of DSP toxins by enhancing the yields of raw materials such as acetate, glycolate and glycine. Other possible mechanisms of toxicity related to PCP might be through triggering the transcription of non-ribosomal peptide synthetase/polyketide synthase genes and the transportation of dinophysistoxin-4 from chloroplast to vacuoles.
Collapse
Affiliation(s)
- Thomas Chun-Hung Lee
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Kaze King-Yip Lai
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Steven Jing-Liang Xu
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Fred Wang-Fat Lee
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Correspondence: ; Tel.: +852-31202690
| |
Collapse
|
5
|
Kang X, Zhao Y, Tan Z, Ning J, Zhai Y, Zheng G. Evaluation of multivariate data analysis for marine mussels Mytilus edulis authentication in China: Based on stable isotope ratio and compositions of C, N, O and H. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Malissiova E, Soultani G, Kogia P, Koureas M, Hadjichristodoulou C. Analysis of 20 year data for the assessment of dietary exposure to chemical contaminants in the region of Thessaly, Greece. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Li F, Meng X, Wang X, Ji C, Wu H. Graphene-triphenyl phosphate (TPP) co-exposure in the marine environment: Interference with metabolism and immune regulation in mussel Mytilus galloprovincialis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112904. [PMID: 34655885 DOI: 10.1016/j.ecoenv.2021.112904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Both immune regulation and endocrine systems are great challenges to marine organisms, and effective protocols for determining these adverse outcome pathways are limited, especially in vivo. The increasing usage of graphene nanomaterials can lead to the frequent exposure to marine organisms. Triphenyl phosphate (TPP), an organophosphate flame retardant, is frequently detected in natural environments. In this study, the combined toxic effects of co-exposure to graphene and TPP was investigated in Mytilus galloprovincialis using computational toxicology and multi-omics technology. Noticeably, graphene could disturb the membrane stability and increase the tissue accumulation of TPP. The adsorption behavior of TPP on graphene could inhibit the surface activity of graphene. In the digestive gland, transcriptomics analysis revealed the down-regulated genes in graphene + TPP treatment, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), sorbitol dehydrogenase (SORD), glutathione s-transferase mu 3 (GSTM3) and 4-aminobutyrate aminotransferase (ABAT), were mainly associated with oxidative stress and energy metabolism. Moreover, metabolic responses indicated that graphene + TPP could cause disturbances in energy metabolism and osmotic regulation marked by differentially altered ATP, glucose and taurine in mussels. These data underline the need for further knowledge on the potential interactions of nanomaterials with existing contaminants in marine organisms.
Collapse
Affiliation(s)
- Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Xiangjing Meng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| |
Collapse
|
8
|
Occurrence of Marine Biotoxins in Bivalve Molluscs Available in Poland in 2014-2018. J Vet Res 2021; 65:329-333. [PMID: 34917846 PMCID: PMC8643088 DOI: 10.2478/jvetres-2021-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/03/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction Marine biotoxins are toxic substances that may cause illness and death in marine organisms and humans. This article disseminates the results of a 4-year study on the occurrence of marine biotoxins in raw bivalve molluscs purchased from Polish suppliers. Material and Methods A total of 256 samples of 8 different molluscs species were analysed for the presence of biotoxins using the ELISA method for paralytic shellfish poison, diarrhoetic shellfish poison, and amnaesic shellfish poison. Results The permitted limits of marine biotoxin content were not exceeded in any of the analysed samples and the majority of them were free from these compounds. Conclusion The results of the study indicate that the tested raw bivalve molluscs available in Poland were safe for consumers.
Collapse
|
9
|
Zheng R, Lin S, Yang Y, Fu W. Variability and profiles of lipophilic marine toxins in shellfish from southeastern China in 2017-2020. Toxicon 2021; 201:37-45. [PMID: 34416253 DOI: 10.1016/j.toxicon.2021.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
A total of 1338 samples were analyzed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to study the toxin profiles of lipophilic marine toxins in bivalve mollusks collected from the southeast coast of China from 2017 to 2020. The most abundant toxin was HomoYTX, followed progressively by YTX and PTX2. Low proportions of OA, DTX-1, and DTX-2 were found. No AZA1, AZA2, and AZA3 were quantified above limit of quantitation (LOQ). The highest concentrations of HomoYTX, YTX, PTX2, OA, DTX-1, and DTX-2 were 429, 98.0, 40.3, 33.0, 22.6, and 26.5 μg/kg, respectively. Mussels (Mytilus galloprovincialis, Perna viridis), scallop (Chlamys farreri) and clam (Atrina pectinate) accumulated higher toxin levels than clams (Sinonovaculla Constricta, Ruditapes philippinarum), oyster (Crassostrea gigas) and scallop (Arca granosa). Homo YTX and PTX2 levels reached the maximum in July and June, respectively, and the OA-group peaked in August. The results provide a reliable basis for monitoring marine toxins and protecting the health of aquatic consumers.
Collapse
Affiliation(s)
- Renjin Zheng
- Physical and Chemical Analysis Department, Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, Fujian, 350001, China; School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, China.
| | - Shouer Lin
- Physical and Chemical Analysis Department, Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, Fujian, 350001, China; School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Yan Yang
- Physical and Chemical Analysis Department, Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, Fujian, 350001, China
| | - Wusheng Fu
- Physical and Chemical Analysis Department, Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, Fujian, 350001, China
| |
Collapse
|
10
|
Li J, Ruan Y, Mak YL, Zhang X, Lam JCW, Leung KMY, Lam PKS. Occurrence and Trophodynamics of Marine Lipophilic Phycotoxins in a Subtropical Marine Food Web. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8829-8838. [PMID: 34142818 DOI: 10.1021/acs.est.1c01812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Marine lipophilic phycotoxins (MLPs) are produced by toxigenic microalgae and cause foodborne illnesses. However, there is little information on the trophic transfer potential of MLPs in marine food webs. In this study, various food web components including 17 species of mollusks, crustaceans, and fishes were collected for an analysis of 17 representative MLPs, including azaspiracids (AZAs), brevetoxins (BTXs), gymnodimine (GYM), spirolides (SPXs), okadaic acid (OA), dinophysistoxins (DTXs), pectenotoxins (PTXs), yessotoxins (YTXs), and ciguatoxins (CTXs). Among the 17 target MLPs, 12, namely, AZAs1-3, BTX3, GYM, SPX1, OA, DTXs1-2, PTX2, YTX, and the YTX derivative homoYTX, were detected, and the total MLP concentrations ranged from 0.316 to 20.3 ng g-1 wet weight (ww). The mean total MLP concentrations generally decreased as follows: mollusks (8.54 ng g-1, ww) > crustaceans (1.38 ng g-1, ww) > fishes (0.914 ng g-1, ww). OA, DTXs, and YTXs were the predominant MLPs accumulated in the studied biota. Trophic dilution of the total MLPs was observed with a trophic magnification factor of 0.109. The studied MLPs might not pose health risks to residents who consume contaminated seafood; however, their potential risks to the ecosystem can be a cause for concern.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yim Ling Mak
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Xiaohua Zhang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Shenzhen, Hong Kong SAR 518000, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Shenzhen, Hong Kong SAR 518000, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Office of the President, The Open University of Hong Kong, Shenzhen, Hong Kong SAR 518000, China
| |
Collapse
|
11
|
Wright EJ, McCarron P. A mussel tissue certified reference material for multiple phycotoxins. Part 5: profiling by liquid chromatography-high-resolution mass spectrometry. Anal Bioanal Chem 2021; 413:2055-2069. [PMID: 33661347 DOI: 10.1007/s00216-020-03133-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
A freeze-dried mussel tissue-certified reference material (CRM-FDMT1) was prepared containing the marine algal toxin classes azaspiracids, okadaic acid and dinophysistoxins, yessotoxins, pectenotoxins, cyclic imines, and domoic acid. Thus far, only a limited number of analogues in CRM-FDMT1 have been assigned certified values; however, the complete toxin profile is significantly more complex. Liquid chromatography-high-resolution mass spectrometry was used to profile CRM-FDMT1. Full-scan data was searched against a list of previously reported toxin analogues, and characteristic product ions extracted from all-ion-fragmentation data were used to guide the extent of toxin profiling. A series of targeted and untargeted acquisition MS/MS experiments were then used to collect spectra for analogues. A number of toxins previously reported in the literature but not readily available as standards were tentatively identified including dihydroxy and carboxyhydroxyyessotoxin, azaspiracids-33 and -39, sulfonated pectenotoxin analogues, spirolide variants, and fatty acid acyl esters of okadaic acid and pectenotoxins. Previously unreported toxins were also observed including compounds from the pectenotoxin, azaspiracid, yessotoxin, and spirolide classes. More than one hundred toxin analogues present in CRM-FDMT1 are summarized along with a demonstration of the major acyl ester conjugates of several toxins. Retention index values were assigned for all confirmed or tentatively identified analogues to help with qualitative identification of the broad range of lipophilic toxins present in the material.
Collapse
Affiliation(s)
- Elliott J Wright
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia, B3H 3Z1, Canada
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia, B3H 3Z1, Canada.
| |
Collapse
|
12
|
Qiu J, Ji Y, Fang Y, Zhao M, Wang S, Ai Q, Li A. Response of fatty acids and lipid metabolism enzymes during accumulation, depuration and esterification of diarrhetic shellfish toxins in mussels (Mytilus galloprovincialis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111223. [PMID: 32891913 DOI: 10.1016/j.ecoenv.2020.111223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Bivalve mollusks accumulate diarrhetic shellfish toxins (DSTs) from toxigenic microalgae, thus posing a threat to human health by acting as a vector of toxins to consumers. In bivalves, free forms of DSTs can be esterified with fatty acids at the C-7 site to form acyl esters (DTX3), presumably a detoxification mechanism for bivalves. However, the effects of esterification of DSTs on fatty acid metabolism in mollusks remain poorly understood. In this study, mussels (Mytilus galloprovincialis) were fed the DST-producing dinoflagellate Prorocentrum lima for 10 days followed by an additional 10-days depuration in filtered seawater to track the variation in quantity and composition of DST acyl esters and fatty acids. A variety of esters of okadaic acid (OA) and dinophysistoxin-1 (DTX1) were mainly formed in the digestive gland (DG), although trace amounts of esters also appeared in muscle tissue. A large relative amount of OA (60%-84%) and DTX1 (80%-92%) was esterified to DTX3 in the visceral mass (referred to as digestive gland, DG), and the major ester acyl chains were C16:0, C16:1, C18:0, C18:1, C20:1 and C20:2. The DG and muscle tissues showed pronounced differences in fatty acid content and composition during both feeding and depuration periods. In the DG, fatty acid content gradually decreased in parallel with increasing accumulation and esterification of DSTs. The decline in fatty acids was accelerated during depuration without food. This reduction in the content of important polyunsaturated fatty acids, especially docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), would lead to a reduction in the nutritional value of mussels. Enzymes involved in lipid metabolism, including acetyl-coenzyme A carboxylase (ACC), fatty acid synthase (FAS), lipoprotein lipase (LPL) and hepatic lipase (HL), were actively involved in the metabolism of fatty acids in the DG, whereas their activities were weak in muscle tissue during the feeding period. This study helps to improve the understanding of interactions between the esterification of DSTs and fatty acid dynamics in bivalve mollusks.
Collapse
Affiliation(s)
- Jiangbing Qiu
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yuan Fang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mingyue Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Shuqin Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Qinghui Ai
- College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao, 266100, China.
| |
Collapse
|
13
|
Zhong M, Wu H, Li F, Shan X, Ji C. Proteomic analysis revealed gender-specific responses of mussels (Mytilus galloprovincialis) to trichloropropyl phosphate (TCPP) exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115537. [PMID: 32892020 DOI: 10.1016/j.envpol.2020.115537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Trichloropropyl phosphate (TCPP) is a halogenated organophosphate ester that is widely used as flame retardants and plasticizers. In this study, gender-specific accumulation and responses in mussel Mytilus galloprovincialis to TCPP exposure were focused and highlighted. After TCPP (100 nmol L-1) exposure for 42 days, male mussels showed similar average bioaccumulation (37.14 ± 6.09 nmol g-1 fat weight (fw)) of TCPP with that in female mussels (32.28 ± 4.49 nmol g-1 fw). Proteomic analysis identified 219 differentially expressed proteins (DEPs) between male and female mussels in control group. There were 52 and 54 DEPs induced by TCPP in male and female mussels, respectively. Interestingly, gender-specific DEPs included 37 and 41 DEPs induced by TCPP in male and female mussels, respectively. The proteomic differences between male and female mussels were related to protein synthesis and degradation, energy metabolism, and functions of cytoskeleton and motor proteins. TCPP influenced protein synthesis, energy metabolism, cytoskeleton functions, immunity, and reproduction in both male and female mussels. Protein-protein interaction (PPI) networks indicated that protein synthesis and energy metabolism were the main biological processes influenced by TCPP. However, DEPs involved in these processes and their interaction patterns were quite different between male and female mussels. Basically, twelve ribosome DEPs which directly or indirectly interacted were found in protein synthesis in TCPP-exposed male mussels, while only 3 ribosome DEPs (not interacted) in TCPP-exposed female mussels. In energy metabolism, only 4 DEPs (with the relatively simple interaction pattern) mainly resided in fatty acid metabolism, butanoate/propanoate metabolism and glucose metabolism were discovered in TCPP-exposed male mussels, and more DEPs (with multiple interactions) functioned in TCA cycle and pyruvate/glyoxylate/dicarboxylate metabolism were found in TCCP-exposed female mussels. Taken together, TCPP induced gender-specific toxicological effects in mussels, which may shed new lights on further understanding the toxicological mechanisms of TCPP in aquatic organisms.
Collapse
Affiliation(s)
- Mingyu Zhong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Xiujuan Shan
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| |
Collapse
|
14
|
Qiu J, Chen H, Ji Y, Li T, Li A. Evaluation of different strategies to minimize the matrix effects on LC-MS/MS analysis of multiple lipophilic shellfish toxins in both acidic and alkaline chromatographic conditions. Toxicon 2020; 188:16-26. [PMID: 33039366 DOI: 10.1016/j.toxicon.2020.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Lipophilic shellfish toxins (LSTs) accumulated by shellfish pose a potential threat to consumer health. A mandatory routine monitoring of LSTs has been adopted for seafood products by liquid chromatography-mass spectrometry (LC-MS) in many countries. In this study, two methods developed on liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) under acidic and alkaline chromatographic conditions were assessed for the determination of multiple LSTs. Different strategies including matrix solid-phase dispersion (MSPD), solid phase extraction (SPE) and sample dilution were applied and evaluated the matrix effects of mussel, scallop, clam, and oyster samples on the signal response of mass spectrometry. Results showed that the alkaline method achieved a lower limit of detection (LOD) and more robust compared to the acidic method. The obvious signal suppression of OA and DTX1 (55%-76%) and signal enhancement of PTX2 (27%-34%) occurred in the crude extracts of shellfish under acidic chromatography. In the alkaline method, no remarkable matrix effects of crude extracts were found except for the scallop matrix on the signal intensity of DTX1, AZA3 and GYM-A (121%-130%). Clean-up methods MSPD, SPE and sample dilution obviously reduced the inhibition of shellfish matrices on the signal response of OA and DTX1, however, which were still subject to signal inhibition under acidic condition. Sample dilution was more effective than SPE and MSPD in minimizing the matrix interference in both acidic and alkaline methods. Furthermore, sample dilution in combination with the alkaline chromatography was the most effective method. Bivalve mollusks harvested from Beibu Bay, South China Sea, were generally contaminated by GYM-A and SPX1 at low concentrations.
Collapse
Affiliation(s)
- Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Huidan Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Tianshen Li
- Marine Environmental Monitoring Center of Guangxi, Beihai, 536000, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao, 266100, China.
| |
Collapse
|
15
|
Wu H, Chen J, Peng J, Zhong Y, Zheng G, Guo M, Tan Z, Zhai Y, Lu S. Nontarget Screening and Toxicity Evaluation of Diol Esters of Okadaic Acid and Dinophysistoxins Reveal Intraspecies Difference of Prorocentrum lima. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12366-12375. [PMID: 32902972 DOI: 10.1021/acs.est.0c03691] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-resolution mass spectrometry (HRMS) analysis with the assistance of molecular networking was used to investigate intracellular toxin profiles of five Prorocentrum lima (P. lima) strains sampled from the north Yellow Sea and South China Sea. Mice were used as a model species for testing the acute toxicity of intracellular okadaic acid (OA) and dinophysistoxins (DTXs) in free and esterified states. Results showed that OA and DTX1 esterified derivatives were detected in all P. lima samples, accounting for 55%-96% of total toxins in five strains. A total of 24 esters and 1 stereoisomer of DTX1 (35S DTX1) were identified based on molecular networking and MS data analysis, 15 esters of which have been reported first. All P. lima strains displayed specific toxin profiles, and preliminary analysis suggested that toxin profiles of the five P. lima strains might be region-related. Moreover, acute toxicity in mice suggested higher toxicity of esters compared with free toxins, which highlights the importance and urgency of attention to esterified toxins in P. lima.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jiaqi Chen
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yun Zhong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Yuxiu Zhai
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Songhui Lu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
16
|
Liu Y, Zheng JW, Peng XC, Li HY, Huang L, Li DW, Liu JS, Yang WD. Changes in colonic microbiotas in rat after long-term exposure to low dose of okadaic acid. CHEMOSPHERE 2020; 254:126874. [PMID: 32361543 DOI: 10.1016/j.chemosphere.2020.126874] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/05/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Okadaic acid (OA), one of the most important phycotoxins, is widely distributed around the world, concerning diarrheic shellfish poisoning (DSP), and even colorectal cancer. Here, we found that long-term exposure of OA at a low dose (80 μg kg-1 body weight) had certain effects on colonic microbiotas and tract in rat. In the OA-exposed rat, colonic epithelium layer was damaged, and relative abundance of some microbiotas were significantly changed, especially genera in Clostridiales. However, no intestinal inflammation or significant disease was observed. Combined with the increase in relative abundance of some genera in Clostridiales induced by OA in the fermentation experiment, we proposed that OA could cause damage to the intestinal epithelium and increase the relative abundance of pathogenic bacteria, thereby increasing the probability of contact between intestinal epithelium and pathogenic bacteria and leading to an easier pathogenicity.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jian-Wei Zheng
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xi-Chun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510630, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lu Huang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Da-Wei Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jie-Sheng Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
17
|
Li A, Zhao M, Qiu J, Ji Y. Accumulation and esterification of diarrhetic shellfish toxins from the aqueous phase in laboratory-exposed mussels. HARMFUL ALGAE 2020; 93:101797. [PMID: 32307077 DOI: 10.1016/j.hal.2020.101797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/10/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
In recent years, marine bivalves cultured in the natural environment have been confirmed to accumulate diarrhetic shellfish toxins (DSTs) from the aqueous phase. To investigate the effects of varying seston concentrations on DST accumulation, mussels (Mytilus galloprovincialis) were exposed to comparable concentrations of okadaic acid (OA) and dinophysistoxin-1 (DTX1) in 0.45-μm filtered seawater spiked with varying concentrations of ambient suspended particles at 0, 10, 30, 60, 90, and 120 mg L-1, for 96 h. Effects of seston additions on the mussels' feeding on nontoxic microalgae, Isochrysis galbana, the stability of dissolved toxins and the anatomical compartmentalization of toxins were also assessed. Results showed that mussels more readily accumulated OA than DTX1 from the aqueous phase. Three potential mechanisms of the effects of seston on toxin accumulation were identified. First, seston at low concentrations (10 mg L-1) adsorbed toxins and thus promoted toxin accumulation. Second, seston enhanced the degradation of aqueous OA and DTX1, and possibly reduced the adsorption by digestive gland (DG) cells through simple diffusion due to competitive adsorption. Third, the clearance rate of mussels was significantly reduced at high seston concentrations (120 mg L-1). The esterification of DSTs was maximized in DG tissue, although a high percentage (52%) of DSTs was distributed in non-visceral tissues of mussels exposed to aqueous toxins. This study suggests that the risk of benthic DST-producing microalgae to marine cultured shellfish should be taken into consideration, even in the absence of a bloom of toxic microalgae in the water column.
Collapse
Affiliation(s)
- Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Mingyue Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
18
|
Mafra LL, Nolli PKW, Mota LE, Domit C, Soeth M, Luz LFG, Sobrinho BF, Leal JG, Di Domenico M. Multi-species okadaic acid contamination and human poisoning during a massive bloom of Dinophysis acuminata complex in southern Brazil. HARMFUL ALGAE 2019; 89:101662. [PMID: 31672229 DOI: 10.1016/j.hal.2019.101662] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/01/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
On June 2016, a major bloom of Dinophysis acuminata complex was noticed over the coast of Paraná State (PR), southern Brazil, an area unprotected by any official monitoring program. Here we report the results of an extensive sampling effort that ultimately led PR authorities to issue the first State shellfish-harvesting ban due to multi-species okadaic acid (OA) contamination. During its peak, the bloom covered an area of 201 km2 (∼2.0-3.5 × 54.0 km), attaining unprecedentedly high cell densities along the shallow (<15 m) continental shelf (mean 2.2 × 105, maximum 2.1 × 106 cells L-1) and adjacent sandy beaches (mean 2.8 × 105, maximum 5.2 × 106 cells L-1). Only OA was detected in suspension (max. 188 ng L-1). Toxin levels measured in bivalves were several times greater than the regulatory limit of 160 ng g-1, reaching up to 3600 ng g-1 in Crassostrea gasar, by far the highest OA concentrations ever reported in oysters worldwide, 7700 ng g-1 in brown mussels, Perna perna, and lower levels in clams, Anomalocardia brasiliana, and mangrove mussels, Mytella spp. Nine cases of human intoxication were officially reported and five people were hospitalized with typical symptoms of Diarrhetic Shellfish Poisoning linked to the consumption of contaminated bivalves. All bivalves quickly converted most of the OA into its esterified form, DTX-3, and eliminated the toxins only a few weeks following the bloom, with C. gasar being the slowest-detoxifying species. Lower OA levels were accumulated in zooplankton, gastropods and several novel toxin vectors, including benthic organisms such as sand dollars Mellita quinquiesperforata and the ghost-shrimp Callichirus major, which may act as a good indicator of the presence of toxins in sandy beaches, and pelagic fish species that can serve as potential alternative sources of OA to humans (Chaetodipterus faber and Mugil liza). Monitoring toxin contamination in seafood other than bivalves is thus recommended to ensure comprehensive human health protection during massive Dinophysis blooms. Additionally, since OA was also present at low concentrations in the liver of Guiana dolphins Sotalia guianensis and penguins Spheniscus magellanicus, exposure to biotoxins should be considered in conservation actions involving threatened and near-threatened marine organisms in this region.
Collapse
Affiliation(s)
- L L Mafra
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil.
| | - P K W Nolli
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| | - L E Mota
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| | - C Domit
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| | - M Soeth
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| | - L F G Luz
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| | - B F Sobrinho
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| | - J G Leal
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| | - M Di Domenico
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| |
Collapse
|
19
|
Smith J, Lie AAY, Seubert EL, Crowley N, Robertson G, Caron DA. Co-occurring dissolved algal toxins observed at multiple coastal sites in southern California via solid phase adsorption toxin tracking. Toxicon 2019; 171:62-65. [PMID: 31614156 DOI: 10.1016/j.toxicon.2019.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/19/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
Algal toxins (domoic acid, saxitoxin, okadaic acid) were monitored at seven locations off southern California using Solid Phase Adsorption Toxin Tracking. At least two types of toxins were found at all locations, with co-occurrence of two and three toxins in 12% and 10% of samples, respectively. This study expands our limited understanding of the simultaneous presence of multiple algal toxins along the coast and raises questions regarding the potential health ramifications of such co-occurrences.
Collapse
Affiliation(s)
- Jayme Smith
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA; Southern California Coastal Water Research Project, Costa Mesa, CA, 92626, USA.
| | - Alle A Y Lie
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Erica L Seubert
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Noelle Crowley
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - George Robertson
- Orange County Sanitation District, 10844 Ellis Avenue, Fountain Valley, CA, 92708, USA
| | - David A Caron
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
20
|
He X, Chen J, Wu D, Sun P, Ma X, Wang J, Liu L, Chen K, Wang B. Distribution Characteristics and Environmental Control Factors of Lipophilic Marine Algal Toxins in Changjiang Estuary and the Adjacent East China Sea. Toxins (Basel) 2019; 11:E596. [PMID: 31614878 PMCID: PMC6833110 DOI: 10.3390/toxins11100596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/31/2022] Open
Abstract
Marine algal toxins, highly toxic secondary metabolites, have significant influences on coastal ecosystem health and mariculture safety. The occurrence and environmental control factors of lipophilic marine algal toxins (LMATs) in the surface seawater of the Changjiang estuary (CJE) and the adjacent East China Sea (ECS) were investigated. Pectenotoxin-2 (PTX2), okadaic acid (OA), dinophysistoxin-1(DTX1), and gymnodimine (GYM) were detected in the CJE surface seawater in summer, with concentration ranges of not detected (ND)-105.54 ng/L, ND-13.24 ng/L, ND-5.48 ng/L, and ND-12.95 ng/L, respectively. DTX1 (ND-316.15 ng/L), OA (ND-16.13 ng/L), and PTX2 (ND-4.97 ng/L) were detected in the ECS during spring. LMATs formed a unique low-concentration band in the Changjiang diluted water (CJDW) coverage area in the typical large river estuary. PTX2, OA, and DTX1 in seawater were mainly derived from Dinophysis caudate and Dinophysis rotundata, while GYM was suspected to be from Karenia selliformis. Correlation analyses showed that LMAT levels in seawater were positively correlated with dissolved oxygen and salinity, but negatively correlated with temperature and nutrients, indicating that the hydrological condition and nutritional status of seawater and climatic factors exert significant effects on the distribution of LMATs.
Collapse
Affiliation(s)
- Xiuping He
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| | - Junhui Chen
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| | - Danni Wu
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Ping Sun
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Xin Ma
- Qinhuangdao Marine Environmental Monitoring Central Station, Qinhuangdao 066000, China.
| | - Jiuming Wang
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Lijun Liu
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
- Marine College, Shandong University, Weihai 264200, China.
| | - Kan Chen
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Baodong Wang
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| |
Collapse
|
21
|
Wang N, Mertens KN, Krock B, Luo Z, Derrien A, Pospelova V, Liang Y, Bilien G, Smith KF, De Schepper S, Wietkamp S, Tillmann U, Gu H. Cryptic speciation in Protoceratium reticulatum (Dinophyceae): Evidence from morphological, molecular and ecophysiological data. HARMFUL ALGAE 2019; 88:101610. [PMID: 31582156 DOI: 10.1016/j.hal.2019.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 06/10/2023]
Abstract
The cosmopolitan, potentially toxic dinoflagellate Protoceratium reticulatum possesses a fossilizable cyst stage which is an important paleoenvironmental indicator. Slight differences in the internal transcribed spacer ribosomal DNA (ITS rDNA) sequences of P. reticulatum have been reported, and both the motile stage and cyst morphology of P. reticulatum display phenotypic plasticity, but how these morpho-molecular variations are related with ecophysiological preferences is unknown. Here, 55 single cysts or cells were isolated from localities in the Northern (Arctic to subtropics) and Southern Hemispheres (Chile and New Zealand), and in total 34 strains were established. Cysts and/or cells were examined with light microscopy and/or scanning electron microscopy. Large subunit ribosomal DNA (LSU rDNA) and/or ITS rDNA sequences were obtained for all strains/isolates. All strains/isolates of P. reticulatum shared identical LSU sequences except for one strain from the Mediterranean Sea that differs in one position, however ITS rDNA sequences displayed differences at eight positions. Molecular phylogeny was inferred using maximum likelihood and Bayesian inference based on ITS rDNA sequences. The results showed that P. reticulatum comprises at least three ribotypes (designated as A, B, and C). Ribotype A included strains from the Arctic and temperate areas, ribotype B included strains from temperate regions only, and ribotype C included strains from the subtropical and temperate areas. The average ratios of process length to cyst diameter of P. reticulatum ranged from 15% in ribotype A, 22% in ribotype B and 17% in ribotype C but cyst size could overlap. Theca morphology was indistinguishable among ribotypes. The ITS-2 secondary structures of ribotype A displayed one CBC (compensatory change on two sides of a helix pairing) compared to ribotypes B and C. Growth response of one strain from each ribotype to various temperatures was examined. The strains of ribotypes A, B and C exhibited optimum growth at 15 °C, 20 °C and 20-25 °C, respectively, thus corresponding to cold, moderate and warm ecotypes. The profiles of yessotoxins (YTXs) were examined for 25 strains using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The parent compound yessotoxin (YTX) was produced by strains of ribotypes A and B, but not by ribotype C strains, which only produced the structural variant homoyessotoxin (homoYTX). Our results support the notion that there is significant intra-specific variability in Protoceratium reticulatum and the biogeography of the different ribotypes is consistent with specific ecological preferences.
Collapse
Affiliation(s)
- Na Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Kenneth Neil Mertens
- Ifremer, LER BO, Station de Biologie Marine, Place de la Croix, BP40537, F-29185 Concarneau CEDEX, France
| | - Bernd Krock
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Zhaohe Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Amélie Derrien
- Ifremer, LER BO, Station de Biologie Marine, Place de la Croix, BP40537, F-29185 Concarneau CEDEX, France
| | - Vera Pospelova
- School of Earth and Ocean Sciences, University of Victoria, OEASB A405, P. O. Box 1700 16 STN CSC, Victoria, British Columbia, V8W 2Y2, Canada
| | - Yubo Liang
- National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian, 116023, China
| | - Gwenael Bilien
- Ifremer, LER BO, Station de Biologie Marine, Place de la Croix, BP40537, F-29185 Concarneau CEDEX, France
| | - Kirsty F Smith
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Stijn De Schepper
- NORCE Climate, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, 5007 Bergen, Norway
| | - Stephan Wietkamp
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Urban Tillmann
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany.
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
22
|
Liu Y, Yu RC, Kong FZ, Li C, Dai L, Chen ZF, Geng HX, Zhou MJ. Contamination status of lipophilic marine toxins in shellfish samples from the Bohai Sea, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:171-180. [PMID: 30884396 DOI: 10.1016/j.envpol.2019.02.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/08/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Lipophilic marine toxins in shellfish pose significant threats to the health of seafood consumers. To assess the contamination status of shellfish by lipophilic marine toxins in the Bohai Sea, nine species of shellfish periodically collected from five representative aquaculture zones throughout a year were analyzed with a method of liquid chromatography-tandem mass spectrometry (LC-MS/MS). Lipophilic marine toxins, including okadaic acid (OA), dinophysistoxin-1 (DTX1), pectenotoxin-2 (PTX2), yessotoxin (YTX), homo-yessotoxin (homo-YTX), azaspiracids (AZA2 and AZA3), gymnodimine (GYM), and 13-desmethyl spirolide C (13-DesMe-C), were detected in more than 95 percent of the shellfish samples. Toxins PTX2, YTX, 13-DesMe-C and GYM were predominant components detected in shellfish samples. Scallops, clams and mussels accumulated much higher level of lipophilic marine toxins compared to oysters. Toxin content in shellfish samples collected from different sampling locations showed site-specific seasonal variation patterns. High level of toxins was found during the stages from December to February and June to July in Hangu, while from March to April and August to September in Laishan. Some toxic algae, including Dinophysis acuminata, D. fortii, Prorocentrum lima, Gonyaulax spinifera and Lingulodinium polyedrum, were identified as potential origins of lipophilic marine toxins in the Bohai Sea. The results will offer a sound basis for monitoring marine toxins and protecting the health of seafood consumers.
Collapse
Affiliation(s)
- Yang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ren-Cheng Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Fan-Zhou Kong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chen Li
- Research Center of Analysis and Measurement, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Li Dai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Zhen-Fan Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Hui-Xia Geng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ming-Jiang Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
23
|
Chen J, Tan Z, Wu H, Peng J, Zhai Y, Guo M. Selective enrichment and quantification of okadaic acid in shellfish using an immunomagnetic-bead-based liquid chromatography with tandem mass spectrometry assay. J Sep Sci 2019; 42:1423-1431. [PMID: 30667151 DOI: 10.1002/jssc.201800875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 11/10/2022]
Abstract
Okadaic acid is a marine biotoxin that primarily occurs in shellfish and can cause diarrheic shellfish poisoning in humans. When analyzing biological samples using liquid chromatography with tandem mass spectrometry, the presence of complex matrices is a major issue. Thus, it is crucial to selectively and simply extract the target analyte from samples and minimize matrix effects simultaneously. To meet this need, an immunomagnetic-bead-based liquid chromatography with tandem mass spectrometry method was developed to detect okadaic acid in shellfish. Magnetic beads bound to monoclonal antibody against okadaic acid were used as affinity probes to specifically enrich okadaic acid in samples, which effectively eliminated matrix effects. A magnetic separator was used to aggregate and separate magnetic particles from sample matrices, and methanol was used to elute okadaic acid from the magnetic beads. Standard solution prepared with methanol was employed directly for quantitative analysis. Several experimental conditions were optimized to improve performance. The method is of interest as a rapid (10 min) sample clean-up and selective enrichment tool, and it showed good linearity and sensitivity, with reported limits of detection and quantitation of 3 and 10 μg/kg, respectively. Fifty-three shellfish samples from an aquatic products market were tested using this method, and four samples positive for okadaic acid were found.
Collapse
Affiliation(s)
- Jiaqi Chen
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, P. R. China.,College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, P. R. China
| | - Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, P. R. China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, P. R. China
| | - Yuxiu Zhai
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, P. R. China
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, P. R. China
| |
Collapse
|
24
|
LI H, WEI X, GU C, SU K, WAN H, HU N, WANG P. A Dual Functional Cardiomyocyte-based Hybrid-biosensor for the Detection of Diarrhetic Shellfish Poisoning and Paralytic Shellfish Poisoning Toxins. ANAL SCI 2018; 34:893-900. [DOI: 10.2116/analsci.18p029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hongbo LI
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences
| | - Xinwei WEI
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
| | - Chenlei GU
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
| | - Kaiqi SU
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
| | - Hao WAN
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
| | - Ning HU
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
- Department of Biomedical Engineering, Tufts University
| | - Ping WANG
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences
| |
Collapse
|
25
|
Tong TTV, Le THH, Tu BM, Le DC. Spatial and seasonal variation of diarrheic shellfish poisoning (DSP) toxins in bivalve mollusks from some coastal regions of Vietnam and assessment of potential health risks. MARINE POLLUTION BULLETIN 2018; 133:911-919. [PMID: 30041395 DOI: 10.1016/j.marpolbul.2018.06.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/11/2018] [Accepted: 06/16/2018] [Indexed: 06/08/2023]
Abstract
The occurrence of okadaic acid (OA) group toxins in bivalve mollusk collected from Vietnamese coastal areas was investigated from April 2016 to April 2017. OA group toxins were detected in mollusk by UPLC-MS/MS with the highest level of 11.3 ng/g and detection frequency of 11.8%. Toxins were detected more frequently in dry season (14.4% of analyzed samples) than in wet season (7.9%). Toxins were also detected more frequently at sampling locations in the northern parts (≥10.4%) than in the southern part (≤8.3%) of Vietnamese coastline. Results of this study were similar to those obtained in long-term studies in regions geographically close to Vietnam, confirming decisive influence of geographic location on the accumulation of toxins in mollusks. Within the scope of the study, toxin levels in all contaminated samples were below the regulation limit (160 ng/g), but the presence of OA group toxins in bivalve mollusk suggests the need of a more stringent control of toxins in bivalve mollusk in Vietnam.
Collapse
Affiliation(s)
- Thi Thanh Vuong Tong
- Department of Analytical Chemistry and Toxicology, Ha Noi University of Pharmacy, 11-13 Le Thanh Tong, Hoan Kiem, Ha Noi, Viet Nam
| | - Thi Hong Hao Le
- National Institute of Food Control, 65 Pham Than Duat, Cau Giay, Ha Noi, Viet Nam
| | - Binh Minh Tu
- Faculty of Chemistry, VNU of Science, Vietnam National University, Viet Nam
| | - Dinh Chi Le
- Department of Analytical Chemistry and Toxicology, Ha Noi University of Pharmacy, 11-13 Le Thanh Tong, Hoan Kiem, Ha Noi, Viet Nam.
| |
Collapse
|
26
|
Effect of Suspended Particulate Matter on the Accumulation of Dissolved Diarrhetic Shellfish Toxins by Mussels ( Mytilus galloprovincialis) under Laboratory Conditions. Toxins (Basel) 2018; 10:toxins10070273. [PMID: 29970810 PMCID: PMC6071173 DOI: 10.3390/toxins10070273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/19/2018] [Accepted: 06/28/2018] [Indexed: 11/17/2022] Open
Abstract
In recent years, detection of trace amounts of dissolved lipophilic phycotoxins in coastal waters has been possible using solid phase adsorption toxin tracking (SPATT) samplers. To explore the contribution of dissolved diarrhetic shellfish toxins (DST) to the accumulation of toxins by cultivated bivalves, mussels (Mytilus galloprovincialis) were exposed to different concentrations of purified okadaic acid (OA) and dinophysistoxin-1 (DTX1) in filtered (0.45 µm) seawater for 96 h. Accumulation and esterification of DST by mussels under different experimental conditions, including with and without the addition of the food microalga Isochrysis galbana, and with the addition of different size-fractions of suspended particulate matter (SPM) (<75 µm, 75–150 µm, 150–250 µm) were compared. Results showed that mussels accumulated similar amounts of OA and DTX1 from seawater with or without food microalgae present, and slightly lower amounts when SPM particles were added. Mussels preferentially accumulated OA over DTX1 in all treatments. The efficiency of the mussel’s accumulation of OA and DTX1 from seawater spiked with low concentrations of toxins was higher than that in seawater with high toxin levels. A large proportion of OA (86–94%) and DTX1 (65–82%) was esterified to DTX3 by mussels in all treatments. The proportion of I. galbana cells cleared by mussels was markedly inhibited by dissolved OA and DTX1 (OA 9.2 µg L−1, DTX1 13.2 µg L−1) in seawater. Distribution of total OA and DTX1 accumulated in the mussel tissues ranked in all treatments as follows: digestive gland > gills > mantle > residual tissues. However, the percentage of total DST in the digestive gland of mussels in filtered seawater (67%) was higher than with the addition of SPM particles (75–150 µm) (51%), whereas the gills showed the opposite trend in filtered seawater with (27%) and without (14.4%) SPM particles. Results presented here will improve our understanding of the mechanisms of DST accumulation by bivalves in marine aquaculture environments.
Collapse
|
27
|
Dhanji-Rapkova M, O'Neill A, Maskrey BH, Coates L, Teixeira Alves M, Kelly RJ, Hatfield RG, Rowland-Pilgrim SJ, Lewis AM, Algoet M, Turner AD. Variability and profiles of lipophilic toxins in bivalves from Great Britain during five and a half years of monitoring: Okadaic acid, dinophysis toxins and pectenotoxins. HARMFUL ALGAE 2018; 77:66-80. [PMID: 30005803 DOI: 10.1016/j.hal.2018.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Official control biotoxin testing of bivalve molluscs from Great Britain has been conducted by Cefas for over a decade. Reflecting the changes in legislation, bioassays were gradually replaced by analytical methods, firstly for analysis of Paralytic shellfish toxins, followed by introduction of liquid chromatography tandem mass spectrometric (LCMS/MS) method for lipophilic toxins (LTs) in 2011. Twelve compounds, representing three main groups of regulated lipophilic toxins, as well as two non-regulated cyclic imines were examined in over 20,500 samples collected between July 2011 and December 2016. The toxins belonging to Okadaic acid (OA) group toxins were the most prevalent and were quantified in 23% of samples, predominantly from Scotland. The temporal pattern of OA group occurrences remained similar each year, peaking in summer months and tailing off during autumn and winter, however their abundance and magnitude varied between years significantly, with concentrations reaching up to 4993 μg OA eq./kg. Three toxin profiles were identified, reflecting the relative contribution of the two main toxins, OA and dinophysis toxin-2 (DTX2). Dinophysis toxin-1 (DTX1) was less common and was never detected in samples with high proportions of DTX2. Inter-annual changes in profiles were observed within certain regions, with the most notable being an increase of DTX2 occurrences in north-west Scotland and England in the last three years of monitoring. In addition, seasonal changes of profiles were identified when OA, the dominant toxin in early summer, was replaced by higher proportions of DTX2 in late summer and autumn. The profile distribution possibly reflected the availability of individual Dinophysis species as a food source for shellfish, however persistence of DTX2 during autumn and winter in mussels might have also been attributed to their physiology. Mussels were the only species with higher average proportions of non-esterified toxins, while Pacific oysters, cockles, surf clams, razors and queen scallops contained almost exclusively ester forms. In addition, a temporal change in proportion of OA and DTX2 free form was observed in mussels. Pectenotoxin-2 (PTX2) was quantified only on rare occasions.
Collapse
Affiliation(s)
- Monika Dhanji-Rapkova
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom.
| | - Alison O'Neill
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Benjamin H Maskrey
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Lewis Coates
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Mickael Teixeira Alves
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Rebecca J Kelly
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Robert G Hatfield
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Stephanie J Rowland-Pilgrim
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Adam M Lewis
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Myriam Algoet
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| |
Collapse
|
28
|
Development of a High Performance Liquid Chromatography-Tandem Mass Spectrometry Method for Determination of Lipophilic Toxins in Marine Shellfishes and Edible Safety Evaluation. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61092-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Alves TP, Schramm MA, Proença LAO, Pinto TO, Mafra LL. Interannual variability in Dinophysis spp. abundance and toxin accumulation in farmed mussels (Perna perna) in a subtropical estuary. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:329. [PMID: 29730718 DOI: 10.1007/s10661-018-6699-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
This study evaluated an 8-year dataset (2007 to 2015, except 2008) in the attempt to identify the most susceptible periods for the occurrence of diarrheic shellfish poisoning (DSP) episodes associated with the presence of toxigenic dinoflagellates, Dinophysis spp., in the mussel farming area of Babitonga Bay (southern Brazil). Dinophysis acuminata complex was the most frequent (present in 66% of the samples) and abundant (max. 4100 cells L-1) taxon, followed by D. caudata (14%; max. 640 cells L-1) and D. tripos (0.9%; max. 50 cells L-1). There was a marked onset of the annual rise in Dinophysis spp. abundance during weeks 21-25 (early winter) of each year, followed by a second peak on week 35 (spring). Mussel (Perna perna) samples usually started testing positive in DSP mouse bioassays (MBA) in late winter. Positive results were more frequent in 2007 and 2011 when the mean D. acuminata complex abundance was ~ 500 cells L-1. Although positive DSP-MBA results were observed in only 11% of the samples during the studied period, the toxin okadaic acid (OA) was present in 90% of the analyzed mussels (max. 264 μg kg-1). MBA results were positive when D. acuminata complex cell densities exceed 1200 ± 300 cells L-1, while trace toxin amounts could be detected at cell densities as low as 150 ± 50 cells L-1 (free OA) to 200 ± 100 cells L-1 (conjugated OA). Low salinity and the meteorological conditions triggered by La Niña events were the main factors associated with both Dinophysis abundance and OA accumulation in mussels.
Collapse
Affiliation(s)
- T P Alves
- Federal Institute of Santa Catarina, Av. Ver. Abraão João Francisco, 3988, Ressacada, Itajaí, SC, 88307-303, Brazil.
- Center for Marine Studies, Federal University of Paraná, Av. Beira-mar s/n, Pontal do Sul, P.O. Box 61, Pontal do Paraná, PR, 83255-976, Brazil.
| | - M A Schramm
- Federal Institute of Santa Catarina, Av. Ver. Abraão João Francisco, 3988, Ressacada, Itajaí, SC, 88307-303, Brazil
| | - L A O Proença
- Federal Institute of Santa Catarina, Av. Ver. Abraão João Francisco, 3988, Ressacada, Itajaí, SC, 88307-303, Brazil
| | - T O Pinto
- Federal Institute of Santa Catarina, Av. Ver. Abraão João Francisco, 3988, Ressacada, Itajaí, SC, 88307-303, Brazil
| | - L L Mafra
- Center for Marine Studies, Federal University of Paraná, Av. Beira-mar s/n, Pontal do Sul, P.O. Box 61, Pontal do Paraná, PR, 83255-976, Brazil
| |
Collapse
|
30
|
Mudadu AG, Lorenzoni G, Bazzoni AM, Bazzardi R, Tedde G, Arras I, Sanna G, Santucciu C, Marongiu E, Virgilio S. Yessotoxin detection in bivalve molluscs: A case study from coastal mussel farms (Sardinia, Italy). Ital J Food Saf 2018; 6:7015. [PMID: 29564241 PMCID: PMC5850047 DOI: 10.4081/ijfs.2017.7015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 11/23/2022] Open
Abstract
This work reports the first communication relating to the presence of yessotoxins in Mytilus galloprovincialis from coastal mussel farms (Sardinia, western Mediterranean) detected during 2008 and 2013 through a monitoring programme. The paper emphasizes how the changes both in yessotoxin permitted limits and used methods, established by legislation, have influenced the interpretation of the obtained results. Consequently, the samples that resulted negative during 2008 would have been positive until August 2013 and negative from September 2013 up to now, and the samples that were positive in 2013 would have been positive in 2008 and negative nowadays, according to Regulation currently in force. Regular monitoring of biotoxins demonstrated that, although yessotoxins have been rarely present in the past in Sardinia, they may cause toxicity in shellfish. So, it’s important to keep up on legislation’s changing and laboratory methods.
Collapse
Affiliation(s)
| | | | | | | | - Giuseppe Tedde
- Veterinary Public Health Institute of Sardinia, Sassari, Italy
| | - Igor Arras
- Veterinary Public Health Institute of Sardinia, Sassari, Italy
| | - Giovanna Sanna
- Veterinary Public Health Institute of Sardinia, Sassari, Italy
| | | | | | | |
Collapse
|
31
|
Alarcan J, Biré R, Le Hégarat L, Fessard V. Mixtures of Lipophilic Phycotoxins: Exposure Data and Toxicological Assessment. Mar Drugs 2018; 16:E46. [PMID: 29385038 PMCID: PMC5852474 DOI: 10.3390/md16020046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 01/23/2023] Open
Abstract
Lipophilic phycotoxins are secondary metabolites produced by phytoplanktonic species. They accumulate in filter-feeding shellfish and can cause human intoxication. Regulatory limits have been set for individual toxins, and the toxicological features are well characterized for some of them. However, phycotoxin contamination is often a co-exposure phenomenon, and toxicological data regarding mixtures effects are very scarce. Moreover, the type and occurrence of phycotoxins can greatly vary from one region to another. This review aims at summarizing the knowledge on (i) multi-toxin occurrence by a comprehensive literature review and (ii) the toxicological assessment of mixture effects. A total of 79 publications was selected for co-exposure evaluation, and 44 of them were suitable for toxin ratio calculations. The main toxin mixtures featured okadaic acid in combination with pectenotoxin-2 or yessotoxin. Only a few toxicity studies dealing with co-exposure were published. In vivo studies did not report particular mixture effects, whereas in vitro studies showed synergistic or antagonistic effects. Based on the combinations that are the most reported, further investigations on mixture effects must be carried out.
Collapse
Affiliation(s)
- Jimmy Alarcan
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, 35300 Fougères, France.
| | - Ronel Biré
- Marine Biotoxins Unit, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, 94706 Maisons-Alfort, France.
| | - Ludovic Le Hégarat
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, 35300 Fougères, France.
| | - Valérie Fessard
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, 35300 Fougères, France.
| |
Collapse
|
32
|
Yu RC, Lü SH, Liang YB. Harmful Algal Blooms in the Coastal Waters of China. ECOLOGICAL STUDIES 2018. [DOI: 10.1007/978-3-319-70069-4_15] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Nicolas J, Hoogenboom RL, Hendriksen PJ, Bodero M, Bovee TF, Rietjens IM, Gerssen A. Marine biotoxins and associated outbreaks following seafood consumption: Prevention and surveillance in the 21st century. GLOBAL FOOD SECURITY-AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT 2017. [DOI: 10.1016/j.gfs.2017.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
34
|
Liu Y, Yu RC, Kong FZ, Li C, Dai L, Chen ZF, Zhou MJ. Lipophilic marine toxins discovered in the Bohai Sea using high performance liquid chromatography coupled with tandem mass spectrometry. CHEMOSPHERE 2017; 183:380-388. [PMID: 28554022 DOI: 10.1016/j.chemosphere.2017.05.073] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Some dinoflagellates can produce lipophilic marine toxins, which pose potent threats to seafood consumers. In the Bohai Sea, an important semi-closed inland sea with intensive mariculture industry in China, there is little knowledge concerning lipophilic marine toxins and their potential threats. In this study, net-concentrated phytoplankton samples were periodically collected from 5 typical mariculture zones around the Bohai Sea, including Laishan (LS), Laizhou (LZ), Hangu (HG), Qinhuangdao (QHD) and Huludao (HLD) in 2013 and 2014, and a method using high performance liquid chromatography (HPLC) coupled with a Q-Trap mass spectrometer was applied to analyze seven representative lipophilic marine toxins, including okadaic acid (OA), dinophysistoxin-1 (DTX1), pectenotoxin-2 (PTX2), yessotoxin (YTX), azaspiracid-1 (AZA1), gymnodimine (GYM), and 13-desmethyl spirolide C (desMeC). The method had high sensitivity and repeatability, and exhibited satisfactory recoveries for most of the lipophilic marine toxins (92.1-108%) except for AZA1 (65.8-68.9%). Nearly all the lipophilic marine toxins could be detected in phytoplankton samples from the Bohai Sea. OA, DTX1 and PTX2 were predominant components and present in most of the phytoplankton samples. The maximum content of lipophilic marine toxin in phytoplankton samples concentrated from seawater (OA 464 pg L-1; DTX1 783 pg L-1; YTX 86.6 pg L-1; desMeC 15.6 pg L-1; PTX2 1.11 × 103 pg L-1) appeared in June 2014. Based on toxins present in phytoplankton samples, it is implied that seafood in the Bohai Sea is more likely to be contaminated by OA group and PTX group toxins, and spring is the high-risk season for toxin contamination.
Collapse
Affiliation(s)
- Yang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Ren-Cheng Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| | - Fan-Zhou Kong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Chen Li
- Research Center of Analysis and Measurement, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Li Dai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Zhen-Fan Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Ming-Jiang Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
35
|
Jiang T, Liu L, Li Y, Zhang J, Tan Z, Wu H, Jiang T, Lu S. Occurrence of marine algal toxins in oyster and phytoplankton samples in Daya Bay, South China Sea. CHEMOSPHERE 2017; 183:80-88. [PMID: 28535464 DOI: 10.1016/j.chemosphere.2017.05.067] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/12/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
The occurrence and seasonal variations of marine algal toxins in phytoplankton and oyster samples in Daya Bay (DYB), South China Sea were investigated. Two Dinophysis species, namely, D. caudata and D. acuminata complex, were identified as Okadaic acid (OA)/pectenotoxin (PTX) related species. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis demonstrated that 2.04-14.47 pg PTX2 per cell was the predominant toxin in single-cell isolates of D. caudata. D. acuminata was not subjected to toxin analysis. The occurrence of OAs in phytoplankton concentrates of net-haul sample coincided with the presence of D. accuminata complex, suggesting that this species is most likely an OA producer in this sea area. OA, dinophysistoxins-1 (DTX1), PTX2, PTX2sa, gymnodimine (GYM), homoyessotoxin (homoYTX), and domoic acid (DA) demonstrated positive results in net haul samples. To our best knowledge, this paper is the first to report the detection of GYM, DA, and homoYTX in phytoplankton samples in Chinese coastal waters. Among the algal toxins, GYM demonstrated the highest frequency of positive detections in phytoplankton concentrates (13/17). Five compounds of algal toxins, including OA, DTX1, PTX2, PTX2sa, and GYM, were detected in oyster samples. DA and homoYTX were not detected in oysters despite of positive detections for both in the phytoplankton concentrates. However, neither the presence nor absence of DA in oysters can be determined because extraction conditions with 100% methanol used to isolate toxins from oysters (recommended by the EU-Harmonised Standard Operating Procedure, 2015) would likely be unsuitable for this water-soluble toxin. In addition, transformation of DA during the digestion process of oysters may also be involved in the negative detections of this toxin. GYM exhibited the highest frequency of positive results in oysters (14/17). OAs were only detected in the hydrolyzed oyster samples. The detection rates of PTX and PTX2sa in oysters were lower than those in the net haul samples.
Collapse
Affiliation(s)
- Tao Jiang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Research Center for Harmful Algae & Marine Biology, Jinan University, Guangzhou 510632, China
| | - Lei Liu
- Research Center for Harmful Algae & Marine Biology, Jinan University, Guangzhou 510632, China; National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yang Li
- College of Life Science, South China Normal University, Guangzhou 510630, China
| | - Jing Zhang
- Research Center for Harmful Algae & Marine Biology, Jinan University, Guangzhou 510632, China
| | - Zhijun Tan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Haiyan Wu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Tianjiu Jiang
- Research Center for Harmful Algae & Marine Biology, Jinan University, Guangzhou 510632, China.
| | - Songhui Lu
- Research Center for Harmful Algae & Marine Biology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
36
|
Occurrence and variation of lipophilic shellfish toxins in phytoplankton, shellfish and seawater samples from the aquaculture zone in the Yellow Sea, China. Toxicon 2017; 127:1-10. [DOI: 10.1016/j.toxicon.2016.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/17/2016] [Accepted: 12/20/2016] [Indexed: 11/23/2022]
|
37
|
Hu T, LeBlanc P, Burton IW, Walter JA, McCarron P, Melanson JE, Strangman WK, Wright JLC. Sulfated diesters of okadaic acid and DTX-1: Self-protective precursors of diarrhetic shellfish poisoning (DSP) toxins. HARMFUL ALGAE 2017; 63:85-93. [PMID: 28366404 DOI: 10.1016/j.hal.2017.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 06/07/2023]
Abstract
Many toxic secondary metabolites used for defense are also toxic to the producing organism. One important way to circumvent toxicity is to store the toxin as an inactive precursor. Several sulfated diesters of the diarrhetic shellfish poisoning (DSP) toxin okadaic acid have been reported from cultures of various dinoflagellate species belonging to the genus Prorocentrum. It has been proposed that these sulfated diesters are a means of toxin storage within the dinoflagellate cell, and that a putative enzyme mediated two-step hydrolysis of sulfated diesters such as DTX-4 and DTX-5 initially leads to the formation of diol esters and ultimately to the release of free okadaic acid. However, only one diol ester and no sulfated diesters of DTX-1, a closely related DSP toxin, have been isolated leading some to speculate that this toxin is not stored as a sulfated diester and is processed by some other means. DSP components in organic extracts of two large scale Prorocentrum lima laboratory cultures have been investigated. In addition to the usual suite of okadaic acid esters, as well as the free acids okadaic acid and DTX-1, a group of corresponding diol- and sulfated diesters of both okadaic acid and DTX-1 have now been isolated and structurally characterized, confirming that both okadaic acid and DTX-1 are initially formed in the dinoflagellate cell as the non-toxic sulfated diesters.
Collapse
Affiliation(s)
- Tingmo Hu
- Institute for Marine Biosciences, National Research Council of Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| | - Patricia LeBlanc
- Institute for Marine Biosciences, National Research Council of Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada; Measurement Science and Standards, National Research Council of Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| | - Ian W Burton
- Institute for Marine Biosciences, National Research Council of Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| | - John A Walter
- Institute for Marine Biosciences, National Research Council of Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| | - Pearse McCarron
- Measurement Science and Standards, National Research Council of Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| | - Jeremy E Melanson
- Institute for Marine Biosciences, National Research Council of Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada; Measurement Science and Standards, National Research Council of Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Wendy K Strangman
- UNC Wilmington Center for Marine Science, Marvin K. Moss Lane, Wilmington, NC 28409, United States
| | - Jeffrey L C Wright
- Institute for Marine Biosciences, National Research Council of Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada; UNC Wilmington Center for Marine Science, Marvin K. Moss Lane, Wilmington, NC 28409, United States.
| |
Collapse
|
38
|
The Mechanism of Diarrhetic Shellfish Poisoning Toxin Production in Prorocentrum spp.: Physiological and Molecular Perspectives. Toxins (Basel) 2016; 8:toxins8100272. [PMID: 27669302 PMCID: PMC5086633 DOI: 10.3390/toxins8100272] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/10/2016] [Accepted: 09/07/2016] [Indexed: 11/16/2022] Open
Abstract
Diarrhetic shellfish poisoning (DSP) is a gastrointestinal disorder caused by the consumption of seafood contaminated with okadaic acid (OA) and dinophysistoxins (DTXs). OA and DTXs are potent inhibitors of protein phosphatases 2A, 1B, and 2B, which may promote cancer in the human digestive system. Their expression in dinoflagellates is strongly affected by nutritional and environmental factors. Studies have indicated that the level of these biotoxins is inversely associated with the growth of dinoflagellates at low concentrations of nitrogen or phosphorus, or at extreme temperature. However, the presence of leucine or glycerophosphate enhances both growth and cellular toxin level. Moreover, the presence of ammonia and incubation in continuous darkness do not favor the toxin production. Currently, studies on the mechanism of this biotoxin production are scant. Full genome sequencing of dinoflagellates is challenging because of the massive genomic size; however, current advanced molecular and omics technologies may provide valuable insight into the biotoxin production mechanism and novel research perspectives on microalgae. This review presents a comprehensive analysis on the effects of various nutritional and physical factors on the OA and DTX production in the DSP toxin-producing Prorocentrum spp. Moreover, the applications of the current molecular technologies in the study on the mechanism of DSP toxin production are discussed.
Collapse
|
39
|
Visciano P, Schirone M, Berti M, Milandri A, Tofalo R, Suzzi G. Marine Biotoxins: Occurrence, Toxicity, Regulatory Limits and Reference Methods. Front Microbiol 2016; 7:1051. [PMID: 27458445 PMCID: PMC4933704 DOI: 10.3389/fmicb.2016.01051] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/23/2016] [Indexed: 01/08/2023] Open
Abstract
Harmful algal blooms are natural phenomena caused by the massive growth of phytoplankton that may contain highly toxic chemicals, the so-called marine biotoxins causing illness and even death to both aquatic organisms and humans. Their occurrence has been increased in frequency and severity, suggesting a worldwide public health risk. Marine biotoxins can accumulate in bivalve molluscs and regulatory limits have been set for some classes according to European Union legislation. These compounds can be distinguished in water- and fat-soluble molecules. The first group involves those of Paralytic Shellfish Poisoning and Amnesic Shellfish Poisoning, whereas the toxins soluble in fat can cause Diarrheic Shellfish Poisoning and Neurotoxic Shellfish Poisoning. Due to the lack of long-term toxicity studies, establishing tolerable daily intakes for any of these marine biotoxins was not possible, but an acute reference dose can be considered more appropriate, because these molecules show an acute toxicity. Dietary exposure assessment is linked both to the levels of marine biotoxins present in bivalve molluscs and the portion that could be eaten by consumers. Symptoms may vary from a severe gastrointestinal intoxication with diarrhea, nausea, vomiting, and abdominal cramps to neurological disorders such as ataxia, dizziness, partial paralysis, and respiratory distress. The official method for the detection of marine biotoxins is the mouse bioassay (MBA) showing some limits due to ethical restrictions and insufficient specificity. For this reason, the liquid chromatography-mass spectrometry method has replaced MBA as the reference technique. However, the monitoring of algal blooms producing marine biotoxins should be regularly assessed in order to obtain more reliable, accurate estimates of bloom toxicity and their potential impacts.
Collapse
Affiliation(s)
- Pierina Visciano
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo Teramo, Italy
| | - Maria Schirone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo Teramo, Italy
| | - Miriam Berti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale" Teramo, Italy
| | - Anna Milandri
- National Reference Laboratory for Marine Biotoxins, Fondazione Centro Ricerche Marine Cesenatico, Italy
| | - Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo Teramo, Italy
| | - Giovanna Suzzi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo Teramo, Italy
| |
Collapse
|
40
|
Determination of multiple toxins in whelk and clam samples collected from the Chukchi and Bering seas. Toxicon 2016; 109:84-93. [DOI: 10.1016/j.toxicon.2015.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 11/19/2022]
|
41
|
Wang Y, Chen J, Li Z, Wang S, Shi Q, Cao W, Zheng X, Sun C, Wang X, Zheng L. Determination of typical lipophilic marine toxins in marine sediments from three coastal bays of China using liquid chromatography-tandem mass spectrometry after accelerated solvent extraction. MARINE POLLUTION BULLETIN 2015; 101:954-960. [PMID: 26507511 DOI: 10.1016/j.marpolbul.2015.10.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
A method based on sample preparation by accelerated solvent extraction and analysis by liquid chromatography-tandem mass spectrometry was validated and used for determination of seven typical lipophilic marine toxins (LMTs) in marine sediment samples collected from three typical coastal bays in China. Satisfactory specificity, reproducibility (RSDs ≤ 14.76%), stability (RSDs ≤ 17.37%), recovery (78.0%-109.0%), and detection limit (3.440 pg/g-61.85 pg/g) of the developed method were achieved. The results obtained from the analysis of samples from Hangzhou Bay revealed okadaic acid as the predominant LMT with concentrations ranging from 186.0 to 280.7 pg/g. Pecenotoxin-2 was quantified in sediment samples from Laizhou Bay at the concentrations from 256.4 to 944.9 pg/g. These results suggested that the proposed method was reliable for determining the typical LMTs in marine sediments and that the sediments obtained from Hangzhou Bay, Laizhou Bay and Jiaozhou Bay were all contaminated by certain amounts of LMTs.
Collapse
Affiliation(s)
- Yanlong Wang
- Research Center for Marine Ecology, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
| | - Junhui Chen
- Research Center for Marine Ecology, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China.
| | - Zhaoyong Li
- Research Center for Marine Ecology, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
| | - Shuai Wang
- Research Center for Marine Ecology, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
| | - Qian Shi
- Research Center for Marine Ecology, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
| | - Wei Cao
- Research Center for Marine Ecology, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
| | - Xiaoling Zheng
- Research Center for Marine Ecology, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
| | - Chengjun Sun
- Research Center for Marine Ecology, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
| | - Xiaoru Wang
- Research Center for Marine Ecology, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
| | - Li Zheng
- Research Center for Marine Ecology, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
| |
Collapse
|
42
|
Wang XZ, Cheng Y, Li N, Wen HM, Liu R, Shan CX, Chai C, Wu H. Occurrence and Seasonal Variations of Lipophilic Marine Toxins in Commercial Clam Species along the Coast of Jiangsu, China. Toxins (Basel) 2015; 8:E8. [PMID: 26712791 PMCID: PMC4728530 DOI: 10.3390/toxins8010008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/11/2015] [Accepted: 12/17/2015] [Indexed: 01/22/2023] Open
Abstract
Recent studies have examined lipophilic marine toxins (LMTs) in shellfish and toxic algae worldwide, but the occurrence and seasonal variations of LMTs in commercial clams (including Mactra veneriformis, Ruditapes philippinarum, Meretrix meretrix, and Cyclina sinensis) at their major culturing area in Jiangsu, China, remain largely unexplored. In this study, a new solid phase extraction (SPE) in combination with an ultra-fast liquid chromatography and triple-quadrupole linear ion trap mass spectrometry (UFLC-TQ-MS) method was developed to determine the presence of 10 typical LMTs (okadaic acid (OA), yessotoxins (YTXs), azaspiracids (AZA1-3), pectenotoxins (PTX2), gymnodimine (GYM), dinophysistoxins (DTX1&2), and spirolides (SPX1)) in the aforementioned four clam matrices. After confirmation of its sensitivity and precision, this method was used to evaluate the amounts of LMTs in clam samples harvested in five aquaculture zones of the Jiangsu coastal area. Monthly variations of GYM, PTX2, OA, and DTX1&2 in 400 clam samples from the sample areas were determined from January 2014 through August 2015. Peak values were observed during May and August. This is the first systematic report of LMTs detected in clam samples harvested in Jiangsu. Follow-up research and the implementation of protective measures are needed to ensure the safety of clams harvested in this area.
Collapse
Affiliation(s)
- Xin-Zhi Wang
- School of Pharmacy, Nanjing University of Chinese Medicines, Xianlin Avenue No. 138, Nanjing 210023, China.
| | - Ying Cheng
- Marine Drug Research and Development Center of Jiangsu Province, Xianlin Avenue No. 138, Nanjing 210023, China.
| | - Na Li
- Marine Drug Research and Development Center of Jiangsu Province, Xianlin Avenue No. 138, Nanjing 210023, China.
| | - Hong-Mei Wen
- School of Pharmacy, Nanjing University of Chinese Medicines, Xianlin Avenue No. 138, Nanjing 210023, China.
| | - Rui Liu
- School of Pharmacy, Nanjing University of Chinese Medicines, Xianlin Avenue No. 138, Nanjing 210023, China.
| | - Chen-Xiao Shan
- School of Pharmacy, Nanjing University of Chinese Medicines, Xianlin Avenue No. 138, Nanjing 210023, China.
| | - Chuan Chai
- School of Pharmacy, Nanjing University of Chinese Medicines, Xianlin Avenue No. 138, Nanjing 210023, China.
| | - Hao Wu
- School of Pharmacy, Nanjing University of Chinese Medicines, Xianlin Avenue No. 138, Nanjing 210023, China.
- Marine Drug Research and Development Center of Jiangsu Province, Xianlin Avenue No. 138, Nanjing 210023, China.
| |
Collapse
|
43
|
Lin C, Liu ZS, Wang DX, Li L, Hu P, Gong S, Li YS, Cui C, Wu ZC, Gao Y, Zhou Y, Ren HL, Lu SY. Generation of Internal-Image Functional Aptamers of Okadaic Acid via Magnetic-Bead SELEX. Mar Drugs 2015; 13:7433-45. [PMID: 26694424 PMCID: PMC4699239 DOI: 10.3390/md13127066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 10/09/2015] [Accepted: 11/05/2015] [Indexed: 02/03/2023] Open
Abstract
Okadaic acid (OA) is produced by Dinophysis and Prorocentrum dinoflagellates and primarily accumulates in bivalves, and this toxin has harmful effects on consumers and operators. In this work, we first report the use of aptamers as novel non-toxic probes capable of binding to a monoclonal antibody against OA (OA-mAb). Aptamers that mimic the OA toxin with high affinity and selectivity were generated by the magnetic bead-assisted systematic evolution of ligands by exponential enrichment (SELEX) strategy. After 12 selection rounds, cloning, sequencing and enzyme-linked immunosorbent assay (ELISA) analysis, four candidate aptamers (O24, O31, O39, O40) were selected that showed high affinity and specificity for OA-mAb. The affinity constants of O24, O31, O39 and O40 were 8.3 × 108 M−1, 1.47 × 109 M−1, 1.23 × 109 M−1 and 1.05 × 109 M−1, respectively. Indirect competitive ELISA was employed to determine the internal-image function of the aptamers. The results reveal that O31 has a similar competitive function as free OA toxin, whereas the other three aptamers did not bear the necessary internal-image function. Based on the derivation of the curvilinear equation for OA/O31, the equation that defined the relationship between the OA toxin content and O31 was Y = 2.185X − 1.78. The IC50 of O31 was 3.39 ng·mL−1, which was close to the value predicted by the OA ELISA (IC50 = 4.4 ng·mL−1); the IC10 was 0.33 ng·mL−1. The above data provides strong evidence that internal-image functional aptamers could be applicable as novel probes in a non-toxic assay.
Collapse
Affiliation(s)
- Chao Lin
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
- Institute of Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Jilin, Changchun 130062, China.
| | - Zeng-Shan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
| | - Dong-Xu Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, China.
| | - Lin Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
| | - Pan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
| | - Sheng Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
| | - Yan-Song Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
| | - Cheng Cui
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
| | - Zong-Cheng Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
| | - Yang Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
| | - Yu Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
| | - Hong-Lin Ren
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
| | - Shi-Ying Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
| |
Collapse
|
44
|
Wu H, Yao J, Guo M, Tan Z, Zhou D, Zhai Y. Distribution of Marine Lipophilic Toxins in Shellfish Products Collected from the Chinese Market. Mar Drugs 2015; 13:4281-95. [PMID: 26184236 PMCID: PMC4515617 DOI: 10.3390/md13074281] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/03/2015] [Accepted: 07/03/2015] [Indexed: 02/06/2023] Open
Abstract
To investigate the prevalence of lipophilic marine biotoxins in shellfish from the Chinese market, we used hydrophilic interaction liquid chromatography-tandem mass spectrometry (LC-MS/MS) to measure levels of okadaic acid (OA), azaspiracid (AZA1), pectenotoxin (PTX2), gymnodimine (GYM), and spirolide (SPX1). We collected and analyzed 291 shellfish samples from main production sites along a wide latitudinal transect along the Chinese coastline from December 2008 to December 2009. Results revealed a patchy distribution of the five toxins and highlighted the specific geographical distribution and seasonal and species variation of the putative toxigenic organisms. All five lipophilic marine biotoxins were found in shellfish samples. The highest concentrations of OA, AZA1, PTX2, GYM, and SPX1 were 37.3, 5.90, 16.4, 14.4, and 8.97 μg/kg, respectively. These values were much lower than the legislation limits for lipophilic shellfish toxins. However, the value might be significantly underestimated for the limited detection toxins. Also, these toxins were found in most coastal areas of China and were present in almost all seasons of the year. Thus, these five toxins represent a potential threat to human health. Consequently, studies should be conducted and measures should be taken to ensure the safety of the harvested product.
Collapse
Affiliation(s)
- Haiyan Wu
- Carbon-sink Fisheries Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Qingdao 266071, China.
- National Center for Quality Supervision and Test of Aquatic Products, Qingdao 266071, China.
| | - Jianhua Yao
- Carbon-sink Fisheries Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Qingdao 266071, China.
- National Center for Quality Supervision and Test of Aquatic Products, Qingdao 266071, China.
| | - Mengmeng Guo
- Carbon-sink Fisheries Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Qingdao 266071, China.
- National Center for Quality Supervision and Test of Aquatic Products, Qingdao 266071, China.
| | - Zhijun Tan
- Carbon-sink Fisheries Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Qingdao 266071, China.
- National Center for Quality Supervision and Test of Aquatic Products, Qingdao 266071, China.
| | - Deqing Zhou
- Carbon-sink Fisheries Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Qingdao 266071, China.
| | - Yuxiu Zhai
- Carbon-sink Fisheries Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Qingdao 266071, China.
- National Center for Quality Supervision and Test of Aquatic Products, Qingdao 266071, China.
| |
Collapse
|
45
|
Li A, Sun G, Qiu J, Fan L. Lipophilic shellfish toxins in Dinophysis caudata picked cells and in shellfish from the East China Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3116-3126. [PMID: 25233922 DOI: 10.1007/s11356-014-3595-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/10/2014] [Indexed: 06/03/2023]
Abstract
We reported previously that okadaic acid (OA) and dinophysistoxin-1 (DTX1) were responsible for diarrhetic shellfish poisoning (DSP) incidents due to consuming cultivated mussels (Mytilus galloprovincialis) in coastal cities near the East China Sea in May 2011. Pectenotoxin-2 (PTX2) and its seco acids were also present in these mussels. Causative species of microalgae were not identified because detailed information on the location of the contaminated shellfish was not recorded. In order to explore potential causes for these poisoning events, the lipophilic toxin profiles in picked cells of Dinophysis and in shellfish samples collected from two mariculture zones in the East China Sea were analyzed in the present study. Single-cell isolates (100 cells total for each location) of Dinophysis were collected from the aquaculture zones of Gouqi Island (Ningbo City, Zhejiang Province) and Qingchuan Bay (Ningde City, Fujian Province) in July and September 2013, respectively, for lipophilic toxin profiling. Shellfish samples collected over the course of a year from the Gouqi Island aquaculture zone and mussels (M. galloprovincialis) collected four times from the Qingchuan Bay aquaculture zone were tested for lipophilic toxins by LC-MS/MS. The Dinophysis cells isolated from both sampling sites were identified under the light microscope as Dinophysis caudata. Average quota of PTX2, the predominant toxin in D. caudata isolated from the coastal waters of Gouqi Island and Qingchuan Bay, was 0.58 and 2.8 pg/cell, respectively. Only trace amounts of OA and DTX1 were detected in D. caudata. PTX2, PTX2sa, 7-epi-PTX2sa, OA, and/or DTX1 were found in samples of mussels (M. galloprovincialis and Mytilus coruscus) collected in the Gouqi Island aquaculture zone from the end of May to the beginning of July 2013. PTX2, PTX2sa, and 7-epi-PTX2sa were also detected in oyster (Crassostrea gigas) during that period, but almost no OA and DTX1 were present. Gymnodimine (GYM) was detected in almost all mussel (M. coruscus) samples, with the highest levels occurring in winter. Trace amounts of pectenotoxins (PTXs) and OAs were also found in mussels (M. galloprovincialis) collected from Qingchuan Bay. D. caudata is suggested as an important source of PTXs in shellfish cultivated in the East China Sea. This is the first report of toxin profiles for single-cell isolates of Dinophysis in the East China Sea.
Collapse
Affiliation(s)
- Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China,
| | | | | | | |
Collapse
|
46
|
Lin C, Liu ZS, Tan CY, Guo YP, Li L, Ren HL, Li YS, Hu P, Gong S, Zhou Y, Lu SY. Contamination of commercially available seafood by key diarrhetic shellfish poisons along the coast of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:1545-1553. [PMID: 25167824 DOI: 10.1007/s11356-014-3494-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 08/20/2014] [Indexed: 06/03/2023]
Abstract
With the increasing number of outbreaks of food-borne diseases caused by okadaic acid (OA) and its analogue dinophysistoxin-1 (DTX-1), two key diarrhetic shellfish poison (DSP) toxins, OA and DTX-1, have become a serious threat to public health and have attracted significant public attention in China. The aim of our study was to monitor OA and DTX-1 contamination in commercially available seafood and to provide references for tracking these toxins and preventing disease outbreaks. From 2010 to 2012, 40 species were collected from six coastal cities of four inland seas in China. An enzyme-linked immunosorbent assay (ELISA) and a lateral flow immunochromatographic (LFIC) test strip were used to analyse the samples, and the results were further confirmed using a commercially available ELISA kit. The monitoring results indicated that 23 of 40 species were positive for contamination. In addition, 14 of the positive species were determined to be inedible because the content of OA and DTX-1 was above the regulatory limit. Simultaneously, we verified that the digestive glands of shellfish tended to accumulate toxin, in contrast to the flesh. The highest concentrations of OA and DTX-1 were recorded in Scapharca broughtonii, which was collected from Qing Dao, in relation to the other analysed species. Moreover, the Arca family as well as Mytilus galloprovincialis were severely contaminated by OA and its analogue. The above results indicate that some of the commercially available seafood from the coastal cities in China may be inedible due to serious marine toxin contamination. The results of this study might play an important role in protecting consumer health and safety screening of marine products.
Collapse
Affiliation(s)
- Chao Lin
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fan L, Sun G, Qiu J, Ma Q, Hess P, Li A. Effect of seawater salinity on pore-size distribution on a poly(styrene)-based HP20 resin and its adsorption of diarrhetic shellfish toxins. J Chromatogr A 2014; 1373:1-8. [DOI: 10.1016/j.chroma.2014.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 11/28/2022]
|
48
|
Liu X, Sun H, Wang Y, Ma M, Zhang Y. Gender-specific metabolic responses in hepatopancreas of mussel Mytilus galloprovincialis challenged by Vibrio harveyi. FISH & SHELLFISH IMMUNOLOGY 2014; 40:407-413. [PMID: 25123832 DOI: 10.1016/j.fsi.2014.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 07/28/2014] [Accepted: 08/03/2014] [Indexed: 06/03/2023]
Abstract
Mussel Mytilus galloprovincialis is a marine aquaculture shellfish and frequently studied in shellfish immunology. In this work, the gender-specific metabolic responses induced by Vibrio harveyi in hepatopancreas from M. galloprovincialis were characterized using NMR-based metabolomics. In details, V. harveyi challenge increased the levels of amino acids including (valine, leucine, isoleucine, threonine, alanine, arginine and tyrosine) and ATP, and decreased the level of glucose in male mussel hepatopancreas. In V. harveyi-challenged female mussel hepatopancreas, both threonine and AMP were significantly elevated, and choline, phoshphocholine, sn-glycero-3-phosphocholine, taurine, betaine and ATP were depleted. Obviously, only threonine was similarly altered to that in V. harveyi-challenged male mussel hepatopancreas. These findings confirmed the gender-specific metabolic responses in mussels challenged by V. harveyi. Overall, V. harveyi induced an enhanced energy demand through activated glycolysis and immune response indicated by increased BCAAs in male mussel hepatopancreas. In female mussel hepatopancreas, V. harveyi basically caused disturbances in both osmotic regulation and energy metabolism through the metabolic pathways of conversions of phosphocholine and ADP to choline and ATP, and sn-glycero-3-phosphocholine and H2O into choline and sn-glycerol 3-phosphate. The altered mRNA expression levels of related genes (Cu/Zn-SOD, HSP90, lysozyme and defensin) suggested that V. harveyi induced obvious oxidative and immune stresses in both male and female mussel hepatopancreas. This work demonstrated that V. harveyi could induce gender-specific metabolic responses in mussel M. galloprovincialis hepatopancreas using NMR-based metabolomics.
Collapse
Affiliation(s)
- Xiaoli Liu
- School of Life Sciences, Ludong University, Yantai 264025, PR China.
| | - Hushan Sun
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Yiyan Wang
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Mengwen Ma
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Yuemei Zhang
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| |
Collapse
|
49
|
Wu H, Guo M, Tan Z, Cheng H, Li Z, Zhai Y. Liquid chromatography quadrupole linear ion trap mass spectrometry for multiclass screening and identification of lipophilic marine biotoxins in bivalve mollusks. J Chromatogr A 2014; 1358:172-80. [DOI: 10.1016/j.chroma.2014.06.105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 05/22/2014] [Accepted: 06/21/2014] [Indexed: 10/25/2022]
|
50
|
Liu X, Ji C, Zhao J, Wang Q, Li F, Wu H. Metabolic profiling of the tissue-specific responses in mussel Mytilus galloprovincialis towards Vibrio harveyi challenge. FISH & SHELLFISH IMMUNOLOGY 2014; 39:372-377. [PMID: 24911264 DOI: 10.1016/j.fsi.2014.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/07/2014] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
Mussel Mytilus galloprovincialis is a marine aquaculture shellfish distributing widely along the coast in north China. In this work, we studied the differential metabolic responses induced by Vibrio harveyi in digestive gland and gill tissues from M. galloprovincialis using NMR-based metabolomics. The differential metabolic responses in the two tissue types were detected, except the similarly altered taurine and betaine. These metabolic responses suggested that V. harveyi mainly induced osmotic disruption and reduced energy demand via the metabolic pathways of glucose synthesis and ATP/AMP conversion in mussel digestive gland. In mussel gill tissues, V. harveyi basically caused osmotic stress and possible reduced energy demand as shown by the elevated phosphocholine that is involved in one of the metabolic pathways of ATP synthesis from ADP and phosphocholine. The altered mRNA expression levels of related genes (superoxide dismutase with copper and zinc, heat shock protein 90, defensin and lysozyme) suggested that V. harveyi induced clear oxidative and immune stresses in both digestive gland and gill tissues. However, the mRNA expression levels of both lysozyme and defensin in digestive gland were more significantly up-regulated than those in gill from V. harveyi-challenged mussel M. galloprovincialis, meaning that the immune organ, digestive gland, was more sensitive than gill. Overall, our results indicated that V. harveyi could induce tissue-specific metabolic responses in mussel M. galloprovincialis.
Collapse
Affiliation(s)
- Xiaoli Liu
- School of Life Sciences, Ludong University, Yantai 264025, PR China.
| | - Chenglong Ji
- Laboratory of Coastal Ecotoxicology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Jianmin Zhao
- Laboratory of Coastal Ecotoxicology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qing Wang
- Laboratory of Coastal Ecotoxicology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Fei Li
- Laboratory of Coastal Ecotoxicology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Huifeng Wu
- Laboratory of Coastal Ecotoxicology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| |
Collapse
|